diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index e3d2539..4587409 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -9,7 +9,7 @@ jobs: max-parallel: 5 matrix: os: [ubuntu-24.04, windows-2022, macos-13] - python-version: ["3.10", "3.11", "3.12", "3.13"] + python-version: ["3.11", "3.12", "3.13"] steps: - uses: actions/checkout@v4 diff --git a/examples/ConvertImageioImageResource.ipynb b/examples/ConvertImageioImageResource.ipynb index 4c5aecd..61225bb 100644 --- a/examples/ConvertImageioImageResource.ipynb +++ b/examples/ConvertImageioImageResource.ipynb @@ -2,10 +2,37 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "cffe4de0", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: matplotlib in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (3.10.5)\n", + "Requirement already satisfied: imageio in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (2.37.0)\n", + "Requirement already satisfied: zarr in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (3.1.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (4.59.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: numpy>=1.23 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (2.3.2)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (11.3.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (3.2.3)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: donfig>=0.8 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from zarr) (0.8.1.post1)\n", + "Requirement already satisfied: numcodecs>=0.14 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs[crc32c]>=0.14->zarr) (0.15.1)\n", + "Requirement already satisfied: typing-extensions>=4.9 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from zarr) (4.14.1)\n", + "Requirement already satisfied: pyyaml in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from donfig>=0.8->zarr) (6.0.2)\n", + "Requirement already satisfied: deprecated in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs>=0.14->numcodecs[crc32c]>=0.14->zarr) (1.2.18)\n", + "Requirement already satisfied: crc32c>=2.7 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs[crc32c]>=0.14->zarr) (2.7.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from deprecated->numcodecs>=0.14->numcodecs[crc32c]>=0.14->zarr) (1.17.2)\n" + ] + } + ], "source": [ "import sys\n", "!{sys.executable} -m pip install matplotlib imageio zarr" @@ -13,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "a3a9d3cf", "metadata": {}, "outputs": [], @@ -26,10 +53,19 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "c08d09c7", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Johan\\mambaforge\\envs\\napari-omero\\Lib\\site-packages\\imageio\\core\\util.py:508: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.\n", + " import pkg_resources\n" + ] + } + ], "source": [ "name = 'chelsea'\n", "with iio.imopen(f\"imageio:{name}.png\", \"r\") as image_file:\n", @@ -40,72 +76,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "865974c8", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Size: 406kB\n", - "array([[[143, 120, 104],\n", - " [143, 120, 104],\n", - " [141, 118, 102],\n", - " ...,\n", - " [ 45, 27, 13],\n", - " [ 45, 27, 13],\n", - " [ 45, 27, 13]],\n", - "\n", - " [[146, 123, 107],\n", - " [145, 122, 106],\n", - " [143, 120, 104],\n", - " ...,\n", - " [ 46, 29, 13],\n", - " [ 45, 29, 13],\n", - " [ 47, 30, 14]],\n", - "\n", - " [[148, 126, 112],\n", - " [147, 125, 111],\n", - " [146, 122, 109],\n", - " ...,\n", - "...\n", - " ...,\n", - " [172, 145, 138],\n", - " [172, 145, 138],\n", - " [172, 145, 138]],\n", - "\n", - " [[128, 92, 60],\n", - " [139, 103, 71],\n", - " [134, 95, 64],\n", - " ...,\n", - " [166, 142, 132],\n", - " [166, 142, 132],\n", - " [167, 143, 133]],\n", - "\n", - " [[139, 103, 71],\n", - " [127, 88, 57],\n", - " [125, 86, 53],\n", - " ...,\n", - " [161, 137, 127],\n", - " [161, 137, 127],\n", - " [162, 138, 128]]], dtype=uint8)\n", - "Coordinates:\n", - " * y (y) float64 2kB 0.0 1.0 2.0 3.0 4.0 ... 296.0 297.0 298.0 299.0\n", - " * x (x) float64 4kB 0.0 1.0 2.0 3.0 4.0 ... 447.0 448.0 449.0 450.0\n", - " * c (c) \n", + "Group: /\n", + "├── Group: /scale0\n", "│ Dimensions: (y: 300, x: 451, c: 3)\n", "│ Coordinates:\n", "│ * y (y) float64 2kB 0.0 1.0 2.0 3.0 4.0 ... 296.0 297.0 298.0 299.0\n", "│ * x (x) float64 4kB 0.0 1.0 2.0 3.0 4.0 ... 447.0 448.0 449.0 450.0\n", - "│ * c (c) \n", - "├── DataTree('scale1')\n", + "│ chelsea (y, x, c) uint8 406kB dask.array\n", + "├── Group: /scale1\n", "│ Dimensions: (y: 150, x: 225, c: 3)\n", "│ Coordinates:\n", - "│ * y (y) float64 1kB 0.5 2.5 4.5 6.5 8.5 ... 292.5 294.5 296.5 298.5\n", - "│ * x (x) float64 2kB 1.5 3.5 5.5 7.5 9.5 ... 443.5 445.5 447.5 449.5\n", - "│ * c (c) \n", - "└── DataTree('scale2')\n", - " Dimensions: (y: 37, x: 56, c: 3)\n", + "│ chelsea (y, x, c) uint8 101kB dask.array\n", + "└── Group: /scale2\n", + " Dimensions: (y: 75, x: 112, c: 3)\n", " Coordinates:\n", - " * y (y) float64 296B 7.5 15.5 23.5 31.5 ... 271.5 279.5 287.5 295.5\n", - " * x (x) float64 448B 6.5 14.5 22.5 30.5 ... 422.5 430.5 438.5 446.5\n", - " * c (c) \n" + " chelsea (y, x, c) uint8 25kB dask.array\n" ] } ], "source": [ - "multiscale = to_multiscale(image, [2,4])\n", + "multiscale = to_multiscale(image, [2, 4])\n", "print(multiscale)" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "9fab6106", + "execution_count": 6, + "id": "de3f5949", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz915IlS7KmiX1G3H2xoJmRdLOq04f0mZ4zmHkBPAieYZ4Ad7jFc+EGIhAZQNA9033qFNkkafDFnBiZCzUz9xWZu6p6RCANKVm6JWRnRHj4cjc3N1P99ddfVYwxcrSjHe1oRzva0Y72N2r6v/UFHO1oRzva0Y52tKP9/9KOzs7Rjna0ox3taEf7m7ajs3O0ox3taEc72tH+pu3o7BztaEc72tGOdrS/aTs6O0c72tGOdrSjHe1v2o7OztGOdrSjHe1oR/ubtqOzc7SjHe1oRzva0f6mzf63voD/f7AQAu/evePk5ASl1H/ryzna0Y52tKMd7Wh/hcUYWa/XvHnzBq1/Hb85OjvAu3fv+Pbbb/9bX8bRjna0ox3taEf7P2A//fQT33zzza/+/ujsACcnJwD8X/8v/2dM8Gw2G5wLADjnqGyD1prgO6y1VJWhaRqqpsYYAwgaFEIkBEcWpdZaYyuNNhqDJYSANgYAYyqGCM+eXQGBh7t7Ip7oPB6PihGQa1CA0hqtLMYYlDJEZTBGo4xFa41OGUmja6JRaCXHKaXQWv6vlEIhn4/RKKUxVhODoqprZrM5XdcSQoCgRpRLx/RvjVKKGL1cQ4yAJsahHKuilrHCE2NEa5liyhpCCETny/jEGMt1AQf/lvEM5d8x5mO8jCOG4D3oCEGRfk0zmzNrLA8PD3gX5JzRy7OM+Xxx8nnIPaRrRwVUiHgFxEgI6dgQCSoQY8Qgz//88oLb21t2+7383MhF1MbinCN4j1dyiUoZVASv5b500i3XWqMraNsWHTVVVdF1HSF4rLG4YZDP1+mqfQA0upJxvbx8zu3tLW7YT56BjG0ekxjjwZwkRGz6e1NXtG2LUYYQIjHK/FVREUIgMD4D+XuDRuZCVDKGUaVjgiqRlXNd+guVPn98rkopQnAAeO/Ldcc0v5SSuUKU3w3pXYwxlGcn55G5XFVNmS/5vDE9O+89Mco8iPkzQ8DamkAerwhEqkpjbUOMER/lWRPAGIuP8rfaGCptsNYyBHk2Os15j3xv0jsWYySmB23SPQYV07Vw8EyUUvKMY0TH/G7o8o6Ud0ansfb5uej0WfJeqTS+AM77NI6RGCHE/B6rNK+Hct7yDNK7EtKzsLoihIG+2xPTXPAhoKzF2jlVM0OnNSjfs9ZyLmMM1lRYa9DGYIzB6Cr9X6e1SZdxRSuC98SosFWFtTI2Icizzdcof2/TXJHjZQwNEMq8SANW5qlS47qT1y7vPYTx54FYnod8dkjrYTxADZRShDS3h+DT9el0/5ppY4IQAlFBDCHtEYEQZO6H4HDpWbphYOgDnetwbqDvB/q+p+taXPq3dzIPh74lOId3gRA8TjmCl3mm0AQ1XmuZj/m+MJjKUM0aZrM5i/kCgEUzp142VFXNrG6oqoqqqqkqi7U1WuuyximtUel9lzVCdqAYFUG5NI91uX+QeUjUECM+rTN5nHxeQ3xEXvNIVDKnY3r+eY4fmArs247/+f/2fy/7+K/Z0dlhfNE/fPjIb77/njPbcHd3B4AePMG3WFVhTMSaSG01lVE0RovDkUYxBo2K4mQEIwuLtRpra0zaILIDE0JgUdUM7SPzxYrf/OY7bm7uaNudLMreEZGFhxDR1qAwybmyoDXGVGkC2nIP2liUtsmZkeMrbcsLTJqAUcumgo5YU+OcgxA4Pz3BGMN+38lCAGgTUJhxI1KyoKiQnZ3x8/NCUxbf5BQpKz9XYZzgsiGF0RGbfOXfT49NgyHXhGEYBpSWF8iFdK1KoYh88/YN64cNXdehdMQ5x9yYtPmlY7UuzyUoIGo0ssn5sjjJ5xkUobyQAJF9u+Gbb19z8/matm2Lc1EZSxXq5LhGVEhOXaQ4Bgf3ZWB5cc5+s0drzeLslHa/J3iYzW26a08IHl1VAPQ+MJ8vCW7gxfNnPD7c4X1yjGJejH9lnOM455tmjkGnDTESMMS0+EYfiGpcXGJ67kaZ9NxjcXaUUkQfRmdHV+mz8xQ+dHZI86Tv+3GDCCo5jQYwsngbgzVpQfQepaaOmy3OvJzXEsK46Xovzz0Eh1IK7wa5Pm0x2uB9vjdD8B21qagqm/42OQpErFEMyTGyVlPpFHSkuWHTAhCTs5I3l3TqNF/LKMq1TNbsPGaT/SmdRyeHaZwv44ad3rf0PgVVpX978khrKw68OG0Rl36jo4xlxBy8V2PwEolKY4yhNhVd78Ca7BNgjSZqTdNUVE2NUrps8DLPxuOszWugLU5K/veBs6O1ODvBYExFVVVondfKNJQlUBwDuezsyLksJUCcODwxjb6azuXkgMsmOt1A8xweN+ovHcKYHHb5dxXCwe/ld9kZVcWJyuMzdXa8H2TtBZy19KbH+Ejfg9EaoxXGRAYNRkdcn+dThSNKABUDaE2IU2eHcg86xuS8gtYy5pW11FXFfNYwn80AWC0WNMsZdV1TV+LsNFaehbLipOYoTYImdeAA5nnv1IAMtS5zNAeKSi4Mn4Lh8r2SMcAHYpAAf8DL3/oogWcOvML4vDSB2rQH4/9rdiQoH+1oRzva0Y52tL9pOyI7E/vl42ceN3u+efOWZ1cvAHi8u6VvtzjXo7V4tM65BDtHbLSYmH1GQU6MyZGEKlFi1BatBDkAsNbio0Qlu92GYfBcnF+y2814ePgMCW7Op1VKodV4XqM1RmlIKaqM2BRkRJkSSaEFCVII1AqC7Eh6KxK8p6oqvA9st1uapmE+n5eIo+02aA0Bg87oBoGgFBBQ08BoYvlaYpQI29oJwkSKLp8gN9Po6KlNkSLvvUQaKuBdLFFfCJH9fk/f91ycXVJVFZvtPdZqfEIeMmIVY4RfiQZCdAcpgRgiPvgEA8sY7nYbIHB19YLr62t27b7clzEVLjqZEjlyjBCJB/cWQiCkNEtd1wyDRHpN09C1w5iWSemPkFAXYyTVs9/vmc1mNE1D28p9+cFJxJU+W0XQKML0OibjbozBDSmloRDYP0L8ytDkY772jHLkKr/LUP7T1IFYQTMwkFKTMaVOPTGlO8PBeGtjE8IVyhyoqmpE30xOscmnChIXCurgvZfUsrUoNENKEebfZwSECbKT5/b0Xgvyk9KiOWrNqAJfm1IZYVFjxD+eM31+GBFHeafHzxvHLhZERBCdWBJ7IT+36fOIMeHJ47NwUb7XSArk4PmVOTNG7YJA+JLGUk/SNPn6vHeSop38Xb7W/M4pzAHKeDBECXHUOiNFGV3TB+vGr60Rsj6M/y725Gf5ep8iO3K+WMZSnkk4QKCm53FPUKGn6Sv5oawdY/Y1v/+eP2dTlFvQmHFcAJSOglQpea4ZLZLbjQnZSfcSErJjBPGpxw/5YvxiSh1ro8qYK6UwKGEMTMc6p6hVWl9Kyl6ltTONWQxfPDOdU355nUjobECjlSCMVinwAZ0oBQVlDpPrVRHlDlPtv2ZHZ2diWnn67pE//mnH+uESgLev33BysmD78EgIDpNzk97je1mUqUcoVmuNipHoICpNMIrAUJwSo0ZnJ2VTMMbSdx233Zazi+c8e/Wa6+tbVFmMwWiBEweCLNYRjBV4kZjz1XIubS1KGbQVhye/hErVkxRAgmkjGJtSTSoKvO8cXWipUspksTpnv9/Lgh0UEY9SYL66+IUC84JOC5vBInydXkFd1+kaLJ5xgzRMNuf0Yo7QsSovo9xPXswVyijyYGolaSEfBm5uP3JycsKz5y+4vb0F5YWbM02TEQlh5Bw5pdNzqtICn+7LaEhIa1kQMHT7ns+fb3j+/Irh+iMAfhjkr4wm+g6ivPjeR0ylv1ggQ4Rh8MznNZpIN/TMbEMwnrzbhhCLAyIbeoA4oBWsH285v7yg6wXjDlYWWBMjOsCQeAwxDMDhwt0PLYvZnOAHgguEvBhHSUeECWRMVIybybhYW2PLphGeQPo+ps1PSUoo763TeeiccBm0ibL5OnHWgov4EDAT/Fml1EtlquKsKBWFK4YipoOD9/K9D2gDxmgcBj8ErBV+jEoXU1eWvVf4EMoG7b3HOUdt5R3IHCvDxIEf5PoHLeexySlzid9jjCkOZkgbAGnTyAu4DKtDaYVS+oCnJo5MfLKBanSUc0UvDpY4KWl8J5GHUVEc6QhGySaYHiMQUhomvQs+8SxMfjcGTNSSSo8ar/S4mQZFVTVoZVEBlLG4wRG9BIFBZ8cGQpAgI0QnAZhWxKgY0rF5XK2yEMURBYf3Y1pNPeHcCC8nknlN454disM0bsuUdyg7nGMqKaXEM69QKZSyxCjpEedcSZVOLaAl6FABrXIKVTN6NGNq1ccUYIYgTg9KnPgIBE9AE8s5JPBQvkIrhdYDxkigiA5o7cqGP3VMowKTA4so6UYf5XPkBlV63grjI0p5VDQ0BPCO8aUM5T1WQbhjQUccHl3SoSk9qNQYTKHSOuklAJaFe1wjNJiYfqZzMJK5aBLUqzTHjZFAPMaICYqodXHKsrM9ztGIUxHtJmnjP2NHZ2dildE0yTnYPj4C8NMw8Pz5Fc9fvma7fWS/3xNx4BxBKWa6xg9pgbcaHweJbioLEcKQ+AjZ+0wj7p0rkaxSsgkNoWf3qeP07IJv377m9rNcg/cebWQ6ze1M8tUmEZa1RmlbFnmlBPGxyhKt5Gizh63QfOnsOEExlGL6Tk9Rl+Ajy+WKvu8Zeo9JKJP3Q0JUxhc9v2Dytz699JHpep0RI5NIi0op+VnKdRdUYHI9+cXJG02JFOBgM1BKQdAYbXBDx+PjI3Uz8Pz5cx4eHmjb9sDZcSlBLPlsTUioHVqiG+9HUma5rxwJalXQlc+fP3P14gqAm8+fGXqf0JaB4GUTtabCORmzL7lI0LY7FosFg+9p2x3z+ZL9Zjved+FDpMjSDVSVoEG73Y7z83MAcey0kOWNVWiXnBedo/vDKFXIuEK4ZLLZjtyEQwemLIhPuFVTBEKVZ6kOnCAhx46RXj5WjvflHDKv0kJvRsKvNgZrBatQeiS4u35AKeG2QSa25gU1FFTHe88wDNR1LVwHkgOZfheMKxGr9x5V1YQQ8AfzTx2QVn26n/zOyPVREGApbshE7EAsjk+yJ+TXpzy26TyJUfhkFpmjwhEk8fvknSvjqq045jpzddK7nxyk6TPEWJlf+XlC2iTB+R6fyNjy48yp0anowhPxuBgEfQ7jGhOSA6kn88Q5R8ycRkaUV+s8V/L9ilOjdfUFEiSb5Ne5NE/Xg+nP8/VM7z87UUKsznPcPzmHHx3D5FShKJxBpcqyABMHNd/Tr4DfBzYiOcmBT19WQ9Dgv4LEjNc3dbYg6hF18nnuhIBWMr54Wb9DqAt67JzDBItzPU4nfmhGWzPKZsa1QCkzIk0H4x7gcIYnpIniuKhScJID8ZFrl/9Wa1scXjk4vYMTxNNohTPj3PxzdnR2JmapsFphtSb6NAHaPZ8+vWe9fuTNt99wdXrG/f01oR9ksqgwEpS9bIAxeim7UYmcGrWQrpQq0ZVUAEVCENhea422Fqtgu3lkGCJXL14D0HeOfbulthVBGwyGyqSJoLUsnjoTdzM5TwsiZEav9yBSTwiT0ebwpcnXqWIhSKug6HZbqqphvmrY7/clVZOtOE95U8svuxpf9ox65cXQI4TRSiuMNXRdJ2mJ6CUy1/ZgE/jaBivh4yS1ks/tfUG7+r7n+vqa58+eMWsaHtb36RxBov8MS+f0pFLEENFGM7JGYyH8plEmpLRWjFJNdf3pAwBXVy95uLtnt2tRRsu7HyNusuGayQZukI1SaYvrAovZkt16Q9/uWMyl0mi736K1VNFopfEhn8sBke12y3w+B2A+n7PbyvEyDimNkCuBJuuQSmNlrGVwbuI8xgQzj6t4iVu/khaYIhIHz2syvkrJ7J8eP6Ys0iKM5GLydQMFwckpK2NMcZhDcCWd2XY75mZ18PnGGHyK4qfpUxgXTUKkqiqcc+XZGA2VlcAhOF/I6dkJGlOhqqQ3Q3Z+0u+891hbF4dLrmFMQ02h/WkQ8kUqZDqm+ZmlDEbZRNKGq6d/qpD0dTq/T58t6LI+RDmDElRUhUzZx1qb5njEWlM280w4lmdncEHI87Jpapg4MDJZlKCcybHGp7k1qSLNlknjeQ166gTm343/zxurPvjd1CTTE0sl1NTR+fI5pOeMT6/+eHxxgIIQgaMe1z3J/QZiCOlZJKepPMuYwJBD51Wb8b2KEYxR6CBIiA9gPQStZFRjRnXBENExpcDjxLERGBlxFMtHp7UyVUXlzw8BHwb8kAnSPbU3hMHgVY9TuiAxKj8TMgqlUErQopEsrspzmzqnT1PAf8nKGpwcn1JNVvK64zUFRUmB/SU7EpSPdrSjHe1oRzva37QdkZ2J+YBA+VHIXABWayye2O74+Q+/4/nzF1y9fsPQ9aw3d0Ls9LlEUrzkpmkOdGqcc6VMvKhjaIEegwqoaV4yCmG43W35+P4dAGfnz7l49pLH9YYYPFEFonMjahNjieiUFnjbR8njHkKdE5gz/zwVX8sPJ5y1J2kGiVaFPJsRhP0+a7tMfeasUfFlWuOLqCsEuZ+Uzmqa5oA0KjDr0+g3wdJPUjEF0ibDmxJh6yjRjnOOm+s7VqsVzy4l3XR7e4vzfYmWp1F5tkrntAi4VBqt9GEqzSDR/m4n2jIfP37k9ctXaL1m320ITsbNTEp9RwAs35/Bhw4dAtFbZvOa/a7DJUShsrOkuePwqZRacv8aayy9D9zdPgBwdXVF33V435fxkXRL4mVMS3BDYOg98/lcyudjJE4IhX82EtNfHvO1tEvmYUkGTtCiKdExoylaqfL8Q4iI9IoqiRnvPabSuKETJMV5lIHgBYVw/UC3lzLU2Ww26opofYAkxcw1SNfa9z22Fp5EcL6gfUopfJBnl9NjwkNxKS0oXCV8AKWKVkgYJtGzCglN1SgUTiXyeDhEXb+WejlIM01NKUEIlCrPcnyfp+/tEyT0CTleZKUSWhLGz5R0oWiBeb/HGJ1QHVXGVtC0lH70Y3l/Ru/kGQbkMCUE1hDwgyvzQVt1gJilSUWMDpHNyGlU9wXKo/Iz1GPaQ4oXDtGfA/QxISF5jcpz4yl6fJDqj2P6a1zLEhqpv542y2vU02cbY8QlhFhpKRHXCDIvzyMWgrdSSsZdK7SRdJlRqug1aaVEZqM8T53Ql1hmQUZGLQEwovmlBfFXWviP0YeSogxOeHAKU0rHKwXReUKWCmDCbyrjOKZrn/7/cFzknGlUDub5NAU3IkKJC1u0pDJfqBwqc9gcOTv/1dY6T9QeVaVKJzLkHjHGUVGzvvlMt9/x7NkzXl29YL1es9kItya4gUpb+nZAa4HQqyptlsZgrC0jrjDJ4QGV4PYYYeg9TkWsMfgkzPb4cEM79FxcPme/3dN1HdEqnHeQOEF1mghBeYIW0bQREpa8/lSjJOvmQIZiDwXMDngxShZmjzgR+75Da83iZEXbtng3LkRW21SpEsvCJ4vGYX49j0Le7EIIiZxISSc8hT+n+XclynmSGtCHnKB8/PTvlFIMruP+oWe5klTHixcvuLu7Y7/flyqfnHZTIQphryykkkv3PuBTClInJ7BsMCmFNnQtH9+959WrV0I+jVm8DIYEhVeTsQ1pcdfR4LqIcgOLxYKm9kIMB+bLOT5EZF1SjIiuI6KKlhDAbrvl/Pycm5tPyWmNk/HLEDHlmgNCxq2qhqHfpd+NqSv1ZNEq8yND8opJiu/weeXU4HRR01oRw5d8nzwXow94JyJp1tpSwagi+CGIrlSUz/RDQFcV0Ut6q0/OUl3XuH5Iz1O2gpjEHKMS4rJN73jf98Xx0DHp0IRI9EF4bk7EIYGDFJbGEWKcpCrEScu/t9YixHrhnCmlxmonPTqUec7J34eDeZ7HfJoWiTEyysgcHpsF/SBVFCUye0xpr2m6Qfh06dlqeZDKj3w6rSX9pKxBeyl+AKirmfyB0snhlsouFCgCPufWlKRlKi2OkfBletlwc2rN53kFMUoaTJzzMY31NEU6vYeQeEaqzPNDPlieYyKQmdYLRifna86kjKeRZ5/S1fK5WZxPgbKoXFkXn27qh86OnDN9kdcj0TGKB/c26vuU8+TrNFoirqxLZESoUalcLZZSxImTpzHFWYjKojB4Le9IZUzSOqqE95XTROl91cl5UW7AKZ+02iRYJ80PrTU2FXPolMYKObBI/48TPs/4ledmdnLz/J3uD9PU32HQPY6TmI2h8L7+kh2dnYkFPDAqA4PksqOViee9p7Iat3/g+uOe7fqO56/eMl++BeDh4QHXbonBYY2VaC+mTTxVF+n8wCYLmUmVWjoqlFWoGIRgmh66D46hXXP9vuXi6hXNfMZ6/UjhVADOyQspfGGDcz3GVMnJGctvpwtoVh3NhNmMADx1dqKWMk0Vo5CqjSwI+/2epmkws4rdbifXSkxqyRGlNSYeLlbTSChP0RDHCom6Fo5DFpubHjvddA+oCV+JrmLIZccKN91Io/BbALqu4/Lykvl8zt39Taq+OrSysU24JT6MG5NE74cbjnOOMAQ+fPjAi7cveQj3DEOF63p53oykXxFBzHMugIpEFNvdmpPlaXFYd+3ArJoRwo7oRw6K96CI2Kqm68Q5Xq8fePXqFYvVisfHR4jipB1UNeXNM0hlXdfvWS5OcMP+i6h0jNBG50b8oUPkgMnzyqTf6TOczjvnR8JvRg61UsVJkZJ8hw+ROlUFDsMAaUGujJXqRO8YhgGNku97OW/fduVvjIoiVpYQWIVEq5n/kBWnh2EYEVIAH4Q/5jwmITsxnWeqrjvl2Xjn0InEpydI3jAM4vyQUKCDiZaVB7+O5ky//xrvQNYO+XfQE24Lh47tV/ksBeUTgmtIJc7KVEXuwBhDZWdYm6sozcid8r0gBBNV9fHzTHEoQkwEdJ+vI4s6jvNAihV8upaRXzJyAw9L8wVpkAcoTs6XSEvmCR2sJToekNunx07HKQe6ZYxzefR0P37yHJ467xFxgA/QovSLGGNRd5bzfimuqpQiKoNWFm09ehgrf6XAI1dB+pSNkC+pUhsdeLQFE0FrqlTZq63G6KogtEpJfa0nYoJUo6m070Wd9oZMdteaPl2fZXzOUydyKhg57jchOUajszOdh4cOqLxbjuTQlef69WzFX7KjszOxyo4PKmaSnRawMST4Lygwifi57zs+fXjPMlXBPHv2jOhXbLdb3CDoR23TQ47SRiBLyseQNDB0coq8Bz96/VPtmhACQ7/D6IbbT+9ZnVzw/PlzNpstfdtJeiStdj5GTHJ8PIeRy9OXO1t27uRX8eBFk/P48fs4IgV5g+hjz3whKpzee7quKxPdxSCl7S6dI5JKMPNEV6Ldo0QHpm1b6rqmaRqRR584GyGIE0hEWjtMrr/cV4a2Y0p5BSEGygZgEmlUpn3fdXz6/IGzszOurq64ublh6PrJIsREln90eNRE6lxrXe5nOra5SuvTp0+8fPmSGBWP3qP8gPeuRFNy3wn9CBnpk3vdbB5ZJRSqe3wgREfTzNhvd2XDEbTJo4yjSSX9fd9yc3PD5Ysr2rYtz0NaQRymTHTS6XCp1NfW4kAQp9Hy6MDAmCo5cIifOjtRouKSGsyVUTqlGW12tsKkKnF0AquqoneDlICnz7PW4oJA70MYqBNJP6M8YXA0M9kY9/s9lTZC3pxE2jHGolWUnbcpehBCEMekqYlaJXVaVRwYok4Oamo/keeXDyU9pkt2OU6I1LkKSBzqYMYonvR+afVl5VtGGUuQ8rU5PzleTTfPsuEKEpmThzrmZzhFT1NAoyJGabTJhGuD1pHKNsXZiRmJRhSAMwIj6IwEb/K8qkJkHnxuZ6HLtblhKPdjEkoh9z/gvYAYElDIuNgqj4lc01iIMXofpUXKpHpyGrwdfGlJM5Z2EUnTJ58tRinR0Eandi3jM5g6kE+326im13H42XnZCqmwQAKcLOERE3ijD76sMgRjsdoRsp6YMVTWEmz2cuX5yTyVSt1ppZQxhpC0c2qTFKyTNEl+rmiVCl7AoyRVG0DF0alXpUx+DJoHdejsVPpQHfvQCcoO46H2Ti4nD0EXh3fMRKR05hNBN61kXn8Zon7djgTlox3taEc72tGO9jdtR2RnYmfLFXWV+u1MuBpGR2xCdmpbTcT6JCKJg/AqNutrZosVl1cvaNsdrt3jvSPGQAwDboiloWAISL+ooGgTQcymSEU4NxbvMqoRU342EsPAdnOPc47zyyua+Qm7zSO4ROxF4QlUtsFnTsskzVK4ATgINsGHVkhrB5HiSBrL+WO57jGCr7TB9yLIl/Vg6rrmdLmicx1t28r9TLgwMRymNYBJZC/RwzBISfqUsFwaYiLRXn4+pMiqxKdaPYnkcqpGoYLHEHGpwYzo6gTub+9o5jNevXrF3d0dm81G0hUxoibXOQRBhXR8Ul6cCIuZ6GeUcB2896zXa2KMvLx6RQiBx8d7tDGHnJUw3kPmIMi5I20r13p2dsH9/T2LmaFqaoauL/wWyGXbIwq23+95eFjz/NkL3n/4JaFJaYwiZCKnPBfhW+zbLbPZTDhhmYsyiVynYyFIjqA3pLmTdYfGz4iJ5CrCjRkFywhSvtah9+XzQgiFL6dUxLmBkOb2bDbD2oo+NZNt23YUIEPhTCyonQpjL52MLimjhQuUotSsnQTC26nrGueScnJ6vsMwFLXqfN/5PXJ+bPqb56w8hVGhu6A9Je2VnlGMI3qcELCSUEopiny+w9dlRMS01iV9VZqy/gqsP42Qv2ZfIhQTXkTid2QBvdwLbUi92FBRRBpJSG1C7aSnksGHhJBF6fWUm2JmPle6AEyU1Fbu8SZUPwW4hEzKsZm4bCYIWkFO4viz6f/zPX6RIorxAAXKaRaXkE2deEfy+0nqRWWeiSBEMTUjzqtrQWvSGjRJlpWfA4Voni0LqU6/jDFYbfBWlWsxWhOUxdrM0ZFeXT7tIdbU5TOMEqmAYJQ0stZVolaATn3eAJS2GKtTs2pVUtXAqBb+JNWntcaoQ20oryeZAKaUibGMPBSukT5AdlTJRuiCcpV0XNmj0jWkXnC4P69Gne3o7EzsbCmy+0/zjVnvJUOylUm5ypT31WZ8ofp2jR9aZs0Js5NndJ2kmrTxoiQ61mMR+kBUDqdEUdOrQG0sOhhi7zB1yv0rBVpUR7GKSguMf3d3w3J5wvnpBbu1kKT7vicifAeNIXonjlKUlyFPQKuFzzMEj1FgQ8qtq/yST/QnvGRyQWO1SswmVTYmPxGw6vtWxAbriuVyydB2OOdKKkIRJ29+bgcgC0n+cd4Y+r4vKs5aa/q+Fy8xRFSC4F1Sk80LhkD+pqg6PyUsCscmfXoIoogL7Lc73rcdL1+/YrFYcHNzI/oTGV71AWIkRIdpxhYFVmlpbxBH4bCsNmp1hY89+8cdt+aWi4tnDN4lflPmYwVM5nzkjZSc1orsWnEi50ZzdnbG/f0tq8UC7yLeOZRGOkWHvihTByfzc71+YLmcc3p+zt3NDcGrpJsTCtfL57ELET84fBOpmoa+laomM02tIHMjJHXlSBCNGV9D1ISoKE0XdYLplRXnLnqcF2fEDXk+yYZorUld4jusHRt0itNjGZKz02166oXwFwiOLlU5ipaPdD+uFjIGyipC6nrvXY81WjhNMWvG+ELm1VpjgiJzBGKMhEH+bXWFdx5PV65XBZk7tla4ITC0e0IAPW+EA5HTIh76IHM4k2Q9MueCzy6RcIZ000jDQ8QRksfkiVpN1JeBVCSgMcQQcblxpSwRBO+K1lQUqS+IoqadHUOd0rw+fziJ2GohOgUmBzuupB8qO1Hkze8V8qVVahJqJM/fGElp17bGo+mdk2swcq7goY89IQSapFCtJP9WVMCFxByJcRjTxZMu2iPPMAuTSuqkaEhNW/hkxyOpbGsiWo2K32NIk6rOpEwtbdhp44+jbpcQbjTgZLNFj+mwGEXMPQsQRofRulyPJaVS9Ri05WosaQcUCNkx0JUcpyPKyP7jKtkTTKxxdNLEVys8Gh0UdSpAwJjixORO86rWVFVT7is71Wqy15nUJHfigwqnEPCTCuMczChF0ZnKzzFLk02rsZ5+X1JbOQXmJn+fnqUx+fMkkMgO0ejgG4KSpsh/jR2dnYlVzZz5vJFIJk0qmRBV8q6zp5xz1ElsKqE13ntUjPRtz9DdonTNyfkZ56tzNpsd3X475tG9l94fMaCTYqitksOhD5nrIHGWXEeFVU0iHyu6rmMYBlarBQDz1ZzNLpFMY1qclSgBKzP2kCrXa6bKlRPeXSqnzb+bOgw5osyfMfJ9kGoM73EdWBuxpqKuZ2z2uwPUYmpfVi6M0fOQFj9jLfP5nK4VIrRUtUiHn6kisfB6xmifFJV77yfchzHqi1B4PMF53v/yjrOzM96+fcunT59od6nfFVK667zDdCJCN7Rd+VvnXSH6jZwkKTH1PvDw8IBShhcvXhycN8aId7lTdYAQUlmqOBXZKdlu15ycnHC6PBUBwUXNfuvwPqEG8VDYTwmkxc3nz7x++5a+bdmuN+J/6AmHhURAzuPdddIXLfGlQhhxs9zOYIqUFH5IyNeaI8HJJpqup6psUTLOXBalFMbWWGsZQp/eocybqxJikd6v4Oj6vRAzExrinDhlBTlMm4wbAjbzmRDHWd4DEW8Ehc+q5kZiY997VISh7zGVVFKFTPyPsh74fqBPpfLRyX14F4pD0/d9QR1zGwKA4ES5WRnh1VkzFfO0MHg0qaLMOVza0HXUoMcqK40QQkIi3Zb2Q3iJA1LFmcytkV8lTuqXiGq2vBEZozDGpnNJVK1VhVTN5OPlOYsQofQr01o27aquqewkQHEDMYaChMtzHAi5Kmuy0XbO0w8OnY5XWsjFIbgkcJg2emOISicuicQ/Wqc2MmVAxnmns8hdKlMX3lbR+hydOAJSpSotRoTgLYTrp/yokbNjRpQzusIxKuNqk+BeyN3kJ8Kuk/PJM0xIRrr/mJ06bwSB0RU2KRg767E+oTrOCzctiCCuVqYQiQGqylDXNbquigQK5PJ2U9Z5cRqTA6Ty+pUdO8rYTa+7ZA4maHtpYfVrQqNq5PBoNZba53NmhD8H5+Vr4hDJ/0X4cUhVy3/Jjs7OxKw11LOGuq4PEIXsAccgkY5K6rWywMTSph4oMHh0noCj71vq2Ypnz1+yOjnlfn0LgB96lO+lKkTLSyORrE7N/MZ4Q7xwi8JidIO1DYaKupoRtUD6+04W/apquHz+nO12D1lXJcPkTzyNHE1lqQoFmIJ1jPC5R158M/mbjEJMFxVAFr8Q8InoGZN678liSd/3KbWVP59ShZOdm6k6biG3ImmsGAL1rBHJ/84VB2sKh6vJtYzkQIMxmqCkVDjfn3y2Pkid4SOPd/fsu5arqyse1oKs3N3dCVwaA8PgUUFJs86uS0iELikKk2DYGIJItRtNGBzbxzUuDFLyfiPz4OHhAWOttA/JZMoQSxuNUsURI7vHNefnl8xnMzrXMVvM2W93AsOHiOuz0nBd7r/ve64TSfrHfSul0xPCq52MsVKiczObzaiMOH/TaqynqdDSFsDKPPAT+YA8Ftm5yRtr3ijyOdxB2xQj6baMxqWoL6RKKPpA7waqGCF9TtYcIoqab057+l70m6T9bSoXT5VAWTE2Q+rDMAh5M6cUPHhcuZepDIKkPn0hhAYXyhwTh3OUvnfO4ekF8Mjiuy4TaVUePrQVIrOOpOpPnTZEn8ZyEqSkc4/l76qgbSSF4FGWQJVSdeLYp6xgkGpEZPO+lB20aWpoSjRNdyHPV4nsg1ZZeR1qq1EpjeWjKApbbSTNpST11Q8ORaSqRhKtc47ODeX52WixSlCgWEUCot0FYGIYq/1yQ8lEM6CsQ5n0K+u0PJMx0AsBAokcn/ZypSTI0FqnJE5ARdHuiZN5/7VUYKnAijnwU0+O/etItNMxL8RvI2iijh6dZQ1CDTYhH9qUPm9WSVoqTD67ruvk7DQlbZXRE3nmk+ebG8A+rdxMAXksvuRXKt/K2CaHZpJSnAajSimUCWlfJb3vI/FZPj6ismPEl+nHfF6tNW7469JYR4Ly0Y52tKMd7WhH+5u2I7IzsWmH8GlXZ0WQXHjKz/oQ8EEaMQpUN3qaIUqUqSyoQZRWfb/h+uPA8uSC589eADAMjv1uzbDfMQwdosAhWjaj3s+kDwm6pLG0sujKShl8jnpTOsrHyHa7Z7k8Ae+Ew5OhRqYITIL9tT4QG+MrUctIVh51NEbUSdJtxYtnRJJAIijpIL2laRrOzs6KUJ6IuVWE4JKGkT1AdZ6mt4ZhwHlNXdcsFjVt25Z+U6Vzuta4TN7UGWbNZxARtNz4TmudoOwgIo7eC38mBHabLb+0HZcvXgLw9u1bPr57z5DSISEEnAvU9ayUyE8RJaUOYd7MOdKd5vrTZ66urso13N7eoo3Bu8zZkZRHVVUHqEsIgfv7Gy4vLxl2jhAizXzGbrNFpWcKTBSJBWXbrHcsF3tevn7F+/fvD8rpc1PEgoxFaHd7SRmWkvXCRppEczKW8m/RRJH+SOO8cE54Y8Tc6yqnu8ZO0iEEfC8wtDby+Vm/RpmU3os51WFRIatRR+kLFg3D4JjPLDEG6qTJ0kbp4q4weCXPph/6otQ87WjvnCP6rPHTYivDPpG0TUoH9imdaq0lZrTRJTRSCQoWoqAcuYOzdwPRpF5aCU0KcSzHL/PFj7IPMq8SqlI3CVWYIDCkMuLoU6pW3smAL8hO5uyoaEpaKypVdLuUygiQH3W/iryErH0lAtexHJ8PjQzkxqPyMyG1Wm2wusKVMv6RB6J0xDtBsEIINLVNffDkmrquYz9siWl84qCISng+IFwkW2WE0YPywhUyBh9qbEo7aZP4bqVMeUyfZYQhp2ZDlNSsOiATxyRS+kRtOo7p3OnP8jsQE19NGQVMJT7Sc1MxoWz8qh2mckbl71K2bapESE7IaYjCFVJjPy6TNG+i0QWZrFOamEQ0F+7p+A4eILdZFVkf0gtyVsBPFLuzPlVem8rPJ2m5/P+Yx0uGJ6X6Bb18msYaxyOdS5jqcqtPkB0fAy6t53/Jjs7OxEL0eNenrvcyNMJez7oM0vgsw/tT3kH+v4hrKlRQmPmMoB1KaUwMDPtHPvdrABbLM05PT/HLE+7vr4VsiiGGnNaCEXaVtIjWIurkkTRKVmgVRnxirCtLDJF2u6OuLbPZrGiHoA+aQ4h0l85wo2Za1vQ0Rw2M8Hj8Mo+dLSvF5t/LhJVsV+YXNY00t6zrOjk+cm/O/3m9Ea01jsi+76iNZTafC/w96WQeEudleo2RWBSdhe8xbnLKymbhEjSu0oKogeg8H3/5GYDz83O+++47Pn/+zMP9PS4E3NAzt3Oappm0zsgcAElDSudg4RbEEGhbuZcPH3LT0CvQivvbO3SscH4QfqRKascxO7GiARJj4Pr6hour5+z3HZpAXTf0fTeB2TOfKhbNkE+fPvH9D99ycXEh5Gs/ptymziKIk+JjYL5csN1uxyojN+bXJQWYNvXcFFPFUqGjU4WIS21NtNZ0uYIMjxu6dK2yIQcPcRD+Uz4/fhD13bR5G6VQxkp61IO0ZNGE4Nht2yTaJ2YrzdAORBVxaeO21tK2LfNKrqEv16AYnMdWMieygncIgSY1H807Zt/3xOJgZwVvndIvqjh5ZVwCQv52KUVpFJbRIQXQ3hCNls7W2blNDpFzDipV0hdGiXj+4IW4OzpNKZ025YNEaWUR0juV1OUIEbyXsZlWfBlToYJL76ERoqrWhOiYDEFytEIKgoQcbbRJXB1JaeV3VpxLnTR5ZN2sqoo6VeNlJ7JtWwYcRC1kaiXNV01UpVrNq8yfMqLfZQLWS+drcQrk/sXByqmZ7NyRxkilQDaCOuRFfs3y5p1bUYI0YY2EJ/ycaVPRp07SZJN+4u1MN2+V3sNCLDZjZWkIov2Wq7GsteW9kOatYxpLa42qqkLFsImgbKrE+7FW0kbmy7YO+dllZ6dw+zIfbKrQ/ZUKRRgD1al2lXqyppeUffmML1OETyvqYsip1dxEGcAz7VD/5+zo7EwsDD19ntBpwnlrCZXIa+tCSE5l0NkJStlAk5j/Rim8VSJGRY3RGuUVisCQvNB2fUO3faSZn3B19RLnI5v1mr7d4xhQPubiP6zRpaxRETC2Ag0Bj9V14nmkjTapHccYJQcePPO6kd5HQ182g0pXhU8ByCKpKF2Uf63bSCb1lnc2EfzydBMd1umEHv8uf1ZWW7ZNzerslL7v2e12qJDGPKSodfIS5mvNi4P30kphPp9jlkv26ZxRJ3JsjARkfQ9MS1NHqX2rdFJXnaIn6U5KRZVcw/r+gf1+z+vXr1kuFnz+/Jmu78s11HVN3wsfSapnpA+P9x6hEmiMtTjX41QkVuLw/fLLL7x++waAzx8/YecV/T5KlK6mhO68cMgcvL+94dmzZ2z3Lc18VsT2QJyqHA16nzvIa35+947vv/+e7XZb0LXMa9LapM1TnJP9fs/JyQlt246OkApC046kcttJlKfUyBmBElnHGOj7IS2wwiuqqnEB875HR43Vms45nJNWJzFGhqEn6lFS3ypL0ArvYyKnRkwlOX7Xi2NQ06R5qHCul43JCMKlrCUqUeeWBXksk4ccpXvatsXWM+GGpXlRJVShbXsiij45RFprOa/zRATtGxd9iw+JwxcEWTFmFEbMm1oIIe2PUl6tgrQgCYNjCB7lx/Gy2hCckwonwGayeQZ4J6hCCF7EPLWgrepJn6rUoKq8uSFGgs6tQwqbWOaHMgWxwoc0p1MndC3tdbLjms2ktgTBjy1grDY0jfTWatu2cPicc+QX04cIxqXz90RMKv9PY2BFVC+YCDoQdO6nNqKosXCchDit8ZioUEqEHbX+usDqwXzmcCOfBlTjJj2iI0oLMnKw7pEvI+8Vh4jJ1MoxUUJSrdN7bEAHCGF0TIwxxERWTkxeCCJS21QVqqomx1qsTV+mLpydghhNA9vcOcDkU+c1ZbzvbPn7Lwoj0u/8BASYIkBTx+hrvCFxor9SYaUPZUYkkD10Lv+cHZ2dieWHINU7ebEeqzxUgiyzQqrWKmkSiAUlhE9tTCH6BqMwSuOCxzCqi8Ygk3O7XtO2PcvVCWfnF8AF93e3uMGXyoKgdClnLr1EAvhB+i5prcGEyfWmCCaMEHFVVcxmizEKdxJZll49ZWKO5aXZ9ESteGqZ+DitPgiJvM3k5T6AHScO1jAMBem5uLig6zp2ux3RiTR7IVeS+wxl2Hz8/M1+x6yqWSyXgKgi98NQUgpoJZopAvPI882MRKNRPkgpsvNJWTchF5NySrmvQNv2/OlPP3F1dcU333zDh48f2e92Quqt6gKzOxckkgdQSTU2BqJXZfNrJkTQn3/8ibdv3/Ly9Qs+vv+EbSwMETfsCxRtUgVTVtd2/cDt9Q3nz5/Tty2LxYL9NlWqERm8ozJ1qmIJZR58+PCBV2/e8OMf/yjXGkUFuDQnDAlViYG23bNcLqXlBJO0XEzk8Tjd2PXBYhgSouOcO1gg8xzICKOUdY8LXz4+BEEl/ESXSalI8LkKR6VCAEdVmZQKDWNfqqqm66SNhG5kfveDw1gpb67rmpCeb9/3VHVNiOACkPq75d9Za1E+oVshYJSgS93QspjPGcKAcz3DkDf0VE5tJX2hMIicv530q9Ml5Rd8LJWZsfSVE5RUA27SW8LHRLZOf9wn2QNdaQyKIY6FDTm1BamKK0llmFw1qCiqtEUd2Seis+/x+JJmsrYa34eSVlPlfSnzgZjVGib9rwKDcyhjqCpBGQbf0w0tPqPj5D07Iy+TtQibHJTchFKQgBgD0URZnya6LbJWVmW+hWAwBkLqR6ZN0tNJbSmmG28MKZWvi5uSHMNAyA3SQpDB05TPVLn8nPS7CQkcOKh8m9oUWVEFuchO6SGp9rB6TRqlAomELRkFqypMVaGtnSBEVXE8rZW04tccnVI9GEfStje+rO/BRyIjmhPLnnTouASf1vksFaCkL9kBUjTdXzK5nDT0T64rn3v82STdFy3qa47RV+zo7ExMPF+Dc2GEol1MC6lEkwBVfSiYlEuOjdagpSxSJw8/+CHpKGiGCadBcu1QkWD4x0d2+y2L+QnPXrxlGHzpdeScwwWpYCAEurbHKEVdzeiDtFeILkOERqI1NXI4ola4GHBdV/oMmaaWBoe/AgFO382RVZ+h2HJU+vm0f9L4igovIMu5jwJv2dRks+n7ntlsxuXlJfv9XtInk2Ok2kNj0uJUgKUY2XUt1SAv9mw2wzQ17XYnKZQpRJuculHfJDl5CRHRSuFztKLEmc2NO5VWmFSK/OHDB5bLJa/evmF9/8D158/s93sWy7rct0fQKVRCpaSQteietKmEfj6f4wfHu59/5JsffsObN5Z3737GGkWt6tE5zeXySBWaCVIifXv9mcur54TBlwVkt23T5pF4FzGUjejh4YGmaXj5UrhI7969Q2l1kEJMH0S3b5ldzGgaua/9XiQNFIIYRZ90bAaHsla0nPw4J5xzwsHxgc4NzGZzidSjLiKRGcEB0JUuaSQA5x0qjAKfIcJAmyB84ctFtAQWOfWVOB62rtL4C4KQS8Nl3hliVGMfrc7ROThRFcpo+l1fNuVqLtywHOp674UvF0Lhn3Ttjr5tsY2gD26yoAcjeik+Biql6NM4N1U1cmhi4gahZCO1Sir4UosVN/TjhpikFMxY35vQStGYyaKJAD66hLjEUk2klCL4SfpKjXM/BkdAOG0RRQi5n54pKcv0oakkOeuxpPMmTmMpvVeKzg3CqzOKyloqa/BO+pnl+Tm+oGPVVDjgveV3N/NVBIGTzVwQySHzlCoph7epIsygqMv7nxyL3KpAS9pMT/R7iqJRnivkjXnsk5UdPdmURzQi79/TjTlMuJ9PHYPs2GQr3dR9bimkIGpSN70UQOZ1NKRGm5ImN6nHodUGYySrUAIlI5WKNjlAWo2ildP1WMbzsPJOT9dzH0tZ4TQFVe5V5Tkf0P4wnfm0P9lTNGiK8Ixjo756zNNrVL+Whnhix2qsox3taEc72tGO9jdtR2RnYtpoUQ+dpJu89yiXumhHaXqnosIYTYym8B0AjDL4KKo03vWQUBuJplIn5yw9HgRy9MpCVaF1wPQDe+9w/cBidcLZ6qRc27bdMgw+iaRplNV4PFYLSVlNvF0hMcaU+5XUhIh+Ovp+TAs19Rwde/reJeRVY9WYLivRX2pemiMrJSIOZPKvjhR0JKcCM5JByb+OKqbFlOgrqKRZ0rY7+r5n0cyYXzxnvXsoOX2VVD0zATHzUFQIhBhLq4bNtqdpGlYnC/q2K2jE1GyJuhLB0mgCg0RmKYo0OQc+QTqCCtJwNSrW6zXdv6159eYbvv/hBz58+MS2FR7MslmB39MPHSpDvSAoT6qQUgnZ6JVisZiz2+35w7/9ju+//w1v3rzh3bt3GG2wlcytvm2FJ+MFfdJaC/G1c9x+vOb5iytMQu1CCLT7nj54GtuIcGTvUdpD8Fx/+sg333wLwNmzS26v7zBG0mM+KVmHIGOwWT9wenKersHR9R3RpuhOC7fIJyKxNEDMcybN1ZgiZhMZ+o6qtri2L4hZDvCcC+CkWiqjUjgviJMeiwWGzpcqH+8zKVVhqhrtFSFmzkFNlThHSs0ZvLzLtakxKojeTSZbaqmgEqXZGX5u8KGTe6lmKbUXy3UaI+myoDRDRBqWKkkDuOCwCQUSgTyD0i4hWB3aWCGu66rA7z46SCmuYCLGAjh86FERTIwl7adClFSTzalEmcchOqJLhNnS2NIl/pghEzml47dB1ZXw+9I19MOA9pI+tEoTrRFBTh2wNkq6M054FaGSFUeBCo7edRjTYHRNJpBmng5ErLY0dU2Iit7tpTotRNAJOQUqpfA+Kb/HKJ3XY0yNSyltJGL01DbNf3iCMMj1qrTOKRsZVO6antqr5GxcFMVkn9AXQTby2GVuSfgKzyRVPCWqgiKh3Rk5iyNqodMeITxGKVQJ6fuseVTQDiiFFPn9OijUUHEkiQdQRgpiMJoqjhVcuQloaZ2iRFRQYTDalk4A0670+TOmSA+MWlSepLztxsqtbF9wmVQ8uPYYI36qWD1NZ+WhmohmSiqSsldmnR0yEX2SxpK95uscqKd2dHYmZrShrm2qnEmcAu9LqWn0JJg1QZbCgyUTHUPwRJXIdl42jZhUYUmFGT6TItEMusMYi3IVVmtZoCtF1HvaTaBtNwDMZguWixVqbmj7ga4bROJbm1SvO+J4eUJlUSrZdiQ9ISmdWO5r326xVjOb1SV1lwWhjFE4N/aomfY+eUrY+1qZ+JfHp+t7kroey2QpKsC73Q6tLfPFnMVClKF3610ilorjqTKHxco2kIWljNb0bUffdixWS06bM3abbUkJTiuP8nXlBTVGiE+4J+U6lRqPSc9+1/b86U9/4uryGW/fvOLu/h6A+/tHZrOKiKfr+zQWBu881krFUr4G5xxd1zOfz9msd/zx337P97/9njdv3vD5w+fSH222mNPu9gSRVytVOCEElPN8+vSRly9fAbA6PWXwD/i+F1kDo7CVoUvtE9ww8PGjVIO9fvsN+62kYXwMpZxUq0Ak0Pee3V7m4WK5pOt7hqFNyq4jtWvX79HGUpxaIsE7dFAYpeiHwJDEJYfJJIjRY1OFlU/VMtJ7LKK0praWYSIaVteS2vM+UtczOrfH1KMarCcVAHQbZvOaZlbRdXv2252oWQdxfquqwieHs2kaNvsdneu4PDvH0eNCXRb++XxOPySn20olEFpR2VpIk8rgY6DG4IaeoMdO5/P5nCFVmXkfsAZJaytHzmHU1QxFhWFAISq4vvdSoRYCphpF3tzQp3mbWz/kdy+nFSg8mCwsp5KoYS69N7Vs+s6rkg4LwdEPPRqPrhsIGu+18IyChzCWcAsRz0kBgAHvlVT86CrNyVyNNqR0k1RficPnEi/Lo1REx8nalZRzp4vE03SGzJlU3aYjGF+qoowx0AsZPF+sMeNGHEInlZ6DSirMSTV4kgbR0zUtzc+81o1OiKQZi5Iioxr2r5GPs9M0TXWVoczn/eJvxnPGsvDkv8/re3IMc3sLTPn9dAxlLEbnJqfeRLhwInHylfRRuhq5Dj1eg57cy1MOz9OUVXZInv4ur/9h4sBkxz6nxWwOoLQaFbKTiZTFX5egOjo7E7PWMqtqQDP40SkgoTPRj4OqtcbY7E2PL4gPAzHxGURpVbRuctScyZgR8aytqdB2kOqvSsp5lU3Kkekt3G2lQqSqFyxOzzk5vaTtdiJ57hMffTIJAw4fIkPQRVpfNtcxR6vUyKuQ6ouG2WyG96JjMgRfvO3cX2qcqIcOz9de8F/7+ddMeCDpnG4gKIOKju1jW8onT05O8N6z2TyKMjFpofei0loV5d5QGnXuHkTbZ7Fayoa22aAj+KwzkxzASCRM7m96Xb92vZlDEP3Ap4/v2KwfeP3tNwCsThZ8+vARO2vog0TUhpAcyIRepFP7IdDHDqsNs9mM7XbLH3//b3z//Q+8evuK9z+/B6DvB+bzBft9R+c6VK4w06IijIt8fC/HXr54wfPnz/n55x9Tb6txzoJU9Ayd8GTub2948fwZP/3yTu4N0V4ZBpecAsPmUeQSLp7PmS8atmtR/gaNiTAkpW5bVQz96CDXxtJ2e5TSVNbS+Y7NZsdqtSIOGVGQe7FWT/5WM5vN2Pd7QoTF6rQ82xAdYRASaO97TlZCbDfGYOaGLju9Rjhtm82GebOgqWp2O1GQHoaBGCJNI6R27z3LxRnb7Z6zZ2fU8xk2hFIZ5pxjPpNjnXO4zuNcYH4iP7O1woVI7zzaVkVTR2uTyN4yV+XnYVTYLhzYMDpedkE77Nm3HQbFanXCkDZpAFWr1AQ2FTqkdUYl9XVxFOQ517UoSA+DZ+gGIQ8b2RC1sljlcS4HctLQVxmLRxBDaVeRuIpBCMYA0WRkIKPKNcY0aWMcq1VDFFXyKlUGOZckB5I8xVMUIfNgSOTzMHUwJu/mVBcmpHL2oumTml1ON2znHEOMkCrgNGBihVUeG2smS6c4cE8CIplQRQ9kfBbFSfGJ3PPlpvvF5j4JFp+uL09/NiWEowJ/zrTKKM5UgfkJD0bHg33iqXPzNY7M1657+j0wtg56cg9TZMemn4dyS4f3mp2dgmCCtE3KpG350MO/CQGv9UELpD9nR2dnYsIHS9oXcZwoJsGCWUOGrOVgv9zQ9QBOKYLq8NHhY58gYEsYSKSyMeJSRJSWyD8qaaYoSMChBx2jFyKk89T1ltPzM+zMQhSxukzqBIHIYwipq20mGQoyUeZ6mnw6aTlkknBdW+paKlkyOZbi7BwiORlBevqCPkV+MqEvnawcKxCubJoxeoEuUxounzPLxz/eP2Aqy8n5Gc45dusNxXWcvAT5s5SSpqb7/b6UUV9ePme9XhOSvorr+oO+WtN7+fORWoZXKfB027b88ff/BsCLFy/57ofv+fD+E9HU+Id7Qt9J2iIaXO9LxKkJuN6zjy3zE3Em9tstf/zjH/n2++95/c1bAN7/8hNdNzBfLMRJ7TspK84NGkNyekBIy5fPBB36+DG1YKD0/1JG0oAg7SoWiwXPnj3j88cPSG+zIKmv5AznzeX27iOXFy8Yuo6hG7Ba0rNVZUanuZbS76HfC0G8kiq61nUoo+n2UmFmGll6mtmMvu1pZg1DFOKqjkI0X67OpbN5opTPFzVQ0XWymUlF1IbFakbX95ycnKI7GVfnQun75sLArJ4zhIhve4yyKBR9WoxnzRyQ8dnv96xWK1wMVDODClKhY2s572K+YuN36EApke+Dl59vNgcbgjGmBDq5mjD6QMxCgOn10lWgrqQk2PdeULZ+YHl6KhtVNMXR8H2LtiKgaIxJROKJKJ7W2KRjVTU6tRDxqddUnuOjo5AvIovM5Y3DMyAtbEjaU4Gs3aYBo+dgLEpX2KpBmkX6pA3Up+sBnXpiyc9HRFOrp13WIfe0U6kJsaTov3wPc5GE9x43OYkxhsY2VLoqPxuGAdeLM24QRwgVqUIgpDSZmqRqbA6iYu7fNKZVSsFH0tg5LMpgdEji4XqU0/pRBvovBlW/tvZ8neA7rrFTZ0XnYghAI6meQ+dpct1MzzU6bNN5lZ2QaL5EjKbOzvS6p07pF85QaR6dhEoTOqMjxbnxanR+iLGs89MxsICzA3+NHQnKRzva0Y52tKMd7W/ajsjOxJzPsuiqtJM3xoy5zgSp+dAVaFD0QEbvOkdGQ0JnIhFjLeJXjp2xTWrIZkyFqlJJYFWDMWAb+qCKXoUxQpA0Rknn9eDY3N/SNDOa+Zz5rIFUYOmcK5L0yuZmbxo47AotolrS5I5EYpaWBg6lPM1sVsq223aXxMV4gtZ8+f3470PYNR7wNPKxQXgFOaXjxo7YuaxzGsEMXU87tMznc84uL3Bdz/rxUXRnRh5xKhvXBOfQKLyGu0cpuV6tVoQgke/j42MSMxOBwYMI+Veg5kyCJEV3Y9ffmLmWfHj3nof1lm++/Z59L20fHj9/pO86GdM4lrGiNEp5hqEjrD2np6cMdU/fD/z888+8eSOpsW+++Yaff/6Z/W7HbDZj0JG2FZ0S4ReM129D5PrTJ84vL7l6+ZLrj9fS+iG4A0EuGTDF58/XvHnzmovzU66vP+EHQWSyHH0Wk9NKsd08cnqy5K67Yxj61FE6lfOStUtGTZB2u6OqKprGEAIEZ7i/v+Xy5XO5Vm2JlWil1LUgJYvZHOd6ZrM5Jycn3N/dlPEP0VNVMq/r2tIPEuGvThZstxuWyxUAda2YzRq8m/Fwd0tVVZycnGHrge1+R3AeXaV3wShspTGqYrvfEIO0ebFV0q2pRmSyaeb0vZMxMqOI3snJCbtum3Sj5F3sh4HedaLC7oyI5Q2KoY9UTV0UnE29hEreh67fpnufMZvNEsdqVFvuXaCxFc28IkbRA7O2KmrIKlKOjXEo71LVNLiY040N6Eh0oxptCqmLHkpuPqx15iPCSI1I2jpGCK/aGGL0+MFLR/M8D21NZRSEUIorEpO3oEs5HVfeXqVATTkz43yNeozNs8K1S+9R00gavpnNBM1p+zQGEadEzDCnp+QVjonkG8smGCM4ctonX5eg7iFMEI0iwZHSNBNV4XyeP5cCf2pTXsz0uKdfnliI/TETfdN/06ab07//mn2NB/XnrvNrZd/T6w1CPDrg8Dw9xxSNEe6PoDeZAF3SW0qhwyE9JNMwnlIjyjyrRiTvz9nR2ZlYCJHBSbdjm56p1uPD80Ri2uBiUsbN4oDpaLSRVIzSmrppMCF1fA4QbPGLkuaB5LK1VWlhkf5XMVV7lf0wLQqyqTpkNZCFtm9bwhAwM1lg61mClGPExXGi5oUwW0zCVzGOcKz3vrDo2/0oaDebLSS9kDq6jwRodSASKOc91JWAPH7pxsNE9EzlY9NxOhKDQ2kDwRH1pMeWT4twiOw3W9qtbPqXL67odns2a+GVaDWBia0pujkGRb/fcdfumS2F9Hx5eUnXdazXawY/6uIIoe7QvgrTKgsqEMMgJLn0cvoAm/sH/nXzn3j97Xe8fnGFQXH76SNduxOyXhaMDKlSTYlQ4GazYXmyJMYN3X7Pzz/+EYA3377lm+++492PP9HtW3Stqecz9tsdzkulRIbZnevR2nJ7e8NyGHj19g2fPn1iv31MFWYxcW5AVTXBOT69/8CrV6/YbB5pwx7vulL5o1MX9UDEewV1xcnJnIcHIV+HdqCua4ahg0QQNsbgvXB+hqETnoey1LXGe8Pd7TUAz5+/IDhJhdV6xtDu6bsti8WCYVijtePq6hkAm81OOoiHwDD0LBYLmkZSXd1uYDGfs9uvy+fXtZU+YkPHp0/XXL1+Iz2/hp56NifEpO8TJUjQdc3J8pRu32MqS1CioN0PLdVSKiP94GiaiujrEtzM5jV1Yzk5OeHTp0/MUirPx8DgIw7PsNtQ2YbBO2bNgqH3PD4I8fvk/IQYPfu9PP+T8wVNPUOpKJyaMLamWTQLZrOaqjbsdlvR76kquVY1trAA6J1UWaqUusp9k6qqwocB25jxvWRMOYAIp4qeUXrGeIyS+1JWoVIQaI1UnMrm61JVWyIHp3fRe0f0LjnNOZ2SnORJEPSUCxOSto3OOkrpUHF0UgWflp5my+WS2WyGcz273YahHcZzVYqgksOog7ymqaWPj6Y4dGkAkqMeEFnqr1cfyZdcVw6CS0AXY1H9nvyVXIsaU05/iRP4tZ+PisZjVVOMUTQOlUY/cZCm5/vinEURfer4+HStXyctH5wh/50aeTV/zsGCkSoQs8Bllv5W4/9UqcYa54QJ0uGeODp2hYNo/zo35ujsTKwfvPAQAmQusnMBrRNBOTXIi2nTV0+eqzZg3Tg5rK2oVZ0chETQMpmAZVIZtiYkmXhCQCmHtVp2zBwxROktE6MCZWTTCZ7oHCZGBh/RKaHunMPWs1Ra3hRPWiTrx7xtbrCnVO5fJJUUGukt5Rn79Oz3e+q6xi6ErNn3vSjJxq9XYsHXnINcYnroRpTqnwgu+jKm4s2PQnkmNZQUqftI0NJ2YrvdslwuuXohDVa32y3bzYbgfSG15dpVFaUqbZ0co8zPeP78Odvtls1mc0Cq+9o9TReQ7PiJ1qMv/TWNEiE8N3T8+Pt/4/zZJd9++z2zpuLdz3+UPlqTz4nBJQ6Ype9aoopC4vXrQtr96ac/8e2bb3n77Vs+vPvA4+YRay2r01MeHx+JE7XbSktVlIqK7cMDVmvevHrBzb3l4fZOIv6YlGtTpVDXOT5//sirV6/45ecf8TsnzW9DxPVjaa73nvXDwNnZGXVjCA7adqDf7pkv6iIQqLSlMYp63vDQtwytp66UiFo2ijhImf7m4Zbz80v6tsMHz3I5xw2y6Z+enYF3+FQJdXG2oh2kRQdR0e47Vieay2dn9L3j4eGBeTMrz/bzp/e8ffstVy+vWK5OeffLL7x88Zo3V5fc3d2xSiiQbMiR/X5P1VRUtWZwgrqsTs4EAU0rrLYKWxsWZk7bDdJYsTYEPLOZvHdDmjp9iHSJQB99oLbimPi4Z7FYlrlmUPR9y+P9mtPTU2xtCym1azcsF6vCXTO1QVeWwTvQhqqSxd5FX3gsmZGulKKZzRKiNpKCvU+ohtalkXAISYwwRGxyZCDgsmihVoXcKqiOBDZSg5FKwhUoZYq0gwbcIIKsmXclfJyxrGv6PmXnIX+vnwRpGcXJooJaQzWbsVqtWDQznJM5IC1O5G+Ec6kJCR3QFqLXVDoJLQZpvJrvi6gTvykSokkFHgaPPRRazXyetAFL+fmE81eOfEL+Lf7QlwiMYDehPPv8O1H0H3uLAbhcEp+rWXMsyWED0XG8vuRYjp/7dfRa9rEn67UejxnXyFEtf3rer6FHxZHNwo6Zq5PHNQfnGUxNjqHWwsEkIlIq6VxBUSrv/pIdnZ2JDYOjV4ncGEfF38rEQmTNZY7OiU6EOAhjNItVJT0FUdJSRqGn+i0ILzC41MQswfJeR6oo/YMa2xTHKAwSdcaoCDpijUzCkDQejDLlgbsQiMNQynOrqkoVZhTVUhhLw0PwByTdXHmVu38DeBRd19F1XYmihmGg37dp5H69UiA7ftLqQI24NJQoR2BfedmlokEWUczk5SjOQXrhnTguLgY26zWbvSgSr1Yrnr96yX6zFTKycyg/ppt8GFVbvfc8PDyw2Ww4Ozvj1atX3N/cst/vD1pVyOd+GR15PMpIKWuMYHRejH25zYDn88f3rO8f+O43P/B3//hP/PjjH9ndP6R5MBDTAjSklMPQdmwjnJyd8vAgx7m+5eef/sSr1295/voFfIS7u3tMFTk7O2O9vmfCHZSFUcn43d/eEmNgdXbKbFZz8/EDxNw2xOEHj8KwffRE5bi8vODzbotPAJT3fZpbgub1fcQNHavTE+5v75jVlna3Z7911HVWkZbeRotmhjk94+HxEdd2KB9omjlBjZH3frcRAm/w1E3FrGnoug43DDS1Lc5p1w00TcXZakk3q3l4eOD+YQtcUlUNZ2dnpbVF08xpmjkfP33i4tkl2kS++fYldzfXrO8Hnj27ovPicNXVHFMbPDXt0DGfz6mixg2ijqyVZUik2+AcPnj2ux11M6fvW7mfEESiv6qKvEQA0Fr6vinD4D0LJenpzfahPK+MLs5mM84uzuncHh01Q++pqoYQx47f83lD2/YYo2iahjCIZESUwUQ+Mke8onwcgpNKQD8Qg2izWGvxYcClqjjvepSKaDwhJhl+lcuaTWpJkNNjUlgQc6NSctAjatEqRdrRBwY3AJqYOs+TNqyR1Dt1BgrmK9mshOxGP27YeS2wxtA0DcvlCVVV0fctNzc3bLotojBt03sAUBG1KG17FUuz33wuP0yU4DFEawnGY7HoaDExlL6Icq1mHIMYkY7jsiKM98IX/5a005drya+tMxLAiBOaCwCmwdg0ja6T0+MAFTVqgriLTMHYCmlatDL9/OI8KNEiU0++yI9ucm/Te/AJoVbx0HkSOyQ2lwqwTA2Z+EVyzi8dJZNJ3pM5EzkkZv85OxKUj3a0ox3taEc72t+0HZGdiXnvGfqEwKQovbaWkNISES+QtIuoIBBvLiGHJCZIjQ/QaCn/i84XRVqAkPKcudQbQLWZA2OIxmAqy7brUSlKrqzk7+vKYhJx0NqmKGHmjraQI4mkp5MI1O0gvX7q+Wz0xF0UHs6kFF4sw9qQvWsRDhukgd/Q0bYts9msdCzv+/7AwxeuY5C0U0gcgEkZabEMwQaJeMyk2alSSvSKyqE5GhgJy8KtSaqxvUSY29tHtg+PnJ2d8fLla7bbLQ+PN6mvi5Q4GkbRN40hDo676xuqWcPps2fMvef28zW+6ykcpBiTNgFoFVPDR+kFZbRo96T2ZMIzMPLsswrzfrfhd//b/8qzl6/4d7/9ez59Es7Kp/fv6Po9BI8OQpbsfKALHVHB6alwRTbrQNd1/PLLL7zyr3h29QLnPNuHNW3vODm7ZLMRDkj0A1ZpBkISH4w8PtzgnegWvXn1ltvPnwB4vL2Ra9UDLsD6dkt1ds5y1XB/84gPHbVJkbqxeCck4W43EN3A5eqMz5/fC2IZYfcoaEnTNNiqYbd/pLINtanpncMNnejWrESjpusdujLs25ZVauaqTcXzq3PWuzVV1VB74Yqs11u22y0QOD2Zc3GyYLuzfHz3mYuLM+bzJc1M0lhdkhW4vHzG3f0d5+cXuD7y8tW3rB/ueVjvWK6EuzX0HVoHVk3DQ7en2244PT3l7GTJ43pN1w10ieNUG8PJyYLgPJ13aFVhlGW/2dEsG1aLGZtWUmCLZk7fe3SwYANd14tC8HKFbnuqRM5dr9dUVcVyvhKCMQYfPJ3zzJoFTkXOTyTl1u63WA0hdRnvXEdjK7TReOcwVVXQ4+h9kiMIhJj1nhSh1pIu0aO+D1phosZ5T22tdDbXBqulyWVQI/rrh45tv5e0sNYoo6QEXFt0o+lTCpCo8Ym0LpeUSpgToqyVLc1Ys0ZNjBFl7IRkHQm5H1SidzSmYtmIdpbRmt1uw83DvSBoIWKUxquxHFkT0aom6ph4RhVRSQ/EPrhyrEH6annvMRU4H7A2oQ9aCcEcMEb6UkVtk6p6TuOMgn4lhcSEWKu+JC+rECdyIPJ7HwVVj0GJsGRO5URdes+JUG2A4FGoNI6iLhycJ9S69F6TFKVJlAGI0YyIkM7PJmceUtpQSVFLtnLNEzRIysLVRDsn83F02QfkT56gWzGmwgzp54ZS2Hzs5DNVTDBTTPpHaU86SHUyKU//C3Z0diYmjQxzbjs3UTNPJmsmsGl0gVbHNE70DjDEoCVVhZdJG6Tqqe9Hbo1zfXpgOfUluejWDbLI53NqhTUKbXWqbJlhbJ2qxHJV15RQJkREzwhlZun2PFFqUycSaHcAEX8VEfRBJpRw12QjbTtcJ07UarUqCsXDMMjLGbSMlwqHPJh4yNZXSkm7hkn+eQoxj5ZI1LmhaFkvxgZ8+XvvBq6vr9HGcH5+yZs3b9hutzw+bHDDgA+ZU2BwYSiLVLfr+LT5kdOzM95+81rSJLeSRorOE+lT08wom0tSQo5KyJSZW6BiJHSpokxrhmFAKS3Oyo8/sX1c83f/8PcAnJ6u+PEPf2S3XTMMvQixGZHN3299euHhZHVG8A8Mw8CnDx/xg+PF8+d8IvL4+Mh++8hpciD61tIPLcoHtPIQBmKA7cbRNDP2+y3PL69kftcVNx/fo0KPVbAf4P37j7x4ccl8tuLhsaVLm1c9M9RVxfC4TyRRy5aO88sLrq+vJQ2SCiP62ElLFR/p+j2L0wX93QPDIKnQLnF2Fssl3ksVmkd4M6fLStSybUXbDVSpWuD5y+eYumK33dI9bgm9p5nNuTizPN7esLNrzl5IlddqtaR3A70buDi7wOiKPgzC0zo9oRkatqlLvNaaShn2+47lYsbnz5+xVWTfblgsztntWhapwooYGbqe58+f87Dd8fi4IZhINIpu33KyXBW+yHbfgVKoyvC4XcsGMSgqU2GUppmJsyVk6hpTWblmP4AP1KbCIlVnWReJ4HAhUM+kE3hdS9NfP4iwoGIgxrHgQCmNMQ2ejr5P6UInLQUqo5PqNQyD6IIRHd5DtFrS79Ykvl+bNHsQXlaM1NbI76PCNo20BGmF9C73VaWNf0xfeaRAISolBQiTtSBEhZkIAhbOSuIqNmly5corEEfx4eFB2qmEiMPJGhNzx2+DjhWVakSDx4gj5/xQODCFj6VFaDGECsuYmhPxOj9xwOpCYpZjZI/IfBMYlZJRh1WdT52dp6nxKU9n+uW9Z/CeYdIk13s/cv+0piqNWUF5jVKJl6cUOgb0JJX1X1ONlc8B03V35PqMzJ2cWvryXCVtpUYNtOl5/1r7rz1+akdnZ2JVZalNlp5PxCklHJIYFUJDMxIFqZEIFv2UtOrQCvwQiV4Xwnr8ApkQgrN3nqghEkRoSxmausLWs9LryFqbnBub+g+N1/y0jHD6fVHRlA8QolD6nUu5YCnhrdHaFkEwiabGz9BRjyz6KJu6AkIM9H3PMAyFqzGfz5PKrFRxRBQRDdELySxQesc8JbRN7+HLfHauOnjqCIky9Gjp4ggEDzfXnzCV5vz8vDg99w+3AKJEqyzEKJ2Zk3Py8PDAZr3m2fPnvP1eSr/v7u7YPjwSBkeIQUq+U3QSEtm3IFVpQQsTZCrGQIxS5fV4d8t/+v/+fwD47W/+HX//T//Iu3fv+PDxF1zXEv0gnAMfaXf7NCaGi2fPeLi7o+v3XF//Qj/sOD09l9Yfuw2bB+GrLFZLtKnpOy/lf9rIAt87umGLbgw//iQCiM+ePeM3/+4H/vSH3zEMA8t5Rdu23D/cMqsrZoslLvX82m8fWC1OOD1Zcnt7z27bSUlxjFw9P2O3d8WZH3zLvuu5OLuEaHHOcX5+jrKX9H1fep61uz2rkwtM3bCoDIvFin6/Q2vN6WpFDFLuDpR5dr48Q63OCS6w3a/RGi6q5zw8PBTOzvn5OWfzJVprNpt7FIHL8zNub+9xbmC5XI7l3H2Pd47VakXf95yfX7Jrt5ysznhc3/Py5UtubqT8/WS1wrme7VaEKh/XW4y1vHzzkj/+8Y+CHKbzSsAx4KIEBUM74ELq+D2vIZW+m7piu92zWKwwyhJCTyRSaUFJTlYnhITA7Pd7FrM5KiZk1sp72ySV4rYdyO0alJHgKPiBthXnMU7WBlFoT5VTCALko6Ibehp7gq3ndN0Wo8H1e4a9OL3RC2I5GIWtK5Q14EwSSzRgXHoTjQQ8AahStzylSsVkiezlajGpPLw0dFc6cQiFe7hIKtZVVTF4J+/y+pGhH8vMM59Gp/V7VtU0TUNTzYSbGAL90EuJfCJWqzo/L08wBkMk9BRpgczBHCuh1Bjwag3Gpz0jBcLYUcYio9QHLsGXTg6II+iZFD54IeOGKF/ieKVjBdTBBzeWZmvpFK/T96H0nzOCzCudhFCDtCWzh8rDXyvKCALEFSfqqVaxgABPHJAoaMyh16MO/50echEkfBoAy+Ad7m3hS0dH9rsvfvxVOzo7E5vP58xrWTRCdkpCJDJIyzclG33Ep4osT4wCEYMQjiFglLTOlKqFKqEraWEzOU0UCBqM1ank3FBXtaiRVjOMbUrUpVVqrhcl0nBDgKSZkS6SECaLWPrKhMLscevJrBhLyEnl40EquBqp4Or9eH4FhWCstS7N6rQa+0jlapHY91hrWS6l2mS/3xdUK1vx8skvcEhy5/7gmOm7N53n2ekZodJUqZbGQiW8VnotRXwraEhd33F6eso334gDs9vtuLt9YL/biRJx8JLqCgEXI+/fv6eZicN5+fwFp6enfP58g9tuGVJFWu53o5UuzUgJsej2eC1kS++l0sIlWf79Ru71j7//V15/85pv3rzk9OyC3//uD+w29xK1aYf2snFsth0xOi4uLnh8NHTtjoe7e6IKnJ6sIA7st+JA7B4epBR3vmS73mCsRhEIfkutLco56rQSffzp92xOzvj7f/xnfvrpJ64/vefy9ETGP0iLC5UUeY1RdN2AtoHnVy+4e3xgaDva68+0swVXb74TxxZQOrJdb7i/v8foisVqia3F6TIqUs9lbtb1jP1mg9rtOb+6YF5XRG+IoWf/6FgsFrx4dgmI2vP99UdWqxXGJl0pOnb9jvnshIvnV/iEPrjOsWmlMufkdM5280jX7VnO5+z7PZv1wHwuysnBG4heqg6rhroy9J3HD5GmqtluHpkvZAy2ux1nJ+cM/Zb7m1sZKytK5ovlCZ8/3/DyStClPkTCfUgl0YHe70UbKaVAFzP5/N36UX7f97ghUC9riJHHh0fmzQzlRQoCwBpJk4e+5+TkhN6J3o/rO4YhoExNnTbvXGTR7ltijMzmp1RWnCmjJRAb+uyYRIwyxNgT0zOKQ4sO0vrGdwNZQlkj6ZkAhKBQUeNcT2VqadVHLrv2Ce0QREPUiA1aG1xeEybOTgnOFOW9Ukoxny2YzWaCygBt2/K4WUuT31RlZrRGWYtXmir1OARoauk3KGX8PV07MIS2BCZGabTxZV1xKSihkJDHFjklAAuqaK9JL6+Ukom559ZhwJnXM0h+wOS8njgS2rOgdQiFRD1FebK2EDB+L1ARUSspKEjOjg6TohMfiDrgE0m8XFtI7XbMSFD+swj/V+xrSI44KcWfkeudOjeMBOSvOVj5vOrJmu/V2AkgX6Pir7xQjs7Ogc3ncxaNOCcx5YlF3r0SXomO4APe9QyDwycoMUPM3nuMkooonfPUKiEP4iUdpmaUlH5abaiqCmtrtKnIDdUyv0f0JjzogA0Bj3RcTv2hCWGsvstpNymNz0z6lNedpJC0zsJ5vkzyvpeKjOz0TOHkIVV4yd2M0KxSIkseJ13PXT+k1hNSuRVjZL/fpgaAExnx7KClTuA5TZihX5GPT0OVPjOkPjRqkuPPR4zfC6cGk9t8yILRdR23t7fc3Ulq6vzigpdvr2j3PXc3Nwy7Hk+H1gofPSF62p3c14eff6FeNLx+8YJwfs7Hjx8TfwSIkZDSkSD6Kn0qmzdZ90SgsHKNNr38/X7Hj3/6E+uHDS/evOFf/od/5qeffuHT+3fSfLIIljnabkN4HLi4uKDbG+5v79g+rjE+slg25Aqr/d4Jr2q54PRsxebxBms1FQrftYLmJdSwNobH2xv+te/57b/7R+bLU376/R84WxpqY2iqGTuXmmCaisoq0XaKAycnC8zpkvV6zWa945eff+TlK3EkT04vmdVnPGx3uGFgu91wsjxhtjphgU6aPND3jvPnp6ig2K03+LomRiM9lBh4vNvh9uJozOoac9KwfbzF6oqqqqiM52w5p2tbjJ6j0331ztMNA3XdpKg40m03fH7/jrPzUypb06bncXZ2gY8wDJ7tfkddzVgu52weHgVROD1FJ05cGzq6oUVbRW3n7Lctl8/nPKzvubg44/FxU1Lgq8WK89MTNrs9tmoY3AZtDb133N7fF2fk7PwEqyyfPnxk1iz45vwtd9c39L3j1YsLfAi4hB7bpsZYi1WyMYo0hkZrQ4xQJdkJgH27kZYotuZifipVnyESgsUN+9RFPKWFG0McPMpYam2pjWLoRbRSUtMBU1dpnRukqa2pSirKWuEOanzhtljt0CblNZVUokofZUE4tYaoRp5LJFHjEN0Yo6XiSpBnxWYnVXm7nTQFDsGNIp1RSuZn1jJrGqoqO3zgYs/QdbT9wNB7vPJYpVM3bbI0FOgoTVMDeJOdkhSQeU9IsEa0qiA+4uzkXmESXGk1FXY8RCeiOtzkC4qDIN4hBbG/ls4q6JIPcqHJKSQqgoboFUGH4uCAlHnL37r0J7qs+bI2jZXHY4rLlRRdNqUUfuLa/CWuzGHGId//k989GZ+DFOaT85nE33kqX/LX2rEa62hHO9rRjna0o/1N2xHZmVjdVDSz5K1n9MEH8YRDqgoIAacCKgjceUjuVamRQEIkYoTBo1QYFZAnsF2BbbUBVeF8JLoBXWvUELKqgPxNDOIWa4E+jfeoqsFFjbW6RJNKWVLi6it3GBjJi0MiMoeEJLmS7x6GAYI/4B7UdU3Wy/FeqtKmTUXLJ6TIwCjN0EmlljGG+XyOtZa27dntduW+Cgr1NTj0iQmEmSKmXzlaIgOpuhiKaFtMuWHw/YCy8vOb60/c3xnOzs5488039G3L7e0tu4c1wUW0MriEwAze4R4dP21/ZHVywrc/fM9ms+Hju/d0XUfwHp87OxbYXuP8gE2tK1QUyDrfcx6D0Hpubz7T9h3n5xe8/fYNZ2dn/OEP/8p+KxVWKnoika4L3N5Gnj97QdPMWd9d0+52mNhibYqitfAS2O44Wc45v1ix3+9p9JxdP1A3VWnWWC8sUTmUa3n3h3/l4tU3/A//4/+Jf/vdf6IPgcoqFqlppwhKSuXS9fUnLs8vWJxcYKqGi0srEXmS1d91O5aLE+aLmvv7HbqCQM/97Y7lcolKaYZFUzP0khI+WWW9GoNZnbDf7uj2vVSrAY8PN9hKYdDsd2v2aObLE4yVNirN3JZZUdGwVEs2jxs2+5ZVs+Ch9cznJ7ghogj0vYxt1w28ePMGU9XoqmazfsBWhudXF/z00y9s1o+szs8BOL98xmbbsTw55+7xT5jKMAyRWbNgNlvx/fff83gr/J7G1gz7HoXFqQFvFF0XwXt6G2nSHGhv7zidLXi4feTNi5e06y27zZaXr98wW8y536w5fy6E8uC88ONU4OHhgdlsJmNmFlSNQhnYbtfl2NliWfgmVS2tWEIXAOGqZa5dpTU9PVE3ou+iIGrRu9KmxtZVaV4bQ2pDkZR265kg09pWSYg0z+0giujKJM6jRgch0UZkjRh7UKikUB9RRkkhRlWLYKIb2G5b2k5SlLn6U8mLQWU0qjJYa6mtFGvkIsqu79gPe/reJV2zQLRSOBERLkyGbGKQ5uZRKTxZwC/tA0/yOlmbTApVQBlTWk1EHQtaopL684hejGg9IJVe4fDfkUOiMiEKnSJ/DwdIjyxRUjGsrPBJp8fiA1F5vMpI/4BSkdwCI2bNK20hHgo7ig6OZAJ4wuXM2jhfSyUJV/SLH39hT5Gvqen0YaUdxyGI/6spsF+zo7MzMYH5ZIIXYaSUP1WkHHiMQgRLXzAOegxC+oqTNE8+jTFPjk2/Fwg6p3REUVmRCHeJeW+tR1UDoZYUSeaVSfXW6GhN/5+rxEKIxRFK1egHJteQX0ZV8uQxarzLbPtBuiBbk9pcpC7BSVQsTtj9Y7pJyjWJInW/Xgs8u1gsuLqShbttRQF52uflrzeh2qmcbozj/fis/pn7bRhxTBUao3XiC8ji4j3cfrzh7u6Gk5Mz3rx6zfDsBZ+vr3l8eEB5SbcoH/FG4wfPzfUnHm5vuLx6wT/8wz9wfX3Nhw8fEmcr8ZsStB5jTMJqFI5RDAFv83jJs5cu8zfoGOi6HZeXV/yH//AfePfzzwB8+PCe4Hvm85q+33P9+T1XV1ecXTxju1ujoiuciuVixvbxAYLHO0tdV5wuL2j7jhgV++5eehYBxkIzq/D7jmG/5vHmJ/rVGX//j//EL7/8wubuPVWa5955GmNxWnPycsVu2/LwcEe9WOJdj7aGZSofDzGy29yzXJ7AYkHbBfzQYzR07YY6SDVN2/fMFysh0jovzmj0xCAqtvP5HJ/SaIvZjPv7W+lzZKV8eN86TGOoZw1716JKnzrZMFeLOVHPAM0iqZsPQ4epDLO0iM5mM7b7HZcXz2lmwk3abh7BWi6ePaeqKu4fxYH49OkTb7/5jhDgN7/9dzw8rKXdhTEYo7g4Oy1VS9vtlqg0VVPTPa65vr+n84GmqmlU5PODnHNmDdErTuoGXWl27Z7T8zMWiwVuCDTVDJsqkXrtCHiG1nGyOhP1c22YL1dordntHqkrqfKqV0Je1spS1ZIatKYhVqTgK4zVUKHH1DU2BTQBj6ostamlHFnFosxsrKGqIt4FjM3B1q+kIlKanKBRQm9BG4UWxcuRG4mk4UxlU0pf1qwsZtr3/ZjSVUK+NZXGqLqoj4swpaTdcnVo13X0rktpdo1OdIKc/olaF1kQrS0hkNrW5LXI58sb94Qkcpi5lhIwGkxM4q7ajpWlmWeSA9t81lxCHsOBAxNjxCcRVBedUBa+ksYqPaZilEIJrVFmFJa1idMD0COVb8aJ44JWRC+xs8GgGWVLprxOoRuM6TY1ZSrD2CZjsqdMuTZPRQthrObK3CX9ZEOSwP6w6EY/2Rb+a52cbEdnZ2L77R68wipNLvzXEQiiKRB1+p0PsrElafWshxN8JFqdNto8KQ8rdLwbS8+zV6ttBVGk541OZY3KElLUMwweHTT4Tlj0TT1xpjwhjNyWrPD81PmB7EXnxSU5WXGcyNPJGWIY9TpSWXUYHIPzpWeVtZb5fE50o5KqoD4ThVIlG5+OEg3tdruC7DRNxfn5OX4QIvO+HbUxvrTx5QYJnKavSc4lhzgSgq22hcgnufXscEwJeV6qw3aK+/aOu7s7Ts/PuHp1xbMXz7j9LJVbjw8PDN225JgH73j/4Rc+ff7Am+++5Z/++3/PLz+JY3J3c0PXtRJxJUd5rGIT1WeXCN3aJiQxKIYB1ncbYox87H9hvljw+ps3AFxcnPPu51/ouz0nM0s7dNxcf+b82RVn55d0u7vCm3LOsVqc0XUdj9ueym1YLpVEvmenLIYZ3V5Qjd3+nllVYxZLovNsH+/YbdeEEHj79jWPJye8++VPMl66ZbPboCPs1huWpyfM5nP6MGAqhY6Obten6WXxPvLL5/c8v3zOybyhN4rB7YlRoZMTWRO5/fgOoytmyxVN07B5uJVnrRRV1ZQqjM5HlqfPpVVCFGVeh2JWz9BKuuwU1XHnicGlFhegK8vsZCbNc5sGrS19egZdN6BN4OdffmR5csbFxQUYaavw/OUpd3cPvP7+W3kXO8fHjx/59tvvsfWM2WzB/e0dj4+PDAjJv54Jx+jT7S29G9hs92w2G7SthUjuI33o2aUN+bSpYfDMLys+fvxIN7T88MMPtH2PMZHV6UnZvI1WBCeNRJUy6BCYz+eYpmG32+G94vT0HJBgwlpF1cwJQ8BWWki+WjiAkSH12oMwRGytqSzEXqFNI0FN9Lh+T/B92XQqY9Ha0oWkFRQEVdBatFy6kOaAiihdAQFtxGEaSb0SXE22TqypqKoGq6XnXu8GUWp3A1FRyOdWG4zKbR3EOdLJSetaT9v29EnaIKSmrloJwkuQd56Y+UJjxWwIjqhM4iRKoKaiSmvkpLgDynoZYzzg52TEp6xTNkI4VCyGsRVPjGMfrRBjIiH7JGuRSMzRpQatYwGHvGM66a7pA65mTAiyjbK9VzmAVUaQce8gKQ/L1+jQxIJo5Y84ZLoc+hnj/ZhENldx5MaMWJaaqrPIz6aEbSZOUIwlYP6as/QUBXpajfzn7OjsTGy/3+FS9Jel3G0SiLLaoAmE1B/I+UhEY7TC6Cy6FlBGSMMRiaqC8slhAj8E+iGV5g5+bFI5k6iiQtGYWhYGbVKPI1BGC8SoNVZXQsozQA4ktC7woveuXHPURso9Q4ZXISYZdRGBS1oamQQcg8C72SHIk0hLN2QR/lLi7PlAn2TWjYnUtUTqufKkHdoEwWYhMXEQFeOElZRWS1OJ5s/yZEHbtrT7fZJGn7xZPpCxr+yMKaVKs9OkOJWqGDwmRkLoBAJWAqlnompB5KAw5oJx4tD1gfsPH7m//sTZ2TkvnkkTytdXz/nw+RO3t7d0XSeLYPB4F/jDf/4vzBZzvvvND3Lsm1e8/9NP3Hz6jA+jUxoBnyvzUsrLBJWk9A0+aLrgiOs1p8sFvR/40704W8+/ecvf/dM/cP3xE5v1A0sd6bo92/tPxNUpi9MzNvd3AMwrTT/s0DZQG82+bdkMHVp5ZvWc+XIFKeVlF+f07Q5ba3Z9y/xkRWUs+9uPfNyuWZw944fvfwvAzYef8bbG9S377Y67z5+5uHDMFwsqW+OjYb/ZprHdQ4hUOvDu5z9RzRpOFktC7HH9wC492vPzS66urhh8pOsd23ZPNV9AUOx2O1zXEVJEr63B2oqzyytWqxVt6yRVGZSkSbVi34ojvds9EvyATzL7DTCv53S7luAdy9Wq6PfMmgURzWp+Jv3WbrfMVjX70FHNZ1xYw+ONiEBenj3j8odLbm5uWCxmnJyccHp+ggueEGQOmZSiIwyycbker4QHu/cBrQU51Ymc+9BK36fd52uWRvFDo3m2feTUaCpjaHfbUnJcL6oUKEnqebZYprIUhzaB5em8oCXGKuazlVQX6oAk+Tri0MlGboOkkgBdNdTGEC0o3eOGPZUyKAyVndMbMxZBWEX0Aes10XuMNSilCd7hfUCpNLeMRUdZo4yCqrZoowlaS2ovyDGA9N7L5PLe0Q09zvUSqCCIQiafS5l3VQjCIQS63iUUaI93LpGvZcOVdBmQUmRRiZZPJh2Moi+pbU+IGK3Sxq2QDulDSWWpIk9icN4RopU+WrpKDk81lv8TU8sLc+AgFZFZQulpJ8gNDD7iY+oBGCC4mCrkVKlqQoPOmYAQpRI0yJ6kIkQzlvCXQhWj8T6gsZLC0wHvI5ocmGuidRhMCTCCEokNk+gDOYgXlCf/zBNzXzOlyYzvTD6PMaasqWRNYpS03NeclExDKA8PyZgoJWDDU0xHx6c/+XU7EpSPdrSjHe1oRzva37QdkZ2JOT8UuNImbXKvI8YEHB6rR1Jp5tsorcbm5IlAHINN6Q6BbhXSNHKInj5F9ANBtGKQ1hNGCYpUW4PRGttMlERRKK0wdUVdW4yRyEZradYHUv4IY9dY0qcqZeUaVMZFJqZyM7tRJyJmcrOOo/jfpPxwahleFDXoTfppSm/VAoN3bkhlolKSOc07y/VKk8uHbk80mvl8zunZGSEENtvHwn/wMabWG4I8uVSGqFOqKufIjTbClSHilQejBO0pZGVVODtyb7rwhUr6LUbc0HN9/ZnbayGbnp9fcvniihcvXnB9/Ynb62u6nSM4h0XTr/f8p//lfwHg4vI5r3/7PS9++I6ffv9H7j5f47xE0TF0EEc5+SFEtApyLzHKvPOOzfaR8/MzYkqnvn/3B2Z313zzzfcsl3OuP3/EEFHDjm59i/M9FxeCQj3cfsDrxCGLCmsiEBn6ljZ69v2Gs5NzALp2K41lIzw7v+D2+o6237JYNGzub9nv1qzORefm2YuX3N3esl3fo7Xj2dU53jva/ZqurYi64uTsQs7bdez3W+kGPre4ds/H22tMJSXjKkXpN7cPPH/7jMViBZsHiF5amXQ9Fy9eYoyh3cnc2u/3qBjpd1t2EarZkpPz86TRhAgDNnLel2/esN9KewmlNIRI17doI+/Hdr2lmc/S/A3MVnOGrqNqLCgRPVwuVoQYWcyW2JeZ12AI2vLND7/h/v6Wm7sHVucXXF48Y9/uhCOS3vHnr9/yh/cfeNjvuX3csPMOZTTOO6w1olgMaB3YDo79oNgqaG7uWC2XtLuOi7Nznl29kE7oSId54bOIYKBzToj/232SrrCFa7dYiWbW0DsiIl3RdS3dIH9jqQpnwkjOlRgGjAZTVQxdK+XkKjKrJR0FkoLx/SDyATHiEZRDkBGobW5EqiEVTygja1WI0vZAVZZFNcMkCoDWmj5xbdq2T+hVQKVzyv/TO24M1o7Njbuuo+26Io+R12ZInLiYS8KTqKE+TH2o0kFXj2KLmoJo5zQ0BVSJByksFUWkLypSh/sJhzIhO0bntdwXyQ1IEheTbu7ex9Lh3HtJwUdt0r5CyTgU+Q/nGUJg8I4heHTS+rHKon0uKYfoIt460TpKkiXkzMGUVxoVNkrjVuH1FLGRxDv6Eh/5WmpputcoUnuSP/M3X7M8xn/p2L+Ww3N0diZW1Q2W9GKFcSOP0SfNgcT5IKkaG3kYXo/5Vx10euHknNKpNcN201yo/FZrjVGaKr2AITgReUgdsCE5MEZRaSNESGsTaVAmlWLcPEX3RrqhZ8KvHBfk+1LNBMQEDSbIViZ2SA5UdpjK0ZPJx8H3h5NNqrn6vsUYQ1U1LJoZVKP+TkipvOC9VLll/hGR7XbLdrMRfZPliuZc+A/73Yb1es3gezRSASHOT+JTlbx7EK6TAhNybjwTmiSXHSfvayZHh6RonZ2dSCyLJAgx9fr2M+fn51xdXfHy6opPt3d8+vSJzfq+zBGAh8+fefj4ntPLZ3z3T//Mt7/5LT/+l//C3efPqFT5ERJhXVsNqkYrhR8cuJ7lSjSO7u7uOTs7BaAGhs09f/zXHc9fvOb1d294vLvj4fo9YdgRt5+5ae8BOL94zV7v2T58wurIshZV5BAD28cbDJFtagExW5yy3e4IbksYFqxO5uzWgZvbz9TWEH3Hp8cHAD7oH3n9+g2X58/58POPbB7esVzNsfUSpTU+eO5uPgJwenrKajbncedwUdEs59i64vHhnuAcJpNCjeLx5gMvqtecnS7YPGzow0BVVXT7taR350J6Pr14hdfQt6IPYxX4vuX24QHvI69ev0GltMjt/SONbbi4fCkcswh9t6VvO9ykEEHeReF72LrGKMVsNuP+/lFaV6xOUCrSVJlQ3XG6aNAKLi7OuI+we1xzujxhMWvo2z2ztIkMvuPxYcftzQM+DMyNxevIEKVrfN2k1O98Rhhkkxy85+frO7b7lt+8umI2r2m7kdAdQsTYpjhwoicjCsNVVeNcYNGIWKGLA103pKBFUqfWVszOl6lHFIRB+DX9fkffd4SwTeJ/WlqG67QZJ0IugHeBoesxqiK4nmFocQrsbCZVm3qyPsi/QBsiGmsr6mqBbWZUtmZIm2DbtuxK+nqS6kvtcJQyYzVYSgOJo7MXRWovxSOkNazs4HHkdUj12NiqwOS0kh63wcyB0WqyhqY1YVwzonSBjyo5I1HWpFTymdMuACrpIIVJoDyKEKb0egq+XBEKDCmFlcYiSdZrq4uCvOsj3jvc0DMEjyc7eqLvJmnOnJ5yss57RdSBoHIBh5DHA5O2El4RlENFS1Cp7Q8Qlf7qWj/dE7LG2dd9k5Hs/OfIx085pk/taUXzf40dnZ2JNVVDU0sVj08bcgxSJJhZ5lmWGzzeJ1QjDX4u1ZNyQJ2UmGMqX5eN3SYHwiBOjjUWaSMljk43GAw9OqhSkWCtQdmx9FCFAGGAkJq9WZ3iD4rnHUGECLEMUKJfk14WDxg1QTiUSX81iXgmztkh4Tl72+pLRn3MxDMR4mqHfeLUiFjhopmh53KNnRvo962QmxN5WxbZQDc42q4r5L/5fM7Vi1f03rFbbyTK18mJC6Hwi+Slc+Xf2kD0mqLinEjJ+XkJYTFFtUBMYoAheBSGLLlOkGKnD+/ecfPpEyenp7z89hv+/b//R+7u7vj4/gMPd8LriEbW2pvrT1z/P95z9fINv/nHf+LNDz/w4+9+z93NdREYdM5hKgVpQfcx0vaO5XJJo2o2j8JBmc0VjdFEP3D3/mfW6xXnl8+oXn7H/c0H+s0nQiql/rT/HecXL3j5+js+vv9A299RawVG0WiL71rurj/LeU/3GFvjHTzeP3B64oi+5XSxIsZI2+8Jif8Qho5/+1//N569eMXF1Uuu37f0645YK5rGS5m9kYj7w4/CH6qXFVZrulZUri8vnqF1XTYYU80ZTOBhu+O0WbA4f8HMtam0+ZxhGNhvpGpp/7jh5PyC8+Upqq6pbI2uLadnl3Ttnofb26Kce7pY0Lm9lBsrzWa/x6hUtfUo/dsyAV9pnRraOk6Xp5ycnNIsljw+PrJrt6xWp0JuBc6WKx7ub5mvltSLOYuzE9Rmy7rdsjydc/rsjOv3Mrb39/ds+1YYfEphFdS1IWhF1znqxG2pnJRlm0rjjWYXNZ+3Le7njwSv+ZeqoqmEcDtbntJ7R20DStuiXG6MYb/fs1yeTMivnsZWxIT61s1COCkuSnm573G+T+vBQGSQqj4HUQuy7IeBfmhLmTkIkVZFjQFcP+D6TviD1hCsRWW+ijJoWxNVRW2XVPWcqpljbU3w0getTZ/fdR0uvWu5cmnKzQFdeDDOOYbBFyQnr1VKRYxCxPUKD2eKskjxQuYN6tywc9JEWYjWGhUlSPJBHSDRMthZfI9U9JCR7xQc6VFUsPLSLDgDHRl18qSgeIL0iHhswAeRmdBaU9uE+CBVnbk1Ru+E++Z9SOXqAeulstYGUN4Rs9epNSEYyC1xcqDsZVR02TuEvyTq7brsefLLSUPT/CMF0+A3m6jZxy/E/6aE46dOzvi3TwNrcU5zgcfT8xyoF/wFOzo7E5vVliYhECh5ieaNkeZ1sl+XChvvHG7wqXNuhiFBxSG9NGlhICkU+5CiFvms/KBCkGkREacmIypFfwfxHzyKwQf0IN2ptTdUgKlmUlFU3kc91jjkWRC1pMsOHJn0GZOJKhMrOTBxWio5ktKmk31aRl/Okb4XZERewhgFRg3e03ddOa9pahYnK3QUOLptW2nUqWScpykvKV9fM2saVqsVl5eXdF3H/cMtQ+rDBUjX45hJzKpUNOTrkhcmPwRxCOXl9COqE6OQteOogRF8Pk9gaLdc79bc3Lzj9OSct99+x7/883/HzUNyNt5/4PrmF0LXEpzn5uN7bt694/nbt/zdf/gn2u63/OE//2cA1nd3BOfRRCptUUrjYmS93rJcNdg66da0O5w11NqIOmr03LUtJxfPuXr+mo2dcXv9i9xW2PDpw+8w9Ypvvv2Bm8+GTx/es6wURE/vh0Ls2z2uMbqRjcp5Prz7idPVCdgZm82G2mjmSTlXRRh2Pdcff2ExP+Hs/Iq7m1sYPMY4rJEGnnKwVBsO+4HFySnNaonzgXa35+z8hLNnLwF43OyI3Z7QbdhcD/gAs9mC1eoUkoLu6dmZzBdTiSp2FJ2ofrchdDIn67rm7PKsbP673Y6h37EePM1sRj1f0XY9oDm9OCWmkuw8Z/vQcH7e0G533N3dsThZsFgsuOs61ut1qXDy3jNbLnj3/j2L2ZLLy0tWp+eEx0c2mw2NbUpa5Obhkcf1lt45qtqy0HBqNHU9Y10F7tZC5jbKUClohshquaQjsN4r1q3jP/70jnX7yD//3d8BcNb2PHt2hWnmpX1A8GAaS1NVRD+Wk+fNKLcxqIxssAoJLvq+pU89yoyRNHnYG0EbEsLStY+4Xpq35tS+qiq0EoXmoeuEHK1qSWtpg6HJCwTVrKGZn6CrCmWq4qjEVHmUm8xKOxpTWutorVOVVe7ZNzAkxyine56aUqLQrJWSgo70zoeErEeVmnUm5EorUT7OPaKmfblyOiwkusEBBSBvyCFXNEViEARMHDSKRppLgZXyYyWVUoagkHSjCsXZ8TG1nkmz0itFiJHgIq5zdL1nSEUhfVqvfJRAOQYl6bdUPRaDJgE7BC/qyioFyzloliq6MCJdBFl7laTXpBpvTO3HiVBAzhaM5elTlGfSNQBKADx9TlOk7C/ZUyTn/yiycyQoH+1oRzva0Y52tL9pOyI7E+u95KFdiMXbN1pjwzBJIUne3DshNg4J3YEUcWiXYEF/ANW5KCWwffJKDQqrFHWMiVSmhGBoK6gMqEP41A+deOXeo22gokaZimglchu95xGm1NqmsvnUnTvlliF716qIgansmedUVmQ8ZyFg55zt0+Z4E2Qn81yKV5/9aSHdTXURhu2Odrujrgx1XbM4WaABN0jjw34YDiMAH9jvt+z3W9CK5XLJs2fPsNayeZQoeb1e47o+8W0SAVSN5d9+MqaSxpLUVVCu6NToKCWXyqtSFqqiInqfSi8DCo/rBz5/2nD7+Zrl6Rnf/yAl2v/4T7/lzcMV79+/4/P1R9rdlkob3v/0M7/89Ce++e4H/uVf/gWAth/44x9+x+3nTyjlMUiUWNsK3/eFmNo0FTE4fIxoA323od0/MrgdTbNgtjrh2YtXMgY3PxPbHf3+A//xw0/89t//T/z3//I/8uO//Su7tmdmarqU8orBY5qIapXwyoLh9uaB1YnjZN7Q7fZsUjl5NatZrWY8Pm4YupaNCiwvzliv13T7gbNnK55fvZD7GgRtG1zA1DOWiyW2mqGqGX3fs0k6P0YF7InF9x5NoFKKfr9hqC1qPsfWzdhLLUZC7PFIYYCZ1UTfEvqBdrdnVs9KB/pq1lCvTkTuodvR7faYuqauLfPVjEpXpUM6Aebpc2bn55K+8x0Kw4urN8QI96ms3xhDM6/57W//gc8fP/Hx4zWXl5cs6hntbseH608MSen3/v6ePqVmbQjMtGFBZKGhmYvMAcC2d+i64nw5Y1lHdD3jvKm53Xastzs+3dyj4x8A+M23b5jNawIebWtOT0/RjSWX9YYQijq2pB4iVdVgbCS4nu1mTd+36Y1UVEa4QFWt8H2HVxVGB7p2x9C2DG7AdT3dvmWxELHCBti2u7ImDT7SYOm6gWqAi+fCsVoslmgrqTYVPNoIiTY3/h0LKbIisUodxm3R43FuoO9TD0JyF+9MOh6XhqIHoxLymV5zRRRRWC1pGp1KsI0xmFyCPm3WGcdmm0olWY4vSCgjh0dNuCwmXbNSqqTXvEv8GEbh1VFhWonaclojc4l9TmdljmOX+xKGUJSXy/VpeW+jTZzSNJ5xInqrlQgUqlAlnpAqa/dTHk7e57TO/0+l8rlYZcLXlBLzzBf1gDlIbYXJsWqy7iqlivryU4sxcTAnxOTSgytlVYqiMkhjgfCVE33Fjs7OxIahxyiFTSJNMLLeffD4oRfdg6xeqQA9Eo+1BpJUuUwgQ1BZ5AlIoltyrEEZgzIajcWaWioWkopnwBeCmRD05GqCqaiM/K3oTEhlRnEqokbZJExoIlpZIeKhDwnSkHNyQsjGkIW+SFBk4b4w4bVMnJtfQxMzMTGnjWKMRC3cCBJ8nQ5EK8UwyIIadkn4zlaiYWJPS1qka9u0aKqURhzY3j+yvX+U6q+VLLCvXr0gRMXjwwOPj/f4XhzVsbpDFjTI5GRFiAEfhpQeknyyY8AqUxa+6CmcgZgawErlkCPoHbef19zdfADg9OKCb3/4DT/8/d/x6rvv+eWXX/j07hesjYR+z5/+y+/46Q9/BODtN9/xT//dPxP+4R/40+//jfXjPSYM4gxrw9AmIvGsBq3ou11S3O7p+4797p6maVjulyVHXi9PUNrgbz0LG/n9//v/yeriJT/88/9E1w7863/8f1HVaeMa9uwfHsBqFIbF6oKqctzf33FycgI+UKWu57P5EhcDz795zXa7p+/7/529P/m1pcvvusHP6iJit+ece277NNk4TWL7xS9QVQgZSpYlqoyKpibMEBi9A0BWgkQzsEAwAAksGDHDfwBYYmKEsGAAEhghKCFRRfnFkNiZtjPzaW53ut1Fs7p38FsRe5/73GxMCWGou1JP3tPsEzt2NCt+6/v7NthqMRnu7Xc7Uml1PPngQ7SpiT6y3+/pug3zyjFrDLP5OW4uZokpJQ6deDJZJQ/tZS7XfKVpmgbDGBapiDFJMGWUB7mt51AS1LWy6ML7iF6cdK0xmNlMeBIp0XUtt/tbLtYXrNdC/jbK0PZdgesTIGnn3kcqq1HG8eQDKSQPhwPJB6IfuHzymHa/l2s0ZVxd0/Y9L14ISTsRUUTmzlDnSJMSi6RYafAmYVZyXF9selSKLHRmRaYCBqNYnjdc6UhL5qqE19ZGU7uGp+9pLi5mxBLdMJvNMEajjJ2KgpzFE8c5QwiBu801IQSapkEpxaKuj63oEMkGsulp2x3tYY8trfsUMkPXjgkIdPuWYeixtZCHXeVAWZp6Rl3PpvZg38t9bW2FdnJuQxRPKVNXWFtjCm8JDLoaixy57/q+K4HLwp87OqyPrsSnD2k9bSdpdXRAVvKwF46OeMFYV1RXnIg1GMnDeaLSSvfqs82PqZVTPHhyMUtEi1AiJM+paaBwnQLH6Ijjv1L4Hd8jxlg8hgIhCGE5pGJ8qk8Kk0KCNkajdCJjIAURq6Ck0Jnc5UtbidNiRoqjsbAC8CoyKndj9oAr3MJCeuZ0YXtSMBGRmIkkx1+VoiifnK83juEpJeLNr2MpdEYm1JuKrCle4+1M6G873hU794YTyTWp8DhE0eO9VNmpIDhZjRc4xSp9VHWIPVNKSB5JqdxzzthSILly/ivr0FnMCkMho3kSBE9Wpy6jQvY12lIXx1bnakxVyb/G3Dvpp1W6ziIZRCnpt2aZNAAoBVBKEa1P1EcqCfE3Hdnzx+LmTb7OZ993lHgzoilltTLenLlwmKBkq5QJRiHKBT90JD3QAso6XJGmzlZLFloT+kDbtvihIF9JspP8rRQFm9trlLOcnZ3xwRc+T/Se29tr9ncbfNujUiJOJlqBGMc+duHsxETImWyy5EuNknYMIfpSwAnpPMYEEfrcSkGLrJivXnTsXt+wWF3w+P1nfN8H7/O5957x/Plzru9ucF3L9kok7R9/9Ot8/PxjPvf5L/HFL/0AShlevPiYzc1rCP2UtNyHnrogYGHohdSdAioOtNuWvu1Yn50DMPgeaxzz88e0bc9yMdD3Pb/0H/5fPPvwC/z2/+v/jVcvPgXg+a99lapaoLJkDt12Wy4uLvjg8fdx/eo17aEXl1zAx8T5w0vq5Zz5co0GunYgp4itHBePLmnK+cpDj9YBWzmqdc22mjN0He0+sJqv0H2YrtG1BuUqcZM2TrLfCiHWoKfJOObE0It+p65maG2JSnBUrTUGRV2QsFQ5hqEUQdbQ9z1GCQeoMXN2mx19KwjM2WoNRgj0rp4JD28YyGHgMNxgrbwPgDWGmBNd12FCKNESt3jvMRhMTvSDIGFXr19QBc+yMjRozmvHqlJUOTLXhqqc23qu2R4OmMGLsEB1zKuKhky1bNj4QF9e/OLqmmwsIXmc1dReuEVKS0Evxp2FHFuiF1IKxATL1RrnpMDquo6c07SoG3kyPhyITmOsIhUH464bMDgO+0KO7TzNfEYzn+HqpjycDLV1opC6ERSsmc0wVSWmivsg97/VuKpGR0VA44q5pXOOWBRKI/HY+0E4LFr4J1NNkEaxyOgAfMJzLK/X9v7cJEaxxeBvVCNxRDemOWwsBADekKiPQ3P/AW20KcdRFJXH5HC5ZqU8klR0ox3jfCp5U0w8M+EzBXEIRxCYlBIqiIWEICeFC6qFjEyUOdcpGGMWtBILEV0KwKwVnMRVyKJX9knUYGPsexLrjhSFyK0C0wSkC59onN6VOhZT5BOeWEGr7iFQhZSs9b1nyJtFznQOTsbbnjO/0SJnHO+KnZOxWJyTivJgJCj7kv80hDAVqlrJKiMXnwQ1EveMwuYoPzNGiGc5YoxGV6J2GmlqWluyqUhRYY1GG4cqMkuJY7BTsTPKL52rMc5inaOybiIMphSKMglSNkVBYEimyMgjKAxWM/kdjKFwGitEXRUKbJvIKctDZPSGiONa5s0LdbwYT4qgk+swQ7kh9Ehh46j6kkQOaXmVv4slJHNshfUdsZcCYtjv0MZQz2ecnS8w+pyu62gPO3zXT61EUiYOHVe7liv9iqqqWF2c8/hLTzgMnpurV2w2t3IMOrnpdSwwbfBExDI9pTwhPSBwNCqVYkgmtFCukRwicTiG5GUyezr6bs/17af8ytf+Ex98+H18+Lkv8uT999jebbi9EMXOi08+JvYdn3zja1y//JRH773H+1/8PO9/+D43t6+4eiFoUeq3pKFD6Yh2mUo7UrHV1yhiGthsRA3mtKNpGnxOVHVFs3hGXc9KsGbLt37l/8vFA2k3/fbf83/n6uUrtlcfM7eZ3W7H9atXdJsdy8WCBw8vyWVVeHt9w2a3Z2YN52cPaJqG5ZmeyKL73c10TJIxdEPmYvGInOFMr/BWHG4P29fEucijXVVh64YhdLi4xvcBoyI+RYLyaK2pG0GhtLE0S0VIGuOMtEIK0XIYWg5tx5hlpLVhvhDCcmhbGufwKhKVFCsXlw8kOgFRAmU0+/2GlG4FTXI11XxGDA4/xEkjG4YASVE1c4bg2W62JeC241DsEXIq220968qwcImzyjFTmVoFKm1RQ2RtCmK2yFRRwmRdcriYML3HVVA7S6UNu4L7713NRy9eURt49OCCeTNDpUy722JthXE1YyRMigGfI1iDdla8aZIgY2Z0WS/o8ehB09QLSGCWln6/4XAIzOZLyJF9yQdLVgsy4+bEDLv9nrquUQa6tqUppHqTLITEEBMhJ5SrcFSgDAmL00dX5pw9qSw8YhYrAJSe0Jys0snkckSYx4e/mj5Pecmp+qkUdRrJW5OA0kjOxWV5JBFDQbmBqQg8aZG9MRL5ZLGpjvNF1sRxR9TR3V5rBRaUzqSYGYZ9KezKHBMjKUoZctpiyqVIUKWtBOCUlkvdIiGkZf4cj4WolMo8q/Qks5fPIrL5HIWKkMYOIIYUJAUglmlaSfsCsiYnNUnfy1kgxojBnXzGIm45OU5ajVL9PHUPjkWNPEcmF//R8qS0DxWqNBs+i+aIzciUXvZdxzuC8rvxbrwb78a78W68G/9Tj3fIzslYXqyYL58QB8+wFyh6d3PHQCfeEKXtYTDEYlCnkpoSzVXMBEBlTUiyerKV+DlkY1HKYcdMIusmkt7oJ2FthdJGqmd9XFmMwZ7W2okAd5p6K+0Xee1EEMOgzehAqqS6NkdY9nQ7pyu8iddz4l3z7aR+44/vt7fuV98Fbypd2yTtrOmXwo9QI88ifbZGn5CVKOTi7q7jbrvBGctstuDs7AJ9oelLiKiYk21kRT90DIee/eGW58BivuLywSXPngj/oj+0XL1+wW57x/7QEnUmRQVRE1NpYaWj3FUXC4GUAiRJUffeQwrEFBnSuFKU1RMRbMjkruWb+//Mi1//NR597n2evvc+X/ji5wB4cHHGi5efsNtsUSR2t1f86v++4/zyIZfPnvDoh2Rfb29fc3f9iv3dayrrCe0WyLj1mq7dE30/JY5bOxcfIhUY2gPt5jWL5Rlnj95nPm/Y7TfsttJqOHR7zi+f8vDZ7+Dm6pqz1Q2LB+doonjP9PuppXvx7H3a3YGbl68Y7jZYEuv1msXFObPlCqfX7Mt9Y03G6syrj36N9XJFXdfkoUOngRg9+ztB7GbzM1LQaD2jjwdxBU4DfVdk2Vrj98JXycqgqwatG4zL7NqeELayWlVO2jdmvJYMXW9o5kuSV2x2e4bDnpwzzWyGz4G2oIHSDq6wpsLWFXc3t+z2z3lwfkG9qNAq0pW2mzEO65yQcY3l4uwBn3zyCfPZmm438PrF6ylDia7lonKsnGblLI4oooGUQUMqsmtrDAtnGXIghh6rLcrqidQ5tzUUV+JH1vLJqz2bdsvV3TVV7agOB5brM5ybEVKckFjrNDqHyQA1piCtoSgtu5AiIcSyD7rwBw3zxYJoLTF6llnS6od2h62lRVk7i7GKtj0wyr1dJU7L2oAq4o6koG9b+t6jKkulDLpWWGMkTBQ1JYnnGMWFOB9zo+CNueSNr0fvLJnLTEEOCrLHKTJTkOhCjk55YLTXOB2jjLx0w+695ym6M87ZyuiJAzNK3HP5vS09t6TB6SPVIecshO8gXKsY8mQbErPI0CevNGVAUbKtjiIS2YniaJ3FXNKYguio4pujmfxzRpHK+P5jm01sOQo3B2lbqTxajyB8pCju0EpLsvp4yE59cE7/HVvOpynvb21N6fJZsvr2z5dT12V18m8+tsyUzv9j+Oz89E//ND/3cz/HV7/6VWazGb/n9/we/tbf+lv81t/6W6fX/NiP/Ri/8Au/cO/v/vSf/tP8zM/8zPT9N7/5TX7yJ3+Sf/Ev/gXL5ZI/8Sf+BD/90z89mfJ9r+MbX/8aF2crztYPaJZCXlxfPCaExO7mjv3dNYf9Fp8GUhjIeKJPxDQ6HVuMzdLCQqO1wzor1uzWktCitkL8cVIhHRtjsFos0IXnosUQamwjFZWC9J3l7/WJj0TOR5VVJoqnuBKnTK21+APpPPlAvH0UXxk19q/fPsnI90JaEzhZ3YMs1QRBHn8mxdfI4TkZY7vqTS5QgeHLp5/2J6ckNWASBdym69neCqeiWSwBWCxnrC9m9H3PYbenOxzoeyGV3t1ec3f1egqAnK/PePDkMc++7wtstxteffoJ+5sb+s0Gm6VlMap7AHwqirjRiDAFgWwTpCEXyFf2OSAPdadnMvlFg+oTrz/9mLtXVzx6JD4zl5eXfPHzX6Tb77m+viYMnqwGtpuXxNSxWK4AaJYrPvfFL7O/e8zt65e0bk7odwR/YDZfsnaXDEUFZOol58sHwtdKmX4QEu3Hnzzn7OyMi/UZr15KeyzHgf3Np/S7Wy4fvUd6dMZ+t+H1t34Fp+Hp+1+cHohD1xK6loePHjCvG8Lg2ex2DP7A9YvM2aMnzJbScko+STr12nB3c0M/bDk/P6eeLyavHBAFZH8INM3AYnWGUYGkwM5rclHw5VD4DyFDDEIa1pHV2ZpuWNAPgTYM5BhwxdTQtz0meSIDzsJqtWLx/gdo5cprj1yJOEiydiGO8eS9h6yGMza3d/iDZ17PaSbrGEVVSVTLYbdHKcV6seTq6oq225NyoD9IIddoWFvLTCUaEJddlYRUmvLkqptSlELBClk/h0xMCeU0zhoSA3Vp1zxoZmycoW17PvrkBdknvvC5D2kPW7zvMXXDopEWoUYK8hx7QtAMcZBrsaqlAMqRphE1VhyJwLZCI8TYqpkRc6CqLNYpqvG1xZxufIDXOqO1kL/lwV+idgrHzVrLrFmWsM+aWltpUeTjg3BsZx/Jx+PD+Q0C8TifnHBETv/TNOXvj3+Tsidn4dillKQIyEz8wUnIpUZVlpl4PSOpeXwvKPwwYyZl1BRpgRa3Y44P+qqkoItKTvg43vvJKdqXVhJQwpYNSQnvalqc5tEXiJN9KdxpFSBl2c9c2vIIUfpoFngsKoQ4rT9zjKZjNT0j4vFv4agmm/yNlJwrrSa+Yx6NdFN663NGeD73CxvNeN5PCqM3XnNaUJ3uU84ZndTIOPmu479rsfMLv/ALfOUrX+F3/a7fRQiBv/yX/zI//uM/zn/6T/9pWqUC/Mk/+Sf563/9r0/fjxJIkBvvD/7BP8jTp0/5N//m3/Dpp5/yEz/xEzjn+Jt/82/+hvanNpD9wO7uNd1WVpMpgp3VLFfnnF9+Hj+IuuT61Us221uGtMeUo93UGo3GKKgayQAyTgoc4yy9TxO/R2tVOCuSeutjxOdEQonZkzInZldWODfGoqxDGyMFjSl5tSdEr7GiHvNYxmpfLpD7RcV9Z9BT5j6cdjjfvNDkvSKnFuBvvvboUvxGofQmenOKTjEWb6XYGVPWOd6QqUh5VbnZUjEm60va9UYpjDPMZjOWyyWXl5d479lsNuzudvihox1KMvbLT7h69Qlaay4eXvKFz32A+b4vs91u+fRb3+L29QvivijSouRgSfpwcc5Ox2OojCrMJEm0Jyacm1OZCq2spMmXySqRuN5eA7AfDjhbs1qtePToETFGDsOOvu/ZbF/St3Idng1nDNsZzeKcD7/vy+wPd7x+9ZzQbtBp4NBusSUXyilwRsww29gTcmKxXHJ2oUghcXd3w/nFBQBd7Gi7HdYPvHruqZZLlusLfssP/J949emnXL/+mPOidHMqcr5ecugPhBTww0BdO+brGucMd1efUFmpCtYPLgne4H1gsVgyqw2ffvwxztZcXFxgZ3U5nwljDaEP7IZWHsLKst9v8YMo7cYMH+vmDJ2i7TOXl++Tk0bbRK0Nc7OUlXIpYNYXC3S1ICeIXpLOX798xWw2p541pAzLmcwj3noO/QFiwmTNYXMAo3nw4IEoI+No+FnEB6WIlDTrSPSBze0dL1+9xHvPfi/cFmMVSXlsXTPkgdo4tNJYJVlBI/E7koQfoRQqKkL0ct+mDMGjlcGVB0DyB56er/jG6w2pOINfvXrN6kyMGLWzBN+PdxtJW1IMaOtwVc1sNhNOSIzyHiOQqxTOOTKKMBR1XFWxcGeEviNr0MaNNzFN01BZQ9d1DH0rxVFV0TTNZJegtaFKoJUUoNa6I8dFjc67x3lHK0vKxdlayWNbiqf7U8Z9tEVPyI787sjjAbGxyCGU+AVBkseH8ahCPc55J0WTsvfezxgzkbnH7ccYyt+U3ChzUiyN81WJgBgLHB/FgkTUnCP5fpxr3wJRZC2cT2UwJ8VOUkkWsaoWywgVJ5RsjP45rRkk92+cn0uERcr3EKv7qNr4WeR4ZjTpBA2TokScnsmmHNNxHlflnB1Tz0/jjKBwdKQN8JZzq6ai580CZ3rv/4qh8n/tX/43GK9eveLx48f8wi/8Aj/6oz8KCLLzO37H7+Dv/J2/89a/+af/9J/yh/7QH+KTTz7hyRNZLf/Mz/wMP/VTP8WrV0JQ/W5js9lwdnbGX/oj/xcWMys6/8JQTymR0RLKlg2umlMvFixWa3RV07cd2ztpCfjugE09WiWsczIZGmkpqZQZhjjF3oMmTCe1wLARea+cMc5hi3NtXc+o65q6mkmmjHMFmj6BavPxYhph2/s3fgklnS6aNKFDY8ie/G4k5WreVp2PfwvHQkadwo0TzjkiIvoIi8K0Cphe/kaxM0LC5Zefeeecwxs3RFlVxOP2KGo6rTXWONysYrVa4eoG7z27nXi87LdbtttbQt8RugOkQDWrePDwEU8++AKunrErrsjf+vVf4/b1C9rNLaFrIQZ8kZimoqYbwwnHcFGFQdeO88sHmMrhQ0LXjqZqqAs51VpLLkRNVxnWiwW6EmVUSJ6+FZQg7HdcnJ8zW62ICebLc1brC/btgbvbG9rDLb6V1o9OQlpWBuq6pt13tN0eYwM5yENpPF7z5Urk3zsh2q7X52y3O1CKJ++9T8jw6uUnALTXL4h9S2Vr+r4FE0WNaCvxRxr6iSSJcyzmK/ooiMZhu2M4HMqDOLE8PwOgmS/Qbk4IieBb5vMlzWyB9z0xthwOu2mbRjfU80usq9n3W6r5gtn6AbP5OTFZcsgMvcQq6AzaCYF7yInK2CJn7qmaOcrYKWTWupr5cslw4nCegsh/tTPEkI7c2CSSW2KiG0Qe3B9auq7nm7/+DZ4/f87LV6J0i+2eB3PF0moqrbBoamMlL8ncJ/7LAzGQs6LtOpQy2MqVh2yWMEjAq0ysFnx06BiQOIEP3n/Kk0cPSSmxXpyzXsmxnS0XKGOJRuHqmQR0pkwm4LTB2mPcxKg67Pwe6aLn4iQv14wP7Ul7rCANWVRr4zVaNXVB08vrbEVECbl1JKAacS7GStt+tCrIubgoY8hlgRaLGim9MQ3cR3PeVKOq4klzjJbIySNCq9Fa4ogey/ZOERpVKAAFwdGuWHyctmWO5Fgp3O630nIcM/mgj31RWfkp4FMWSuP+qOOcqRVKWXL5XKNP2vj+JusTU/w8OTiTMkHFQrSWAjYRjgvIQvweayldzr2Q1O3UAdHKigBCHzPJJHTaTLEdY0E3IntjYTgViSeLbX2SOXb6+nsjf1bxdsxJfQMFSvdfl3MmG9gfWv6f/9uf5u7ubrKTeNv4TcXZubuTVeyDBw/u/fzv//2/z9/7e3+Pp0+f8of/8B/mr/7VvzqhO//23/5bfviHf3gqdAB+/+///fzkT/4kv/RLv8Tv/J2/8zPv0/c9fd9P34/mYrpMOpEj8d9ah0WhCISuZd9uuLoKpCg39+WjZzwqRmqzxRdIYaDvWrrDHt/uyGEgeMndSVGLnBm5KZOSqh8tF6DPCbBgDS7UVKEu+2UkKXoKqbP3VhrAZDmeT/7/iOh8ll/z5jU3vnaalEZ0sRyLe3Az99Gf0+aUmgqU8fVjYTS+vzr5eoQ/7xtbvdkHvrffZWMpH7ef4vH3GlFw6JxJfaRLPd0hcvfqBbrSzOZLlueCaqzPP+BJeo9233F7e832+pp2e8VHX/s63/zl/4KrGx6/L9ya7/st30/z238nd3d3fPqtb/Hy428yXL2A1JOTJwaFLxlSdbWgbmq0lXPZ+8R6NuNitZBkYq0xzSgPrkR2GzJhaLm9vWVxPsdZi/aJZi7tOT2f0x72+NevmM1mtKlnt7lmeX7J4ydP6No5N9eixkptjyEThi2h3VNXBoWjLwnZTjFB8N1hT1XPefTsQ+7u7rjbXuOsxWjH1375P2ObmqdPnwGwXJxz/eITDncvqR04XbHd7pmtapr5Ck83XZN9Cuy7nmYxZ3N7x2zRYHTm9rWgVkeFVUDFPcK+yNzdXXPYbpjNGrLJJJ84FFPDugGzCKhqzoPL70erikzkcLeliz11PaOaSdvPe1k5zxc1bjiw223R1tLUc4YUMVlNxelwaLm5uWGxWLBYLdFa00WFNRXOOEKMbArCpstqvKlmaAOH7Ya+7fn000/ZbjdsNncEP6qhMpWqMUlYEaN6EmfEB2biX0R01lTWkGKGeS0ctBRFEZmBIkeurKGPnnVT8entFpqaq9st292OWVVTf1jjS8Bo3Cea2RytHJqE1Q5nDTmZYp1wRFn7QVpQ9UxiIXyQc5kkwltUopMB4PH+rOt6Wng5V0t7phQSxlbCxUkKX+IgjFZoazBWo42Z5osYCyqNFj+ykkuntZmCNY9FyX1lEYyFQyQW/txUSJb5SmoS+deoOPmlnaJAkMgl/iArKeKdcdM8NKIeR6Tn2MqT8w2pxAJNLVICaeQKnS7kGBGgY8snc5SOa6UnufhpsaPHMNSyejSYsrDy5GyhvI/KxyyxcX49ldrnnCXo83Ru57OUgrGwG9GgyaMsj1SGt6MucryKvYTWJDVGFlH2+/7fnBoFTtsZn0XfhpOjlOINYsR3HL9pip2UEn/uz/05fu/v/b38tt/226af/9E/+kf5/Oc/z3vvvccv/uIv8lM/9VP8l//yX/i5n/s5AJ4/f36v0AGm758/f/7W9/rpn/5p/tpf+2v/jT7Ju/FuvBvvxrvxbrwbv5nGb5pi5ytf+Qr/8T/+R/71v/7X937+p/7Un5q+/uEf/mGePXvG7/t9v4+vf/3rfKmE4/1Gx1/6S3+Jv/AX/sL0/Waz4cMPPxTSVxY2+5iIrLUh5oAnEAUxlJ67Aj90XL/6mG77EpCWxGJ1xnJ1zsOHT9D6Cxy6luvXV2yvX9J3O8IgMHuOSdQQCZJRaFOJH4bOVFmRVYRqrFrvRxzIKuGI2txDZJSaHCzfLIgjpz1QIehJ4GcxQCxEYt5AWkY30hHtOv5u5AmdkJknDwV9bxUxEZQ/w8/Jb2zzdKTpPfIYzKnu/51WCcWxr5+IqBTF5yIrUJEUAzEGQh/ptrvJu0ZZw2K+4uzsgs+9/xTee59d13N7dc3V9St2dzd87av/GYCv/ef/SFXXPP3g83zw+S/xQ//r72C73fLJN7/Fp9/8Gu32jhiEC2RUwrpE3VSY2QxbzTDGko1ltVyRtaIrZOJDO3BWNazWNYOv6LuWMERUTCgd8YUcrGNmOV8ScqRt94T9Bq0yvr1m2yyoV5c8+eCLALTbDduba4xWDN2W6Hsal4n+wN31FQbFxcUlAM4u2e+vGNpbzi/OuPEDu80d1lacLxr2+x1f/6VfBBCTxCdP6dcLXn36CX3bEkPmk29+g4vLR7z/weeFSwbYruP65jX7rmO9WPDpxx+jUVS1JkV48fwjAD744AMWlai4hiEy9C1d9nTaEDLMF6sJxd3tW7oXz3n2tGLXfcLZ+SV6tqI6u6AJmeA9+2s5t5VrYL6ij4mkLWa2lKiQqpqiIcZ1Zr1esYLiQ+QL92SJD4Ft39G4irU7B6Dbd9xudvS+w9USrNm1dxgim91rlM54xpgSCDETciI3TbEYEYQiknCjGakqC2oNQw5YNFSWOHhSiphKF3M60NlgVGapGx4vFrza79kZx3o9RxvHdns3tZVXF+cMPVSqJimFz4mAKYKJGqUCoyfPcnUmCq3Y4YubdEoBH3oJ17V6ilVIWaJAjC6p5E0FWaOURWWFxk93sDFihGlLO0uAFD21iyZQwGSMtoJ2KMhJy1HMahSi3eN95DwGLBeUYoxTUOmN1wqeMCLfShm5DjQTf/IUb7Ba/IjGyIqsxA1eaY0p2xx5R+McFFIo3BxBy1IxZwUgiot8MY9HBB2mzLmgSvivXAdFiaWtvF9BjkYUX3yJRqNAuWB04eFodCGEa/EJy8InYvyEpd2ly7+CfImSbpp7T+bW43/3f3bs/hVOjf4sCn/6Ncjfm3xE5VXhZMmLx5gi7r1+/B1Ix/EeufmemZu6//13GL8pip0/82f+DD//8z/Pv/pX/4oPPvjgO772d//u3w3A1772Nb70pS/x9OlT/t2/+3f3XjPatT99+vSt26jrmrpY4J+OqCLGZmkZjQ/ZOJB8IB96Qu9FrqcNaKiVRSfwXZG76kzsX3P36oqQfxXjZtSLOcuzc774+EuEmLkqGTtXr2+4e/2amAIORfQelxTaJjAlg6cot6rSU/XeC9xXLujxphP495jcO15QIR+tyEcu2JuFyjimfvY9Xs/9ofJYTH32Yp6g2IK6v7mFt7WrTn8Hora/95q31D8phyl5nhjIJBSnnKBiGlZqnVQcRoueoKQZy96FrqO72/D6k49IwGwx5+zBAx4+fMx7n3tCHCJXxen45vUrrl9+yq9+9at87X//91Szhicfvs/nvvQD/OD/8v/g0EVevpSi9/WLl3SbDeRE5Qym9Mhj9OwHSeieLUcSZ0Xft6TsmdmK88UKn4bikCykUQA7M+QUpFC5PGfoW/Z3N/R3r0n7W7rXn7CppYVz9uhDnr73eXa7HZvrlxx2nxazt3Mev/eA/eaOXVs4VWHDvG7w+y2f3L5ktahIoWN/GBhMTbf31CU/6e6jr/Hpr/xn3v/Sl3n8+Cnf/NVfZuh2WJW4ev4xQ/B83/eLktI2c1bLc149/wZ3r1+xXJyz2x0Y+sRhH+g7mTV/9Vc+4tn7z3j8/jN2+z1utiDnzOb2jjD03N6+xBpRF81mCxSZ588/4YMPv8S3vvkNfL/l/MFjLi6eUTVLzPlDuVYrK5JZI+222XyOKaTTNgxYpY9cBRQhJcx8Li2srmN3J+aCZ7W0ZsLo7WCgWS3wQ6TvOwyK69c33F7dYrAc2i27gyxoZsYQNYSU2foDy6YmpYzJQk5WpYBJYSixA0n4dloJ70slNIjZYNlXZZREYqielanIZ2fsvbT7hi6QlwY/yM1wc3PDbDZjFRakJhKSp2oWKFuRVC7cjVHdKVEOPkax1Cjtk5g0MfaopCcVo0mKkDIxjHJ8jTYaa8SxeRjnwxDJ5YFdW9GjKXPk+kl7beTsSF6SxHpIm1WPFg4Tf3BsiefShjq2q6aHsR4jDMYWoUJlB+pIktUlluSYxSX7IO04OzkojxyTsbV0Oi9KTlWa2lPC7ZRk8Ew6PqjHv0eRKUorhRR+SAL7qdRcihxpC2prpgwv59y9YieVuVylXAqs0hVV/rNcpjKnp3RsQR0tR+4vOMcsrNNiZxxvtvIm1VVMUyGM4u0865NC6G3fT1yknBmLszF37M1nyWlppAHzvdU6/32LnZwzf/bP/ln+4T/8h/zLf/kv+eIXv/hd/+Y//If/AMCzZ8Ij+JEf+RH+xt/4G7x8+ZLHj4U788/+2T9jvV7zQz/0Q7+h/am0eF7oPKouIHjoh8DBR/ZJCIQ6S88xIvEPU0RC1vgkF4n3kf72huETT0gZZRyLs3POL2Qy/tIHn+MHv/xD9L3n+uqW6+trun4HSqNtTeVmqPKQidngsjyuc/CgDSnJza+Nk+tLnyAkSZGRKAqJacilgj+5uNBSnOv7FXnKgs5ojhfkKIEfC2ulzD39QDwl+01ozOihk4puKpaerb53c51ezCGlabs5pvvV/tiD16d/pyVyIh7jPXJM5BJiN0pbE6m4Mst/KQtvyqhMyC3Re+Lgub59xdVHv86vZMNiveLBw8c8fCYF8+Mf/DLxB76fza7j1atXvP70Bd/85it+9Zc/oq5rPveFL00ZUe//n/9XtLHc3Nyxvblmf7clhCBSbG2EGFg+nEGxnC+FPBs8ISeqynK+nJNjmJBAnzzOGXKQa8tox+Wjp/TDgZvXr6hdjS6OsJuPv8brb32Niw+/yOWzZ6wOS25fvWC/+RSVeuraEoo3VBg8bd9iTcXQHnixu2K1nGN8pN93LFZzbq6kiGv3PWmAX/7//HvOLh5y8fQ9Qqx4/a1fQwfP5urrHK6F2/LBl7+MqWre/8L/wub6iqvr53TDntx75lVDLOTgqGB/6Lm6vmO+WhJiJISeR++/j8+SDTb0gphVVUUzW1LNV+x95PLZ58E6QlLE2RxTNcQgx8t4cLYCn/Gxp49iGVHXM5rZUjx1inhBcYxuOHQ91dxQNY04dPcHgk/oatSeW/rNFYfdHtdoDvu98K2SZjN4toMnFmJm0Iqt90QNOSj2m14iHhQYOtauqJR0eT4YDSlACOgEVjkhlqo0cSnykDBaY4ho68kqYJxlexjouw5nQF/Ia12sySbRqhaRnBtUjDB0aGPRhQANELwHEs4YchRBhq1qUDLHkDwpyDnzfRTFmFW48sCMpTjXBnxRg/V9j6kcOSVsk6irJeQKrSuUeQsCwHGeyTkWNanCB088zaYrc5y8ePQHQxBpSsF4OsecSLBzzhhTyfEoliD3EKPy77TYLQunePLIVeNDPou3eMq5FDPIU/sELdFGfi+L0oxRRo6HFoQnkadiRxlX/NbsRBzWyohbuNbivzTN38VnLQoXR6UgPEXrsEoEMSGMx8veU0sJVwhZ/OWEmiIhxIF/nN3HQE7ZhrjKj9YpCfFISimhjZmk7kpJXIRW5RlTzmcsZ0EXBdh9Pul9byVTrAHSG6vdVM7B+IwYz8H/EEGgX/nKV/jZn/1Z/tE/+kesVquJY3N2dsZsNuPrX/86P/uzP8sf+AN/gMvLS37xF3+RP//n/zw/+qM/OqVG//iP/zg/9EM/xB//43+cv/23/zbPnz/nr/yVv8JXvvKVt6I332nkLEVCRhNHGXGO+BLIpoEchfyqFVMIQhq9aVQusuQkYW4xMyRFCJkQBvYvX/PilZBI9a98nWa24NGjJzx8/IQP3v9B0IoQEre7LcMQivQalHOyRC0M/ZwVFoVRYswl+SijTb6Ef2ryJC08ZcG/KSE/XnSlih4Ll5NVzPEGG39AmVgiJzyyk+Mox2UsZGTCORYgp6+T9zx5LeNEVVYc482GSC1zGuHU8vt0vOnHbY4rrSmENCdySpJ+nDN4+SQpJ3IsNug5kZMn+UDygVebK1599E2+9ktyi8wWZ5w/eszTZx/wxQ8/4Ae//7ey2wuh+MXVJzy/fcXLK2nNNFXN5eUjHr/3AZ/74ofYZs5m23J7fUPY70lxII7Za0pWb01dk4IWFGE4sB1arFMs51Lw6ihkWK3EE0XpDLMZyQ+cnZ3RdntseXgGBXWIfPrVf89ifcnZsw959oUvs9s/5e7FJwybT9jdCikfKyu8oetZLM64vc3sdwbtahI9H3/j5eTbYrRjyD2rubzv648/xjZzLp69z9XLVyQMH31LYjCev7rigw8+oKoqLs7OOZ+v+fR6y27fYz3Mio9VyrJoyElaDUMX0SlzGDZU6wWXTx+hi5zdBxhSwlhHpSzWKKxVKOuoKoUxAVsiIIY+MPg99XzOopL3CiHQ7g/cXb3CGMv64hwAZ2dEn9jvWij5Rb33WFMRrSb6PZsrQYtFau7Zbq755KufEINM6f0wsOs6uhQYilmhQdEnSx8jmz4wBImOcdFz7gyfeyDtuRUBmz06ZRQJbXRZYSdUyJKLNAZLEtA6kaNBx8jcyP4mMyNkGLqew/ZQ7tuW26trVucrHj6GrBUpRCrfSJ6WYTLClLBViU0xxlA5jSKRhsRhd0eKnlQI+MTAfr+nmjuZKXUJ2CzSdB9GEcYYwOvJxuJsQLtS2amiPJpWN7IIyEkRVCRkQZoku0kWMzEePa8mr5hp9hkRGDfNN3IMADW2iOShbowgrc6V18bR7yihCtF5SAEQ01h4u6ngm1+P32vM1FlJRIy2kCUAlZxE7UVpZxk9FTvGiNGsdnZSQ92zIDlh6iqUGACWeIasjovGfIK+jAfhWFgeTVxzLuqxMeIlg8pWiMtJEwsiNaJrI9Xhu408Rkx8B8TlTWTnuw0pbD7786RFkfW9jO/Re/C/zfi7f/fvcnd3x4/92I/x7Nmz6b9/8A/+ASAruX/+z/85P/7jP84P/MAP8Bf/4l/kj/yRP8I//sf/eNqGMYaf//mfxxjDj/zIj/DH/tgf4yd+4ifu+fK8G+/Gu/FuvBvvxrvx/7/jv3sb6zuNDz/88DPuyW8bn//85/kn/+Sf/P+8PxFNSEJcDGXffDy6Sros5nAqCaqTtRDjxnA0MWoSTohWxaMga2JJR5bIgdGnAFL0XF+94ubmCudqluszzh9ccvnoEbPFcjK26vue4L0YZAFoMYxLKWKzwKMjSVgpcSbVKLBmghVRqphQvdkzNdPq5E1Ozbfrs46ZDzqNqM3pGGMshDQ9IvB59O+5B1vHESQSzoLOkyFWfkOqqZKYh+ex7XbSVx7NwmSbclxIWfw5YiITZHsxEeNxJRdjIvpICIP4YIQA0ZNiwCQxAsutfPbNdsft6xd861e/zmp9wdnlQx69/4yLywvef/+3E2Nk28qK+u7ujr73fPL8NS+ev2K1WvHw6WM+eP+SrB6TMxy24t/T7g+k2BJiJKFwdY3KlqHfE/rIy41wvFxlqCtDDp4QDoQYyL6lKinh9Wx2jGrQGVdb1mczuu6Wq1/fcNesWD94xqOn7+MvHmBqQaGun/8aQ3uLzplDuGG2WmC0JoSBMHiMrrm525fjJR49MUaGwWOs4+zBGatHD6nmFS+/9ZxV8c+pa0fX9vStpLKbKlItHGu3JmOwbjQffEgzn7PdH7jdbDHGsFiuhZhZOUhQF9LzslmSbYO2DVobhmEg+o7Q9eAzrq5E7o84JocQub29pZm1rJZnQhQvtg0hDlN7bj5bUs/nVM5wfbfF2hrnHJvNhpw8xojwAGB3t+OwuWXY9+hsORwO7LtWXJw3B7SHZV3czWOgC5GQMq+7DlPNyCahYsJ3ifPS7qlcxKqIycLXyChylPOYtJvaIDJvRLnKc8BqLfd5CJzZnljNOISeT24KspIis9kMVVnq7Z6ghBdknKb3kE0WIjfQ1KVlhiFlz9C19O2Wrt3hLGA0fSsIwM3tDbe3tyzXM1SK6ErmNmcrRgM6KIkzSSTpy9kCZYQcnFIALZwpXR5BShtSVhOCO5rOpSiRCjIPnc40CTEWHaXbeSI363vCZiZe4yThnlyNvfhZhWN7TDh9GTWGhI6cm3zS7kKk4SNPcny3MP42qyOKoECZDFreUycFVovPsRqNCI/EZ60sGGlXmbFtNUX+nCD0RFCj+3LCZNkLhSYlRcRx3As/8TJUzieIi3AZT83/pnl1nNVLAKhilPqfWIlMfNCjO/70HDkRw4xD5vLvkWDzxnjb344cre91/KYgKP9mGamYXwXy5EExOuQaY8rdq0kFWk3jCT3hZhkrrSabBCZ0MTLYQCwmd7G81jmHNpajainRbjaEruf65Qvq2YJFgfrPzs5YnJ1zdj4vSgXwoTvyc5Q6wsHFbVP6qIW8XAgip5fF2N6K8f5F+TZY8TO27qXFNPJOJtIwUnLozDG5dyxY1NjGuq8sK32rMrmJkyx5hJOTuMiW86DKS8a/zTkTs9ilTwaHSaBvkhjEpRDJeChEvjj46dzGGInFPM6HXlpYSQogMTM7RmEoMkZlXAqE9o7tq4F2e8OLxRI3n7Fan3N2Lv5Q7z15D2csfT/QdjtijDz/9CVav8Y6TV3XzMu5ffT4AXVdMwwDh8OBw2En5mAu4/3dBL1Hn9hsdyg66kpjTKRrtwSlULqCTnFetnnYtex3O0xxrO27Hb7f0O9fkrG4as16dQFA9eH38/yjb7LbvWa+qIkKhqElD4kwJNqhx48ZUtZBhEFlVudnLFZrhpy4fv2K95+9x3q+5vq1tKIDLRfnC0IIHLY9dTMjZ4WxkSFEVheyr1lLZMTqbM1ifUnVzOm8ZGQZ6ySzqcDuQ78n7e/KA2ogoVlcXHB+8RCtGmLMhMLH8gPYyrFer7jb72mvrqjrmtV8wbyp8F5ROz1dB33fAYp5XbHfH/C9OJYPydAPaeKh+H7g6vaGrj2QY5BWjw8Mg6dpGvb9ZnLUN8riY2CIiSEbTAITNbVyWOOpSsvNIIsnrRxGi6leTAFjxsImYcxIJEb6DaY470bQOWOGgSEl8TMp14w3NT5Ehq5nOLRYqxm0wmiFNRpyIJfsN++ZHpwxBmLyGKuwTtNt9xz22+mhrrXBGEvfRlrr0b3MJ9kGUZpNCxqFa2qsKhECKRAI4gifLRlDduPDWwqdED19iPgoaeC5LH6kBXSyoKMUAGb05ymLNlva3CPdUGshg58s5nx/wHs/uRpH7hN3AawaCcrmXgtrev/SVhnVr6DQWYxEkz5yiuR95XeiCJPiJo3toaKqki0Y+ZxKWJNZSRGIUvKzE18fjZrmvUzEZINWiojMsSYaRhf79BYzvvIFb47R72b0VnsTkHiTBnFaIKm3cHGgTPGjAeJ/Xa3z1n0AWUzr/xE4O7/ZhlZaKtkYSUXym0MS0mtKIv/M0tdmrF4BUypcay1VIZNJxIMmpIwfMn3wKAzuhEc0rgy8l1werY0UJjkTho7tRtYK/dBS77bUzZzZYslivmS+KFkz2pZAOZmMc7nhZPvlBi5ZNlkfycEUV81RkXJEd8YLNR4vqjwiRlK9xwlVORp3jbeEzkLIY7wJRk6NSgVtOSFbjiS+LFqXlNOEPslxzZOUVI57JlEcmAtnJ1HOT9kBlRMhByl6IsQQSGkQrkWx9o+FexBCICaxb/eDxEHEUJCf4mY6+sCJG7ZGWYOrK5SVvj8pEbuBu/6K3Y3EBFRVhZvNWa7m1IuG5XyBzhrfDxKueegYDvKQ2VlR1s3mc5arC86efSik3e0drZ0ztMKt6fe3RKWwSXF7e0tMHbNZjTYV3rdk7KQcOzu7QKlM2x9AJaqq4vb6Bu+3nM2X9O0dv/bxfwHANWtRJ7oP2O/3+H5PShnvE9Y4Lh8/IbRybV1dv6BqZrjKcnNzxXZzy+XDJ6wePuD66hVKKR49Ekm7aRygyLlifebZ7l/jDy3OWpwTqTLA2fklZw+fYOoZh27Htr2l0ZpKKXLw5GQxjajMZssLklY0vqc/HPB9y2FzR78/cLZao01FLgUEJtH3LYvFioeXl8IdiSVWw1pmszmdl5O73d8SUz9l06EVm80t1lTiwJ4znReX4N1hS2Uq7vo7huzZx45Xuy37vqcbeqLWHAr5WhsHGtoQ8cYSgSpC9oGzuWY2hlYmLw8KqzDGErOiMoroM9oELKcuwWLIF2Ivx1dnquKam71HG0Nt5bWtCfiUuN1nsoKm27M6zHnII7HPyJGhEJSNq5g1c7mmlSYlzTDE6T6ZL1YiW0YWcTFt2W47oKZuXEGXe+q6noJAY4zo4Om7g3BQtCOqSFJS0FElbC7zoakYomRF+ZikYFRi8KcLwnFKJDbGlWJkXKwVlCt5OOERqszE4evDWOAMsuCZwpRPjPIKzzGeSNjfVJKO85/Wo82HLuRmLRwa9FQ0CUpdTAmVRGDI2k8KOSniRjl5KWo4olG6BHDqIn0/Fl4iG5e3UcQURSWbIGqFesOaRLoOijEj6zjX3+ciiZLsyOHMilFfVq6+U2nK/XFaGL25aBZULsNogvgGOZ2Tff1OPoGf+b2KE0n9u413xc7JSDkR4iCrf3+0Gw8hkMhTFlI6UQ3Z4iMB0IxuokqjnQUUMQxoBc4IAXNccVRVhUGC/+KIsmjx0zDOgTXiXwHYqkJbKaJS8Bz2O3x/oHKNPFhdRV1cU51zoEsqevF9iOmzLSllPxtwN47PVPTjl6PjMfkzrzkiP3xmcpCDWyaWdLQxT0mKm1jC7LLKYpVeCp6s1DRpjCvcnEbX5THKI0BMk3oux0TCHwu9NBB9TwhevDgKegMQ+mE6vyElQYGSyEytNvdkqa6qyFa8crSrsVUtygfnMFpcVpUuCMTQ0YaO/WGLcdBUM9brNVY7lI7MFw2cZPmkGOgPW3x3RxgkIfri4pKHjx+glKj3uq7jsL2jvXtFVBV9t2Gz2ZHjIG7LusOWtuetl+sgdQk/HEB55pVmlxRX2y3n6wsePX0EwN3mGlkPBi4eLEjM8N5jrWW/3dNvdoyBgg/OLxlCT0qB1YUUcJv9lmAUDy6fcDh0bPdSGKWrK5yFjKeqZ5xfrKiePkZRobDH1kGMvPjkq6gMjatw2uKWKywGKoVSEeK2vNZjzQJlLWHWUC1WzHIQGXhK0iLQUmjkriX4nnbzGtcsWS7WJC2omnIV7eDJZfq7fPQ+MR5X+frQs0iJ61fXXB+2dN1ANZP7q289N69ecndzR3Ka292eNkX23qOVPDj1yWUfUPQpkbK4JrdxYF1pHq/nzEpCe200GvFniSlhqwYiqMphk51Wzqe3oiqEUaIogSoj6qVBHV1uaz9gjSUZQ7/foGLDvKrZbTZolQjecXYmhaSpNUqJIoucMGQqa1E4Hjy8JIVI24rSbbPbcXO3JflIjInlasaDB+eYqiLkhC9BqDFGlqYheE3wFlM3BZUeiKogHCNao8WPKCVQMaPHtkt58BpzRKgho3MU9PfkQZfgZL4oryxozRjVIPPiWOgcnY3HIfMOJJGAlNaYoGV58sMpLSilJ5m6Ku7PYwt/koiX1pwUFkc5d0KKDRW5X8BQipsS0aDL19LW+mzcwthY0pPA5FgkTZ48YytOa1I8fta3ztPfYZwWKPLvSaF28lygqLhO237Hc1nOVflSv1H43EOF3ug43I+cLj/PehLyfLfx35Wg/G68G+/Gu/FuvBvvxrvx33q8Q3ZORoyeIeZ7vI5U2lc+RUJp/eScMUrjshJzMnOUNBqlC7KSiRliUASfiVFWY7YWtEZrS4gDGIWrnFTIKtPYGVhDVc0msmXTzJkvFxjtxGjOVuKnAUTvySHhQ1e2q9HFq6F2FXVdY8y8fL44fa7Tqn7sGt+r9E98D1LpaY/8mTeRnVOK8uinM/1vhHOJR/7OuLpIofylJPYmdeQHGaVI+ojsqDdkjyoVQy2StJJG6XkMsr85FqfQSEqxtPpEVj6iCmHwUwJxzNK+khBASZU3lZtQO2UdylmMbTDWgbE4ZwWyzwrr3HFVojPWiHFZpS2kzHYr7ZOxPViX7RoUxkorVKDuSL/bcnv1CZZEU2TfTXPGfHnB+r0vEf0X2O1v2N++ZHfzCUTPEDzKyfUSQ4cPB5QymKZhv/ES0qkCddbcvfgU96jkXa3OefniNdYo4jCQiYJOupr33v8Q9TnLMEjLbb/fs7+5IQ0H4WFkRVNZtHF03cD50yeSSQW4EnSZfKQ97Nnvtuy3B0w2YMTHCODs0SUxzoW4qgTW32wP2CHgtMZYhSmuYSkM6L7DuYZ1VaGNJqgZbjkj58zQ98TRQ2mxxtVzEoa+P9ANAypJzpZxmqaZYxs3Ha+u77m5uSEMPbPZAkNmvV7yahgYYsfHX/2q3F8YMb1LiaurG4xtyMMgeWPZElOiK9fi4D0YS6ZmiJ6ZsayM4oP1ggdNRVUct50SNEOpJKTSNJCiEG7HueV4r8nc5HQmBzG2K3dkMSOMVIXf05GF9xI2aFeTvWJ39ZrDDWwax4MnF+giPV/EGTm0uKoRLlwYUEoR+oPcgzkRC79nvnA8e++S65cbWcE7QbJTFOuMyR38INyYszOx88gZklb4wOS6pcr9PYoxYhRCt/e+ZGKJTFv8Z44tFAF59JQRNQotog7356p7SMR9pCBhQGsmP7yC6qAUlS6oij4at44o72nY5ej1MtIaxhTzcd6KRTYfcoKsxTumoBRKaxFcjAh7QXH0SN7W5tjKUsVqZESMJp6RUA60NsVqJKPTkUohrxWTQ6WCtMomm45IzpqRoCxHtByLb8clHlGUrMGoycDYcMrziUIum/7+SIJ+c7y9q3D8+jtJ0wUR+o5dr3vjXbFzMnKWh2dSR6JWyhCyhLsNSR7UGjUZPd2D5lKiixFrXenrGgn/7GWSqCpbwj4hxL4E3cnNZo2j0hZnG+pmjrUVtjzopDVVUnCtBqUIOYqxGBZ1cl2NvhExB/oQixOnnZQITSNw/HjjjhBvGtt1IU5eNtNQI5n4fnEztaNOSMcqj33wo/pK2ldF5ZCOqedKj0RCVfg9QSaCnKVfn/RUdOXyfgnZZip8KTGAPCnOsqixRgM0dVLApSRF65Ron0OBtccWmUxA2lWYukLVFaopYaxaY12NtRUacTbO2orLq3UkpdHmBHoPEaM1KQwoY6hr4VjpYqZWOLfElNhuW8gRnTOVVhjtqMl03Z52I75MQ/oGViucccyaFbP5ivMHD1lfPKJtW7rDDdsb4ex0u2tyHNCuFAgx0zhHu/d0IVEt1hzK8bI+cHb5EN8eyClRzSw5Zq5evuKTb3wLXdvJr2pxtmJ9uYa8KA8Gi09Z1F/O4VLLxZkU1l27525zJS2NnJm5muXFI4xrQFcM5fxsb7c4nTGlwDVVxeNHZ4SoCIMnx0jXSVHghxZt5DwZrUFZrKuZLc6wzZwU85EcrBWpl8JyWVVE10gC+Hw+Bcf27ehHY3BWcb4+Y79vGfqAsZnDYUfXboU7pOUY3Gx2dCHSDT03mwMhbaUdkYXg2/tEPypWnIT75hhwKrFUgR84n/GFlaOKB+yYDp5EpaM0ZC/mbWPbQ1UGZs1076U+Y1UmxOIDYxUxZyHF6tICKm2spggXfFbCTetuUa4mu4b9fsB/1KLLQ7OuH2NNIiiZM3IYOLQt1miaumIYuqkoWK1n9H3PbO6IMWNdBuWJSRFjmq7t/a5lv2vpu8TFw8h+19GGQIiAdVT1gKlKcWpqSUDPo/tvJWpWbcjakrQu3jcyG0iNE8mqcAuL0Z9JR3Wp3Lfi4zQWJEqJqeApFeEebyVTQk9jcaMvPMesp8+Vk8TWJJXeaO2EwnM5bi+VttY4QavSvhuTzZVWU6EnXKRjcTX+N7bJ77ex7tMGtDbolEgalCqePqM+TCmUzuQgvJkxTujNkXOeeFlHikOhzyshVY8lyz2i8nTwUvmc37lhpJS6pzD8Xsap2us38nen412xczKsMegxf7lUsD5nvHKkDCmmcrDlxCfu9zFjjHJTdoOsSJSm6zvpxWdFDj2VlhV9CqMLp0IZRzYVpq6p5iuqeoZz9dHO/oTlrhgr/fs3xdQX5difzVqTi8wyhIBSakrjVWO2jJYbzGrNYjGbbMhjODpw+tCik6wSSRkzcncK8W6cMKFclCkVCf5Y7EQgFdXWCToDoEcTLskrTz6jjS1IzpF4rLOshmI6vpcQ/phIdHIOsqQeJ/maKDegUU74GPloKyCcH4+ykENC1Q5bjodzjqaaTUZ92hiUG7lTgk4cV1rC8dHqJLKjKvutBeHxfQspMGucFA9mPAYVs3nN0AdS6EElfN/hY0BXmsrIQ1aFROhaWr/Dt3uuXn6LFCN1JY7A9WLNYnkGwHxxjrWWvt+jC9m5aw/o1YyL2VKsDIrCatWsOD8/J+fI4dCRjRTVjz78LfhhYLvZMy/csRgGcg7UjSFGKRSXxjAMHckH2nbL5krUWPW6Yf3wnKHNaCzDEHj16TWRwPnFmtVa1FixLoWpNTgjOXS72ztQRlCz6LFFBtzt9mAd9XwB1ZyUBCHo9xu63VYQs5nsaz27QM9W5GQY/IFZNSMh6KmqlMjWx/o4BbQGY2E2cxwOO26uN1SmIvSBze2OoRcu0m6zpe07kjb0KLZ9MWUMmagCXT4maeeUMRGanPjcec3nVzMemMAsdxgjGXsAQ8jUzqK1MEV8FKO3zMCQPC4MTMZzOhFSBuckxiYpLGK4qLUmpB7lTkmnFkfGKYPWkZQCOvqyIrbcvrqR42Uylw/PMHUlSESCum4wtYUsCwNbXLdVZVksHcnPGTpPY2usstSNZZe7ybTT1jPu9h2bqx1bHFWjmFU1VVWjncLVM86LpL+uBckeVa6itFTle4k6mPhKSk2KL6sK8joiL7oQckeFkxLjQaV0MSJVJDUuvGS+Cvk+2h3TQMqQTyTp5kTiPCmipnlZ/h0B6zFrsHyDLOYKz0cXMrUqsnJzdEUmK+F72oIqKSv8IKMnFGN8rSnu2llJVIOgORmth4mgPCI70XgxR9QKlTRGiWLVZItJmlyqgIwmUeY0pe+RhoW3dDRAHMnNksSTSVphMLLmzEqk9WlEunUpNI8WJ1o2Mpkv6un5dX8I2l0+MyCimOOrosqk75GM867YORlOawwVWR2l51FT4FNNXRcSa5bVrDWiFogn6IO0VyQTJyZxApVTK4S0WBQOSimigZzkoq7cQlRW8yXG1RMSM752HG9CqtIaOZLB7hHDhMU7XWCRY82dckSj8KNPRSnkkuIzoXOLxWraB0GCpP0T+iDSbR8kr6f8PsciMR9RFaXkmBblwHhh65xEOq8VtshuffKAlqJLtFZyHpBVU9JyjHORsYvKyhP9UU4e8pGgHIMnxV72X2WsNQxdmbSTFI05ZypncLbGGEtVN+TakZ1Bj5b+xhUfjEpWm0Vimq1BYYhKaL7jcbdWzpF14tnihwP9MBC7QBf8ybEVebaxghYaLItFDWHObrcllfakSmCdIgQNMZKNRJek0LHf9Oz3N4xWorPZDLdcs5pX2Kphtb4Q1M4kjIY4eLpWvHO2d6+4ufqU5XLNcv2AejkXWfGuwx86lvNmQgObxQO8H9jubliuzpk1a0LXMQxbjFK0vqfdlzDUPLB7fUNKkaqqycqyupiTEQ+fMYx1Pp/LBGsMarliVtfk7CGLvb1XPfvdnVxbw4CODcFDMC3NbMH84gHG1eQY2W3uePXqG+XaggfnF8zma1I1Y9AiJBhCpB8Sy7OHpNKeC0lhXY0fOp4//5Sb11d8/K2PCCFjzYyXr66428rxGlJgILPZ77hrO3zWVFpEAb7Ia+tyL8yM5mJueDyf8WxtWOSIDZFGi0PySCSurNj9Oyw5RiojLuxkjTOO2IepgLJWMr+SUhLOmUVEoUjS7tN2KgQ0GbQsGHRJYoxK7p3aSmRIW1DnF69uSSnTzAxNU7FYn2Fc8XbRiplt8FFee+hanKtZXUiL0zUznBHS+WxW44rPkLUWV9q86/OG9UqUfyllkkk0jaGZlc9lNFFJUaJLkaMoSEcGa05a2icP4REJUVDmxdJiOgmHTKNDe2k/ZqVJJQMsRpG5j3NXCpE3bUfGOXV8X2uP6jDZB8uoxhoJ1VO7p3w/FkSf8cw5dbfXRx8gXQjPpy2zMY5hHG/O+af/5dP9Vba4+8fSakpv7f3IcZPW+rdDUCbvnnzaZpLCJpEwSgtqkzL3Yoa0YSQun+77d0Np7oloxmLv5NxaNOZ/pCDQ3ywjk8rNfSwVrc00GvGDSAPBIOhGUeoopaDkhShlSiiaFbleKXSykjZOShl/svrPyWBrSz2bl3TnBXU9K33kzzLvx7+bbnBVMqw4AQ7VMbE95XzvhpU2UHlZHq+ZVJQE8r9cTL+GfFRNqVbUMJKQrrBW0ziHXS7QekUycUKBhiGIh0XfEYaBMEjbSIsgE52PKoEorhCQFUEpYsoTEhJDkF70uL+ADwHiUfaek6itsg/TKkwVfkHKAtumlIr5nBQYlXXM5sIXafeHqSVinMWaaipQsrHFnKzclNagbFWMGu2UUKzK/ovp1vF2ijERgicMIu+tKstisZC4AGem89J1Ha6SgFKDtHFC4YydnZ1P6r3Bt/j2wDB05NDTdQdS9FTWEkIka0XTLKfP9dFHz9GV4/z8gvPLJ5w/vKT3wqGoGkM9k9euzh9CCnSHlmHoCLcH5osVi/Wa1YO1FBG7YoDYS3FyWT3l5vUVm81zHj64oKnX7LZ3uLpmvZbtXt+8xFrNcnZGQknMg5NQzbura3wSpCTe7aaHi9u8oppbjNHk6OnbjnbXEkohe3HxSOJaVGYxb6hri9/dsB08Ac1ydcHnvyQxMko7uhDZD4HY92idOfjMbLGirmo2u5Ycx2t2wCsliNeww1WG+XLJ3fWBT1+8oG17UQwCWmXo9lxay8P1nMpIUrhRipAksHNupUB2CubW0hhFk6T9pKy0FIxmul5yjBhlJmg/qoCbSVEQUsZUljgaYWrJE3PayX0Wu9J2UYTkhVs23vOjv4zO+OgJKqNMJWiqqsoDSeauzQ5i2vDscU3tAnHQVDZjrPBp2hTw5XjlZMTwzkUUJbsJqGqNUVa4SkixEHxpv6eBOGyJeUAZzczNaWx19N3KGaMd2jkUJbtJMbWRJj7NG2M0GhxbMKM319hqTynJPCMwoBhiZk8IY2GTpmJHfLekAKK04cftny4+Y7SFV1OVlgz35mQ1ojkIR0mh0apwaEom1ojo6BMfn9FHZ+QJKUa06ljsHD/3sXAQ/zKDVmBUkuJOx6PKa3yeGI2KwoU8OnrcD9qcnitTIWfuyd9PX1cITpP/ksqCCOlclGajUqv0HU45OKMa63tMeig7W5CiN36Wv8di550a6914N96Nd+PdeDfejf+pxztk52QI56bwckr96KzBFrdL79NUYUsbqXhFTFENhkQhDhZ+i+LYDkNzJIBZgzWO+XzOarFkVjdij1+Y+LK9zzLV3/x+5OKMv7N2TLhVRZV0JLHBCWRaqvGxHTbGM4wsf63UkYhcvHHCaEg1jMZ+o0FVmrZrrSiY5osFZr0u5nwaHzMhJOLQH9VQsZeVVxgIMaJ1gY7D+NnipNxSypCDIo3eGIUzkuIg3jnxqBjLyhcDQUF1hqEnhYCKmZ4es5C2TL1cQo74ricbhWls4UqJz5HWZkRiy2oxopMGI8iYdXaCm4VAd0TRbIGkc4HkxfVXo3RisVgwKynata1JeaCqKnIWCH1MYm6H/tjumi9pZgtSlM82HzpZgcZEe9iS4paUxQelWi75vve/QLM4l/DL/pbX158ymzdUztHUc9SIAvUDXXdgtjYQA9pAGAba3TV1PSNlhStqqMpkUr9F5cSD85rukLi9ek7KA7NmgbI1h05WyRdnT4tZY0tOAyYFurtrVNbU2hNHPxylWazmLBYrWR2njLPgu57GLVHxmlYVgrJvOXvyPvPFGp8CvTY0izPqIZL2d2z2G3Il985y+YC5bThbNmQlCBpahAZdv6FyDl+u9TDsub29oz+04nI7ROK+ZXvzGoWn83uGElkQupb3HpzxYNGQo8epRAg1KXqsnaEy1IWXV1lLyIEcIk3ToFXGqIT4VflJqWick4gXJaRspS3KGFLyoDUhgnOz6dpSRtGlAEahbC1cF8SlNwYhLZcbVww+C6dDkSBbNBXBA6YiF2RnSD1h37Paw8wpjOukLRaSKEvTyJeAqi6BxMESek/oAovFgspq2radWm6z2Wzs1KGtIsdEl/Ylcd4Khy+NJqsZZSJa14LsJSUmeTmTopqEF+MxSBMZ+KiQFRCmEI9PnNezSqX9LvQEn4N87eXfsT0nxpNlrkxHcq/WWigB5V4MvOGurIrTjS1weVYTt0VNsRBW0JGJq2PeiuycoiqqzNda6Slm6M1ngi7E5fGzTq2sEwQ9nyBOx/9OtlWOlTb3t32K8vAGIqOUmL4eidffHl05FbeM20wjKlXif+4HfJTPJqqUKSJoZGvea+V9r1Is3hU794YPGUzGqdGqSSzf0aVfWI3tKoEX5aGtp0lLqdHhVxJ6QwByQmNxVuNcjSkQd1VV4lo6X1I1NcYJVKgM5BNZoWx3hEbzPevvsY11Ci/ek1q+Bbc7LXaUEuIfMH2G8Zob1UsAY9ZNjrJvKlHacmLyRxyIRcKaS7YMaoSB5X1cMd+rmpqqFsXOfD7DullJtdb0cYCU8EPEDx1h6Bi6YlAWAsoHhmFPDqMpmJiQhcxJjAREpQgxS+5VH0ghFdg6k1LAjCTteaRZLVierfE5FdWatKqsq9HWHA2rCj8oA8EErK1KISnOsErLZxzHlL8TBapNWWT2xmh8iMQohYnThsWykYddUV3E6AuRPDMM0u4Z2vYNlYghpoyras7mKzFrK5/Lh4GcFcNhjyIzVxXKWRQVRNhtt1gj1+FsteD84oLge/q2Y+h2uEYx5IHD4JlV9eQQvr8RxVeOLdooVmfnnC1XHIZM1x8wPk0t1Ocf/1oxKyxMMe0Y2sDN9Zbu0JFL3pXSsJjteK1esD67YHV+Rt8rhq6n222pqwrlpO243w/w/Arz2HH+7DHWVIQ4UJmKxfICkZ9LYdTevkYryyGDqRzL1RmHYSD4HuMMPvQcU7ArubaT49XLKz7+9FO63rPvB4YY2LaHqZh+tF6yWBg0A5VVkBSzekZKNdgEMWEnrkKkcRpVG7ISxVoKEY2jqRaTSV9Gl0I/YBshB/us5N7QlmyObc+QEPJ7PzCbzUgmY21F6jo5zi4eI27GRQoK7SyGTAwQlCeR8EoJ2R7ofUKHxGEXudMB20BfiYWA0harwQ9yL6YQyGogq6pYLyTazjNoaWOHNC6YLM6KLYCrNCkO5fqVz+rjcMwKVGDSjBg9qUS95CTtXV+KmdOWfIxjmz1N883ovq5PuCEAqbQgUygLuhyJIYoKM2ZyMZAlRnIY2/1H1ai4D6ej9Lzc3+ggJF+dICtRZqr7ERPZ3JeujwXM2Fo6LXbGdtXI7xk5O6eUhuP8Le2cVLYtJOqSYzUWUWpsZ1qUSveELlp/B15OOYZGHd97VEKNfXVVnokgIgGLmqTnis/mLI4E5bcNWZiPXx8LmOn5EZn4pJ/944j6HvMi3hU7JyNEg86RnKIQ+gBtMxqDNnryQ8i5+ERkceGcgiWTxwchjsZRDW0MWlc456iqhnqUk1eNRA9UIsXN2kgVm+Tx8CYR7Z4vThI35tMICHtCID69qOGIJsV8cnGrPFXNOiPVc0yTh87YY4VCJB4v3pRRk2Tbk1NgSD2j5brWSCxEiWiQKIdMO3qHwCRgTLpMiG6GcRV1M8dUtZB6q4pmfY5+UB5I2p18/iS27/3A0O/p246ulwdH8gPtYUfoOzrdErIlZ00IPVlllIWUpYA49Hu8zpw/eMBycSaTR4y4UuhYU0+rppggK1Eb5CT8JadtWXXJzT0WG+N5AArp2WD02N8X1+bBy+8HrRmGnvl8jrFlFVUeFo2rGcY+tSrHV+iDRDxGJ1TsCCGXrLSCwOiaWlt05dDa4H3Hdrej0p5ZXdFUhlCO1+bmwGKxEO8WV7FYr9hu91hTU7kZ0Q+CdAGzB4+pVitubl+SQ0fbD3h/i65qmmpGs5hPx2D1+BHdbsPm+oqh7UQ5FxV9EIL23Z2sppezOaH3rBYLrl9f8Wtf/1WePXufJ88eUy1qYk7Ma7lnHjdzeUgOA9ubV3KNlgdE1w008wXLs0flOlwLwVfB4Pdsbz8F61Ap4rct7e5AKGKB6OH6G7/Oq6sNt9s9Pll2fc/dvufQBrwPnM3lOjxfz5ibCh08tuQRaSxVpSD1wpUYAyKtISGeS9ZWpBRQRvgkB9+SzfgAE0fdkCM5RLQVRZRHU9Ui0x9F11FJcGnPgdf9wIPLS7qU6U1m6APrszVdkdSHIMTeYfCoHAXzMBBiFPzZZtoSbdEFsFjaqJjHTEpQGU1dW1CGvu2OTsNa7B6Gfk+MCrTibntL8F54aXZ8rMhDNWcIKU5kXmcqrKuolGEMk0wxkLUnlNVWDLm4DOcSxlwCRDnGP4iq53ShKXNdKkRb+bmaEFdiEoQmS1GaYpgWQLJdsa2IMZ/42Ag/M2aFZSzMEhkDRryNTLaC6pdCpwR2lfc/IR0rS9YKpe2RE6NPokDe8NWZ8r5O5/LThW2Z60H4mZwgOykdXZzzuM0k+VpCJs6S13XC2RnRMVl46XvPkc9wdjhGdQg39SjSSWRMRuKVOMYpcfI+p/yjUy7PiOAodUwbGH/OW4qlnKbp8ruOd8XOyRiZ5ZkjVJA5yu6sOt5o43+x5LkAeB9L20JY7wqDzhmrE04rnFbYKfhOVBIxDKhghAgXE0nrKcrhVAGlSqYIZa/GlPM3rcHvMfLfKHZUlmBB+ZqjQiGLx00qUu+R7DcGMMboUYVwPcq1ZaUVUTky5u2CFAFiF2Yk7woJTtXKEbMnxAwcCyNlNHHoiT7QtzuyErKj0ZasmcirdlSj1EIi1lWNqytmixnr8/Wx9ZcVygiMHLO0zrqhp2sH2sOBoR0YhvIw8F68XHLEO8185gp0L8Wc0gajR0K5pDlHBHLVZYJThcSs9cmkClCUH73vMcaQily/MrIqrEsBMZ/PcTP52pTVlyty8zB0uJIOPgwd3vsJfs7Jl5UdoBS6nk3TR4qJtt9gY9G/q8h6OWNIkXbf4ZxjvRDpt1gNKBQVfgi4KnFxscb3e2KMKFOfRDt4yJn1+py7m1s8nqwUJnbk2LPf31FVzXTN7nYt1XzJYnXO3f5A32Vi3PPy6pbbg5CeX3DLe48uefB4yec+eIZzlrvrG+5uNkKEryxdeSDHw4FQ0CO9bEDJyj9hQBKkSFFUU30X0Cj0fI2bN9hZzf7ums3VK4b2Do3ixctbAD759IbdPrDZB3a9pNfvfc8QNT0VKEW9EDTSD5HbbkOtFGYu/jfzxsqCx2opRqeHl0YTsJUmxx5tBP0bhoF8EpmhtSb4AAqMcShriEFhbU1MmiEadiMKpBWH2OIVbH3EVeI19HrXUs0WpKiJWs5BzIlaW7wWqb0pCds+BfqQ2LYH2mJBYOuG5byij57OZza3d6g4sLu7RVuHq5rpWpTeriInQ4wD19dyHHOC0Hr0Qj5/CAPBJ5yryTZRGWnPGeeo3AxrGsbwuZg0MURU8lP7KnOS5TciODAVOSkfU5vGtnxxY2GEteVhHoXozBFtOMqg72835kSISUwAj+8sROqClNhStORkIFuSkhRz6QIUifaY0aZHxN6VNpaZEB1BWI5GgRMR+cR3501E53SMiAvqaEFC/iwaJMWWIiZBEHMxvZVj9mZ8RATsZygTb+6PHPNRoCHycFv2R1SzarIZyZoJ2ZnI5hOUI/83FkunRY/Kx+cKMIWJjgpdkOfEiE5+t/GOoPxuvBvvxrvxbrwb78b/1OMdsnMyXJWplC0EU/nZJIWOsRBIAxQiIAhUHIqrUQziHyFkDiAHhIQTyAQynr4fYVep9K2tiTmQ/IzBDjTNHBPG4Luj8FpN/dwjaWzs7zrnjiuW4ktROtfys7EH+l0+v/R6i8dFOnoNSYxDSSxPgv6oBLqYdBWqs7xHaeXm4qsgiYZAMlinsebEcVQV4nEWCDlr8fRIWcvKQx3XHX3wpOBJuztySgLFJyEN2spNrZaRhyTkw4RVGtfUzOdzZqs1Dx4vqJpzOd+uxlUNxjhi+dwpZHwMR0OzcQdikpVqHMiFL6ARXsFICM/5uFIXE7QS+pfj5OR88AMqHCHmPgWaUNE0DUYrlMr4ggY5e1xhVc0cVx9bmbPlGTFGDr0gGfUJHK5LIruzNTl5+sMtwXc01hCIDP0N18MtAMuzB7K6tJZKJfquZ3vTMV+ILNjQ44t3Tt/3DPue/WGLShnvI1VloRK5bugTF5cSXKqcxTYz9jcHVAx0Xcv19R23d57dIXLTjmnbjvD8jpvrDU8/+jq/5fs+xM0amoVEVqDEzRfAB0E+A4YYas7PL1nVc/r9AZ07cojsbzbTOYBIv7tl8AdCPxBjJvRRJO29Z78TDspm3/PyNnK18+yGQBciPmfxgTEGqys2XbEKGCLZK2Yqsx86Hiwa1KHwd6zIfvV432HEUiAewySD9xhbCSl+jEjIgLZoXRFipOs8zs1oB+TzuwpfjPoimXmzIHQDq/UMlGO+XGFnLZvdAeuqydwyZMeuT/gEuy6inSJng0+Zbgho4zDFQ0nCKsVF/XAYqJJj5irqWUVWELowtf2qhSNlxa5tubnestl2qKxZzhYc+p4Ujl5iwXv63GFrjVuvMKpCG0e2muhGkz2ZryhE5JH3GjgGZ55yQI5mpRkJ6T5p9RT0+nSuywXBoZgI5jJvjbYgMY9tfjF/TYoTF3m5J6WtP6JHJf5CG/KI7k5cnaNbPYAawzz1UcygT3g9k32JvHjiUsrxk9fEXOxBTtCm8fiO/05E4hNk51R6fvrMGKkPFLPFU3RnOr6Mf1q2M7bdOCIvKPl9JBVj17LvSkjaoxmgLj6AU6OrADbqpN2YJgTnFMnK91pc4/uenluf/WQK+d3Gu2LnZFSmprHjjXVsIcU4TL3EoZcWh84SD2CMnfw6xnMy5CT90dJ3zUnjIwyHYWq3pBzISuHqjA6ZprHMrXhMoKW3Orr3yg0h27a6sPlVRCuLLTeQOkHylFblehMVgYgUysV5AvdqEG8bJW2fXDqu4jGRJr4KMUiuVewLeSWIJ0iOBQj9bE9WYabrWitN1EbIc0YKBNkHXzyCtMDJo/pKGXKOqJNrOIdIipFMxPuhqLYyfjjQhkAuioqEQteOqp5h6oaoDfvtnpevPsUPEZ3ylLU0axrqWcV8Psc2Nc7VVG4hBVBTYZ2jKaRjVztwc4xao5WhMhW5VMRjweNPjRXDmLbspV0WOnKMhNCTivIMoLKSYxYGIfNaa0lKWjCRPBF+s8kE70lebv5QjC+rZs56fT715EF8Y1LwRB9IYaCuZlTWklMLWfhiu614J920H7FcLgkxC6esrsFmDptbrBEFmlGjMjFhlg5Vr2gPnrvNDYeXd6QUeO+9D4gK/v3/WzKkbM4YDHf7jqGPEithLbv2QNv11MW2daYsz55eEvo9omKZcXb+kKaZk7RiGAKqMFbm8yVd30tEQWUwukVrWKwUISr6NkDhDGllSVnR+wFyppo1xATdsOf11ZaPvvWStpPzddvDiyFw4zO7XhGjojGWRb1gObMMbUe1lDbW3b5j0JFtTNxtA4cET1czHjYNMXh876ltXa4DTdKZLiiapiHFSNI1IQaSMZLSDhP5OWuFJ7ONljhEKteQIpyv15jyoFs0Fev1GrPd8ODhY3EDz4rLhxdcnJ1xc73h+lZahG614Ga7Q7uKgxLSrzMWX3hBuDxahDFTifMa1ssZNnmylsgZjKV2VubAQkk73O4J0bC77Xn9csNN2zKrazGz1KXdCXQx8fHLa7JWXJ6dkZNBPxC1afRC8k76KPoYG1Bju2NcrllSeeCX6WhceJXMJ2mMF6+rsU1yQvgYC6V45NQyZuepnO75khGFz5MpD+1S2Ggt3CU5TwZlncTEGEUymlxadGhJSx9bUSiDMaccHXuPJHyffFwKC2XuFTJjC//057m0xadtKVXMW79d6rnBakNSFqERHHlJhZ6KJHfFKUl+pDehhHyts1zPZcdASeaXVuXATuSfVN6zgABKFp1ZKtPy7CnHspjanvqpTW/O/bbZOMxJQZRz/p4VWe+KnZORFSRtJGagVIshRmIspORcCgiDnNzioDxei9ZAH6VQ0kpN/XdV2PwxZpl8AWsqdFUh5lS2EJiFyDzGFYxoxVjsqJMLqMToyUWlx0KlfA7KRZNzKUpGIlo+Sgc5Ri2QS9ZUzqSRdKbSRLxOWaTdMflC8CtKiNFkTB/5RGMhgz6agInDZ/k+HVVi4+opxjhxoOT1Q9nJk2onjdbxodjJR1IOxOghRZGpU8I97/aQb1AqU9c19WrFarmieSDu1GGcCGMiDJ5D63EBBh1pXUDpvQSB2moKYtTKkHScVBnOOSrnCsdGeESU1yp1VDIYZ1nO5hizPDFyhFQeCCEMWCsTgaBRER8NPguSMaIEJNDZYitxzVVKYepGZOoxTwUoCPfHNQaVI/vdQD8EKi0mliqJGkuXAiLmgcP+FoC+veMuCo9qvlyQMnSdZ1Qy393d0bctPsPQDViTqBsw1YL9cGC5XPLk6VN5sVNYW/HYzWkPno8+fc7z56/oo8bO59ggHJSLS818njl/9oTVokLXhkN/mMj7q9UKX1x+b29vMTbgXAWpwZpaJL3Gga+Zrc5RB0F29ptb+naP1YqYPLtDS3foORw6Nm1Lpy3P97Ldl1vPNmpaFN3QM6sVn390jqVnWYFZLHh5I8VhZWv6IaGrOfs+QDCEfc8+Bs4axaKypPKw8H4oE7sit6JKizmhjcG5enLcPvhAxtJuEtrNuDvsWK1mmMpiUiCkPecX82ku6Nstl5cXpOhp2wPLxRlDe0Aph5s1PKhl3rCVJcQWZQ3r+Yzd/o7ZbIZVmt4Hdu1mKriW6zmV0ySfyFq4bm3bop1YEcQYJ2GBsop+GPChY7EwJNew2x5o2xavDFVT8tH6SOshJc+8apk1mhBqMfFLmpws42MuJlGVaa1IcoGXzLo3EB34zNenP0ujfPrU/Xh8Pmch9aokPwtjEVS2laBkIppCz5HCQxuDMpUUiCDomakxusEai9EVWlsUTqTlxk6cHa114ZUcTfpOkZjJWZnTYgcEdbnPRbn/4Ff3f36Cbp2qv+TgWoyJ5GxBl3DaciySYpo3dEFrTo/vmKNlRuTsZBdG4cybBcmRy3NEa06fT0fS+OlrToYZF5FyHN6UpZ+e++8keX9zvCt2TsaQQEeBnlU5CSHlwjwvCdUGchY3XltaXlmLuiclUQUYY7BKChistHNisc8eV32Va7BNQ10vBLavF9TVDGsdtrQhTi21T89pzrnAv5LBkk/Ic/ICfX8yyGM7SlY+IFAsGZI+FkPSfpP/xP+myMlTJKaeXFyNIRTESLYl7q5Hr4cR1pV9F/JuGgmGOZPS+HextMzGnKoSIpqk4ifF6XPlJO0ylT0qSPWZQix/U1qHQM4JWVTJLZdIkksVE2nfYVyFK6v0ajZnvl6jKifQemldiddGRJFQpUVprEiUlS0oTh/xbSiwdZDYjrJEGiMzUkrE0gKEjCmFsjHHNGujNK5SLJoZzlkqY3HjqvAkeT6EVK4/Q06BOPR0fUtOItW1lRpnh+k1KQWMEoRl6AMkT9duIbXsS1EQ8oDCMl88IuOwM0ETXr+4Zr+7YzEzmPK0iPuebndgs92RlGa5eAAxc9j0LNczsq64eCT+Pd1hx8tPnzMcBmo3Yx4j763P6OaJIXhWqyflI3qGqKnnC5JOHNodKvXk9kBUkJJiNpdtrtfnzGY1fe/l0vARn/YY48iqovNxKubXF5ekszP6w4Hk96LCIsHgyV1H6gZGqCAoy3YY0FrzwXnFulZUtkVjuLrd46pM10lxuFov6A89dSVtBdtUUM951e7YD5mLuaYqx8sCpnhxxU6ukS4eaJoZMaqpjbXpFSknfFZcLJZiW2ErXt9uOF+tuVw9oqrkQdu3Ow5Dy1IZrq5eSoZVNSOGwPnFGTNbsSzX9/b2BZYFTbNm13bo1OKcKBZniwWzykwI4/nCUZlEoyENPWmIEC3JJ5KDpp5P+5CMgv1A1WZBn/3Avve0MWCNnRYTbfIMKaNisUuIEA4dAYPVVu6pEalQWWTnSLtIa00ck8Mz98jFoxLr1L9F5hohrJ8SaTMcU8UluEke8ONztuRIQWnZWAVR5tecFVixzMAZlCvEYSf2FGg1tYylbSworbZSII339ynScix2Pqu0Uvo+oiMFz5Fsfb/ddELkLcWOFB9WSMg5T+d2dFMei6A0vqdWR5ED0iLV5V9TBCl6Or5pWsSNI5/s62lBevr99NoxDHVsYRmm1785JiuXUaaf77/HaYEjod2f2cRbxzuC8rvxbrwb78a78W68G/9Tj3fIzsnw3mOyEj+M0qAWE6ySEZIL+TQL0qIRB+OCupGS9CaTFdTHGJFfj9Wuc5aqLs659QzbzHFWSLLW2gl2HKvYsZIVovDYnx3Jj2mq/kUmfQLxlspYj68pkj3SEUxUBb3JJRiQKVPGF45PIhf/iZh6pJfnC4EwFLl6hFySyAsHQ1YJEZ2OXhvixZCKj0WafBFSPJF9Kqn+R7+IlCMk4egcN5zAIn4kPpD6SAoBfMQUzo5KiYDkv2hrwRiSM2AVqpZV2Cj5VW0vsvpBpOzGOqpqjqmcGAyqYnsNpBBlnwBtKoxVpOyLI6sQdMc+vVEKZQ0mG3ROReafyqJGo7I+8WYS7sC296CirPwqTV3XNK6arolmPpvQIqMsau7IKeD9ACkQ0jFFWzKVBnLaM4QO7+8Iw4EYeoauZ78RYz8QZ++L80u2+w1G1zQ2Y03N+uyMxWLB3d01vpNjGxUk6zgkzfXNhvTihhgUhyFg9EvOHj7g8eUDAFbrOY/ee5/+0NPuW9jdonXPem5Zry84uzwD4OzsjPlcyNk5x9IuBWMsq8WCQ7uTViWw2V5zcztgtRGieFJUixlaOer5mSBapU3chkFCKo1C6YGUe1K7wR9adm3k5c2W6zD6PVXkGFnNHO9dLJkZMTnzMfLofMXtdjfxvKy1zBdC3O1jy6Hd4MyC+XxGFwKvBn10pM2KptYMBTUyQyRGy2WzwofAvmunc9DMZviDpw0ZbMXd4cAXP3yP5WLOZr8lCw2H5fKc+ZkjKMfZw8eoynK2WhONYn22QFlF6OXFtR54fLEgmxmD73j/2UO22y1BKYyKGKuIheOUfaSummIxEamcwxmF0dL+GXw3ITujcd3ZeilzYZc5/+IH1Nbh/bEttIse32i0nsk5ns0IVUXvZig9I0Y3AdIxZLIOKBULQq6OCPDU4j6ixymFeyt8M3FUBJU5NlCOCMiYkJ3FyOVoxnfPOVha+ihHRqTk2oopp53aWI20sW0lqI6RcGAhIVuMOc7lphjQjojOmzYhcEI0PuHvnP4c3vz3/jjl7rwpYAHEZ0cZaQ9Fi9JZQs0ng5r7prSn/03GO2+MUfb+pjT+VF7+5j6ejlSeSbmcq+Pfn3zakUtV2nrjL35DeVon412xczJiMgw+lFaLHFlnJNFYobFWLtqUXOGaeFLWx5NgxCRLFY+AkBIxZ7KSh611biIoO+dwVYWzQoSVGAqBWoeSim1OOCtKZ7SyaC2MHEth02uhHKt0AiOOHhNjaTO1rk5GUS2IG3JpSRXin0aV9tHRjIuREJcjKYb7PJusptfmAtuH8r0uRoaxeOXJRa+n12ZGgvR40wpJOofjPsmLpagyKcIQCF2P76VVE6MYQUKZQApxWI8uOPmYtJ5VwtWF+K3FBl0rJ+F1UeO7SNSKrHoUTOerqioqK0qSZMr2lIVY3F6LamR8X2D6XFPrLiasiZKafpKsHFPCpyQcL6NJQyZ0Lb1rsaOHhMtYLS1BaYcZUoToxR3aNRY/El1jL7wqIsH34DM6iXOz76T46Fop+A5t4ONv/hoXjy4xSnNof5mnT59ycfmAej5jtmhIUfZh2GW2fQexwfcdd9sOpSuwM4YhcvjkNa6cW2M8A0DSzJqa5dlTQhKXaEKg39wAcHV3xaaucHXN/GwxuVBXVUN7uIKccWU1MW9W9KEj+MxseQHZkFRZgBT2aVWVWAXXkHVLf9jT7ToOt3tiNNzdtmw3B3mQFfy7a1vO5prPPTrjUe0YugOdVmw2G549ciycwjhpDe3vNvghorK0mRfzFTE7rreeujK0KWLKneacAzNjFyPKSDCoVRVXu45ZfTTUW69WVLXD6TuePpmz2QS6g8RB1LOGfd8zlIT29YMzmqbBe0/f96werLHGkG5es+/2rNY1qELSriyVm6GrmtdXnuViybKxBC8O3YqAc8WTx3fkOGBMJumETglNhc6J2jqqxaz49EjhPpsbukOP7z0X6zmVm9FH8KlnvxX13qHvJAbHasgeQ2ReGZbzhma5wFZz4nhfJjVxnY73U3EzLsrQ0ck9xljUsYW7l9Lk7wK5hDEfC4k8uQWXFq8pxU+U/1Qc/cTkvVKEkEUxlbQEc+rSqgKw2uCMxWoh/Y5trHHBqo2ZXnvauhqjhk5bSvcKg5OW1rjvZfJ7awExDq1PXfzH7d43IjyNkBhNBkcfI3VSRGnEwVjlhEK4TSrlqcK4V2CWv4tvJRLLQnwcI/dnbIsVxs7RXHBUup0QnfPJAv7N1tU03tIG+3bjXbFzMpQqDsLkiS6RCpXTamHaJ2TVl3Io/cKEGq3vo0TOh5CISZK7g7RGkSRbqf7lvcqFr0bpcpDsJKVEkHTSH1VKYawSw6qcxeDupH8N3JMljmTmSZFwUuycytBVeUAL6biwsFM6XohlwkhKkZO8d4qR6CMxhYJOqGN/G4oxYemNj27QaKJGCHzlOABTb1mNHCOdpqJBELQ0XcuicIr4HEUZljMheWKSjKFRJm9ShpBlQrEJlMZkMTvUGHR2UB7eaCEemnqGskUumhSKhFPlM5VMpC560JLYbEo6sXMVukx8k8EXJ+uvlPGxZ7q9bWLIidAdJtRMYVBBYZWFnPEpYJ2mcRZrNX4oztAhElOUPLEQ0dayWp4xaxqizvTtnSiaAN8f8N2ert+RekF+ukPLEHpS0gz7yNAVXkXX8+z995gtHUMMXD7+Ajlmtncb2rs7MgNdeXgNXeT6esvNfqDzParKzOcGpSONtXz4/oe4UUqcIsvlgghUTU29mMmK1zaifisF6X6/Z7vdYrSmmdfF8fjAZrOh6w40Vc3FxSVQlESxxpgonBkiQ9tSZUXXbtkfemwxvrOuYbl+SDNfYlJi2Le8vnou6rul4UJrumtBt1ydOTtzXNQtD84dQ2docyIGw/awp6qW6DA6PteoOlLXlhmOtkv0IZIitIceZxTnD84B6LsOVKBuhAe4mM+JfctqYakcFB4xlfFUJJ4+vWTodjx5sOJl6GkMXKwXLJcNV1dSHPp4YG5q1vMlh4NmMVvy8ccf42zD8vyMFA/M1/L+LsO8WXB3fcf5as2D9ZLb6ytR1WmFSpb5rBgFzhzdbkvX78nBE1Km7fZgiogiOKoSl6O1pR8CWiOITa2wJtEfPLWDVeEM9b2n6wdRjdoZVVVN3J9JBl2mrayUGO+9BdXOWYqUEYgwShNLHEseEeoRdS2LpukRqIpDfM7TszfmJC70iGrUuKPjtVBLnBTRyhZeiiYbfZy3Tl2RtS48TYUxCq0LmjPN3ULCNtpMRY6odNN0LE+LndNxz2Dv2xQ6p0iKzNdpQk1Opedaa2wq5HkVyapwd/Lxfd6WTzUhMlkWtTl/FpW6L5c/3cYpIjVGV0jVo0YtejEOVCdFy/j8Ghfw8h5vFDn39vHtP39zvCt2ToY1RlxYU0Jz9IoQlFOTYjnBOaGLX4Jz9RFuM+BzKp4BsVh2j0FupZ10ogwYkRFxNjYI4VgXpVGeCIxaFxdOFTC5QO8n+32vvaWOdXqeAumOCNEpySvnTFaJ8TE9OoiqzD3CszFGHEVTWYGR5SIdpYWyrJL9SkKajmUi0lD2zUyTwnRjoEY+tNygYwYOZZ9ynIoCyWmIxDBM7bmJiJvBHqVfZOFe45Wi0oZoDK7I+nNWk9YyqoxLCh2VSPq1ASuFbE/EGYMZ85OyhqwmeDr6yFBUY3q82fXxhh8nEVuV1Z6qGYNWY4xTq8MoUeoRpW0YQqTzLZvgmdVuylkyzkBWVG5GvagYQs/N7RW+F5m5okel0m4qMR6lKUrvEzEZQtL4bhAEqJyDy8sLPv74Y37Lb/0yDy8fkbKSDCTVo1Km3fVcbQUp+OZHL3l117Lp4G7nuVhpvvzwEZ/78AmVhrvXL4hFhVIvKurlHFdXxFK8WmvQ9MQhM3MXAJwvLljUjcSODD1D31HbhmY14+z8CZlI14sSqu33k/P3kA903YCrGtYPLlH1gnqdSHkMVoBD2NLtD2zv7nh99RK/b7nb9Ox2AR8t89KW0Dbw/oMlTmf67Y5+yNwdWppqye3hgKJlvRgdcQ2HVnMYPLo21DWsbcXQB4JSzGYzQsmQms8bhuBJIaOCZ+UsdnaGU4naaWypdjwD81nNrK7pdnv22x3r1QxXQT9sqJqaZ+9Je3DftTQzDanHWYXRYi+wOltLzp5bT4Xki5efcr3bU+nMelXj+w6lM42tsc5gtaLdSTEt7twOjUWZhFYRrRPOCSrhfSJsRYghgcUKlKOqa6pmRgwJbROEMQ8NqsqSY10Om4gArHY4U5HJxNiTJnWpQkWH0hKx8WY7ZJRqT3NXKvcNsbzmLXlMb4ykxqJHI0SALHLt6aFaRBtKo7Qja4sxrsS9nLSmjCsojjspYDRkV7BkA/lISbivvhpR3+PcfjpOi4V88vefJfy+/Rgd34upDTjOlb4gO8podNJIL+EESvk249sp4sb3MjmXYuTtFGDZxzfORfEmKyv7e2TnU9TrdBvjPJvubXtkPX/38Y6g/G68G+/Gu/FuvBvvxv/U4x2yczIqI/lXMR75LkoFgdySEHWVUqI61LI6OJWIpwwqJJSCpCOKKE7IGFQhrZ1WyCOyY1OR+hU4dgq6Kz1LZa1YPihx/Ewn/dkR8jtd9aipwi4Vs9JlJX9SExdOjiApkh+Tyu/Fcyee9E4lHTlqQ9YZnS0xRyE05ywBnwVZSqM54dh+UuJLo3JGqSP3R45XQc9SFsO9FIqLcSRFLwhFIadGnyAGYugFydGGylghXes8Jd/msfLXBqMs2jnQlmw02RmUM+LMS2ktWkh4AhmdLJWy6BLwqJKZ4GitDMkqkZQqAyZNaJZmDMQrxy8U2TeKwSesNmhTCMRmXE+NrUUhC9azZrqWMoXsfuKumgioDCEEupRRZsbi7KJA6XDYbRk6aTfZrMRUMHiU63C1x+XASic2d3dU/SBtM+Dl9RVPnz7l409f0NzcUTUz/BC4fn1D10eyqmg7OQdDXFHPala24/y8ZjWrcSqwvX3B5fkFX/7BH6A9yD5sr2+4fv6cB4+fYKyi3bcEZ5jVNTdXV3zcfwOA1fKMprIcdltSbLEKDklx2O0YQmA+XxQ3bkEYtVOs12sqvUBXNf1w4PXz59hqxny2JLTF0K7rSEE4SyZFHj8458YYqAaCbdnvPQ8eHN2DjQ5UlSMSqawh64ab/RajM3VVEdriVF3NMUqz3224rC9YLCToNdeWbXtg5dwY94RSCbto2LY9bSfeNvNZjUkZ71vOH1+Wa1a2ERUszy+4ubtm3iyZLebs2wPz1VrMA4Hzi4dYa9lubmh3e7IeWK0bFmczwtCzWK7pdoKENXj6tGM+X2CdpeszMVk0geAHCSItieCDP8gqW2yGRayha1LSGFOXezaOHwznGpp5jXEzYkoMXkjYCg9jy69x1MaS0DSrBt00RGPAVBjnULiJL5KKNYdSCp0EDQ8kmXeKx88xe+6IVh+RjSOibbifkC2E47F1IrlNZKERkM0IyKJw5XxYknaS9l5aVUabCdkZvdCMKxYhypa21si9POGwqBPU/EQWr82bMvPPjjHT8G1YlTpGgwuaPZ67k+2dcnZGdCdag0mmdC+0zPnlsCb1WfRj4k6pAua/uR9vQZ3e9rNxW+MoXtH3WnXHf4+2JfKzdG+bU3dEqem++F7Gu2LnZKwfPCb6lqE9CPEYxLk3RFISzwGtFWgHGawV/sZ4uLVSaJOolCEqKXKSKTCntmitxGUTSFmhIwiFR5OzIRS1kkbUBnm8C7PAvDFKn9xqQ0qa2jqM1YWwesKoj6nAffmeg3LOR6/jHHyhkAmhb0zzZpzUcp5aAgZFpLjSalHloGIpRpK0hQpkapVQzoIZ22QWpSzZqOJqG5lCVkv6sBCMEyENhEF4OKQMKUzW8yl7coxTbzeqjK4kbkNu5JFPoNGl95/U+ICUxHFlLbqqJ7PGqmqmCSxpKRIlNd6W/Tt6CaGOk4bWGmsMQ/JTYaqzYjRBTCnIIdQZEzMkT46GIUeUOponQpk4m2qKuKAULwYwDEc1iUrkGGkPG7q2lak/RCpnmM/nVHUz8R/8cKB2mdbvCN0O77tCSu2pqoauG7i+eg3AEBQvXrwk28T5BczOzrl49Igvfv/34fuW9rCbevmvXt7y+vU1fpDC+Wy95OnTx5w/uGB7t+Hlp5/iyrFbzBZorel2W4bQ4+YV1WxN1g3nD894UJcW6ODZbw8o17A8O8MqTfSB5cUTsg703k9k7qHrGdqeV7tX1IuWxWJB3QgHaMiR281rfEn8Tj7g7JzGzen2HS9eXNEdWmIGmz0zlxh2UsCsVitUCugAtqqISdPMFMuUWeqa27s9y7W03Q7tjidPL1nPDMELL2bZ1NxtdzRWowgsF1JErVcr2n7HolnQB0XygUrDernC6ET28rlcLSTYxarh6uqKJ8/WGGWJfqDvBnIasKU9aPDEocc6WF0sqIzGNQr6A7XWpDBg7chBSSxmDRpoNwfMLHNx3qBCpm8HhuyZFc5Oyj3drkOFhO8yMRoOMWFth+8HdOVo5kL+1k68do2uGLx4SmksQ+/xgan9XlVzovJooLYOpwCViMljUoXWTMotVEbpCOokaqE84LQqXJNSReaUCrUgHxd/qbQzVCTkhDkxq0tlW1oJ5ySVtrq4+h6dkROFV4PEWWht0UqKHG3dNFfYkcdkxFvnGN1z9Ed7U3F1+rXMK4XbqJgWTaf8mTLlyPdKFtCn/mnTwz9ryKOxrQhjTttZUOZro/8P9v4s1Louv+tHP6ObzWp293TvW1WpMkRjzD/+0SNCCkFEJF54I+baBrwKlYAKIooXNmjAG6/UK4lXQfBChChiAyrY4CHncA6aQ/wnmmre7ul2s5rZjO5c/MaYa+3nfasqyvkT/55nULv2++y99lpzzTXHmL/x/X0bbJaNayUoGxzCUz2jLKjS4NOpOCkrVPk8c4JcgqxjEZZksghCMguhWdqQPOLc5MIjqk2nVPff5FIg1uJNKBnyPqviuMYH1ecr10EGq9R7B+X/kaFUYHt9Tb66ERUL4MeRab8jTkdQHmcsptGQtdj6Z3N2ESNGTVqjVcIqmSAKW/rF5lGVni0kkyGPTPNYdimGnKVQqh+izkiP1RgsCqMUxp3k0UJGlscKL0R6qKhU+tGnSRKXiVXCIXKASiquhL8shn4VeQn5zJZca0w0knuiRLlxboKps+xYXO0nZ10KrwhE+V+92RclVSzxDyFJ5liKQdCeNLM4oSbZgSxmhRiscbjWLQUOsKh55JyUz+ZMDWFNgzJFQosllM9PG7nhiDy/OpuahfwWs4Hq6JokxsEiEQ2iIMiLokApCEaQuRyjTNIqT0cVKWpRdlgnROZR+AtBFbl9DKQcKPctxjgAicYaVoXwmowmZ9gfBub9Hles91NU+JzxAfnyieN+BGXY7XYMPvDh174MgFGZ27ev6TvDdrulXzlck4nzPU4rVle9GBICLz685OZmRc6By+0VKsFnr9/wyaevubq64GrdCN8H2D3saduW1dUaHVti9IzjTPSKcYigqwImolXCadHwtU2D6xu89+SYaZxmrAigUejG4tDEMHL3nTeMw45V17O5ukIZQ+PkA9snT0wzQ4hkZXCmIbqAyYGUMk1jMRdyo/dzIBBRzmLant3dA8Mw0roW0yrmmLFtKYwaGIvz8JOrC4bDkTwrOhWxNtM0ma6T62AY70kpslqtWFlLCJr1qqWxjr7v+fTjj2XOdD1GZy5WLY2+YYojrXUoZfjseI9zGVd4OMYpgpdIi+q6HkLgME5cbi/RKjDP+zJnZtbrjjB7cbq2hhQSx3GGqNkdR7pGzoFKjtbCw/EOnzzRZ6xVDKPn6uoScmAa5LPtuhV4y5xmcgJrNBbEsDJbKpPYTwNN2xXOj9hW+AxKO6JRaNUsa4fWlhwyRgu37xHaocRao9IIRdhwyoKSTVtNSl/+aFkHTsiNEcKyArXE7pyKHbRbip1kxPjPaFuMAt2yzlf+zvlXzb86V17JsZ4Kt/PCJ+d44k0uBd9jhOPzTsHnxrFl3Sk4sVq4luK2r3VcRBuS1ZcereGP1FjqVAbU43rEHXq3wFqO5+wjWniYULGoR89RDAxtRapTWjaPS9H36H0/5vmcdzG+iL/06xnvi52zcf/ZxwyNESJdkSc3/Yb2xZdEKZA9fp6IwwBhklZPCZQDQGmMjqiYiUY2IkK0iugImUisdo9KkZJiCkkcOzM4ZcVvxCmME0t5oEw2W5yZ606jTKxcW2KPCWQ5ZyGoKiWeOdU/oraQyKh0CvekjDbiTgABAABJREFU/C4TyTGRCQXWRnZKy0StZEAgGxT6hEDBCZpUBl0re2QSUZyRa8Ufk0QkhDhDUsSQyDFLAZFKeOYii5PCKSmZJEklQg40xkmXrmQaaKeXxUsXVA1d1RO2eGHIU2oypIJ2ZXFutoVMHutuLZ/eWVbiSqqU5MfkrKQVgC1qkIrCCNkaEklndJGqO2exOpVrovjsMEEoRD8tIaYhxRI8GsT1F5hDkBDaXm5wKkH2CaUMq7alVYl5Gsq5GshhwlBaNWrN3V3L3cMDz548w5m85DFNY+D6agtI620YDwQ/0ZiGFAOH4l8EsNluMJue3f0b7u8+YbNZ8wNfuSSozDSMhP1ILJ48F9stMcHbz25p246mbZmmwOvdZyjg6uYCgLZtCTGhG8tuOuDxNLYhzp62sxx2w6LCadqmOEVn/P1A2yl0t8ZPntvbV1xeXtIWt+XLxhZbhMQxR9qVXP+tXdF2HTk5jkfZ0IwxorsNn909sD880HUdjbEsKhul8cdUztdMt7I4C40JqC5jzIxWGWU7jGkIpTiMPmA6y7pvcTYSAthO5sD9/T0vPpSCc//wlm23YhpHht2eiycXdE1LxnO5bTk+3PLixYdyHcSIs4KyeC+I88PDnsM0c3V1xX6/I5eNWmM1pMS6b8jZ8fCwp206jsnzsN/xsH/AXlzK8w4D4+5AygGlMk2jl6IjRk/buQWVnsKEchYdDK5xaGM5TjPGNhjTkmZpJfo548cZoy0hz/SdxRmIcyI2ici8rJ3GZLKxZJWxdf9fJp9B/LcWmUWSdUqXNU0pCgpxklGfy6lzceKVVlhp+Stb5lxDVPUYGiHvKgslz6oWO8qcVFNGu3cKnVORcx4HAe+olt4pIurP3yX/PvK54ZyMfPr7VIQb7/7tF732yYfHoHVG6yxJABT5/jnjFy2RP1ksRL5XIaFLjVL/fBHHqEd7P1T11Plc8XZ6jl8nx/gLxsk9//uN98XO2Qi+BFumCLsHAJR6I+nYbU+36uk2l5gnFxjjCFFg3+Rlx+OnkTiPCDiqZJcTM1LPZBIaZc+gzNmTp5mYheGfnMKphq7taJp+MfFa/BuKF4/sPrKY7pVip14s35ubfoIsc2HQV/iwxi5IzEDkPG1LaYilWAGBMGOtvFWdGHXIEWjq7wpaFApXJ2Y5v4hqSL4iJFUQHTF1rFL4WhSIaq3KNfWpiIvS138EF9cFJZeEYaryoHKr6nsOKGXkeILGGFWkkbVldVo0cy4GjDW3p3BtoMLPGrMUfRYVS2FXojxyUmhzWpTz2QqTTaZpW1GsIDtPYxyNbU95YeXMGp1I3hPDjCEzjDvevn3N8PDJEu+xWolfTSLx9niLs5Yn1zdcXVwyDAMxeoZJ2j1tZ+i6C477A9Y2bFYN1jYcj6J2UlaxXq/lQI0lktlcP2edhe/guhU5zvQ2EruZpvA1Dvs7coLWtehgGOKReRbpfuPMYuxotLSc0qyJREwwJH2AFInjjLMW0xX0QRnm2eOahu7DZ8QYmacDISQa17PZXBCLqeDu7oH9bmQYRprG0TYbVm7D/uFA9CPWRlpb8snayMxM4yzrlcJajXWK4COvP37Fer3l+fOLcs1GjvsDzrWYxnE4HGixdFZy8CASyxzfbNdMwxGTA3FObDdbfPJ0q540Hbm6kMLM5MA8HgmzYp4n7u93rD5ckTM8ef4MyPhSwEjMgGEajzTtmsknVutrtk86um7FdJi4vJEC5v72JV1rmIYjOWf29yN3cSASOY4HrFGYwnW7WHWk446oHCnOpBRoXU/WoAqq0ZaE9Hbb0DjHPM+Mw8wQPfvDiG06rDH0fTHC7DS7/RGlwGm3eNFkokS4ZL3kIEGPIlOjhY2pCp3T7bTy55IWpDuphF5azxUlqVr2MjeXIkNYIkZbeU3lCr3ALWixthajHTWhvD5WayuWE/o8q1AtSq1TG+vzeVfnXMrHo6IaZ15qZ1yb71bsvPvYZYO1UHi+oOjJlPbSCWHSWmOyEwm+Pt0TKpzyRc9T7xnnQ6mTh5k+P+fvPEcu35dsxvq89bjT+fuq5++78X6+GFX6fuO9Guv9eD/ej/fj/Xg/3o//pcd7ZOdseOXQuRDoSkXujBGF1HRkjhMcDxKUZhtM29Gs1uiVmGhtrq6l1RLExG067MXOX9V840QuMQqSuBtQGHk+o7FNR79a07Q9bdsu7rkn8yq1hHbGLLwR4cWc2s5wcqWsdbHgMJ/3oFh2D6V9lZIkm6cSbVCHzWLd7ms/oewOUkbIzaSFxCrERb2gJymlYvpXvWTiglZUB9MUIaco/WKEICf9Z0WFT7SW95kqElV2AGi1eHhAseOpOw3k70UhpkobTYibgLis5tOuJmchwlVFgEKfGW3pxTl94RToskPRtXV37nhtivmY/G2GwtPJEvZaDNokZPCk6lNKEeIkZGUSpqA10zyS/Mg0HiB6Up44Ptxze/eKcb8nhHnhdTSNpWkMq8ayajdCNN6/pWtaNq0iZse6FSXQYRwYDjOX1zdAwseJrnM82X4VpRy73e3C3XJOrkPX9oJkoQh+RilPmD3aOPwgCEQcJh5uH5inhJ81IWt2h5m7/QPKGK4uhex6dbFl2/eoGNhedMxhZPaeprVYA8FEVB7LZaeIaeJ+vMUZaYHZrsWajJ8Srw6v0bU9GCPrztLaDmVkV3e8PzCNO5zR4l/k5H3dtCve7DPxcEDHiGoz3eaalw9vuLi4YDhM3N0WP5o50qxakjYcd3tyimy3jkY3zDFxPAy4RuZ4Zxyrp5fM3tO2jtkfCWHm+mKF2lr8eAtA35XWgtKs1hd89Po122HLatXRdyu894yTnNcQAv1aYWxL27YM054nT57y5n6P0T3riwvmwptKaA7HEaM10XvavuGyW5GArm/Y39/RVeJzTlxsr7jf7Ygxo7MmxkjT9Rz2R2LvCEWw4DY3oCUqZ54D0zSispIQW2OYC2oXQiicosQYZnElbyxGOZIS9+PqfJ69RtFgiAUZSQjF5qTaWVradY6dIQP13zlXvl6dt0aEIUUwgjEy74vBq8KCq2aBzdKWqsTk2s5S2p65ItulZXUe8vlFyE7lmZyPxyaB53jDo37S4/eJrDt1DdfFBVpl9YiP80W4/vI7bYQojMRH1IDQeltIktPx6Hjlb2vY6BfxiM4et6y7chiPTAG/AHypKM13M01ckK1yit6Niajv99cryHpf7JwNpUWJozFLXoqkFyiSzvgEuRArx2GPGg+44wMnqZyi6xps06G7DdsXz1HGkbNmmibynBgLpyGHKL1vpWialtVqQ9/3NK6jaRqssUsicIUETyZ9coGEnDEqL6ToegxkliLoUU83x4WHk3Mgp0zKvvTARfWSFlj13Qu+GDqltFj0kzMpQYppWXR0WZRSgZVTDkUJlsvjz9RISZLFdblotRKyXSqTIylDNrXYkeNw5cLPRiasskoWxUeU/CJVFP7iSamAMPqXmg2R1NcPui5WubbJjLiMymONvI4xNEWNoWwhI9qafXOa3EseTuHomKpoCNK2q5yZ6AficWIqROYYhcMU/SA3rXKDyXhISVLfgVCSmZ+/+AHSs4B1MA1yQ84xookcjg9oAlpr/CzFrFKa8Xh8ZDjmTIef5HEqJYbdjsEcyCERgl+MFf0REpYH3rLeXJDIHPYPEEaRY88T40FutIfDThSHjSPExKe3t9w+TBzmjFKBXbl578eB3/Kbv8bzD5+S4gxac9lfMQ4Dx8ODqLNiibbYH2gNPH32hPXFmnke8cOBEEIh6ydicZyehxlrHSkrOrfh7u6B+9sd15dXpBwIYaZppT13vztyOMx0ndyk5hR5c//ArDRxDjx58RRn6ucV2O0ObLobtpcr7u5uGSfPxdMrzOgxaFRzBvuHRJ4jpmvZblbcvn6JiuI0HKOcg8GPrFYrUoxYp2mtgazp2g37/Z4U/MLfm4PHaUfbbclJsd1YhuktrWsZpz3DOGDPLCRiCGSrcK1jrRMhzFjdkedA1xgoGYAhllw2K7lsucztEAKrVYc2kaa0sbQWNZYyGtMYentBiIqYNWEKS7TFOMz0643wXsosCj5jdEKrXH4u5yrGWPhsJdtK5YV0vNyAFykpsgnKojYVa5Akk720ZHR9cJacPJAiR/g4GkXh2WCgKjmVwdpGigFnUcqczeOTxYg+c0N+N/Oq3oBPN+/vfyf+fEvqdPPPOaN0XT8/34hZ1ncF5wnu522wpLTYN6TIu0WFkJfz8t+52GjIVu8L4ivO/v3dipR3H1uf991jLkfAu+Tr+rw1YuK7NamqYus9Z+d/YDRKl1gIllwqUQmJEkh2sgllDTlblIrEOSxyaK01wSdiPBDja7lomhbXdbSrNU2/ZfvkWl6rXYvXhNKQ4nJh1e/vsuErUrIQvWpOjcALqHxCM3LOCxm4qquqr09VN6UoROSUA6oEbuYYF3fhpB7X0QULka8kXjaaIqXX6hRsWcl1NeSzeCRowY4e96KJBfkQMm/wlUBdnGhUEl8bQNNgqMREQElAn1YGpdxCdLS2IaGW3Vj1v5DiR8murGbcGOEeWGsxTuOcE7WWNRinUeZMbmqbk7w/CbmbHMWaoDg/Vwplzpk4RXwapYAs3CRSIHqR1p8QiFz8B9TCO0AlISBntfSym6YvwZ+Ioi0nSOL02rYrcvSnoEYCfdcwTQPHhwdQcLFpiWliHEe67YbLIqWeponb21uG+1e0bUO7asla0bYrkoM8zxyLRHsadvRtx+bikhxG/BQ43N4CifV6zaq/gjSVx8Ldcc/9/p67w8R+VAxe0a+3XK9bvvRU+CrXm475uOfhNVxfX6AS3L18S5onUpxQRhNLIbvZtthGkUzEx5EQZo7DzH63QytL3zpWl/K8SQuHBDTTcCRGz+XNJTnB7uGeYZpxbUFkL58wph13D3vatmGlG8KcORwP+JAli6t89o0z3Hz4AXd3dwwPI62GVW9xDYzTiHXnwZKBplH4+UijWnTwbC4uiErTtY6x+CJtNxuMMbiuBTROQTju2CmRxR/HU9hw5yzZz/Rdwzh5/DQyz4F2JQ7J11fPGI/yeaXg+eTlK54+u2C9XnPYzUzDTIgzV5sV+8PMVAqT6BMPD3uORXGVEqxWK+F+pUjXNazXcr7maWSaPNOcCEnh+oYQIyF6QVbK0mEbQ8JjrEN54a9kArNPmAi66cnmJCePRVVpzOObVyQXvkr9uS6CglTWpFMhoBYuTNmk6ILk5IK4GIvWTpRXBcVRxS6hcnAUMvcfKaweFTuPpeXvKq3Ob77vGvy+Ky9/PCoh+DF6kvMXIz5wRmamkprrX+vlefKZt1l9zvOvcyJzykX5thQg+vHf1U1toc5UdKb+W/GYe3T+t+djeQyPH6uU2Jyg+Nx9cOH7PEKMfn18HXhf7DwaSkO5DxYvBpk8qCipvDkRU8SWINCcs0CbVfevwKdZLM8TxJAI8wFznNGHgbYZcL3A923b01c0p2lomq7cUMVAEH26sM7Z+bWYEQ8d+b05/8CTLAIqZZKqxU541LKCIlGPUaDJlMqNOpYL1pBVqnWR+CtkUUNppUnF+FBjRDqdE6kUhyHMUhxGaV8plTGFelgn3bmSIKeAypGcKpGtBKJahTanJHFV4h60KYGZ1qBti7ENtl0t6rm27dC2Ef8aZyVw1bZFgl4SiOuJW9KpxccnhUiMiVxCFqW9Vk+CwLgqiYlizpmkpQhdzL/KLrk+pxD65D2bmp8VvSRNL75AiqhTCZiV858AbQzGdJDa8tyi5gne46eBcTySUqBpHVeX1zjnOB4F1RinA/O64WKzoX/xXPx5hgHXrrCdYxz2POzeALBaX/D8gw8lKd4nhuFAmgOHh1doMk3TsCotN5fWhBB48+qlhOJ2LTcvntAYQwiRYUrEosSZponRB4YAR68Yk8iOd29esnI3C6py82TN5uIDhmFgGEas1qyvOvp2i7OKw8NuUc9tNxvCPJGjpN531qE3K7rWkbwUzHVp3q7XTGPi7s0twQ801nHY3WFQrJyiMy1T+fwP93eEaWbd9dw9HMlKKsoPrjfc7468ffkpY4mLePHkmuQHVq4os7qO+WHmdrxFWcM8z6xKW3u9brEGNquGddtgXcN+PBCniaYzNJ0rc0Z8Y1wjcTU3254YPfv7l4TpgW7bMxdjx1VnyenAeLxnDhk/Bfqux1lHGGfaZk0V0JkejP4Eo6S9hG5o28R8PHDc7Qgp07VSHN7NO45z4DgKEtl1zXIjdMZgTcc8lvZUihzHEXTLOCdcNFA2gn6OZ4Z3Gm0V1jRklcqmwgoqHSYJPC7zy2hXIismUbbJpC/tq0LY1TUAJZdd/6nFpcpGQVEJrpTHlnBmZR8hO7q0mrSyC3qsrJH8PK1B1+yrk/nfuwXO+Rd89yKmrr0Vdf9uRcBj2fXZc+VTMVJHKkhWzqIKRXE6T1ktJoAy6uMeFwnLsZ+9ltHmc+/r/PgeHdY7yE4lJn/Re6ub9M9t4r+gRfXuY75XPaOUQyn/3R9wNt4TlN+P9+P9eD/ej/fj/fhferxHds7GuXFUhTb9NJf4gMQUE5oGPydUEl5JzgpXz2K14I7SvslZiKe26XFNR9v3uFaQHdc2QuQNmUlHfJzQWirURWpej0tr8XpQ0jYyRsLyzoPlaqNpIRznLOhKzqjciUsxJ6OpJjXSfqEShot7sz7tIJZYCmTXoNGCWKmK7MhvtdILbNylSAiBqILAwbkcZ/XvyUJ+rMdqjCEbcR7NShAQaxqMcTjnTu+vojJOL7Eb573yeqwppQVNycGT4owfBqIvBoYxksK4PDaFsJybnDO2pBQLZFpIjRS5qTmRiKWVyMIlENK47Hw1Rng/qaCFxsruJEUikawzEV/elqNRBpJm9lHIlEjbQryJ5LMIKdL2DX3fsntQhDyTQiZGz2cvv4OzekEUntxckXPmeBwwKpH8TJhHhjjLNWTt4rLr55k47zE5Mc8zyVjWmwuMg7u7O7RytCWwcrW5wBjDfncrgaw5Mx+OPIwjrz97w+7gmSc53sEHtDI0WvHsoqHpOj748Dmt0/hxWPhNn3znI9arhg8+fM766YrpOAgtPIAPnmfPXogEGHjz+hX4gRgjq4utiANiRo1H5nGgNZY3LwWxmoeIbQSBRRsejkfGoRgIzp5+09H0xYAyB3KcME6z7jQPB49yLbd3R9pGk6zGWuGr3B88zsDVxYbGD6xWPUSx3x/nI/2q4fpKUMYpjNh2w/rqOckrjtPIfJhYr1rCsBeEDziOM2qzpSExRc/2SSscmPs91lriMLApn63KhjHK565MA9nRNBdELDcfPiMoQ7JV+t3x4oOnxPGBw+1ImAei95ichAekE6Fwp5yBi4u1RLBkTbNuxR7AKVzfoq3De/nM9oNnmDKuyxhnMVYQknHyjPOEa7plzvRtg3MKi6Vtepq+I6XM7iD8v6a4mSsMUwoSbEumxWCNgWwF5VYGU5DTiirngrSqDEkVN98sxqzxDMXQlMRyJeaAKmusceIqbOzizGyVJWtVWljFCblEQSzEZniMiBSeoSDo5fWUOuPEUd5fJfBWdKYiHacW1UJsrkhQWSOpCH06oR45nT9XEhR6QYZKqnvp+6Qsso6sNFmBRLUqCTxVaoklIual7XZCkYplR4GKcrnXZS3Hm5UqvCgtVAolLS05P2fvLVOeWL7Hcv+q5zOVx4pVSO2J5WJikk7HASeeJRDxRE7hv99rvC92zoZzCmed3BQrYUqZ8mGU7zkTg3yQRishjy31Ri5tiEzWCmsdpnG4ppN2irM4d3bzVKcLOatINY2KMT7itpzfzHkHQtVVsXCmVKh/F5Qv0KIoG/SJ6oNR7tF7X1Jmy4V0XkiJCqD6IuilPWbKv8VUsFyIVd1UiocUhTwc5kmu+HjK9kqxpnTH4q2TII6keSCEiM+ngutEtqtGZ5UnI8cdzwDUWhhWv+pzst85HC5twcqzkVkeUoGRtQbUydsjQVIRo1is6BVqSXmXJ5HvRouOCx1RxixkZFIq/KkTMVqS2GEaJ4nU0BajrGSCqUws50ipzHDckbOi6Vqa9kbaAT6hsmQt1Rbl8XhEa839wwNhjlgHzmica8lpRs0DBHn9MGhCiNwf9/RND3j2bweapqGzF7x9vSNGceRt2wZiwvYtx/2BzMTT66esthdc5TXr8bi8r2kYuX+7YxgGuqZjddWwcZ6LJ0+4ufkqh5Khtd/dM80HKfaT5vLmimk44KeJGCMff/YxXS8tr6unNxyOhvH2no+++U1UTHSbTckqcriu5fL5U3n948D+7h4/j6w2WzlP6sBm29G4FePkmWe50R+HGWd7gpdra907xuC5vOyE0J8CqhLFfWAYZzqnmb1Hm0hOnqurCxrVoLVidyjE4+GAcpa+79mNO6JPrDvD/ZuXNE8vFo7V5XaNc5ZxHJm8Z+UcIQTWbY8xhofdPVfXF2XOgE6ZMA6sLza47QrrejaXl/T9mv3+wFxI2irOODzoJCaBWN7c33Kx2TK7jLKaXDg7KUSMyjir8LPHmlXJhVLMfkRp4acBTD6gjSWmiXV/jW0twYMympRPN7nNdk3TyYZlmifZIEZReYXshYBcit6YPCEIhy/PCY0iqYy1qTS2zdIeyzXOpmzWhJuoyjpQSMvqPHW8uqQ72YBZI5un4qmjzta8k/pKl7aX/lyrp64dy6an/mzxLHv8uMd/U79/vjVV//K7dW2+qK30iAOZTwKQcyHIwik8e+wXHV99n3LO8jvfi/Fp5dhkWfEVLKay4lFWuD4KidA5e43z49fl+ep9RZ89b21Rfvf3nh79/NfL23lf7JwNa2VCqZwhVlfNEswYkxBJg7jnLootbZd5kDX4GEFpjCsIRduIc651tK5B12KnXCBCGg6APSOGvTsJWOSFulT89SuHUrWf8WAkoDOKQWBOJ0TnTPata+5InRj1WPKpL11H5PFEqfLvyhhL4lG6PF4lMUGb55ngPcnPkCbSPDGOR0JZYEMxY6xZXsbI+3dV4dA4bLWzNwbrerTtsbYBVSIXlBQI2hbH66YBdVJJfNFEC2dcKFN6/qmoOFSsqE0pmM6s1JVWxcW6FFiFg2QKITrVnr4SYiNJZOQ5RlDCZ8laiQNrMSjLWTFHj7KGvuyIEwHtLDkr0lRQqOzRKGzryFnk465xrNcNmcT+eEsqqqU4HdHKcn31nLbtMcaR08zsd4z7B/ykCIVQjtO0zZqb/llBfRRt64SAOk08vfkafYEux/0DYTwwpZmmBat7IfD7ezYXjtT31DBFf3nN+uYFd3cPDMcd/UUrSEqaCfOR1abuzlrUIdI0PevVBSmBcZdsLnrInoe7t4RRzsHDm5es+ob2+oKLqy0KR1AZfxyZDw989O1fW5CweZzJXkzk5uORVe9Y9VeM48xutyMGyEV2rTH4eGSzvWB38ByPR9q+k5gBq9lcXRCKWeI0TRitaNuWqDT3uyM6B5IPDPNE37dsC0n6+YsPiWFmPniOt0euths0kU0rm55KZJYCXkxN23ZFnANWa9DgdOZqe0GYStFrDdc3V8ypJSRN021p+y1N04vcvrfklbyv6XiPUrBaN6RpxpksKLSO2NZiGsdcNsWbjWM6JqLf0a1bpmkWYz/rMGUDeCy5YxeX16SUiBqMjqSQCDOEaUZnQcNBCihFZp4myRdUAa/nslHK+NlzLNesioopReH3tI2sbUpEIdm5UiSkZS6fm6NWkqygIGVuV0RFiYACJcTjWtxoVRAddTI2zNpgdH1MdV9XRar+Dh8lf36NzlQkRr3zU6gHtiA9yw39vNg4ex55c4/eY3pnQ7uITiibsSpqyJ83JXz3azlJ7xoV1sKGWrTWTbl8PSreVEIpjc6J09k5Pd8SxqrUI8PB8/dvqhpLnY6piGcFZXukCj477jKqYeKvZ7wvds6G94GMoBHJ1J2BQWmFtglnINuESQ1WaYRLrE7oQ4wSiG0MtulwrkE7W1ozJfW8vNaJdX8iDdef1wviXen5+e+F7HuadKcgNSH91puxFDBxae/Ui6rCp1mXnyVx+o1l0cjx9L6AxzuFfHIpVikTcsKdQYuaEvdAQhPxXtCaOI3EaSKE4sUS/bLrEMk/GGuldZSBZBaypbZKcnVyJOTS5sGU4lEvO6WYZUchkG8NkhPVRj2vzp6CPg1S1MRCCjRW3r8Xv+tl7urMEqC3uLOmvOxQRF5ePyNpE6QsEQ8pRckzM06YePnsmsmnnWcqn1vWkYwieo8uML/TkoNmnJXJXhHIHNFKghaXkNnWEGMmJ8UwHLBOsV5vcf0ztLvAr46LYifMI7vhwGaV6FcrxpAZjp5+5dA6k+IRvxDVR7SBTmtsI+2LzmnGoPCjJwfEVwrQ7UjXdjx/sSWlNUqDVpHsPfvbW3whFXbtim0nCIYPI33f063XhSDuuXn2hGEvxc7d21viPjIORy4vVhhmwjCw3+0wZNp+gw9ysG2zIY6e3f09K2uYp+LUjcI1HSHOvHlzD8Dl5ZaLiyu0tqy6zDxbpjCzXrfc3d2RWse2uEhbm8gxkPyetWtYty1dsyGlTOsdWmW2vVwHLg8YpfDDyKbvBA1uFGu3ol9vF+faFDwxTWStaJqGcR5wxqJNZtO33N7vmEINDW1QOJRrWW+foU2Pcw3zPNFYGI87QVGRTYrre1rXcze+xB8OGKPw84gCGt0vVg5vbx/Y74/EJG1143pRJuZMCtCvugXBdK1lngOm5PgdjwNaN5A1q1W73IuOx7lI1zdYm8nJcDyM0pbXCqs0qYSh+pBEyRmkJZ6DIiYpRG0GZdUigqiTMmdIWZFyWXuyBZ2LyKG2SETGr7R45uTqr2NOgZ21PSXE5FLcCGT+PVEDEVgUj5t8urmf33tPf66WdVtey5b38UUb3HcQmBL2CelxsVHJyGeIzum/F+Ht8t/nj1lI09/13T0eGlXqnUptOKH5744vQlvU2e/eLRLlzaiz379LUD7daz5P7v51Vjrf9Wjfj/fj/Xg/3o/34/14P/4XGe+RnbMxT5FQPB2Sr5BpwKrq16LEt0EZnDbi25IRd2Ag64QtBFpTkBxtG4x2qGLEdYIKjFTLWLISH4ha8GoqLHjilpxXuDmLrLzyUjL5zAwQIBJTEK5ODmU3USWNlPdVn6tmQJkFAcr51OcFyP60cxD+0qlSF0I0RHXqDxuUEHFzlopdGaakCBHmGJbdHAqcksRxozVWZ6zWGCVGWCqnJSE9hEDOM41R5FhIbVmSsbOOUHb0OenFG0epSuI+nVfQ1ChxhUUZg9ZN8eIoJEdUybQCVRwIk5yUkutlCr+pvv9Iiolcdp65SNNVUigjHCJbOF9Zs3Cy5Bjl9+eQ9HJe0bSF16FVMSLMCudaklb0qxYDxDDTtoZ6CbROiLljHPDTRI6e4bAnJk/jOjYXF2wvr+R9FW+p+XhgHI74sGeeBoYR+rbFOUWY5bjevjmgkmRHPdzvcSbT2AO2dzRNB5alFRdCEIKryrimF+5Ku6JvHTkmYkXHciKmWSwIUmDYj8SYWK1W5KwYD0emw0O5rI802w2r9aXYBSTwKGy/YbjfwezpL8rrT4H7/ZHos8iLVaTve2LO+N2Bpnc8ay8BMLrjzdsjOc9cbjvhqJGY/IgkX7fMxQw05UjTdqAMkci6aVAkOmcZwkzXW7pC6G5XFu+FwN8Yy8PDHW2zYrXdMs0zU+HWXFyumI4Tl1fXKDTHMdJ0DdZkIpHN5ZqhhJb23ZbG9cRghUzfOOYgczxHhcqazsk5GI8PXKwvII80pT2UU+Lhbsem37B7uMd7aSNN08QwTkwhcvPkhaCdObHpV0DCe8U01Ta2Z54D3aZDRwO2xbiGbdOhcIwF3RuGkTBHlAuFEyixtimI31TnGtquetxkkg/EEAghE2NExZkUIq5vaZu+ZI8hxFgEFZU5o4WQrGoGll64hwVqBy1eOaqGASsj/Ed7EkFI677MU+oaKV+fQyNyWRMqrxJZFytackIg6jx/bJ6Xcyyvlz6HgiymqGdo/vKyZ/9dEZwvRnYec3YEBa4IT+GElnuCPsc8cj3WzxsGCmJz+u/HPz8/Z59/zNJWzO8+T70vff7vqpDlXTPFpZ3134HqwPti59EICWyuhNeTQRwajFUQ5UO1WlxpNJas9dLCUc6gXI13EPiUYmpXCyDl5OZljBHcM2tCzsQkEHu9UctFfTqGSriLy2QqF8Vy8Z/1sFMUtQZys5E2WHp0aaTFZ0KXyRCIMUl8w7uTJQdRQCS98FsSAiumlMjKLATpTMSnXJ4vLo7P1igwhmSbxcrd6LwUJKJ8AGUcaE2Omaik7AOkz15I1FpljJIbpXydTwAxgTwnd5syGVMl3FVvDyMcJSX1WuEwybOo2mdWJyw45QTYcu6NtAxzlpRy0kK2VPnMZdUUg8OUixqsKOTUCTpPKpTqsVi/l2MSVYe8/DiNYkxoHU1MNK3BRHkxHyT9vO2F3+TjkTkMjMOB8XhAh5kcEz7Dfn9Pf+joVkJ4te0F7eWGdrPBv5W4BR1gHHb4ccZ1DeviDXXz9IYwe2xnuXx6STiO7Pd7xmnC58BqtaJZbQGJSkCL0d/hsCOpTMoTu/2Bm+tn9Fvhtex394TDEVU+i+NhYJwDw3Gibx3ej/TlfeU089l3vsX1xWVx+ZVCYbc7EFYNBsVUbrT39w+QI/26RVvDMI4M44xxDW2/Jo4TupC39vsH9seJpzfPmMIo86G4R1tjQFtSuTDuHwbYzVxcXNA2cAwDPgaaxrLeONq+QZVldX8/E3Jge3UJVnFxfQnBMw8j2hpRPgFpijjTMAwSaoqS9Wb0AeccMfmFV3KcPc4HlO1xzvHZm1c0Xc/15RU5RFTLoobq04xzirs3d/Rth8IzHkbWm0tihMzJiNK5luAnjmMivj2wvWi43PYYl+m7nuMYYZQi7jgG5tnTrjOzn8SRWEHfteSsCOXm2eWWruvo+x6lM/MUGEcJZw0+Qcw0RZ1qrSbNgVzUnTF45vHIbEYa35PXafElMsYRVSl2UGWzdqYaKopKmcemKKrsqRCqc72Eqp7uvNISl9Zyfa5STJxzW5Zd6ZkzPCfOTm1tg6y750TfxZ61FDNKR1Q+bc4WQ9V3+DayBJ25z5fjTCl+rsip/J7K8an/nXJ69JhKoYiqFmwsa1pVoi7vQ71D8VE8ep8g/Krzdt5yvh4VPbqsf7Vwrn/7+ceftwAff/8fG++LnbNRpXkpsRBIRY59hg4UkzxyFLfJbMiqsvnBBEF6go6gxKQqEejOVFRQLvZ3dhCFH/YIxamP5YwkV3uVUp2LDqkiIKREChGdZTIsAvZ0el0AlUrxFKNU+xGRl+eMVlpysGLtz4pJ4YmwpkqKboKUiWk6PX+KxBDwfizFjhFpqlWYTtO7DhWb8rwirbaq3vQlrgPlaum23DgwBtd02MYUab7DGlG7aW2XbKzl3GZRZkApis6ZgZwWEilgJnkdJcWnPLYK66v5nxyvfFQZiTWXBUMye8TYDMBU5+by2XvvC2k8l0wg2WzK4RjIpwVI0tNl4VIpEcoNOSpNt7nk4uoSo6So1Fms90kRHyOhJGPnrHGsmJVhtb6gsQ3TPNLEI8Nhx6evPmGePwbg2fPn3O9WUnTPI8wzYTyiYsA1DWmeuB+H8r5gHGf8GyGkGyOIxfriGdY2hDguCEQyM8N+IIXIetVxebXCjwf86Hl5PNKvpSiyThPHQYjOZFzborSWlO/jkcZYxoIEumZF26zQyhEzHA4HNjmxaiw6KsZhZv/2rZyvOWKbnu3NtRTGrik3O8tuPDLNE7pcW1o1tM2MUTOZSN867neBttVYpdFZnIoBLjetOHQrz2q9Yr3uSSEzjAesM/TrnoutFJKfffYS5SR1XKmIVZKmHiN0zZauK47E84j3Xgqj7Zb9/QO7t3eMoRj89Yarm+cAHIbEnDJ922Bby7Mn1wzDJKizbTncDeiSzYV1mNbQdiuO9xKr0fc9++PEfhjJMS/XYYyRpnHgM+M0o3aKh/sDT64v2WwSQUV0yV5rTYNxmuP+QN/3zD6gsbSNZp48x52o9/q+5+piU5BM5Fxai7FCqp9iYn882W2IcWsum69E8BN+moUcHiIxFdsO25KNFC9RKSF6lw1GzupU+CBFkCrI+TK0IWuz3KxPkvJ6yz1tIlONXzgj51ae5MlwtKzFlbO3RCBIsSPPfVI51WVIuD4nHemJg1KRndNN/sTPOSFG50rVWAxvq+Fptdmon20qm7UYY0GA5d5Tdq3lVR5nWNVC7tG/OTtH74x635L74+MS5bwAknN+Iht/IYdneT15r48KpjN+T1Lpc8XVdxvvi52zYYzCKkWMp5NbPQNUFmhbyKjlRJdJlpNM2BgjoUzYCGjjaLoWpxtCThAjKIGNTc6Y4tZpzGNPB6Xf9dBhqbKFzKs5R/JyzgtxLIYgERBZyMFo2XXEHGWxX55TbrAxS0hoVMX/pUpsTThJPXMSc+VcdyYycVIOxJRk8sS6OHiCF3JpLjfrFCzKKhrT4toGQvXLCIVMLeRE7ST2IeLEWdNYTIWjrcE0HU3JoTJNi7UWZ1v5fKqiIj8+d1lYjI9IecsCdLafyDovhHCjTDkvJ+m5Nnr57DRyzGRpCy6OqmXRNMouhdRica5lMRHExxSCIsSQCeWm5lPEKCGUk0KxMpBj7Puey+sbjGuZhgPHwz0qBjIeqw3KOkIpEWPMkDXX1zfi/zIcUSqzOx7Z7Q40qy3aCAKy391zoRSXmy1BdczG0q43jHHAGcM0jWzK7julhHEz5Mg0zIx+xvtAg8Qs9G0vBGogGoXrO3S2zPPM3RRorEV3ijAduXv4VJ7TB/FfUprL62vCPJES3GwviclzeLgnlTy65A9Ya7m/v+fyYs3N1RXjPDMcJ47HgFWa6+trAPw0sXs48urjT7F9i49ATDRNQ9SJzbbj9vZePhulWa+3ct6ip3cd61XE2YZxOrJdb7m5uAFgGo+Apu9but7SthafZ4J2HB4mwnTPVCIX1usVt2/uGXPmyZMrut6icmDKnmkeuL2/k9d34lZ8dbnBKs16tSIHjc2R3d0Op3pSIR1fXDwh6xajtagaU6JRiuP+gfV6i82KtnqEGcc4zBjXgm7ISeGnmf3tGzbbK+4fpgUJk/MgURfjFIjJ4VzPbh+YwojrLE1X5kJKTMMo66W3QmDPAfTMfn9Y1I626TiMB/HmSgnvE8cpkjFgHX3b0pbrRRX0xE+iopOlS4oWPwWOaZA1FGi7jHUtyqiSCWUl5iZTlFenYkeKECEey3t8Z8OZq5dLvVmX/051I1rWtfObfllPPEHUYgu6U4qUd3Ke6mudt62q/xjmuxc7SplHqM7591rQ5CyBrFmVouZ7FDsxhaL+rUVZ+e/zYsfKsSWV0eV9PWqdne0ZHwVkfMEG/YtbWp+vTBb1F6dChjN/nVzUdHo5lyd0Lp9RM77feF/snA2tnJi6nVXxiTKhjMUYsTxXpngOxCQ37Lr7jrP0RSOirNBa5MKUCzOx+BTkkIlWzLYaJ20ce64QOPsEz43sdM2XqsiOkslXORBojYqmLAIIJF6N6cindlOWNlSFXnNOC9s954xVbvGNEKQlLUVDikW8FbWknufikYMUO1J8ZVSU9lj2MyprfG7QSnbvAFa7BVk6qcwEJbGu+FyUhdu6Bq0tSUlCvMDCmaS8oELxtIDFmB8lxWcVSy+6vPd07nVUIRYJANW5hBwWTlU+qyptRd0QhV7SVXp+3nqUtp9SEumhrSZG8FGiRVQWg7MYpeCbfSjvW2NLW3IsNzarDa2TQuNie4VNhv3btwQ/kFNg9hMxSCvpPK9H5UCMmbdtx3pzgTKWaZ7YbrdcbS+I08RcbshznrC24c1uIPmAa8AaQ2saYsg0tmMeTn5IxhiS0qyu1zxdbbi+umEKMy8//ZT7454LK5/tdrNCZc1H3/yETz/+FNcZXrx4QYwTq9WKrpE21v10j3WWvms4hhmdItYnHsKMLxuLNFcDRsVqvSVnxZv7HetxQmkp2o3KtKstqXBQ7u5HlOno2oZsLOPhQNtIlEjwkYdxJKTSRiIR4yxRATSEZLjarLm/v+fZ9RXH48Cu5IO1rmFzYchaWlzzsEMnizWZcRpINtN3otzqWslfSinRb8TE8zh62mYtgrpy6U1z5PpS0umbvqfpLEY3xHFkbXs2lxdLMS/tTS2oGxSrAEuKmjBPGOcZChI3jQe2fUdMDcZYknOYruHy5ppxnKWFTOXPKeYci0eYpKI/vdoSgycFyXVblbbb6EcuL1Y42xJC4mF3wItEk5wiXWmNJR/ZT5HgEyHOWNNw0XXiveUyfW9xhd9Eyni/ZraO4ziKctEKEmETZKYau0bShoAWY0GrSSR0EksGU7iR9eapi0micBHERwcsZEtGon4eAQtKgjGr80ZVe5/HLSzS7iR2dvXfFM6eOn8+Tjd+KVTqhlkLapRYXuuE2hffsyXb8PHr1rlY21U5QyhRN+9yd+DE2cmpLtPFQFaV7/X5tRJrFWNOGVgYVNaQTh5BwKP70ykYWs5zquHNqEePlY5AOY+m+LqVpzkxTiXlMOcAupShWY7x8T2iPjo//vy+x3ivxno/3o/34/14P96P9+N/6fEe2Tkb1rpi03/qVQpnp8QSWEEMTCHK5vL7EEpAXgjELO2RxjZ0TgIptdakYmhVq1JjNMYW/x3tlp15jUKAx9WzqpDiOwZ/SrBWMSEDIf8qhZgUxtLP9USlpOW0/J2ov4RYJ9BvLlw9BZBOdk6ZgI5iga6iOPbqLNW4yoCPS//azyMpSGtinmdyiGgDOimwQWCvMvq+xbmOVLyNwrKb0CWegQXZkcgJQWqsFmSlnp5cWozlTEHOhBCXnVKuPkNlB7LYjefHiJKgTAXato7SbQYgJkGRqlV99cURpOPUq1+OVQnPK4UAGRwaiyaQ8D4suy5TYjCsNUxTYJ6nZadkbcO6+LschkNxLfZs+hXOGmJRuF1crTAmnHyZlGL/cMc43OLne7IxrNaXkFtmHzgMO3zZ/Str2G4vubho8XPg7rhnRqzzJz9wd3fHuBcOxvVFx4tnz8hKsd/viQb86Gi6nq985Su8+uwVQzGeu3uzo+lavvxDX+VLP/SbePPqDW9fv+LZ0wsutpul9d90jv3DjuEoRojtegVqBKUIw4BOka4vijQUc5zFsfn6KdMw0rmEn0astUzTxGGS13cqMCmNbZtFufPq1RtuLm+IOrDuLH0xohyPAxFdvJHElGSMEeUsxzngMwsCkXIgeMO6WXF3e2DT90SXMNpwdfOEeQ7EINfB7dsHUhrZbreEEDgej6TgaaxhDp7LoohTuuH165dcXa7o+objONA1PWs2bFcXNK3meBzL5T2y7a8KSGFRORJ99aiJaBO5390CsOobrJVQV8UBawOzjrhGEaOiu7ngYS9wyd1uR04WGFHZ0zeZtlF4ncnW4WPg4UFUcbZpSBHGNGBtg3UacsKYzGq1xjXy4TauYz8NhOBpuobG9fjsOExH9BRBneJ5QNbSyUeyFTRGqyQoqhWj0akYEA7DQBhG+m5Ds+7FDNaKcKFe/+9613yR94vwHhOn1oqW9nEWtKgSdWW9PSkoT9428dG/a0zNu+MxV6f4cqlT3E0+41PWY1y4QvnkEs/y/URWTlX4UNCbc2Sn3peWn5U21oL81PdYRRhlXa+okByf8K1y1o/eW0VlhGRdj1/Q9ky9L5WzmllclsUTjWW9XlqIVJK0Wjih1QVo6YZoaS0uLv1ZvOjOyc3fa7wvds6GMkJ2qzwPkJuRRKMYlo5HgSQrPBjCycXSGiN5R02DtacspfrliizUuXaxuVel5aLLkyyNk7OJeipw0vJdHlTzr06TQC39U2H2G1XIt2cLi8q6KKnqhRtLy6dMXrlC5TmVF+5PKunmOUjx5jNJiYRyLuTYFGaiD0zzWFoKCZO1mP9lRQqeUCb0UUHbaFRj0c6KMZ5SUjAqtRwTsLSKhNNUir+UHvXS67lSRWFmpNpZzAul7aXQRRFH0MXB05BNaXnVgjAnUXroM2hanxYgIRCXhamklhtzmk4xllR6VdpTBIKfCUnOV1Wk2cahcmaeJ1ROWK0ZwoxGSZtgrq6KgfWmJcTMNA/4GOm6Fc+un5BSgBTwpf11f3+LcSuerC6IMeJJ5JQlwuHhlnkYaQsPxw+Z//rmm1iX+dKXvsTTq+cMo8eHka7XfLDqmQYpjN6+/pRvfvIpN0+esLl+SgqRN7c7mmZg//BA9DO7nbR71KrlUl9z/ORjVv2Gp8+uWa9XvP30I9IU5QYJeO9JBFCKt69e89E3jzy53vLlL39IXinub29P59QntteXzJPn7f2nfPj8BcfhgUjmeHcnnKAyv/qNoUPg/ofDLHlYfY/W4ENkGAeaQuQ1VkESwYCPUTLwbEeM09K2rDe2J9dPUGlmnme899irSzbbjmE64lqLHiK+ZK/1bY9rNN57htGhtKXfdHSrFb01y7oxHXYlRkYxjR5rGlIIWAXEjAqWtvYVhrdMxZBv43qmaSbGTNt3TMEzHfZ05dw2rWa/v2U6viH7ifv9nuQDjetQObA/jux3pehVGaMzrbGgI9MYmOdEiMKRU2iCl0ISM+ODwjUNWmt6Z6Td5DKbbbvwtoxxRC03zSkKP/A4e/aHg0jLMTSll+eMYSyu3SmJSaZtHdnIrirFhC03vcF7fPDEmOlUousVrVZgOr7Xre/E2YsiDilr4KngqtEvCZJ5VOQ8VkXxzu8eFzu5rl9y1T5u45QiJ9Wi52xNPr9XACfl0/LaJwf8dyXnKeVH96T6XR5bipt3iiFVZSDF3FJncEXOr2xtW9XzWYvCUwzHMlRpR9UDThGl9TkjElWc6OsGNMEjrs25C7IuG/h3y8aFY3VWyOaFr/H9x/ti52xoU+sBdapKC9pSicP1ZJ/70NTr1VoJmjPaoZ0lZkUOgZwMuhFkp17c8pzi96CVhMflOom0yNDrzTTXr3yS7NUJoOSqlxsepwIpA6n0dau7slJ5cT4my0XlJUFu8faJ59LM2vcWnSFaifZLaYOJimAyGEWYIiYLVyOEQPZgjSMmyDFKwB4QYiZFz1wgnDTNOCfBgW3b0630UiDW97B8Nu8UjcvXu5+hUuQcMKp4X0SJzSDngloZciFIq6L6kueun3FZTHRRFVQyXKYoUSUvSCuLacyj46szVhbyJM7bWT69kIQwqJXBGrdwCqI/hfzFKA7KnetFWh0j93vZTYs8PdFai3MN26stzrb4aWKeR3Ka8CVY0rUSNRHI2HaF05rjfuD+/o7pmFivNlxeXwLgYyJdXaCUYr26RFlNrwzzXeKb3/wWw7jjYi38movtNU4bxuPEeHwlN6W25egVwzxiUGyfPQPg1779Ed/6ziueX13w7LnD370lq8TmySV+mhhLQUBOXN08FV7L5SUf/dq3+fjTB/aHzG/7336Yocl8+9v/DYCbq0vMcc/z50+5fHbJ7v6OYR7pbUPXb/n048/QJRRQa4lDsKaVYlYJkvjZ69es+xXgOExyMxiGGZXB2JZkG+Y5MO1GVm3Hum04hMNCFI/Jo9PM1eUFTWyZ5kh+kEDQpCLdqkGXqBnnBOF9e3uLn/fEGLm6eM50PGDbjlTmgTXiydS2DTln2r7nuNvTNI6YAn4ItIXnJpEgEa0iIU6yDkTx03Jadr99UXn5MDAXp+x59hDgyc2H7HY7Zg9xlo0IQG81/cWGT24fiE1HNg1vHo6kJK/trKZby/NeXK7QWbx5rFM0mxVKa5rVWqJcSgGTsnDirG2wjWwKQ0hsNpKxNvuRl6+lmF+tVihjyMYSkmcaDrTJYFHMUxDX83pHTEHiJ8KebIqwwxhUNqTWgHKoM9JtLVRURWQ4C9k8+w6KnAVNSme2H7msr5U8W/PwKmJc/a0y4QuLHVlrTojO+Vp2Vuucip8zN/pHG7CzYz0VXILs1PUlRUF0zoudXMQoNYg51oiOSoQ+I1QnqtPzeXH4ecflc74N1AIloxCkR1V+cX0Py2u9U9B9QRfje9nnKIGFzv7m18lO5n2x82gYpZagzLqLlzbDiTQcYxQibxL0RyS4hURrLVFrcsrM84xWGaub82v3zCdBWk5JlVYZpT5Vp4uskokfXQhVYZ5DQaDK93wqdhZlVnlMxYoS8SzDSsjFc4E2aw2Vcr0Az0jSqUKMZedAKG21hMqR1kpOD4DpDckF/HwsxyeW8UkbclKkEBYysaAtCZQvxQbQdBgnReA5QbnuLpddkn5M3D7ZmJ/g2brbyWX3prWgbn7xujBoU4pTaxaVm1KKqCk+QqdEXa108fupx1fPZJm4ZfevlZgHphQIRHnfOaOMECIjp8keYxQPj7JoWTEmYjzu8X7CVNJxA33TohQEP3PYeaZhJIRA40TiXtfstr2AIg3PJePYNobr62vmboUPI7GQc9/eviGEwAcffMD+OLO7/4xpmlitOv5vv+PHOIwDt69LkrgfuL+9QxnNZr3l8npN369JWrPdwsP9PdNRkIIf/tpXaazmOEvW1GrzjKuLCw6HAyZZjqXQaKzj1Ucv6doV94d72rbnN//IU77znY/5d//x/86L58/Z9FKYhdHzdv9APIy4lS1S6hWHw4GUEpdXW8aSo+WHwPD2SEwj2WqUdhyOnhgdY2p5+fLlkvzunGG17pgj+BDwUYq4rJIgLAamSd6X1VuUWXMY5WSHeSAmyQ9Ko2ezvlgK5GGY8DnRtS1NYyXgdByEbK/SsqP2c2DV93gv5H7TiT+NNQ3ZJIw9LdPTNNF0Hc62YttgDTkn/Hxknkdad7ZZiDMqJ5zuiCZwsemYx4lx8IxzQLsGu5Jz8PD6FqMV61ULx4mGJPYbSmNyIifP9aUUsuvLC3a7HdlYphjE1yeDDgmY0bEo8uKMso7NpgcSx+Me00FuHXNIHPYjh6EgwlGKqO26Zx4htxZNknM4j/hZY9w5CiLrh08i2Td5RiWNDg5yXEIosWnxTcoqopST+SivKudpueHWjSQL4n0qdj6PqpwXO9JuOhU7p/G42DFFyWuXxPGzamcRXqQFZZdi5xzJOCH4FdkQw8CzNlZR2Faj2QUBKpvfuDh6CsqsCsKIUVIIKoWKsgmvkvulICx2JNqcFWSFnK4yhV5QEZhz1RTLf5+Pd/+tS/vrHCiiUg34/BCnpfQFv/n8+A0lKP/sz/4sv/t3/2622y3Pnz/nD//hP8wv//IvP3rMOI584xvf4MmTJ2w2G37yJ3+Szz777NFjvvWtb/GH/tAfYrVa8fz5c/7sn/2zS7/y/Xg/3o/34/14P96P//8ev6HIzr/+1/+ab3zjG/zu3/27CSHwF/7CX+AnfuIn+KVf+qWFmPmn//Sf5h//43/MP/gH/4DLy0t++qd/mj/yR/4I//bf/ltAdsZ/6A/9IT744AP+3b/7d3zyySf8sT/2x3DO8df/+l//7zyi82r01KIyphr+6cW/YEkP1xqlTtU7JGIsIXxngZOnltd5m6i2purOQIbKn69hq5FVKn1hlYPAm/VYsl+erxLOqlxSL/uYuECAOStyTIQoKE0s/gs1LkOlDKVfm7W01FIWJ96YZkE9oieFKB48S3tMgilXm76QrQMpZUISk8NYrODlTQnXhSzBGdM0ARqnoHGCoJhKULYWQZvkXFb/m1wM+VRpX+SUiX5eetNyrkufOVmBvSuR2LhH6JAkw5dWlKbsvgpXCCVQeWl3aWUWeDiVnYda8Owo/fzoyTqXp9SPuF7VPVdnQUyEWyUxH+E4L2iRrr3ubJiGEW0UfduRkiCHF6uekGAORtx+y+sPxz1GJUHDXEfXrZjikeO8k7ZX4SI9e/aC8Tjw8Xc+4nK7pt10qEZacg/DA13Xsb6U9sWNvmL91RX3+x2ffvKSb33zE0zjuHnyjMvrK7ZX16gsKExrNDlFvN6zMis++uQTXr16yw9+9QcYjwNzTSefR0zfcvX0KeOnge985zs4Z/jaD32V3f0OlcU8ECDMM/3G8fZw5El7w3Ccef36Y9Zdy2q1IZHwhSmQGgVRc9wfcaYDLIdD5mGfIU4ck2ZTDCOV0tw9HHFase0ccR5puzVKKQ7TxJObG+IbMSvc7wYur2/EBDAEnBPPnbY1jKPneDiw2l7LNRQ80+BZX16w7Z2YH7bFFVsr1itpD15qwzRNTPNRWig+0K+2hDniXEPKqjo7sLp4yhwdKkLbGVLItK1j9p4YA6oxjJMQyv08YjUElYjRc9g/4Jwjqcxmu+Lh9o4wy+dwHEbW256Hw8AcI4127A9Hmq6lb8XAcz9Uzo4gqCTF7CNHPwjJ3nVs+9UiPZ+mGZ+EOD36EdBopxiGARI4A65A6cZWg7jEatthlGaeZ6bg8UcgJnJZ14wSPohSCpOQttYccE0kx5l0toePeZZWn1EoMjkbdEoYw0JPOK0T4qdTXY8rInKO4sAZX+YsyDiXv3uX31PRo2pgmHRFjs9bWWU9yo9b9VD5LXXR/jxBuSI7IZ34OOf+O+ePrdYh1fZCkUCfqBFKnQKRtZGlMKUTr0k6CKd2WqXq/PeMc1uXSkSGk39PVqduZb2lKFXvL5+/L6acF3uA7zd+Q4udf/pP/+mjf/+9v/f3eP78Ob/4i7/I7/29v5f7+3v+7t/9u/z8z/88v//3/34Afu7nfo7f9tt+G//hP/wHfvzHf5x/9s/+Gb/0S7/Ev/gX/4IXL17wO37H7+Cv/tW/yp/7c3+Ov/SX/tJih/7rG+UGc+ZzI4Z/j31UFmdeo8nx5M6bkhQPZIs1WgynYlo+PSGxnqeDC09GnflCLC2sM3hP/juSUpSsplL0yEU8lVaNf/S8ckClx1ovZvLitJxjgUJjLteQtM001XNHSLXAApHGGEt+zVx65kJGrt4/IAuRtZaUDLlwmHJOhYtjoWWBZavduvBVonCcUOJkrY0Qt4tiphYaC0G7eESQMilEcjnWFCIaIfombcvErURwKVJqm0EUXqYsGuVzrBMxGUxjaOzJmTnm4quUTVnwgyygFL+LxSwxCYlaGcHnYyEppohK8nn68nmFEDAW/Dgyx5kcxXcHrYkhLCo3qzq6TkwVUaKaaKykmscQiAqGSfgP43TAGQtpRrsG13S8ffMpIc5s+hWrbo0tDuF+3ktulh94/WpPsyvzRWviRaLtV6zW4gh8+/aeu93I1ZMtX/rBr3D39p5pmnj79jXf/va3CXNk1QpBeLW2OKu4fnLF1XaDzZZPP3nJ/+v/+f/my1/5kE2JlTgcdnzrv/0aw3HiB772VYyz3L/+lOBnrp/cME+eXW0XtoasLDkH7h+O5AjzDJdXG1RrcNphCx/h7tU9wzFyc3VDIjHPHq08jdNMcYaY8OWxNjX0TUtnFUZHrrYdh2mg7VaM48jt3T3dqhC6vWcumVZKR5qmZX+cWK2eYA0cDgOzl8LosD/y9NkTjE0M4wNdb8UoL4k6c64Kq65Bm0zrGoxxHA9HGtOLt46yHEdPKkv1hV4TEQdg0MTsaVyPU4lL5yB5Dgcpdqy1+JwJ08x+tyOrhDKalCfaZkXTdwTkOrx++ozdYebNw4DRDU2bQTXMU0QR6Fct1krRK+0FQ8yBKUSMVay2KzarLc65xagwpID3Ae8zY/BoLXyzTGCc98SYaWw1tEkwTWigaVqsNaQ5o2LEaSOq0bJsiLdN3ZhqUoKQMipFNB6DWYjKGS0bNWXIAXL26Mq5UaDP3HkVp/UI3uWsfK9ih2UN+VyxsxiRPuYaVmPa83vNyWPNPFr/z4URC3cnqUdrZ+JxzM+7BGVZK6s3j/y7+uwsuopCy4gxonRpHWkxV83ZfI6z8+596nR86hG35nycFzqVc/nu85z6gBUYWH7xuedLKv5f00H5/v4egJsbcSv9xV/8Rbz3/IE/8AeWx/zIj/wIX/3qV/n3//7f8+M//uP8+3//7/ntv/238+LFi+Uxf/AP/kF+6qd+iv/8n/8zv/N3/s7Pvc40TQVFkFEllamiGVkvfIxzBCZ4yY6KIUvrsvBBYt3Rl4tOtmHCo7FOCpwqQT8nKAvyIRXraXehTrK/M/F3zTUh1hC3uPRhpdg5CwJVUWTulZCrqnw6nTJesiwEWRfVUBZztVxv3vkkrVQhlgJHdgu+FDzRT8QwiRSwnAOtoYkOkxpykGIDZdDWEZSGklEDolzTyoBTGCQzq2kanC1KNauWRUvOW1UD5GWHkOvkLq8fQ8BqlkgJ0OhCBk9akZU58WCUmKClnKSA0AajCpG8/M05MXCR/ceIioEQZrEqUDUjrPKJVHGbVsWQK6FU6ZdTCe4n19YwTfhZTN5yhFwWQmMMbSfFQ9MVpExJj/ru7paHu7fSfy/qlaqwskmz3+24u71nc7FlcyUE0O32Oa8//Yw3958txEjjNK7ruXlyjZ8hZsU4jqxXHVc3N+JoW/r01xc9D3c7bt+8Ybu94PnzJ2wuLkA53t7tGMeRzz7+pMypVzhtGIaZ7cUV1y+e8OI3fcjD7VtSHpaA0yvbkr/6AwxHz5tXbznsj+yOnicvXhDCTOMMTSPv6+3rNzx/1pCspu+Es2NdT4yBh73nuBuWNSROkXW3pjWK+8MD1rVsLhRNa5mjwWnFoRgroiW7zc8jqnHklOltg4qZvu2ZhnnhOVxs1qQ0sNn0bC9v8GGCSTOPAzEHbp5eEoqs/2pzTSQwz3uaxpKTYQqRkITMui4FVMDSmIZheMu2aYjBMw4Hrq6fyPUWhqXgbJoGnW2J1BCOT5g9unHkqJiORyEJy9WH0S3H42es+xX9Zsvr12/RynE8jihnuS7Pe7+b2c97VuuNcLcOD/zgD/wAWomb9+BndjuZY4fZse5XHIaB7XrN1dUV2jqOxyOH4chc3P/atsVYS9O0pMGw3x8Yh7IpU8Iz0xU5NZo5RELYE9OM1aLK1MainWw+qjLSGFPicIQrkiIk7zHaokySr4rMqywbj0KIrAhuzp6Yz5VYCFqr1YJsf7dip3J0Uq4bzvqcp2JnWc/LJky9Q0yuhc75PWG5N6CWogcgVYUwZ6TqpB69Vsw8KnLOi536b5WrSWGxviiISVWegxa1Kog6MSbJQUyJpAMp6RN6zWMpevlQ5RwnFjn6csxn99GFG8l5QVmeQSlOsR350XMY9floCZMz5gs6IV80/qcpdlJK/Kk/9af4Pb/n9/BjP/ZjAHz66ac0TcPV1dWjx7548YJPP/10ecx5oVN/X3/3ReNnf/Zn+ct/+S9/7uc5RyR4Mp8COVU6IQ/Ji99KDkj1aohkUiF7kiUnSudIQgocazXalOqVk2OvUmYpavJCJKsVvi1tkVqkeFSKqByQxNpCyooeRVH+EM7eR10INJmMwZ4mX8X8FIsr5oJmKLUUT5KhcubA6ZP4kEQP0cM8kkPAxIzSon4CIfFqMjoFcgxEtCA184iy4ihri8uu95IorZWRlp/RGGVLEaQE26weNn6WSWFkgYo+U+Re4jlSJqx1EvxHPhWNMSe0Ujjt5LyfTUS0xhopLM93WTGEQiB9TH6TRmUiVCJzsVtXSi1+EApVilMJ+kvZk5CduBTULJ+5nHuLVRDmkZwyppP8r6Y9IYFWZVIY8XFkt3tgHCfQjk0ncRnzdOTt/St5S9bQrHt+yw98lcatQCtCCLy5v2fIGdpL5gJxt0phjCBG696hTcKaLU1/I2GPDczFu+b29g3D8UjwiXF/4Pr6kt39PZfX1/TOMR4nnjy9AmCaj7Rty9WTKz77+BM+ffmaH/2RH+YrH36Fzz77hFUjKMHl9oJmM3H/9p62WTFOifuHb/HZp7c8uerZH+6Wnd1m2zONkWfPnvOwe0sInuubDZvNhugTD6pZFGmxzVxdX6JVZm0cKie2/YbD4LnfH7hYa3HQBawWvyKtO2Jp/c0pseodloy2hlicmec5sN6uCV6xu31AZXB2xSefvuTpixtst6a/FNTKacXh9g2tNbimJ4WEtprOWCFSl4y4NHsoyNKwu6NvWjSR4/EO1zRYF1FaXt9Pe5y7RAHOOXKameYDLiicNajs8V6KrXbTMu1mdANOW8Zw5PLpFeMw8+bNHcfDkejk5I6HAX/Y0ZmM14G2WzPFge26gazoTUtFvnPSjIcRULT9hqQa9rsj1mq6vqHTMr8NDqNbVDZYK1YK0zSVLC+Hs+0iPRe0c8QoR04w+0TjLH0jKMdw9OTqzGsdxp3SykuTGTiF/p4mrELphEbyuwR1bUiJRWGlqsUGcUF9T0XFKVanjlwjGbIviImsNbEUeRU1B8gqLOIPgyKZspE5K3RqkWOV/PcImKRRSuIoTvvYszZWCdTMsR5fKUpC2fyq02NzLHe1RcwSJRKCjMmKXHyhlE4l4FqRlZONshUPtLrvrqR6VCRp8VciJwwObQTntlDyCE+fbS7FjSqO1fVnoNBaWpjL+a3n+vHHiGxy3xH5ZH7dbaz/aRyUv/GNb/Cf/tN/4u///b//f/pr/fk//+e5v79fvr797W//n/6a78f78X68H+/H+/F+/MaM/ymQnZ/+6Z/mF37hF/g3/+bf8JWvfGX5+QcffCAhgnd3j9Cdzz77jA8++GB5zH/8j//x0fNVtVZ9zLujbdvFt+LxqNChEGkBkhJZdkp5kWVLmnUqZLZMLAhIjMKniVkX2Z5F6wZtpBf/KIupvJ5Ut/YMnjvvz4ZH/y35JqU3nAJwYog9lvAV+d9SyxZ4MUOqXCQUymoMmZDDsiPwFQb1gVyJxCmQoieGmRw9MXhynCFLWKhRJ0K3tJciIQvRWdpLlqQsOkDISnK2AJ0N2AjWkTU4a9FafHJCCGTOTQUrlyaRtSaF2lKaCkG77KQSoGdBx4wTd1Ul7cKcFVoZSUmGBfkRFI3PvaZ81o97zDnnkwGWTuXM1s/vtMVQOqKyJmYFypVdZHVYPd9jiEw9GoVerWh0/dvENByXdqvVCeccYY7EEEnzTIyJKWWMdiSv2PRCeG1a2G63uNbi/cjuQbKzOmtYX1/hU2ae5Np6eHjg1ZsdVifG8cjVs6uC5H3EkyfP0Bbu7u4AcRq+urri6ZeeSPbW6zdcXFzwycuXeO9Zr1ase2mL/Nj//ju4v3/gYXcrf/ND19zf3nF4PfD06VO+821pdx2vB54/f8r19ZaPP/uYfm358pefMe72HFXAaL2YJR4OO64vt3z7O79K33ZcX1/jh8B//ejbjF5arFVOvt105DSRAKd7DvuJ3DcM88T15TNub2+5WRX5ePBMKWCcw2pLjIlxnITPVtofruRdjfPIWnf0qwaTNfNhwPaRH/mtv0msHZLHj4VnterQ646gMsrGRcrtbItPcQni9jHQqpbt5pqH+1uatsU0jvEgiFrbdkxD9aPRKOUxamYeJuYorThlGrQ2zH5YUKC7128Z9veolAhzpF1tWfcXHPavUBjaRiThAF1vuLhqmW+PJJ/Z7yY6l7DZo3IAY04tcC2otnOtcJ+8xznHaiPtZ2wl0cI8ecnDU5lVY2k0uGWXnlCFs5NSxBlDY3WxbJjJOknQr+0hW8bFl6ih71qMkXZ+jBEfPSFEbAgoo1FF2JCTIQWNdlqAYhRJJ+kVJ1k/83kyU0VkFiJwJSmnR0hJSkmOMSVpKaVEKjy8HE5trKjjgpwnREYurX3J4qtfgGTzaU1UwlusfxPfsbiAguycvXasgpVCo0hnfD9d13RVuDoU3qcSJL7aa8Ss0ToTtSbW95IMaEXMBkU8WZ8kMa+VjsW56W11pTZnrvYalhZUPKMkyDvM+Xzl/N6k53fbWOpdJO97jN/QYifnzM/8zM/wD//hP+Rf/at/xQ/+4A8++v3v+l2/C+cc//Jf/kt+8id/EoBf/uVf5lvf+hZf//rXAfj617/OX/trf42XL1/y/PlzAP75P//nXFxc8KM/+qP/XcdTCW85sxQwShUf4lz8DrKmuvxVuG3R+edIjELEU7alaTqadoWzPaq2xXIljZ0XKI8VWpVIRjoprCoZTh5YetLqRAbLS8CntMVyEnJZ9WvI5ALpngz7lFKFoCwLQc7F2yeKAVX0lfScyCES4gwhEGfh6aic0EoCGhfmfPUjUhKZoLEkDEZ3oC3G2qU1Y6zFWot1nZASnZBmq+17jW6Q4y3KMlUJdpEcIyHMpBhZVA/aQlKl2NFo41DWorQha1uCAM96wVEWiNpTrzNNE8k5nJpYWdLQz80k0bUHXdRYZ4WqcDxEJSHv5RTOl5I/424ptIook0lohjmQwljCm/3CHfNZkQOMfuBw/0CYB1Zdj7FaCsAU8YVX4kPm4eGIbRpWqxXZiMFezIn9YRTX4vLGmk48hg6HgW59w24/oVH4KeDHT2n6hu1W2jLPn30Z61qyhfWmx7otu9s7SAaipzOOVMi7ez+xalvWT5/z6uWnvPrsJR88e87l1XP+j1/+L+jSdzzcHfjFX/2IZ8+e0fYbHh7uaXXDrI6YpsFpx1w8eVbNJYeHgaaEiOas2Gy3oDNv7h/oTbe0advWMR3kPGunSUSMmtiuLUrPoDxtL3yoebdn1ZS2iEoYZ7i6uWY4HOm7FkjsDncArNc921bhsmcOCdVojMrMw47gR5lThdTetw0aQ9u0pZC2rLcXojBLRxpX2rnTQNN0pBTQqmH2IyZ5cZmOgdlHmlJszWlk1TY4LWZ7rd2wWq2Y/APzODBPHlf2U/OwxxIJM2y3F3z2+hUvX77k8skL9s2I6Ro2K3ne6bBnPkw4pdhu1sw+kcJMzh0KJe3BslGbp0TbFi8gq9HNJC01NRNiKlw5WU+7BiCSY6BpEuu+YdVpxnnCz/HkOm40U5iIoShsomZOs/AnG8vqoiUXNZgxQQxgjSl9DEWMBu8npjLfmrpu6ES2oLQDFWRzEssGLBdOoz6zKanE31LYLUZ8wm6Wh0RkA6jkfeWsyCESVSjeXNJOAqFB5NJryUqVQlGKHaUU2p7IyEZZtBXeUFJiwJdRxLK7UvncXbk44NeNdoqL2krW71ORRcrkKKakpLQUd0ppEXbU59eKlOzC1TEEUipqLyWbt8U1PiVU5ZYmpBDKSCurbvzOOcdUIU85v0XBXDeOy/6xFD7V/HZRZkGRgzwu+s65VN9v/IYWO9/4xjf4+Z//ef7RP/pHbLfbhWNzeXlJ3/dcXl7yJ//kn+TP/Jk/w83NDRcXF/zMz/wMX//61/nxH/9xAH7iJ36CH/3RH+WP/tE/yt/4G3+DTz/9lL/4F/8i3/jGN74LevPdhzZWKu6cUWeoSOYdU6QFTZF03LpDE6OrjDFqQY8kEkLUNai03LykUCnkPHVWIRcjO+kFV2SnIjmSy6TIZP2YQFcVYimV1FgyMWfh0Cgh1yqtTxdXzpDlJq90xiZNoVdL9tXZfidHcT71c5SFYqniNcX5ClWdE61Bm5ZExpqWpB1WGbQVwq2xkhcGoK3YzRvnHjknV+VCVQDIGxNkqxJ3TTV9DJKcXll2WtlCOO3KQmJQViTsScmks1X2jVp63SqnUqzEQuw7l4/Wz6z2vCt7vSpJ5Oz7MxVHLW5iPuWm5VztzUHX3jdmObfzHIg+4JqMsYY0iTkliPHdbtoT5kiKcP3kOZvNRtCeqMhGY8vNU6PFWCzNQvI1DfM8Ms9HdBazwe1WEBjXNMSY2F7L84Z5hJTZ3e9RObJddWxKURCnI9N4JOSwkGDv7l7Ja2jNy3nHdnMNIEVVzNjG0DaWVdsxDAPdJvHVH/yAX/pP/1neftzy7INrHu7v+f/8P77NPAe+8qUP2fQbPvr4gXXnZKEGkdM7cK5H9x23+4Hb/R2NVmw6S/CeXJCdyY8ckqe3Pfvbezar9UIKnXzGuhY/lTR1ZYlRMwwTWWduLi+I8SDqqv0RazsuipzcWcP93rPuHZu1ICOuX9E1lpQEiRqnapQnn+3zZzc83L2ldY6H+7c4bbi86CjTQFCpOJBnuSF0qw3TNKGSwXVrdLui21zJZ2taQjJ0xtE0hhA1KWliUNimZbNVhMLZWa+2TIc9yaXyWXc4bQoSYxinI7uSjTUeBvqN5SubJ8LnGRJtA41JhBQxzrA/lmKjaWhXHave0K862k1DTJowJfb7cdmsdH2LsyLWmPxECIHghMs2TRNkS2cLz00Jv9B7Yehb15GzSNtzyBgT0VmuuRzAEwmqohRCnFU54IcJRRLVG4BJpKzJGLkp60oElvUrE4lLsVPQHvTCk1mk5Zw2myopWaOJpBxRVdmaPRkWlBwoBVFFsoVsLD8vfJ184uwkIjqL0q7yB0UzU+5J+ewmXzantTiLOZQORJJiJ5/Wr5QiSpeCSAkPsRKVQS0bhKwspEhSUmQnMgRdODwSFZTsqdjRUbyol25BzXVMCaX1guArxRmYnc/+/1SPfdG/89m/T0/0eHyeJP3dx29osfN3/s7fAeD3/b7f9+jnP/dzP8ef+BN/AoC/+Tf/JlprfvInf5JpmviDf/AP8rf/9t9eHmuM4Rd+4Rf4qZ/6Kb7+9a+zXq/543/8j/NX/spf+e8+HucctkbP1w+lMMUziNQ8V5gOdPo8I924BrvkXpml9SHW3Kf2hfystkxOqI94vRRI8kxOnnNVMdTq+JRx8ugGTAnPK6x6q02ZNAlQJ5Z8UnLxA2RNJCzSznpTqAiMD355n0oplGtE5llVBc6cFCCuwboOpxTW9WCb8nzi3WALmgPicyMwpD75ONRzTj7fGBQ5ZiLkGoFRlA3Gos/IeErZQvqzgm6RUSoU91RN0popnBAYlU7qNnmCisCc3EdPo+zGtC3yenlMKAT2E7qkJRQ2ZmJOWONEDZYSFKlvBc12uwOjP5JjpGkaGmeYxiMP00TXNIt1wmG3J+WA0Y71eo22mm9+61ukkFmtVjz90hXGyI1rmBLONcWnqGUMCR813fYJxhjWqwtpQQCHYeL+/p6HhwFiwlrN8XBg3ffcP9zy9n5eUKDj8chxP2DajsvLLeve8ZUvvSApubm8evma4SjF2YsvPSfGxMefvWb3ZkcYD2iVefLsCZeXW770ZUFhH27v0PqS3/ojP4zrV/yXX/lVvv3pr/H86TO6bsXDOPDlD54AcHXV4f3E5WbD/f7Afr+n71ty1zB7T87NUszP88zFesPbt3eQFT5p3rzeY5uWxraQPcZUxYyoaS7WHXe7I4fDhLUW17Uok/BhwpQcrdXKgUpcbbf0fcs4HIh+ot2u2U8zTd9CknPgmbm/u2XTO/xwwA8J03ZgWKwc5HqRYniaRvp+jcFIgRoitnFyPRaC9HGMXN18gFcW22lUgjmOMs9zIuTMUFyku75n9DNGJaI22L4lhsxxHrDWwajpWkHJTBZy9/aiJ9Scu6TwaIyT6JKmIDZXFxvW6xVtv8Y2rWx0ylpkjKJtZC1a9YYYM8MwCqEeQ4oyL7zXWKsJsc75wDQmQsglcsfgWoXDEYIvyrtCeC3rW1WGVguKej59Hhd/KuMiKCtBr0qKC8pGLxd0YXEaTpQiSeZtRbplMxkX9+BUiMFRB4glny9lyXgrz5eWtnpcio+EROYsCIfWJHsiWisV0BiyMoJKVwl3LOtOPmuvVSl7Ob6kyjFU8rHibH2vrblIFsmIoE/UzoA8TIzta1JA2dinGjXhySoTl2NVaC0bcMm9UgV9h2oLsnQ9UQtJu1p8LAgVPP6+gFG5KOM4jXdqnc9J1r/P+A1vY32/0XUdf+tv/S3+1t/6W9/1MV/72tf4J//kn/z/8tDej/fj/Xg/3o/34/34X2T8T0FQ/p9laKXRru7Ay44jJZHnld2A+BOcXC9TOjlQaq1J2qBtizZOfGwWxKGQk1P1YhHSllK6/H0ufg2+GPsFTpJ0QYZyzsSFz3JK4z1HYRbZutI0KLQqfbYk5ks1JbygmcTCL4lBwgijVmRrSDlJ8jlIfzwmWifyaaMhZ40tKIpp3NKnN22Ldb1wc1yPbRohZubKiXnsDlpHRZOqNLLyck6fjUIpiyn8mpQqGU5aTueomZh+xYWXpFNFpopp11l6PUtIXjX/qrug6llx8j8yxpUWnJgLcsbhUYU/BbJrr2F8xjWEeELGYox47/Fl9zzPM845XNuS08x+P6CNYrO9EoO2QkxFNRga2rbh7u6O42cHcuFHGON5+3KHqllP2tG2Aqvv93vevr7HWsvN02uaxnJv3i4we0iRzeaCm6eXTMMIeeB4HHgYDmAVh8Ez+1sAvvLhDV/72guGcWYYJt6+fSvXX2sxRnF1c1128PDmzVuuLp/yg7/ph/jVX/kVrAl86fkL7u7u+OjXvsNqW1yZr68heD79zjf52pefcrn6bfzyr3zEy8/e4J5orIH9XkzyOqtIMYtsO3gsEVN8YKxpyFnzre98R65D09KvLC9f7vngg+fsDgMeMaxresdxjNWrTXLstCCYGHg4HjHtCvYjHz5b86RtUE6uj4sLi9WK9bohac3xfiKFmd0DYjwYIq6iS4cdJk5Mhx2HaebDDz9El6TweTx5fSWAHOnWW7q2I8UgIZutRavE7A/ouaAlmxti9OTUoK2lbVv8NBLSgZykreyK+R/OsL1p8cMRP4/kceI4HmicY549YfA8TOIx5lOk7VYc54hrVjid8UnhlOVwmNkNRzYbQYHW6y1NY4l+IluLnzLGWKxVXF03uFbWghAC8+SZg6ft3IJ256QIyRNCYkrHMi8AlHCAHKTkycoJ2tk00gYuPJjqAq19ZlKKOCRiSuREQXvigio0HRhtSpafQjlF0FbWi7Jk5FDXejGMzTkR8QXZqRye0xyu0vMq5a7u9tVrTBUjUYCsqidYKrxKccqPSpGyQqeTKa2sf0YW3HS2Vubq8n7mDF28uBY/IFUCiFMEpcRTrbbdKvqv5BhSFUqcCTHgJOlOKRKLFUeOXugZhSOUcnVfZgm8TTmgkkKpKFzU4rCtFo6pKrJzsfiQRkS5B+QqpimfReXolI5IhELckPNavXmW41b5jAj9vcf7Yud8KIXBSIFQ2hpJSWFy4rgIh4eUiNmIp8x5Pr3SZ/3WQMQJifesIKrf1TIRagREEogx+kK8OksyzwHxaZE+ayW51iT1qjCqwZlCfK9GV2K6F4sfBIBKp7TcHKI8f0a8fWpSeCkASFGOvxJxdURhSzunES5Q4cGocjzKuqUIs8ZiaiwDp4tVTrla+DZKVg1IiCqLvFz9cvoUZFMCOctksYFqmy7PUcwa0/JHkMpEzsJLyaEmY+uF8FzNGmuhRXHGzoWLZLRF2dOiEGNeWl5KC88qlEC9EAI5yWIRZmmJhCxtIO89xii6wifbrHtwqnwelr7vaVux2N/t7jns5Ea/7hvW6zW7w4TWmqsnV+SkaNuVGCg6s1wvSkdUg7Sr+hWuuyztspl+sybGiDPSHrM5E48el/eYEHg4HvE+05Tg0M3mgv3DDgDXOlKyHIYd1jp+6Id/qyS5O83d3R1v7/YLH+t+94CPHrdrcE6RzJpf/pVvcv1kxVd+8Ad4++YegHGcWW9WBD/xzW99xNXVDf/bj/1Wnj17zXF/h9F64TzsDgMrC9kFjA48f3ZNUvD27R3HMZGiwhfPkMMY+OjVS8iGZufx08D6Qt77t775isvNlhDKjTZr3t6NRGW52w2s+46rLmFsZJ4mCBrbyvU9dxaz7khuxdvXr7m4vMY1huP+wDgprFLo4k5tTeLiWcf66hIzT2QnaqkYI7v7/RKJ0/XyGUYyIUWsVZjG4LQhzhMps8zvrlszx9NNbxgONM7gj57NusWPcqOSa7YnRvGhUs7iu0w7a5xzHB7eEPK03Oj79aVsoJKTllGnSXOi3Ti6TU9/7E4bvChzRjtd1GANJmWsFbPD6mgbM0xzRtHQrzqM7LlQVqGykQ2cL3PKZPazxIJQImWklcTindM0cl6bpiEqX27qllkHciikXyPKo7FsJjCyOTMhoSziLWabpVV04unI+rIELC+mpdVTJyyPkzY6gJd7QmmNqXzaKNXbt0aMZ8sO7NScT1L0ZHUyNsxJSdgyobhn1/b+4wgJeawu/EqWYifXVrpSSEhzWTvlL8gpFj4moKqs5qTZzaW1l5IWPlQUCoDWGq+8HF/ZfwrfqBR3+kSj0LpGK2UW5bGmFENqOZrKP6ob0lQLT6XQJaj13RbX8t7P6Q45LS3D7zfeFzuPxlnSN+fVNst/62Lhh1LFNO/EGI85Y3W9QGORG3uUbpbC5jGqEaXKjZW8+ji7JMVz3sjJ4I9SddcIBsl4qccoJDHvA6lMfHJJAi9cHyhuykHk61K+yUQgzHLj99OykyL5su0R4pk4sxopbJR5xEDLWRF8klTnFMhKka0C02CMLtbnp8LvfBKnFEpBKX1zo08EZV176LWYKSibVzNaZ864eyVuonCrUiZrMRWkLgwV1fCelKL0wisBOp0+o3PSdEoisY0xQ+mza6VJORGmUMzsChHUOUwjKJj3nsPhwDhPKCWp0k3TLJ+xVplxfyT5IIig1vhxZJoGcgp0fSlK1ivGLJyolWtEbTRNzNEzzRIHcFl23s+eP2G16mhXPX0b2Ww9l8cVIQgSlIhcXgjh9tWbBz7+5BM2F47tao1reuwx8slHn/DZd17y/MPnvCicmWkaORzvaFeGrtHs9w/8t1/5Jv32gqdPn/L05ppPPv4YgPl4ZGMcToPWmVf3d7hG4hbevn3NYRBE4cWzF2jTcjweGYeB2/iW7WVgu3KEGS43W+5u5SY4zRkfZtr1imRgPwWcc/T9GqsDu4fDovIa58hbLyjNZ+PA023Pqov4+UBjLNZpcjEDDeOMbSxgadfrQjSObHrL9qql61pOidiB5D1vPvqEnD3JQggGFRPKBrI1uFYW+XVzQVVK9rojHgNTnJmmic41WFNVWx0pS6EUosiZnTNkMnOcafsVcyxE9ejRpqWxPSnDNE84qzEmF3mxxpZCFqtpLExe4YeJmCbaDozJGBtZrTZLdIs2juF45PZ+j/ce2zZoB9Mw03UGa/Vi2Pjq7cjTp0/RQUvkQpvYXnYYI8ixP4zLuiWFrihEfXFgjzEzTTNa2aU4ts6yUiv8nBijxGMoYyQ2IgVRqlGjWxoUTlZolUBrtJWNVYvMi1g3qynBOKIaJciXViSVUcahooJsOQcGQoG8db2BLopQT14KmLJxO5Nf5zOVkzxhdVtOy0ZZEPqFvFKKi7M1Tmuyz0QlfFClNWjhGeYS5XC+xj0yKyxlVOUgah4XBfpMsVtRk+oIX4egSOX8pETQSdbDFFFRkJsKh8YY0bmofUMmG13evazd5wat8tx1XT13xK+nIi/u84tQJyPoEoqoOJnhlnO3/F0+KdK+33hf7JwNCdk896ZBbpYpYY1GmwwqEIrvAlrQjsUHQSu0lQ87pdpiaFHopb1UoxsqKVaV1lWdMDH6IjOPi423UpXxnk+SZZWwGpSRVkydiCHIBFQJIThHWDYW5LNyWaOVFbkkoKIFovjXxAg5LmhUltQ8KLJxbcSLSFkju1hjT4iS1aCsuDcrKJp25uzRKWLPwuy0MeSshWCcFKkgNrrkVdX8L3niMsmytI9iSihtMHSP3EurC7RM+Dr9EiCvg9LEupBl2QmpFEh+xpRjE+sAJwVjVVJojc7i0dNqJ+VhjoTifaQ1SxCntZpp9ngfmWcJJXUalE6Ecc/wMIrqBBj2B0IOQmY3mvV6TdNb+k2PH6eF+N12K5QyPBwH3r59S3ob2W4vWRXp8NOnT5e2zDAfOI4j10qzvbim7xq02/Py5Wc8vP4MYwz7XXHZXXW8+OCGrrFAwppM06z4ylf/d4zp2YXINz99CcBh/8Dzmwusa0gofJ558sENbbfik0++jbGKq6tLAC4uRO317IOnaK1Z3d2hSDRG8+rlS64ubgDYPQzM8S3Pn33Arbb86q/+N64PM84Z2mbF/e64SOqN7fDec3e3Y71yOJOxrRDix+M9bbdmyHId+uORfcg8zJbb44xxDfp+5qrVbDY9h/3Aqi/tlnnEZIvNAeMC1xdbnjxZ0zhFVpHrJ1c05TxrNHGasBq062n7jnHKPOzuWWtHi2YqCJ8fZkwL1jYc7veEAF1nuVhvUfY0D27fvKXve4yF3e6ezWYjLVNtJAcqabqNyP+1MujGEXNAaytuyzGTkyVjxbNluQsaUUAlQd9Wpme/33OYRmzX05gs8AvwsB9p25ZpChyHEaMSWmmMs+wPAyklpqJe22w2TMcJ03khvNtL1k4y8B52d8wlI2673mCNY54mhmkm+EgKojQi6xOBFnBO44xCN8AI2mlso2gNYBXzmBi9IHFznGm6FqUdprG0sSVZcMZinaLp3fK+cs7MMRD9LARkpVAxoNyKjBFUgtOa7LRe/LfkZhrLBuxMMJEDAv6UAkR6NJBrEXEaGrPE0ciNnOUx0vhOy2Z68f3S0jmohVD2BcXn5NGWirglIVlhtbip3m/prDCqv4vnql9E/q20IsWyAae0vGIilvw9pWxRwQoBXpUNcEIRzIw2MCeLMxmTEkoFVFU0L4VULm0rtUjOU91U5uJcH04FS6zkaxXkXCrz6JyeI2znHZDvN94XO2ejSoMFNSgnMKdyQmViaOSGV2MC4MQ9kVaKRhfpoDFmUR9VPkqqqE1BdDRq6YOmEAney+4uZ6w6K7wqrJo1kDDVzyB6QJ8CPpOosFLxf0pJqmKDkpiEWhWn06QUmFZytmKBBTN6kXcrJciI1iw3ZcnckjaWadoTFGuqGkovPBppDxdLdU7ISYwyMUQGoEt6uEErQagEQDtJBUQijrT5SpvqdKHn5bVqWytRVGBYco7FiyJKnpEcADnNJTk+YssOys+xhDQqdIHOF65PtkxabjQp5LJQGELIyw7DzxMkL3EaaULnTPCCHGnkpjEc5Rica2nsqrQbxCNIBc142IOKuFbe//3tHp8gK8Ozp1/icttjtHwm4zjz2cs3fPtbH8nbCiMffukD2s6w3ay4e7XjW9/6DkMYef78OSpp5rnED8yaGDPjMZLjRNtmtpuOzjWgFdeuwT4TFMh++JSnT66ZjrfsH3Zk7xnvdhy44zd95Svs7t8wF8Rme3GFtg1393umyfPk5hm/+iv/hZvrLat+wzRIa2zVOTbuCZ999orNZsNXvvwBr16+xWpN8/yaOczsy7m63G5oo0Mn8bix2jEddvhp5vrmkuMQyFqKw91xZKsmzKbj1T7znTd79r0iXq9ZbRTOanyJwXBWoZWia1p8aiAL56rvVhyPI8NhWrx+tLZYlTkej3TrDjNnjoeJrlmzXvfM07CYIDrniNGgG9isthwOB7JyuHZNmA+L6smHQK972rbHKksIMzF67Krh5vop97uBrET+b1xPjgmf9tKKNDAME0qD9xPGKI5j4TitNoT5KChwt2H2R9oug/KsesdhHmmLJ5BuBx7u75d1ZTxO2Lbn7e7A4TjQNmZJM5d2TWLYB/r1ikRmOE7kFFARuqZd5sw0zIyDRylw2jDlCe9lw5GVwZy1QqIywlkxCR8jBNCtxdk1Ks6Ms3xe0yRcur6XllwOkagTRku2Xtu2C9o+TRNhTMzTLL5djBIukSGpFq3jYkB4Pk7J4JT20zmyUGgH5+vpWcH0SHijkny904uppcgXinSi8GlCPuVIpZTFDHEZj5GTugrWAkM/esGiCDaCMBmQOBuS3CTKOq2y8JGSBisEjZL3KMVNJKOKkrYinSEEySLTGZSrr8bnOEGlFbccV3XvyAUhU2fnYwmmLOEVKsrfnwTHy2NTiksH5PsN/f0f8n68H+/H+/F+vB/vx/vxf93xHtk5GxUWEw+MQvbkHLnJi5eAEF4Lt2Sxrjkpraxt0MpK11EZMaKKaYHxVM5FcSDxCEuVmqt3AUsPWMjG1auhcoJS8T/R5BwWUqBaPHuqt44gLAoD+sRXURV65bQbqam51R69QqFi95XAFC+Fs8iFGmha2y3aNQXZUSdkJ6mFfa/zqV+by3tFGZQq0Qy5uCMncfZ87L0TSfEEWeZc/W3Oe8CyGxJFVNmdFdKxCLciqiJp0ZOrM3XKZC0GYCkmjDZ4Hxeo3VolviZKMQcvO0IEZh4GMUyzph6rtAAVorxKIeDnzMPDjvvDEecc3Vp26s4aut7R2I55mJmOAx99/AkhJJrGLAqYdtWzWm+4efqUzfqCGEbm48BhGPjoo494dXuKVPnyV34zm82Gtus5+szr1695eLjj2ZPnbNo1rm35+FOJa3j58lMuNhv6vuX+YcdHn+4JIbBdN7Sd48mTay4vBdkJ0fBr3/6UGI7EMNJYy8WTS96+vePb3/lIVHll//Qrv/Jf+eEf/mEutzfs9cAv/uIv8rWvfoW7+3sMka4Y3Y3jyAdPX/DRp6/R88Tmes32qpPg2Zy5v5/RqszFHGjcJa8++YSYjmz7FSpC3/QcVabvN8Qs/B7HzJNVix0zRyfuIns/8/IBbtaGjdMMhVvibItzmqZpsIiRY+PEkXe1WmO1wRbvGO8n3GrLB5dfwYcBkuJys0LFzHD7RnyAnsr5UsaiG4vCMB32GJvxeSDmjvE4L/y51brDGkXfbbBdZn94w+39AxdPPkR3V4SDxnbSHgxJUEi0ZpgHnDHEFFBomrYh+nkhn+c54bDo1hL8zHCMeK/oVxum4EnBoDq5Dm2MBA9oxcXlhuwzg49MfsSTUNHSFsJpYzWNUTjXYq1jvz/i3cy6U/Qriy5rwewjqRCXLy+aJRn8cJw4zIH1es36oi/PachKglanAQ6HgcMgyOl6XVpGC39uFmqhTTTW0DQtsSTAi3GrpnJDMBrnrKi0gidl0DGD9mAT1jQYd2pVx1iUtgtHq67FZ9wWLe0oaU+x8J4yUf5OpeWzre33E4Jzot4qxVmziROiUf+ZhfMjIhak7VbvMTku6zdw8jld/vZMnYocZzVarMrUhcC8HL8gSDoXMdhZivs7R1r+TsJESbYEKZeuAlmI4PUjUGIQy0LHkDUSpC1cz0U9tooaZSWqZFU91ZbW5OkYRMH8BejYF4z3xc7ZyMVc7NzwS1Ek5aX4SEXRE2NcSPyVda7RKGfFFMs22KZBmQLZZg/qZGClpI8lhDBiKTb8cqMEHqWOJ04wugYhDCdNQuzKMfVqT0thI2QiVTJhWBJ8AYgnzlBKQWIjaqp5+R7S2aTMgC6waqNxLovUOc5o0xIX+LQUN+okx9aG5blALbkrUihqKQBjLrboqsC2j49XZSF9C/s+UOWY705CMRuThc/qOllFiaVQGMXCAZFJ7iTFJUViEIv8lGoLUKFdPQeOlBLzPBOU5LsI/F14Piju7+8ACOMBpSH7UWTyMWBUZNVY1itLzgpTnEj9PPH24R60Y/Iz97sDxjg+eP4U14Arn2vTNVxsVyg/8+aTb4IKTKPnk1dvIRt++Df/FlZdIabmwO72Nce247PX9/yXb35K8IkZxxwmXr/8aEloj2RCa/n49UvW6zUfPr9Eqczl9QW7hwf8PHD/VoqNpy++9P9l70+fJEnSM0/sp5cdfsaVV1V1dzXQwAywHC6HpMjy/xeKrPDc5QhnZokF+qwrMyMjwk879OKHV83cs7pnAXyFpIqUZGWEp7uZuZnqq8/7HHz19tc0q4o4iqz9sDvyptkyDJ7FqsWWovbtmwdOhwPWOA4vB/7+7/4OHyKtzxitSFGKkk+P7+nDH3n9+h3/1//b/5N3797xzbt7shqIYeDtm3v+8HspzKLPHA9P1HXN+TQSA9zctfT9kdaCtprzc2nh1BbXGMJPT7xuYL295dSNdKc9wzBQKXtxHfc9r16/JudIGBO61ozeY4wrrrOR25Vwdtpmxe55T0qJ1XYhhPI8MI4jHnjz9S9YFln98XjkeBSpd8wZZwzb1QJCoFlYVJl+da0wRjGOPUPOaNNiXSQqTcqKu9dvMEZaQ+fjidVqTYiRqnKMfqCyQsrN0ZIVc9RBVWmUsTx+/InKOS6WDpMp6sCpXK+hG+lOZx4fD6gM603N9mZJshUfPu1lXiobnKqtIQzYnGl0RXCalCLdoMlKz62pfhwIIVLXNf2YCF7mV2MVm7qmagy1k3u2cRWg0X4gknDaMvQD+0NH8DLHDmWjY5Smag2uYhZWGDQoKbC0jtiZR6nFSd1ocojkKGRendLcKs+zukHLvCrSps82uZRW/jSHqVzqmPK7aRP552Mqbq71RVze92qoOcZBomfUpXQpb5WvqplLlM4/Z6z3Gf/os89NJZ7h6v3NxIMpRV6JtUgpFqPB+ejJRrg4WmVUkL/LebpLsQizm/JfyrFKc7EzFTIX1VZWpV2opMi7GBNenVsOs23IPze+FDtX46KIUj/7eZwXX53VhROSfKm4y9DC13F1i6traS2mJI7BufSB529MSMAJ5twrsTxPsw/CZ8WOmgLUClLzmUfCNetdzQekSnSMynIz5ZRnilsyQCjFVwxkH8WPw4uHCUxeNmAdZWGXAECtDWiLtRrrHMpcfIdyUmgjbselxCJnMFZLuOpV/1ob5OCSwqdALHJvMxHz0mUSUSW8TmkNxblaHp7COYoXObkp8Rgplgckg0mQYl++k0vhFYKcewi+KCukUIpaY+sa4yZnaJGPq7JT1UqLc7If6foDafSMhSuhAKccbnnDMPTEFHg+HBj6M7YWkndVmfLdBhbratL40d6u6b2EbuZkabdCTF1vltR1LS6wLEhx5Hzs2N7ecHMjnjxj8bg5dQdyiOiYePvqhl+8fcD7yP75haefPvDytKeq5fv69tu3VLXi3DUcTiObmy3v3r3CNBX1YsmichQhEH/87Z/4Y/6et9+8RemENYm6MTSm4VVzxzgMfPr4CEDdwPZhzdif+dWv7nje96ACt3crPn78OPsXVYsNP/zwA6+T4u//7r/nf/r//M98/e4NPowY0zD6wDe/fAcUwm+V2X165u0v3rF/2vOHH0/kmNkfTtxuIZfMjmXT4iOs25rtKrFeKc6N4RlNUyli9LSVoArOakJIbLcb2sby6dMnXFOzXW/QJnPY7fnud58AMTnVVUVKicbXxDiiFdzcrNFqxc3NitMg5G8fR9p1w3qxpHIGFRKn8wGy+JZMqN3kMXXYvVBVFc1qhWuWJCTAtm0cqRDarU7CuSi8OGMU1sgDrXLA6IQvDs4a6PsObRLjeCYEj7GK/UG+ozAEds8vgAgeXJW5uV0Qo+XYBT48vdAsHJVD3JydnucDYyXixViJmanrBmeXpJTY7V/m81JZc9hLHts4jliThYBd1aSYZqJ+bRXWJNariuXCcnu7YH84MASZ92LIhEKQ1tkgThii/Oy7kRQKyb+SDd7kR6aNweRMXbUkPDFktLVCVLaqkPrL3KFscRXO88KsCiqSr1GXIkefp9qkytWOf1bATCj95KWW/wzpuYxpTrv+vboqasQOZUJhiopLC99M/+ztrpewaQ5M80p1QVMSlxiKXPyAAknSAbR4mF0f3/X/T9dg6mzMUTgqi6jlKnKD2VenHNOcW/SXmDRlLdHTpla4O/pnx59zJinPUO73f258KXauhs5iEGUEzpEf5gxZX3b7TJ4uipDk59Mu2WhHVTXlhtXochdEP5YH/+K/AImYJbwtplLsTNbfs0qhVOIUhVXOhQiWZjRpvnnyxT9nkhTGJA/XBDFOsQ3y8ZMSKZKix48jQ39mGDpMzhibccU7ZyJZZ2MxxqGcw5qKqmnEzK1EQYAQmEUKPzn3xavirJzHVJxlJQVOlrycXODPSWqodJpvcHlgc5GLC7SbkiA+k4EfFCIxl2yxCXWR4lGI3yFM5HP5/xzLaxGkg3IOylghdSOLkyILahUyox8I45nd8wspiiqhREixXLVoYwk+0Y0Qs8HWW1wj8s2qtiyXstAulwv64cjz846X0wBYFss1i3XLZtuyWZfXrdb054H37z9SaQMxsF21VOslMcHHTx8Ye1lkt0vLclOjsuXx40cOfeD9pxdSSlTG8s0vvuLtG5GTb2/EP+XdO8fj045uDPzw+My5H1muNtiHDWOSds/t269wRtONZ1brBWjNmDLKK87HoxRxpd3y04fvePvmFech8/F3P7C5WXPY73mJz2w39/zT735bno3E3fY1H3945N23CzaLmj/94Y/8d3/393z89AFwHIqpYFs37I9P3L9+g48jq/sNdnEiek9TaZL3+EEmvrpa0HUDTmnWmy21dbTWsHG3KBPJZFSRUrd1hXOZFHtGryQrVknw7dI63j7cszsLsvL08Qk9DGg0L2NgsVigF5LPlg18ePxE7eS5qY3DVdLmVa7l3B/xMdNWNc7W5CKlbpeNEL51xlQGH3qyVtzcPwBWWmBlPlosFsWs0kBWmMpJ8W4FjTY5zeja6bin70ba5QbvIz4cCWHEajH3Ozx/nAu+jGccBsLo8TETtOLjywvb0LJarcg5U5XIDJ0lU81HxctuT9U0OJsJ8SzPWznWsfd0nQTLYgLGUjzMhCDfnQeULQtV1ixbMR7MSOHRti0tQngdx5HKXsQCdWUxJuP7ER/P9DHiVEVDI+3zsogqJEevaSq0C2KLUTLzUJoU86yQ1QSYTF4FPr/kUV0XD7pseJk2x1N+1qXlfj0+L1wmMu6fv3bavF0KjBKXMBcK162pXIqwi9pKMqym318IuUk8N/6sTUbWxQNoOs6CP03npClITy7UjQutYEbclZpl46qg7elnBGWlFFMA6gz4zCrbUrjMnQt9aQvqz19jipHi/PucCSri/4XIzheC8pfxZXwZX8aX8WV8Gf+mxxdk52qklMAWzG9y5C2We7mQ0SZSsvBStPBYJgSkEqm5vgoAzTlJxV2MqmaJYgykWFonxfiPgl5IANuFEmeVJumI0UbcRHNBoVQiFQvwqdqd5H2CnyTE6VjjtCkJvFP4XSCEkWHs6LsToS8RBimCFun3FNhprEZbhbYObSqUs1hbg7ZgLMYqCRYsxyoFfTEBRGDWjLSt1JXPTkxCYFSlL5tTnC3V1eQAmidfhiDS/DjO6eeSdpzFFXmS3udIJmCMuJHGGMmFY5VLm0xfOSGnUOzajexKnC3RF9aglJ39xvJkoKUiIQZCGtmfXjBtZtEsCmImrz4OgdEH/CgQ/M3dBmstXdcx+h5rLLGQpz9+fOJwOuF9xCZYLysqE2hyjxojL48i0d6/fKJZ3tAsF3z3w3u6Y8dyuaRZdpzPPbunHYum8DoqxWYVGOKBw+HA/nxmvVnx5vUd7WJFPyS8EQ7Kb797TwwDC1uhlWOMiipl1osl27Wkqt9tbwBBFYIfGLojT0+P+DiyXC6LJUNmDOLuDeL7czieMcZyPPXEMXB7d0NImX448vf//tdy/j+9Z7GsePfNLZ9edvzVt+/4w29/x2H3ie22ZrO95X/8H//vAGxXdwQ0p7Hn4X5Fdzrgh4E4BlRwVNZinfBlDocDd/e33N62NKuG0+FM9BFthFuwXW3pz4KEnfYntDVEFWjbNatVeYZJPD9/kh1lQU5v1hVjhHqxlOfdOXyKJJOltessm9J6HIaevjvhrOK8O6CUpV1ssaaij55Y2o7JZKqmoe86nKtxVU0tpC9CGKSNnuX5auoNIYs9wmKxYOyDEECTzC/GXkisY9/h6gbr1lgH3Xkkdj273Z5FUxHSxTtGId49q3VLypru055Xd2ucMxgFtbGYNBGEAyFA7xPOORaNxdkoxxqvdtA5UJlQApbFZBOkBXjuO079gE+CAL8czzRNxf3tDatlW0IvBUHRGIxucE7mAqPAGLH2aKsaX0E3eHqfiXGgqizOyZlZFNX0WtOSc2YIA6AJEWJOxGlOTkr8xMioPDf8mXxxPm8x5c+4I9cmfZ/Jz/NfRnv+W0MM9ua/zPO5KsTJz118pKU3U264oOYqf/7KXNp1wr8pCAmxrEdTa6x0DZJYj4j3WRYJupKfEdx8nAbhlGWlxDzRls6CFa+iCZkRX6VJen5py+XSNZEDvkKK/gKyI15zeZ73p3+fciCNXzg7/+qhColK5rVr8pea6OkCx6VMVKGgi+YSlaAMZC1mTEnsuSdFk1KJrBQxFvM7gCTKn1QWb1X4ZxPZd/LZUVo8BrTSV0VUvibjc3HvFOa7mo2ZNJWx4qwcA6GkJw/DgO97+qGn6zrCKO6DyhqsVvNkAmCstHVM5VDGYZ3DuppkDCjzmRumtODi5boxIZYJ8sX0CpiT2KHwbuR/SCFIsaPi58VOLJkzxcQvhEDypaDJ0+cnyGJxnlKSNtVMni7E4rFcX1vSeoVUJGaJxsp3ljLOXbhR3nsy0ioYhp4w9qyXFmccnU/k7AjTrKMz29tavqcQCCHSnTpCCGhlMJq5jeX6ka47EXKkWracY8DbTMoOq5czXGx0hQqa/af3bCvDq7d3vOzOfPz4CbLh9v5+Jrbf36+pakd82bM2hu12y+3dluV2hVKKdm15ftoB8OHjge16CW3N3f0t29sti8WCtm7RxnEaR/YHKbj+8Pvf0p0HXt3fcH/3mqenD/z4/Y883G3Fg0NX7PfScnp5/sjXX/2CrKS1OXZ7/Mnw+ptv+M//+b+yWQgX6uHhjj/9+Edev/mKp+c9VtX85jd/y9PjM+5oOO7OfP3qDSBxGzGOWLsgJYXvL5lodV1LzthC7tlVvaRqFG3TikJJBRbLlvP5jNZwOh1mjoFta879iK0ruq4nxkDdGOq6ZXPzQNd1uOqy+CkU6/WahGa5XKGt43zqiWlg2a7oR/nOrFsQz4rD7szmZs3NdgspczgcicqyWBQi8+mFReXQxmK05XB+pm3W9McTrl6DAlW4Y1lpMApXWVJWxBixRlFpWey67oSacuqcEOhTDhI9ETq6/oAmoHUj12woSd142pXldDijlOFmoRmNwgeorKOyCjMbolrGMeGspWkajJVID5MzzurJ2xiTNd5U6JxwxmCMpfeJ47mn85nzAD5cWvbn04jOMlc5Y0hAzBGVy3NrrzagOZNCLMVQxChf5kNdxCV+nlesrYFLVpNzwoWalLVxXnxLtpMSB+LPCLU/4wBfCp6LKaAURtN/ef5n18XPtWHh5X1+9t5c+7eJ87HS+jN6y8TvkfZSumRNKVPchvOFHnrVvpo4nnPbLXIpoJJCqSzh7imKqWFKIjaxSqgdsz9OJkzcHzJJa1RSeCtecDkmcnEzt0oL1UGLzevENco5o3Np815xeCa1GCbOPxPH+j/n+UTCv7iN9aXYuRpRaQIZtLnI9JJIuLVVYsyXI1klkdVFkEV8ujkzGY9Pef5yp0XcILk3E+s8lmiEmJOgAspcXMtzeV+t5r/qKXST4rDpLFkplJeKX6lqPg9lhARrSh6JNqIGC2FkDFMAZc84DEQ/IkaqQczVTMJqjTEa5aZsE0c2DkwlTr6uEhQkg1YXd1CAlDTGSN9deAZJzl1Bzpqgr0h6UZcHU5QKBlWuWyYMHSF5dHnfkCflQMSiyFGhU2bM44z6gDiWosycTeVsLeKKDCl5ucZFqpGUQmeNtQ7jnKBLthgnJtlBDAWB6fuAj4nudOZ8PhKHnr1S1I1F14bVZsmqkQJm0TSEMHI6nDl2Z8YxUDU129s15Mi5G/jp8RmA09kzFJ6JI/Hq1R2LZYMuXKRlWzgV2ZNyZLls+fS44zwGbNNyt7xhsWi5u7GEYmb30+Mzrq/YbDe0tuLxp5/oDx2nY8cYA8vNmrsiU18vW8IY6bsjP/7wkdOpAxLb7S23t7fUteN+JcewXfya4/HI46f3/MM//MTr16/5m7/9e845MZw79k/vWZSoBG5u+PjhR75+e8e3X93wpx87Ph12mE81f/M3f80//uF/BeDNm3fcP/wCP2RuVzc8fvjI8uvXvBz2HPaBw3cf+ebtK/m+Ihgs/Wmk0dA2DXFUZDew7044rRkOoXwHLQHHuU+cjme26w3L7ZJARBEZd3uaol6ztaEPgcpmVutWuHfW8vT0RG8DVVXhy0JZVY7WGRbrBcnUDL2nGgdi17G8W5F1MRwFckgYZ1mv11Raowu3TKdA1/WYKEgcfsTnRLNYMPiRMEZO/sgyC5KblWJZC5k5BY9VNVZrdrsdTW3xfkBVFdZWLF3F+Xgo94xYaKS+wxsn73sqiOBqTTIDo5fXhr4nxszxGOj7MyEIIl01NcN4lp11mQ9SlJyqdmOwNmOVwphqJv6nwterKocfBrpzz9krlM9ok1ksalyCtm3wZfOVkwLnICf2h0+0dSU8IWNxVUVduXmRG8eRMWW8H2UTkpSQ9xMYWzK6prCllMh+EDdpLXw/2ZtpcjKorGfOZciZHJK4UBdUQZmrBf1KGSo/E8uKhLi5TwGhEyEYoNiolu9DzYWObEx0mRcnDuMlFHSey7I4wIuu41rNpCm0HRSyvgBkAlkVxGTiZ5bOQZ5DpKfNci580DIf5lg2oBLfkIlybigxfE0GO31OVCRGYpnfZc4PhOwwyYAVQ02AqJ2gv9eb4inva+I7zacdL7yeMJ2pbJ6DueJvXo3ovxQ7/+ohydZGWisTlFaC2pTKaE25oeX1U1bJNbwZoyR6XFfzMzE45blqJ2XULDNXpQiSz8n5c9SjHN0sSTTGkCa1QNnN5PmhNFhjiuNvmZxyIARfPCxkYR3HnhQHUo4oBZVzGBRaRSngtZ2PfxxHGnsFRcckO82syFkRw+VmK/sxlBGImCz5YaGEByrCTK4OMRBHQWZUjigSKXhi8uKKGuNMOPWhx2mD0QljDAFV2lCjEI7LRGuMEfQtI2RqpfAJISVqOd5ZuZA1pqqwri67YAgpMQ6BmOWYz4OQc/vB48eeMIyk0FPVmqZxLJfifCsxGvK2u8OB3f6M9wFXt9y+3mCc5jx4jscOqxy+qJFOpxeayvHV21fc3DS0taiqlM4oExn6FzkulfHJMI6a+7ffsL7ZsmxruuMe3w+cnqRlBXCzcWy3Kz5+emI3BNbrtXiabFvZ0WrFZrmRSxATVht2hyXf/+k7fvj+J1aLBQpH8IkU+jl1PGe5Hl0/Mo6B7/74I5Wx3Lxec7u94WazmR15b24TY7fixx9+4Ga94q9+/RXn85nT/sRJKf76238PwOPjJ5Ztxbk/EWLHZtuSw4n/8O9+xXc//oQanhnOgkLd3dwy9HuCP/Hd98+sljVaB242DTG0xKD57ukJgHOXaU8db15t2NwsqRqJTmiaRpRkTlMVP5rz+UzoT1iradqWqqr48PEHdG2wpkJhrvypDOvVCmLi8eN7vPcsrKNtaxaLhbRJikE3KXNzu2TsB0IY2R932LqibitiGqhKO9UoQ7NocK4loliYujzrSBhqVbNYle/LSn6ZDwPKGkKK1O2CFDO1c6RxQCPtuUVtOJ+PDHHkeD7g05GbuyUhiCu8ygO+FwuAp08ngoc+nIlZ4VNm8JmFaxk68dCpJ+8YpWjbBau6RSkjCd5ogg6zQAFAzcnfmtwHhuBxxlJZqCKsaoNrpZ3qXI0zlr7vOZ7PpCgijBBgCANj0LNvS9d1TL5g3stCWLu6iArERTmV+IFxHBl9jwoKVWJoZE4X6X/MBqUvxOecSoGSL5tVOYmL9HxCU6ZVdxJPiL1Fvki5mVCdPwOGyvtOhdBl9b4c39VnT+DS9fv8RaRJNpQzWj3/bmqzqau/T8em5p9LF0KX41Hzv8kTX1slYppAAC+hqUTkiykJAaqcQwZV/LGSSbPicM5BnBRvc1F4RdT+Cx0/CdZWn2V+kTJZxRJG+8+PLwTlL+PL+DK+jC/jy/gy/k2PL8jO1TBIq4p8hcAgvWkomVFXBLTJ8OiajCbELYEeddYFvlNYLQ6haXKB1BcHyxzDTGTTSgyYNAquQyh1Lr3rkj+SJ/hz6t1e+D1ZGbLSs19PCImuH+n7nnEUpCSFQE4Jk6Unq/XnuwHpW1+q8Fj8LEwAbRw2yM5Lo0gmzkGgSk8eOFP1HYkxk3wQ7k7KxFKJ+9BJbxdBcnJOcxgqMeHDMEOUKQHGMijhP6WUSFGhncPpBdoW8qIxKJOJKGxVCdE6l+ufM74fyMVBWVsJZ+3HAVIQz48ojqwhJ/p+5HCQ67Xf79EEFm3F7f0rNIHlor58phY+AkDnM8vbG1arFW3dMAye8zjgfY8yFhS4Sq7PV1/dsG0dKZwZOs/j+w5TOQ7HjnMfePVKWjirdcubu1u0raiqClcpYhw5M3A674ghsFrK8bTNgoTh5vaWcehYb1rWiyURx8fHHf/5v/6vc/bPb/7mVzgl6EbtKl69vik+Qp7u+ExmYNnKd+vqhju9JlY1x1PP0J1p25b+1PPjTx94/LTjzesH+d618B6++upbgh85Dx6tV2w3az68f8Q6aY09PDzwh99/z+mw4+5BDPeeH3cs6hW/+MUvaBcr/vEfRKaeXzqUbVm4Bm16fvzxe+7v1hwPzzzcPoiMuPTvMxC0Zblck3KPtVpI57YijCO1anEFFvfesFzfolzL7nAsvi6Guq5pFg1VVc3PhjOan376qex6Na5uublb07ZLvJeW5CSRXm/XjL6nrh05R3rv6Q4nbm9v2WxvZ1JmjIFuOBNjpKkXZA0xJoxpGEKkqSt8KOaSzkDxnmmaSgKDrSKFHh9Goh9AyXcbvceHgZy15NeNIyGOVHWNDxCSJU1J4pWlqS3D85mFs2SbiZVmDCNOaZx2xPEyPxhnGLJ4hFlToTWC/lpLiW9kDIEAMwqrUvHpUhbqLCnlJW+rqhwxSduvritA/INiyHTjSI4DoQRWThxHjRH+TShkVR+oXYMzdnYOUSkxjJ4UIyELihyTx2iHthaj69mQ1SgtKopirofOM50h5czkTp9S4fboC8r/GQen+NVcxuRkX9pGFy2DHOPcmhJfmwtPqLjmF9GHUhf848LHmZYONaOBOWfx/pmRqPI+Vx4/15L5acjPJFZUfqdmiXguzrTRFENYZZgSsMVwUtqHRitBfPKFTxdjLp2Rcn3LNZnWF/G/veAun59bLj5xarYBUVfHTIqE4Usb6189JkKaMZcCZvKHSSVdVeDf4qB59e+mcQnBvLSZLvCd+vyzZqgwzvETOeuZCGvnm0WsK01JMdbGXghmyIMwPQbiFixBebkUOzEk4uiJ0RMLryP4gey9EIBTAFVSy6/aTFPP16iKXAzO5IGX9xZekUblMEOEKsuDEVNRYyVFCCOU65dCxhd/Ex8GcXDOXpRWIc2OzhQy8+QcWzmDtW72IBJnajBNJfycXNxVEbhUTPodKYih2pCE7BxCmB8mbRzJanxKwguoW3LUjONAyrJwmCAtgU2dub3bslovqFqxnw9DkJgMK+Xt7foWgF9tNjSNkE+784GU96jeY1WgcoamMiBrPUbJ9RiTpjt7gq748adnlouWb756YFmIvLo2PD1/xNmK+9sHjv1A8JHD7kROhhDjbF1hqeh7xePjM+fjnptFS9t8QluFa2r+h//L/4FTCdc8HY4kFN9880tubjYM/sx+v2d3OEv7ysDzXtpjMSg2yzVt41gvV7x+uKFpGp5JfPX2W7bbNafy2mw151PP7//0R/b7I7/6q1/jrCb6jnppGM7CWeq7FzYb+P679xyPhv/4v/+PtM2Rx6cnDt+/583br0hO7oHj2NO6Cu8jq/WW7394z58+7Hl1uyEZUYT5idyZIo3yqNwBGT8mmhLMm32gWVYM/bl8CZrDfo+xLZv7NTFGVosV20Io3u9fsPXF6fX+4QGllLScVktxUU7ghwE/iiEniIPw+dzRVDXBw7JZc9JHlMqEOMriChhjWdQrYoycTme01bimkec+G6qqmQ0+u/4FZ1tsW5NDwlVCSBWyccfgR5qiyjseO0YfaZZb9vsjvR/RJJra0fc9TWupS9DsbajISTPUNafziA9BiMKuxtWalDy+TF/O3WK0RQVxL3YuYq2oU0PwM2E0eE8MkTB4hiiqSR0UKWZsbdHazQGrw9gRk3DzSBGrxYPLak1bW3LS8xwnHj8j4ziIQrQSd/PBR4b9gcUisqib8n2JqigGKSIMmjQRhFPCOIUq/ByJ8snCv7lKKZd55dLKTCjQUgDNVsopSKRFlubUXy4iLuOyEqS5KJgKlmvlyTVFQufL36fYoSkWY3ZzLsTkzKUAK45AcwE2cY+mEOXPCrOi7p2PZ3qeclmvJs5whqyL8WwshxETWOExx6RmrzqlokRJaM2sCONSxOgMyVzOeeZ+/azVFct1um5HpTAyDP+yNtaXYudqTGonrfUlg0lBTnnOdRG5HD8rhi5DCpxJKnjtnlmkzmnK+bm4JIcQLvEUxXjKGDMXBcYYVJSHzRoj6dklqqAc+YXkxuTwfEGfYhQlEemibiIpcszEFNApou3FlCrGjLaQi/zSOYurW2zlMMYSlSQMa4zI3JW+ctH08uTFgtKEPBOjY/CoK+Z8DIkheCnEQiClQBy9FFVGrO+L+h1nIvQ9nS8kT60xylIZSwolS4uCSFWyg8xRir5YCtRKGaytyNVUxCm0qVi1FdZp4WfkTLBCl94sl6QbqUriKGn0KXi6PqGtY32/pWkaFk3NMPj5+3p6/MTL/rf0/Si5QNst1jU0tWL38gmnWtqirjkcDnQ+8fT8QrtqeP1ww83mnuQD52PHeJL3bGojkvp14nn3E5WxnLrA8TBwc3/Pq6/fzREUfTcyDAOGgfWqZn1zQ/CRIQZWzQMmV1Rarldz03I6H/jdH/6B9dOtRICMwJi4bW+4//puXmQ+PQ+MfU9bQ1tbUhz56f0ztqn53e//SF1Z/uavfl2epQzO8u2vv+bx4wu/+8d/Yrta8u7dPeNpZEiF2FKeg7//zS/Z7c98/6c/8vU37zDG8fT77/hf/sv/j9clm+t0OtD1R16/e0t37Ekp0taGul3wuz++MA4di6UgFff3N8T+zPEcaGrDYrGgO56FVxOFnbBYNPO9+PbtK06njvNZ8+rVK05jDwbaZsPxNMyo2bk7gtEs2pUgBVnj+4AzlsdPH1itVuhSnB3OB4xxhBCo64YcA5vVlr4/kxKsS6yE5LiNBD8ydD2vvnoQBYqpyb5Ha804dtMkJaRO7SEbCAata0LIBG9oN28vGxo1sFgvUEpz3H9ivaggJ3zsqaqKYz9gbLkGxpN8IMaRRevwoyYnzeSmmoC2LhW6tpz6DqMS1mqUl7ktZikiYp5UW/mKzxKonaNxFqNlQ6fylSopJdAGExNKg8XgI4wYsQHQGlPIdnVj0VGTdIch4yzkVON14OwHQop0Yz9fWx8GcW834j6vy8ZOa1MQ8jI/R9l0RlWKEWVJStCd6+LhWkFK4eRcIzv5uthRF1Ly52Oauy+uy4rLhntSe6li2yEFAsxb7Ant4GLDkUEUtUWldT0+O76r/4DPXzt/J/qzYm/uZOjLtcrRSAq6UuQUSBl87LFO1FjTZllrS9aarLXQnVUxPyxFzZxsNF3dKx7PJFdXSl1eEy/HlJJnjJ5/yfhS7FyN6YuUkM2rwMnpz5IZQvp5y+eKqJzy/J/S5YvKQhKO6eL0K67BiegDoxeS7QURkve1V9Be1koyRrI8pMJmZ0ZhrosuQVfy/PAmL58jBVucX6e1RmPIZLSS85ZQtYwOUvAAuMpQ1QZblfyJgmxRUE6l80xSzqG0BoordByFGH3ue+IoEPIUgxGzHJf3MtEmJTCzaLgkT2vacxjMJZcKhTOK2lisNdTGYcpOx2iNjsUjSCmy1SjrQFmMs9iqgQKdG2MIoyeX0FBVRYy11I0GI8GFthDVR61IXuGTgrFmu7xhvVqQUmS3O3HYH9ntz+U+ydzcbnj79i11XXPYd3z/40e6rmez2qIqy8txL9cpZFarhtvtOzKjRJCYNW65IMcdHz4K4fbubkOlW8ZPHu+PZBPZ3N3y9hdvaJcrVouWUEiZp92J58dPfPX6Hls3hKRx9YKnw4ExR8Jxh5vI60lx3Ef6wWFsZLlQ3N+vuFm33KyW5KTmyIy7TWB37FBGM4TIjz89khQ0LvHL3/wNQzfyh+8+yncbBtbLlmHw1E3Db/72Wz5++MAf//AdX71+w5+++x0AbV1zd78hjp6mabnZ3vHx40dWyw2//sU7fve7P3IqJNrD+UTOkd3jC8dzx2KxEPfxELlZrHgZBk4v8tp8c4dBYY3h/Y8feP3mAeM0Hx5/om0sMRoWRT132O2oFi3baoVrarqhZxhHzqeeU+54fP5ItXhbHhpHVorD+cxme8/QjYQxoCvFshG34XNhKN/e3vPp6T2NqWnblpfdnm11w6Ld4upm3uA8Pf5Id96zaiqa1mGw+BRxTrNYtKDjTKofh5FF3WCyJk0oKJEhRKqmQWGIZTFfrh5QObA/PBVncXjZ7clYqtrgT8NM5D37zDCMaNMwdD1oQyRx9AMxZlpnWRkpzsZzRxwU7XJB1oYQRoyuqI0owiZgOGQh+ysF1opKExIhRmKOxQZD5jinxddIGbFZkOgdS0RhjJWQVnuZt2yo0Mngxw6nNfWyItPgOk1MzPPR6AfGWD4nJshgnSou74UEXOYjhS5zZ7oKA1WECZWZJM+l3Z6LcillUWRBQViSnv1uPpeRwyStnteM+ZVFIDNjKYJSKy7hmZ+PUiDlS+tqKozyZzSMC0kaZL7OWZUCTQjJFxqGuvLdKa+5HB0557lgmKxPUkoiX8+i4JJjkKDkObi1WH4YY0gFeY85Xxyei2v+n53hVRGmlCIZVfyXJvpHIqaRMH4pdv7VI+cIhQlPnhaDIsX7rNq9GOddXnPpqUrB4gHZkUyBliEEUgkaSildFEfeE0q2i9ZaOBPaXHg8uuS9RIE8fRTWv7IaW37/WXbL3EeOeB/w/UAYpbeZwvSQlOReKK0uOT9pHRm0trOyRuwVBF7W2lKqNzEBDFnMCqcbsEyeIUfGcSSOQRQRg5xjPwZykYkrHXFKY5DMsJTkobDKStBqjPMCng34KD4PzhpWtaLSGa0DxuRLSJ/SxGyIQXLK6lpUMrZyYEQW7Muxjv2AyQFrDD4MhBzQtiZnS05pDhQFmefaTYM1DYvFCmsc0QfO556nT1K4TFlHqEBOnt3LJ4bBc9gfWd3cs71ZczodGPzI5tUNANvVEp0l4PHD8yfWqy3nwfPbP/0Ty/WGX/+7vwFgGDoeP3zieBpYLhoaV5Gy4v7uhlW74PH5Zd6xtuuW1bBkdzrxdrVku1oyjiP3N46cFceXnrGXCfzV6y2vv/pWWjFj4nA+cdgfOA0d+/MJSDNq59oWpR2n3jOcPcvWEGMm9pHvfvsDz/sd33zzDQBff/WOp08fMDpgGOmHyLKpCcpT15k3b78C4D/9p/+ErSqqytHUmp9+/I6b+3t++7t/4ptffM3f/btv+f/+l3+c78McI01lSMGgU2TwmtP+wLKpaSo9IzA6n3FOEUbheowDuOxZ1g3KakLMnIrST1c13Wnk/uE1IUU+Pu9EyZiP1M5gcqQ/lTR15zh2vcQ2BImpOHQBQ0WzXtL1I7EsENY6jHaCxhjH5v6eMQdU8gzHkVT4c6Hv2K62LFYbmsUCU1WMp7OomuLAePjEFJjoqqXwkUKgrlu89yijqYy0g4fBU5cWTs6O6DMqa5btivP5yMvzmZigaTyJxPkkiFHsI2PvUSpTNY6n/QljaxQ1MQwkzYxcDt6waVpqB5XJ6ErTNjW2XghyWp6ZEAI2e4xS+CoSc2bo5ZnSxgrqW+bQkJRsVIqXizMGU1+MSoX3WFrtOVMrSNaRgyfGNEvQra0wSYkHWBkpJfx42QxVlXCLdBa+VEoT0itMEpNlQ6uVndtZMscXdVlSnxUUn6E2Wfgu0yY05UmN9XOopbRk9KUoMbO0PM/8G7mXy3lch2vOxRKyTpQaZVp/PkduhMOTyJeUhjxZgGSuRHZMxWdC2mnX3NVMnm0VQAo5US4XpL3EOdicQefZgkDrJOaD2cm1VEZ4oDBLzyfUZmrXySdOIcvl70VlOyNhOZNiJo7X/Kj/9viixvoyvowv48v4Mr6ML+Pf9PiC7FyNazLYdWtqIlfNAZJ6CpZkTj4HMCZinfvZm8puIMZcCIcXNCin9Ge7Aq0kdHMiMMtriy12SgSkRRMBpxOYAn+qi4X25IiZQiAMI0M3FBRJUCk5LyGNpSyhmlMP2GiHs/WMMgES8JZBaD8BL3HpqKRIMTKUgE05UfnDp0jfDyQvKqd+FE5Ojn4OSG1qR20dCisqLTyghaWfG3zK9H1BwlBoKmm1DZ7GCGKmU2IYI1lX05dAvWhwzlE7uS6Hrkf1A6auBKEKZUc99rLD0GKgaHWD954YM7VrqJRjyNL7X62WVHVbPIHgeNizK2TcxU1LGAaiFz+YRVUJcc9rFquWm4d7EpGmrrm/q8gxMZQE59FHsoL25o6vVxt++P57uu7Ef//3f0vbrnjZCaLQR82bd1/xEE50px3bTcNXr19xPpz5w2//xMl3jEGu6/c/7SAm/u4337BZ37FeLhmGgY9PH8k5cHfT0hZ/k6pdYLTjdDxyOOz5tH/CkGlbaYvdbRbcbDblqzUkpan6E/vUc9odRN1WVTTNgn//5pf0xcfpT3/8PW9fv8HkFS+PH6mrRBiP7F92OGNZFd+Yt28e+NOf/sS/+9u/4/npmZwMh5cDcYx8enxhZ48s22K+Fzx11UIUkuPucEJpizUKbUWtsStcxaA8r9c1u92OiJdzj4q3b9+wWTVokzmfpO0YQqZtV+SkqeoF33y14tDvig+Pkf9K+9dZhy9Kyu78Qo6J0/lE09S07YpYK/b70qIcI3XhxLTLLcfjEd935JS4WW+whcQOiaqqaNctaMPx9ExTAjpT0kSfZtJqsrInNkbh08Rva1BJELjGZYYSg5FV5nTYsz88E8PA+XzGh0BdWZRKGGU5n+WCJT/SWM3u1OG953a1ZPQRwkg2EWfsPCdWDjEGdA5bVagK9KLF6EZUOkVlZpQWg1PrGKMnpUylHP0YCCkTCbQl3sOgiqBCRAoKaJwVcrbShD7QFSKqRHeMJAK6MnRD4Hg64ccsLUVlRQTAtWAkobWhbWsa5zBWEf1IDP5CPFZCD0jJFZjHXTxoCjoPoLO0ZERlpGTKUxLDcAnbnObZgtZcIS3y95/RH+AiWMkTmfdnKep/odUzGw+XX09I/QWNKrSGEnshJoBmJiVf++9MLbvPIhmIn33e3PHKl2R4rcpnTW73Oc0K4utrEAtKprW9cI0KUhTUBYVS6XMUbDq+qP/890klfP7SxvrXjww6J1Q2lyRXJeWBRqGtIXuJk0gBQoqlRVVuiGgLbCllilbidhyjpJtrpQg/Y+lP6iWDwaiMU/LgpxBIExksJZICrVwhHGcxrwqRoIpQXU0EZ+H1hJgYg8C7EU9WCWPU3O5SURHLZ6Mc2pR088qVaAiDtuWBsAnPCAjfJudMDpmcjNz8MRIKxD31b4cSTRFjZhwCY/SYBFYpqqIgcEES10mJmHP5D6wWqW7KanZGnhRyKQ1yTVGQDbZpaVt9BQtrso6kEDlHcUg+d0c0iqapyUT0JJ9EY1VFSlBVCmMUTS2qLAzs9zspjgCnK3IIRB85d+I229aaxWJF33f4caDvCxcpJF69fcPNzRalPT/+8APjEHCbDSDfSV9UKM45bm+3nM9nds9HKmVY3W44HZ5JZN59PXFFLB8/fuKf/vg9m9WK29t3/Om7j+xeOs7dQLKGYyeFkdXw1dsHrBMTNbQmpES9qFHKYFRFVckifOpP+P6R0O9w1vDX376hqpfkrPBjYH/u2Z2kiFstG9q6pj8PxGBwzZYhnOlORzbLDTqeebiRIirlFT++fySMHb/4xdekPHD2A+/evmU4dxx3wu1Z1hX16ze8PD/z8GrNx48fOR8i1loO+x60JZXJrGkWtLXhfA4cesPH5543D2u0FuXTYrGgKa2h2mgpojUsnLRWhtJS9UGxqhak0uu/2Ww4jUd8uZ/resHD4o7zqafve1abBaoQumPhop1PHpzh5uaOOli0rRhTZPfyjCnxMWHsiYXX1g1nTqcDo+9pbcVwPHPo5fNd40gYQjTorDBUQtof45UyVOYjZ1ucFudhrQOYUhSVSAXhG5ZCuj8ShiPn3ZO0tMNAVVuqZoHWlsPZYyspNvrRo5wDNMErPjx1KGWoqoraJqw1InsHlsulbCbaCm1qqBqsXQuROGdSku9AGSO5eDoDMhdgPc54UhyoK01dyNwy0UTIGuPELTkpDUZTKY12F9Lt0ImppZCPAwpNCpqh95y6hNaB8njRVNKm0VpTWUXtNM5qsgKvFEPO+PJinZOQmLUVLp91oIQ7pIshKQjvVvL5Lu7KEmlQWlZaInPgqj7JBqkhLhvcjPA6Z/VRUR5pIztLrUyZ++X35opfc1335JzJhUsuRY2aCx25N5RsmBGOz8QvikpLEcZEFM6zOkqpQi4vlh1z8XS1LkbJmkAnLTxLVQJzciFOm0uxI396jLJEhJ8JXNybr4qqCQRI2pTjSVcAhJ4JzEoZkuaz1tr/1vhS7FwNQVCKm/GE8qDJKoEqwXExEmOSXJaZsDy9Q8ShC5pTFpooqgajNQpTAiMpi3gihEE8eQxoLe7L4sVzhSRNxDipuuRGmMIwY+SixCrk5ZSKukm8DowxoDQ5xkvnWO58kkoYpTDO4azDVZWgOu6SjWWx5JjnHComVEsJUOVjZiweMyHIDsjHyDgK+XgcAyGLr0/lFBMJJOeACrHs6BTnUbx4rA0snOTxuEluamLZHYj0OCdBY5QSkuZUlGhlIcjOyBfysw4DzlXEQXrWWU+FYUA1ULcNqmkwyzWmdvjgyX2HSQOu9J3T6UxQGaUtTmkqp6gbjR8OVDhMU7FeycT98PBAVpo//ON/JeTEenWLTpHu2FHViu504tOTuBL/6le/4nh84tPjM/1RJtA+KlarBVpFTgchKKMc2+WC//Cbv8N7T9d1aGdQLvKrd1+xvb2fCa8//vQnqsqxvV0Qled590KMWa5vlEy3H/7hOwB+94c/kGPkN9++5VdfvyF1cHh5pF44mnaNaurZNXXwvZB3w5lh6GnrBb/6xVc8PT2y2+3Y7aBppOBqG8vddsnpqPh//T/+3/zNX/+at3df8dt//B1GZWJZEEkRP3hWqxXvf/qEMo4fPz5JPtcCunPH8SzndYwdv/72nrttzen8ifulIaeRut7y9PTEuq24XQuymsaObsxE71muKm7XW06njjQOjH3m/eFALh4zj8/nwnOIrCyopPj4vCOMI41raW1FnsixaHIWdK3ZNFi9Yftwx3Kx5TQe2d6+prZyz4zdyGq5xbkanwcG37NaLqm15XTeY4qDsjaZMfa0tOIhohXWNjhjJMMuJ9YrKU51Jf5U1tWMY8DoyDgO+DjSNA3W6tnKpBsHjHXUbcPT0xOutlQlQ6xpGoYYGXo5hsrW+DGgtCUZL1ONLohZAKXs7KXljKWuKoxtqJoluBZXtXINJ3IvE+F2IgEHjAZrEpXN1GGYRRkyF8icBmCtOEgbWzZ/KoNhDuxMBro4ivN1LlEFyqKswjhV4l/Kc4sm5IBBIgy0rUlEUhSPsdroebH3IZB8loW6WYAOKC0bTKGwqHnqTDBH2VxnNWkNOV+Tfv98Ib5G7UVl8mcvma/J1FmYVMAXIcrn/J1UCuKJjPwZZ2fmGF1xeOBnXs8/O76CRv38Z6lwjAwKkye1XSgFV5nXi5eciZfCSJTomjitq+rSNZBjuzrnCYVSWnK1Cn8pK1Wu74S2TcrfL8XOv3rEmJmL1ylaRTSIJKbQtXyBNFUhVKkryBKNVpfkYfl98dxJET21mFIgxyAxCUoeEqNlohLFVJxvGqUUSjvxuFElxkGpUsGX52X6vHQhp6kkcnKrDeREUnr2Z5gcI7SRUzVGYa0WKakSqHaKzPAU6X30UuwRL8m0WXx08uR/oyVl2NpIrSOp0sRK471h4RqWqwZbip3zONB1AyEoVFasFuKXYUsrjxwxTq5tWxaGc0oo6xjHERU9Ros9/EWVBkFF/Dhy6DrGbkQpRRUySo0YY2hKC8fWFZubLVXjgIjxZymOtMaHhI9wOEpLQGUgjaWVWIiQSgJVo8rUtePu1R0Av/v9P/Hxwwu3N/esb5YcDx9JKbG0Sw6HgLMVi0oW2u/+8B19lIe2bRo2yyWb2w0pjFij59fpqib4yDkOZCVy2+3bWzbbBTFGjoePuNJCfbi5wXvP7nnP+ThQLZbkLJlZVmniMNIVNdhvvn3g7n5DVTk+PH3gxx8/oLPm9esHtH5idzrT99I+uNmsefX6lrbR1E1N6Du+/90T7z+98LQ/stneE4KgQE4lvnr3htVqRWUsHz5+z2H3gbv7G467PamkXffDSBgCgx45n0/4qFguVpxOHYfdwNff/Irvf5LCrG1bXl4GyIngM5vtLbsh8NPjiRQ1IfRlVyzITq2hrgxWJXIcWK2l3dYuGz68f5yN51xVEXJgsdkyxAh9YL1cEmpHjjAMgbGT+/vh7p43bzac1wcwmd4PLNyS3W5Ps25QOs6qobpZSmvFJ9Atb9/8CkJPTiPb2xu6rpCDgapqMVVFDhnvO9bNksPhIGTc5ZahzAXd/sSyESVjU6/wYZC4EusYh/J+cUINLSkltjd39MPA6Hti8mhni8jBSBEARJPIgycpxegjRkPVtAxeWml1CvPcZYzB2Rrrlmi3EMNC62bxxrSh08pijeTUEYO0Z4rSJ6Qp12oyDU30k62E0mVRS3g/kowlpkQqxVZEEvJCcgSVxWxQyzO53Uhun1VTOLPCZxF7WKUgJkJKsqBGyP6S1Rd8lPxCo1EhAANZg7WKZCaV0qU2ydM8P1uSyGtU1pdCYRJhlWOZkZHJH+dneVhKXX8AVz9XsxQbpFP4lyTmkxJX3nv680JvuF6XpNi5ytvKYpwohZysb9diHFH0XRVAUytMnIVmL6iJUjxfgqIwTkoRVORa6DPnJF5VXbr4x6ETSVm0kmJImen1UwtOleP5QlD+Mr6ML+PL+DK+jC/jy/iC7FwPPwaCE2h1ql9VKiZ9MZX02CSybzIokWnbghtb6zDWzp4CSlHM91KBGj3kKeW3l9ZLaSMpnbFKqto0WXXnqe9rSuq5JWuLVoqkEqqE7l0HrJHVFY9IvBDEfCF+LuvLEWIilY5dSiWQM/gCnV52HJMfUIxZnI5L/z1FQcMmG3bkE7FGY8moLDyhyhmWBprGYms327Mv6hpXj/gxCMFaFYfjksobgqIvHIw+SKifQtLPtYa6roU4PnoGP5bTN/gYOA0Do1eElGmrhhgV1mkWTYsrrsTOOYbeE3xCmZHKCvk7hEjnOw6HE8lf2ZgbqKqKfhwYdgPeJwbvGcNIu1rxD79/mV97f7fEZ/jDHz9yPPRsbragLXVtSCqzLIZyS2M5nTy7w5HD8ch6u2axWrJavSKGkU8fPgFwPH4ANNlYqsoy+jOn04njaeTp0x5XGW63QvrdbFtW6xqlajEYPHbsdgcOxwNGZRpt+ObNPQCVi2wWjnazYrN0vHm3Ea8UKnzIVLsTx8NE5I28/+mZzbZBRQ95YL1e4RaON+Mrkmp4eRHS9vvHj+z/6Y/crRb84pvX9N0LKQXG/kzwnozwStq25hiEzOuMxRnQ1RJjHB8/PXIePauNIFarhXzfp+MJS6BqKrrRE/OIthai4nlfZN8qcbeO3K4aqkbRjQMqJZStaQBbOYkHAUzlCCkzZo8Pnpu7LdGPGFej2ky2mXAsRn3xzHgqVvtazBXH8YXkEzsPdbUgV9LO9D4yROESrZo10ffsXz7JeS4arCshmAX90FkT8khKkZfDjhQCdbVA6XZuKSffEcNIUomgTfmuBDEOQ0/IaUaM+r4jJTEo3R1PaJ2K+MGIeCAYmlruQ5UTx1NHW1cMdcNpiJw+dVSNoa4cWqsZZbVOo4zGuAuiGqMXvonWKHPhtjCh2tpKu7zMXzaLxUaKQ/n3GVM5pnxNpRQ+dIQQGL1YUIRp+28b6qUmqaq0Qy+SZFPmq4nDaK2jNY0cQ5a5fQgiakg+krPBF3QpKiscFQUqRXIMZIppKcyIlVIKba4l2wbB56ZzvSAWMxdl7lpdGSlm4ezMQE7OhXPI3LbSWs/tu7m9BOL6PEnH83+7JfXPjWsxzvWYEaAJpZsS269AlFQsWbISNEkhyNlEUPczXJNnxJX5Wmso3FayvrTHlDhcGw0pC7H8+vtNV4GskwHvv3R8KXauxjAOOFMKFXvVQipsdqVGjJaeotZAIVBNE5ExCm012ihROxiD1UkIaFlaVtnLw22yOI2qnFBm4glBiL70r/PFO0eB0lkIxlaJ5f3EhJ+c/ybGegqkMMqDmkZ5/5SJUXhCs6FfFKJzLOaEISRUFjKzUgqr3WeQZwypuD0nfJK8rRACIYgh30SIixlqZ0k6Y7X0bwMaXVXkLM6nc6I8mpQMVisWjUPrEe+F/Z2TYkyGycXZJ5kIGmuk3acsKcEQAyiI5cGKwTOmJIuA1tTaUDUtOSlh/FcLfCm2fAg4o1ExkIaRQQshOowjnR8/M480KFG+ZVFAGDIj0hZoF+J3MhEz7+9fsdosSSh++e03tO0S5SzH44nT/oC1FfsXafd8etxhmoq7uztu3ta8en0POnI4HQkh0U9zpRV1VPSa7jRSVxUpjJwPB14/rHn77l6IncDL7sTv/vieyTBNR8/rh3t+81d/hXOG87mfPVOen5/pg+cmejbbFcvlDSnBOHqImbublvtNcdlVnudPT3TdC0a3HHdSjLXbmnHs2axb/o//8W8BSPx73r9/T7d74bB/4uZmS1M7wiCtxE/FLHG7lciJYRho24bu3JMZ2Gxburjlpw/vseUe6NKJ6uGGLgdaZzBOizu4yri64tPj80zqX7eSar1ebzicDpAM95s1iszpdMLWFaFMvIf9mcVqiYkW5yy75xdW2xu0UjjnUPRidIfkPa3XayHb6khTLUT1GCOV0dKSK5uUvu+pl1JQt3WkqhqapqGtG5JRM+wfkmx4INGfzxLlgrRnQVrm1k58GRFMGKclB4tE5RzDOBCiJ/g4q1UqazmdTpz2R9qq5dSfpNWZncQvpIgvvlshKjIWV6JohlHauDYlKiscrLYpLVUrDriyCYyzJEis9AyTQ1wgo5G2hXhWWzRJhBE5lzaiK3NBpkIKB42IBXywjGMvqrA0osp9oIyiMi0LVzH6M9EHcaH3xb05X7zPIlCr4oqvpQFmlGz6uuBJkblgc07N11oZXagLQdK2k3juwOcqqolSIIXIFYFYTQXfRMAtr1epXC4tmzp1Way1SGtRKjL57Mif5T3TVWE0/Tn5+GRx65eWFVxYMMzHo37+95+rxLgUPzNfqBSeWT5sbr9x/TouvKfrQi5d9aYmNdi08Z8UcLPbW1kTkkqX1qfKJVWsnK+afjbRRiAoNfOA/rnxpdi5GuM40CspJiavJ2csSotNmDVl4c9aSLZFkp7niz1ld4jc0eqp1xqK1DySCrKTYsT7OFesOWeMKqz5Sbppp4dbuDTWWDAaZ53sPuZguovMMJUHP4QAORY542TQF8h+UpWEwnqX6j0nVYh8oipQuhRgyO4kxkhKYsbmcyIkyFFBtliji+ICqqwx2uCsIC+udjjn8KXn6/SFEBWVAlOTssfniMaCiiSdxRBQXST1zpiyw5quseSEncZ+NioD2cnJLrTCuhZXN+QYqaqKkBI5ZGJRX6hsCLqnqi0Q6ToPKRMC+KDpuo7lSibjqq6IY+R8PjOEAa0My6bl9d1rmpXwZpqVKGPevHlD0obn5x3nbsCHzGK9xDnLN9++43QceP9REJv3n57AZJwztItbhmHgdrvhdOr47g8/8fHxBRCy6XpzQ+UM60WLbQzdMfDuzSuaesHpGHjZyWtP5x5rKwY/smwWtLUiRUMMYIym9/3M77l/e8c4BpJpef/xzPHlR/rTiSF2LJctVd3Ok6TvO/w4MqbIagWbrSuSU896tSCcB/74X/4XAFa3G/A9D/cbnLvndDrzsjuwWrZs7rfc3N4C8N0fv2PR1CSjeNntUaYmnEcWbc2mWRBOgVDu7XPv2f/wkc1mw74/sXINh1EW03Du2WxXDEFQKKMiw3DieNiTlfChUgosF01BFjV1KWC6fkRrxfl85vXr13z8+JGX3Q/UjRhIej+grRSH97d3HA4j3amjbh3no9x7w/lEs3JYqwm7XXkuFa66p21XGFsRU2a5vkHlLE7GUyGtNM7VdOcTGkvwCeMEMe6HjjRG7HoNTIuc8PGUElXRp6cnTFPRLJb0fc+pH8r31XPYH1GaeRF3tiEmjdLQ90di2fykrGmbDSGOxKjohrNwenRLbTRtU5XnBLSqhBPqB6xSqDBxFDU5U1zYZdF12kgxYQQNCwnZyRML+j2h4hIYqovDrtbglJM/XaauKny4bNRmQi6RcUh0fWAc/cWEtBScVhtSXZRqKpUNpog/BIUpiD1QWYMzwvnJVq5JSKJaTTldNmk/N/f7C9yZz36PPHfybwv/ryzh12awGnPFxxTCby5f+oT0XAqTknWV82woKDFB6i8WO3/pmNTPyNEKURCbqVBDzZEPajIZvDpRmw2xFFqRIlgxQpbOZOH9TCNLuRuRNUllJfeByn9WJE7uzDAVreqqWLsif6OxKc+mkP/c+FLsXI3TeURnLcF2U/WYE86K90uG0sDKGK0JM/JxdbGzkn4H8pDoEj4ZozgH+/IQRi/OyRo9p7tqDMZYcg6SIDupoaxIH7UB5paVnglqOV88ICQSIl89hLlk74gyicm9OKdLEJs25ebS5CQERImEKDu0MBJCYgiBGBQhJ9lBlh1T7TTOTREMUtzgJJywWS6o67p4oxiycoRyDFNYqB8HxnEUx0ytMMHgTMZdKcJMcfgdvajBQvakPJKDR+VIU6z/62aBTx6s5XAc8IczShlqazAmUlk3K0AqayFnusOeIYuEX2eB2W9vat682pCyoDXPL0deXs4MQfKYbm9avv7lhvVqgVKNqNDK+356fM+PHw7c3z/w7u0DxhgqtySExI8/fcfvfvc72qWgJf+n//g33NxsuLm5Yble4JqW87nn8fnIx6cjysh1/c1v3tHWFkPm5eWFx8cddbvCtXd8etlzPHe8eyMJ6b/6lcYYxXK9wmjHbrejcoZ6Yei6jqpqhDQLoCI5wph6qqZhdXPL0/OOqq5YrVZs1yuqUnRPmTdjGDidTrSNo64FldnvzrLjbuR420bRVAsOXcfTpwNd17Foljx9OpD8OLem7h82/PTTIw/3b6gWDe8fn7DUHJ72rNYLahtZlPdcBsO5H6A7s64cLiUaJa3Fhal4eXmZbU6a5YYQRj49dVgbyKsly9U91rUkkxmGgaLQFq+hRUtd1wzBc3t7xx++/wlyoF5E2tVyVuWF4Lh/uEW/ltgBjSLGzGG3JykvBP9WDuLlZU/Omu48sFi0HI8nuu6EczXW1nPBWZdgzu3tA8SIOkZUDgx+xFoH1s7Pd13JvJCUkiDbbGnamqjFs0mbmqaW5+un738glNR1Y6TZFWLGNg21qjidj5dFOgbaRc3hFNDG4OqW5AOVzjTO0DR1QZpAW3NBNVISl12liFlwnKl1o7Ul6kTOXgi+WfyJcoJsNS7XmPLMGO1wJs/Ko4QUdsY2oCLGNpg4LZ6amBXeR1zWVKnGZ4fPZ1QeyFniKEAQBbwnjF6sQsrcWNc1lTZkrRlLyysrackYa0TqrhQ6WnyCkPRMLs65zL1KpPKQytwmyIeQsCeS7iSpnvtYF5qzAqWvix39mbyboq6akQ2ukJOpfZUvbawJ1fmsgrn6d9cE5elnE3oEFGuUS4THdPyfE6gLiqc1pEnFUwrPYn8ggdmJqzrucp9lKYh1QWlMIXNPQaCXTFTBdCS1Q/3sGC7FWtKKf6Hy/AtB+cv4Mr6ML+PL+DK+jH/b4wuyczWGPuDMQMyGxsiuyyiKRw7lP+HhaGWI0gP6TE4oKE0kZi1cLJVIUZGCJocik0QAlpwsIWfiDOlKy0rnCmetGE4BWRXfgejFaCpS+uSfV+nTEPjZEGIgTjwbL7JxXXYaWmWMtXJ+xmJ06f2qLCRn1EwIHIOj857BK0KU3UtMwlFqrKVqHa2TW8kYV3x9FNZUWCpMdiRnMUUOaqb8Fa3m9p5RAkfqJD1qZy3oyFi8hjofSSGgtMjpU0hk43CtRbcX4twQPP0oklZlHMvlAqel5ZV1ZMiJ1WJyBw2ksbTfyFSVoWlaYvScw5FzlymmrYxDomoXNDlRu4aH21doteD5uaeuZRfbl9wzrTV//x/+iqpqGIaR/cuBnE/snp5Q2vM//J//A+1ScrSUMux2O/b7I2hD7TXn/REdA7/+9s2ct5XygCJx3B9Zrhe8/uYbmsUC3we290u0BVN6r7XSjL4nBM+hOzAOgb5LmEOgbWucSYVLITljzjWopPDe48MTr+4rNqs1db3Ap0R3GsqxZuFCuZakNZ2PwtGqHF998wZyNTtD9734CK1XC6weOZ5GfvjxA7/65p5oFH4ovKls8N7yhz/+yN3tglebNX0/sF407A4H2oWbSY31eoHWmp9++sD97QM6ZtZtCdRUgXbVEHsh5x67M6umJmnHmBWj15y7gXPX8fVff4tbbPlUWoSnIbBpHU8vR1ZNzZu3d/x3rx7YHw7kJLwubUr7OXiOXaLvPce+4/7mlkormsWC02nP0EfqWhCQh1dvGPwZrTKH/SOg2W63VPWCYRjmXezx9CKtY7tiDAMpefwwYJwjq0zqB3RTuDXGoGwF1CSlsVUr7R0r7uanw5nTQa59u1rSnxNKJ6q6QieLTwptLKZSVM0S5abz6iTg/JQ5dh21rRnGgM6axlU4o0oLmhlZNkqTYxAZe+FhCNeitOGNIStLjL5IjgvnTVWQTMnZLEuQSRAiypjS2tFkJKU8U9ratp4/PxfDvabVLJqa9bJhHNecuyPej7NgIcZEGD39eSQHce9VVhGDwjjhATKFF8dMMgnlxCRPiMiUdHYhIMu8MbkHCxKRtSGGPLfkmNpRZS6QcWljUVqQgjtdzPRmHs2MXOhZii/vd5F3w+ets4u/zl/i7Ki/iOxcf+70p1Z65hkZpS+SeaStNQVkWyWImLZG8teMwRUxD0YTiXOAqnx2ec/5UwuCpBIK89kxXI4woTGz4760IvJsa6R08dv/wtn51w/vPd5LgTMOpdeqNKgBo0Q9YJT0KVMSlnxOijx/GVoedp/RyWNVsUCPEpWQSJeYemfAygThqMW9WBtyFiv4bJiLnalnbLGYOPF+NEpLey0Vp1igKCZENZWDwg+BMHpiLCTiyVlTCw+ospPzp2IOLpWqa+KMYQ3UTtHm6SEohD6jqaqKqrq03NLEureTE3ONq2tyzlS2AqVms0RJgRfFgx8QA0afyJUhIgRGXZxrayzBQA5RJhUldEhlIyYlcim2FgvHrTEMQwQjJNU+evDlfI2dHUTH/sQ4doifT8WY4Lh/IRaOTybj6lLwRRgxvHr9BkPmFCLnlx1NU9E0FRnYNstyaTW7Ty9o6xj8SAyKoQ/sXg503Ymxz3z9zQMgLRirKm42K1zVcjgc+OHHH7i9WWGN4nh8BOBwGBnHka++fs3NekXygeH5I7vTGa01X33zjrGTa/X++YXD/kSKA5UzvHp9w3azpgsjpy4QlSYMxYRRZ5I/8/TjR8LQsV0pFo0FfyKkntGP832w3mwxLuJjoqllQRpHjx8c51OiXXjWqxJDoTP9eaDbn3Ha8uu3G3at4unxE65uGAc51tV6wS9+8cDpeOb3372ncTWuSqysRbkK8ZMrxxrlPu184tR3dCpDimwWLU8vR5w23C+lnWmBxWKBJrNaLxh9D9ljK8fh6Yn13R3vvnoNwNP+yOB73rz7iqqynAePreTfd92AspqXY4kqiJFKR4bjGR16no87NpsNZrOmbVu6oUdVpQXuNIuqIceEDgGlNEPf8/Kyp26buT2YIyybivPuo7TXTE21uaU/nMgps1jXVKXldT7s2epbkrEsmjUxKFQyECK1sbyMe3IW3pKrIKUGosIHTe9P2MoWZ23Pcr2YE6PP+0CIslBpYziPA8oaPIkuRlbKkAqZWCuDQRFzIIZIiMPcyiBeyNQ+Z1LIjMGTtRhyGq0lHNZZghmpSgGTc6SyJQTZVihliUq4PWgjzu1qCvNssHUDWVOnJXU1EMKI9wOLvhYjxuI5NI4j3TigTWYYR8gZHcGohLaVFBPFI0yHAF7mv5Q1uhaCuNLC7YmTU76pSWQxMFUKk0WNNeWVZ9Ks3MqZuTCaycxaAbkUu9dLsCiZ1BQCXVpuKRvhDOU0k34/JwKn4twvnm8pp+JhM/eOyCmiCvn80raSEkRPxOucRRmY88yVVNqWYOypNTmZNYJRjpQCxooqKmuNSpCjF3VxKuemABUudI+sSWUN0fm6IASjhQKilIIivtGFepCmdpa5+NpBwqZ/WYPqS7FzNXwMDB7QGlcIt8YbtJJE15giWcuEm0iiSNAJVS52TKOgMFpjkiIbU1JdFVo5rFXYKfY+TbmvRemD7GVyLruJwu6HckNHMdNSOgkqow0pZ0QRLztbgBCDkJ/HsXBtRoLvCHEgh3CJwShEtpgSOYVCQE4FRVISBVE+X1tD1grnJEW8qmVSql1VJieDKUiYZLPIhGltc+k/qwRGKvjpehEjCsm/UVl4QVl7NEZUJyYzFBJpGD0Zyxlx66yqBZXVVLqQDydVR1IMYYCsGD34cQADrjLE6NmfesYiZ08+gFK0TUtlXCFmJ0K0+GQ5ngc2GyGG/uKvb7l780DdOCGBj56x94xdz/GlZ9G27EvO0A8//EDTLHj71VfklBn9QEiBet0w4qlWC+xkbFg1tOsNKWV++ukn9k9PPNxtcFqRCaybSRq84KcfH3n+1DMOisppjNHYxlBZQxhHfEE1GqfIS0Vtl7hKruX5fKYPGYXl5eXE99/9CIicu3IGU2tZaN0NZrnE1ZrlsmWrNe/fS7TDTz985O7uDmcU1ihMZbE5cxj2xKD58P6EK1EJrx+2LJdLjmHHh6dH2qbh/vaWxXbJYfeCc/J8HQ7vOe0qVqs13/7igcfHRwiKw25H1Sx42e2L6aOQjl+ej2xXm3JbRawznM8n0JmQA40pqedGMZBo2xpPYLEQjlR/PHN/f8/dcilKPmDhFNbWHI97lssli8WC0+nEYrHg4e5eDCEX8j2cD3tyHuR51lYQh7pGWcmEatsl2l7uRXRL21qenx45H4+4RtM0C5bL9ewYnOLAx0+PKKVYrTZisHc4cTrveHX/wNCfIMh7KmXoR0+yJ2xuUKZmGAeS1vTnjoTD+6JsiRMvELKSHbC1VlSVXqJfJh5OWLT4U8eiXdG2R567PZVWLNuGSnTAjCVTTvc9thZOxTiOpDAQvPBhhHJS5OghMw4D4+BnFakrc4atbCFmy3k5bTgZMY6sqsn2QpAdbQzK1Chd5hgtyLM2GmsM2jicM4ULZancwFgyyTrdoUxH5Rpy9IzjyNCd5bj7gjxwKSByEWMQEpU2KG0wuTj5yqxVCpiJz2IBUd6iS0r3Nb9k4tWUuKCsC9l2+rm62IGorCWuqJjoka54OMJP/kwhmwrn8RrDiaJ7AnXh+Uxmt/wMAZmUVnpiEWlBlSaER140oU1TgXHBZnIqPMwscz5JoXUkaY26yhITZMmW4k0+06A+K7zmAsyYGemZ7lmxXdGYcix5NpCdFHCBf8n4UuxcjRATIWVMSHP8gMdjqFAGoo5FYWVQKRIn1vxVuCe6QKNWrK11yVYRPxwz329TgaK1Fsl3jPz8O7uu3lHTw1EqYSWW4ylHQW0mlZcPhDiQgidFaefE5EuAZb5YuWuATAiRGAKUzJ9UCq5MxLlp15Vw2tG0lratsLUtE5eTc7MVtiwyWWlyMsVryJFiJuVIUAMpJ4gXQpkyxR0zKbJNaJ0oKSsyS6SIKS0B17YsjWOrE0pprBV1VIwS3HkugaH9OEBUGFthkicawDq6IbE7dPhhpKQ6UFUGZRWH85mTN7TNktX6hoVxRAWvXcu7t5JNtVpv8THw04cPPD298Pj4SPKJ+/tbyJ4hBZp1iYv45SvePNzTNg3L5WtCN3I4HHh8fEHnxHa7pT/Ljnr3fCT/9EgIntW6wejE0/NO7jGtOZWwyso67h+2gCaFTCDz9OkF6FmvV+zSJ25uxMH5pmnI6RXRD+x2O/qTl8k4Rs7djnQ6cdvKPdvUmRDPrKqG+2/e0TQVoDmce4YwQkwo5LzuHpo5yy0rh1YVSnmqKqMqeP3wisNRzusP37+namp++csHKnvPd3/6yGE3sr3Z8P5xz92NIDDrxRqFoT+f8TljqfHR09Q1wQ80TcP7j6fyHTQYY7h/uOXl9Mxp71FZs17cYsezuPF6KTg3iw22qqnqmptX93x6eaY2NeSB3/7hJ85D4ttvfwWAPo/EYaRZtIBGK8f9q7fsn1/4ePjI7XbLxGZu6poP7w+AITWGbn/G2kDbQrtYsly2WCvP2DgM+HFPd050Q0e9WNA2riyIiaEcq3GWh7dfU7klpEzX7xninkVrMSpw7E7opRTdVllCCJiqKXE0gaaqOQ4HjAqEoZ934UJ2TVhT0Y/iDO5cTYyJumo5+j11yUhbqjWNkyDc06njh+cnQpLdfm2dhKKWtSumQOol5sMPI2MMjGNgDIquDwzF1iAmRRjFIycbadUbZalrR105amdoi3dP7Sp0bem6gcqKMEFQ4wrjaioFcRJXkIg+oUxDNgmQ2BhBgiuMAVtygV2CrBSNi+QUGdQZ7ztslgKOiLhmI/NqIjOOI5UyJG0xTp7DxKWNFaVSkcuRIxhX5vUJkbiolhSC0sxlxrXUXGts8copLy4ePbEUBnlWJhWV+F8cUigoUooyx/I5rSERy4RfSL/T0Wg1i1Tkr2oWwJifFztzq+ly/LkUd3K/ldiHnKWbkfNsc3LteozOl5ZnLugYzBuE6bqAoErll7OX3GdeQ0oL6qc/Dyv9b40vBOUv48v4Mr6ML+PL+DL+TY8vyM7VGFKk8gaVAxO5RuVIzgPRJSimftLCTGR+li6bRIKonULN0JuR1Fxr0Kq40iGk4ykpV6GKJE8qZGb54KXiVsZijBMI2FqSKu6RqvR55yo6lY9IJCJZBchaeqPmklzs5mTxQMwBhSFlAypIe0Qb6ra0D5yiWbYsVksqV6OdRauKbBQKO0tg5VOFrKuMKfJRgTMjAkemEGeSnVGlFRc8OVsRbBqDKsnAVX2p8rWWfnMIhTuhIGQvZPAYqUovuVluyTlzOve41qGqzH6/Zxw8JitCDJwKtyUvGlaLlnc3D1SVSGurtqauHbqyxJDFkA44HI+cRy8uZRG+/fpXjLFjt3sm+sQvf/nt7Ip8Ph05Hc44rfnU7RmGgeE8ABltDY+PjwydnEfb1jy8usGYlv3xIG1JHPvdmXPfEQt5ctkucf2ZlHuG8cxy5aiqitf3r1ksVpxHz066WOxOHedTT44jXSeOu23dcDgcCH0HKrIqLtJWJ5qqwdoKssEPku20bGtyjrgK2sJFijFCBFtbYlDEbElo1tuWoet5fulnL5Kvvn7NYX/iH/7z97y6v+Or1/ccdntePj5R6xXfffcMwOuHe7wfqKsaHUaUNRx3J3zU2Kq43U7I6fHA/bbCRA9Bk5PF5kTrKj6dzzhlqevp3kqsWs3ge4xN/OpXv+Dx0w6cQUdNcorv3ksrb71es6wsdV3R9+KzxDiyXDVoE3nef2Ic5Z7ZrG/46pe/pu97Uu5Zr9d437FarOl85Pn5mbqSZ6GyFquhqi2b1Wv6fuDp5ZHVYonWlvV6C0AfAhhDVHA6HlAqs1it6Q6B4/Eo1g1lhJTECXgcOPTPxGTIWTGGEylHTi8vV3YNhsNxwKxEOu5Lq9q6BcFD3ayoakHYqDx62XI47KkbQ2srovf4MeJTxo8XCXJIgTAlyI9KUNPTwK6PvBzPnIvPTsyamKWdFU3AFCfcReVYVpaF1SyLZcWysVSNpm6cpKHXFavVgsWyoa5rYmyxJScuBzmPZBLaToIIQSzETULaXjLPAloRRo9SI8ZV1Is1+XQkpyAt+IKCxKAYg8dHOT9jTGnRV1TG4Iu4JEcRlaiJXE26+n/E22z2EhOEwhT0JuXMBG3rybtm+neiDZll92k6fgrlQZV+Fswoyuf/f/Gqgcvv5XNyMVy+eNhM7s1Ty+oa2VHF7yjbzwnAE7ViJlwnhS7UgovcfkJ4pn+XZgn+3J6cTAYLR+hijsvcpjJmQnbUfwPZkfea3Nj/ufGl2LkaY/CcNFQp4d0UOqcAR44R4+RGv7DDVYEoS2EEc1TEHOGglQTL/cwsaRpCGo6F1Hb1b656qcYYjKtmpZNCXdLHcxKL9NJKNQlSTHPEQxijhP+hhBw4BdAh7Z8xJmJUpChuqEolKpOhUugCuVbO0taO2knrytQNZImuMNqR9UV9oNLU45UICVGElYlyThsvJ2/EY0HrQipVWsjOGoLvS4uqcJGChHD6lLFKS9iel4dYa0sqxY6PwnWplm42Hsyj5RwHVPC41oiTMrDZLnn1cMNquUFXLSFEkoL96QznRNu2LApX4/nlwOkkHjWvH16RoseGjL255fbuTgqk6XpZQ05w2h8Zc+B8PIvRWoRFs2Qce27vJdqhbVsOxzNd53G24nQaWS1b7tYNr25XPBWn5Y+fPvL2q3fcb+9ZNG/Z3jQs2xXJO/puJJwPjGM/3VWEEHh52YtXzkZMD1dLR3O/ZNHW3N5uyj0s0R85O06nDtSAq4xc35jozwPDsSirNjXRB8Y4sr15ANMwell4lDXcPmxJpSg4nvY4lfn66y1dd+T5k9wP25UlxkTOcl37c49bOD4+v9BUlocH8SXqugFjLee+w5XiYRwHhmxorKiHKpd4OZ/pnn/kbtuwdI6xtFBMW1PfLLlvFzw9faLRmm+/vud0HtkdjyilqQuROEbP7jAyjCe2d7ckYLG8xQ89kTN1s+DuQe7RT4/P+Bi4v33g6Wnkww8/st0uqS1YralXzTyxD/5M5RR+yPg4EmPm9uEeg2F/PDAWc0vbCK+nH0/YSkj/OUTaZkPf9yyXi1ldJM+VxydD350wesXQezrfsVg0vHn91eyO/fTyCfGUcSTEbXqa8GOMLJqaeioglJHn1FqUdUWNJXqG82lA50QTpTAZYqDrPEPIHPrE4ynw6dRzGiPnMTKW59tHVYpfRVAlEgZNbTJW91ilWJaW37JytM6wqjVtY7jdtDzEQBhHKtfQNh7XyndQVQGXMlWVcIUDoq+UOcYoUlkoLaKSGvVISjJ3qc5B1vjhBCnPXj/agfWankxIspEKOUpxbfTsiaOzKeavcp5z8LKaFuXLfCjrvZQuwlWRDe9kEviZkmjisMw/F68fMoU0PZkpUojMeQ5+nobQe5F/O88GUoBNMRaf8WOUms9ffGskgshMLTlnZo6R8GXKx1PUdFy14X6mDr4+Lgq5nFnkUigg1y0pps+4cHXkn1yKHPnvqqjTimwvPKL/rfGl2LkaPiZUiKRwsbpWSRdGvKR555zQqSSU20LoujDB0EaKoemmJ8vCl3IxiJpsslPCKHE/zpNdvCn10+QiyqXCtbYqrHhh25MTBnnIsRrvy84hRVQUs71YXJqDTxiVIWa6ON10FzliSqkw+PMcS2HsxdBPayufK3WZyMPLg22MwSMPDjDfoKRisKWs7MDMn/eS42yGKMVbVhkfBjyJ5AdiGi7JumkUl2fvGZPCaQfakrFEBaaSxbM2Fo3I1PvzieNpL2ZzSrFatzRNw3YtSEXTNHTdiR9++IHz6Nls77h7/YY3b74ixA7fDexfBIFoXMPmV+/wY0SrRGMX2FQxDI5+3FFVK4wTXsX55UTXdVhdc+4HzseB/e6IUYrb+3vWmzXnohbRNlAvN4zpSFaKm4d7xv6EayqqWvO2vQXg3/3v/oa2bbHaMYwdcRw4dyMfPvzA44dP1AYe7m/Lfehxy4pXt285Ho+k4cDrV/dUdkXOmW4YybEUBTZS1ZbKVaxaSx8WItf1EIJnuV3MTqiKzHrdkow4WadCCo5hxDrH/vkwF9Ota6nWmhQDlQ3EJuB7Txd6jLKoomwxWaETvLq94Xn3wvPzM01TYT103YHVYsPjQaIlxqh5OYyE7Pl4MvghUeuGGAInNaAWsFnKfeCcw5qKMWXWt3cMOdP4yGq5xDaW7jxMKxFDn1hvb1gpSz9m9qeO3r9nuWi4v3vN2PWEEvOybFcM44n3P/2eh/s1za82dF1Hzieg4tPzeXbxvdne4dol4+nE+TiwWq1xrmEcOkJKtAVdw4qkt6mXGI0gywbsaou2FYfD8wXdsQ6ta9rVCtsqurOgYmnInLsenzKn/a5cL8/N/S0oxdB7FA3Hw4C2ocSpGGzhzKSoQYmoYLG8RVUfCJ2n85GFz3Sjpy/u613veToP7EbFUxc4jInzEAgT0j3lKQmpBZ0ntDoRU6LzEgugcmZXSMeNTRgNjcksHDwcOk4nz82yZ9lYlm1TOFUiqV+liXgri+6k7sGIqd90zxqEl0fWeILM1Uayvc5Hix86cpisFRRGB6yJhROZyNGL52+y5ClJPReT2Zmo/LOFnUsRY2eOixQtUQNGiWoJiKRLXiGT0WspnqDkIErho7Liz0ZB9nOZkz+zICnHYAAKzxOlpVOgFNip2HHz63WZ93WWDTtXhYag7BdU5XPJd9moZz2LZSZk5/PXpb/8uzwh+FqEOEoJb1H9vNC5vNeE+uc8/Pl1+QvjS7FzNcYUUaEQrVTZSaUsRYjW6KTRVm5Aq/RcjV6qUyWtqqxIMYs0XVOqfoHtpjtbSMdlEVESLzHDfxMEOfHItJ5Rn5QuuwhVquqU4yVgLYykGGQxC54cPamosMYrhrzc+wVw1ZrKaGxtcVYcm6vaURXyoq4cCUNMkpVCikUiKMGo2ti5yJmvib4UXzEnYlCfnQeAiiLXnKSNiigRFCqjTVVaV8XdNBrQmRQNOkeykXaeNppKWyi5OcFnzr3n6WXH7rDjeNpz3O+4Wy9YLAwqDbwc5LvtPvQkL1LZh1c3/PKX76jaDS/PBz5+ekRry81GXIkXyyVVWzEMA91pTxg93XBCo1gv13Lco1zb+80Dez3w/HLk8aln8BFlV4QcGNEs1htWN8v5vuvHQFMvGMeRMI7c3W4LidPgzEXm3x/2/PS843DqUEbz/LLHp8iibljdrBlKK3N/6CWnK2p+/P5PbG8WJCxtI46kMSuqVhbaCnFFPh92aAyLTcNye4PPci2VaZipfUpsA8auwznH3c2G5BOn04nQd9g7zWn/AsDL8UQOUfKSlIIUqIzluD8zjj0hXiblcAxsNhte375ijIE+Jp5OIxrL09MTq+I2nQ4ndqeRPortQ0xnNusFC9tSWStF0uTgvN7QrLbUbQNWJu797hkbRupKs1o3MwEyYzj2HlfV3D/c0rZLjucdMXoen07Udc2yFFE9Z85nRQzw+OnA/e0NPkAIEi2zXW1nGN5ay+l8RhtD3bZkpTh2Z+Lo8aFnGOQ+XK4ajFN05wMxJhpXEfxI8C+kscPHI8Mox3r78AvaZs3oA10/ogDvR6w1VOsVKQfSVESFgHGa8ynyvOuxrsbYSlzbcyagUEXtmFMoqtOKplnQti3nU89p9NQhM5zTLALYD5GX3rMLic4nkqgA0HiqykBR2llT2gwhCgUglzy+kPEZYlSzy8wxyPN/1prjkDj2sO8iN23FzbrhdjWyKkjYTQSUk81kk8jRobTIrceUMaaeURiDQWuFrQ22LHd1NFhlURlGVxFG2XgMwyD3ZsqgooglshD7Y0qEcrQxBpJ2aGtmldI0pnbSRU598d+RcOcJd5nm/jjjIUpd5ObynRRW8nWkxGxHEsU3p8jNcyH+Ri4FxHUhobUmqQn5KmRj5z4jIyul5nnVTMVLeUZsmbuvlVCfBVBf+d183rKS313Gnxc7n7fJrgq2/JcLnc98ga5CV/+58aXYuRoxRpIyeFW8K5BOi0oZk6c/L4hGmgqGfH3xLaCLnc3UeRWvGqXKrg1KMrm6pIXrqcepQH9e7ExftBQ5E9IUBNYMgTCMhKLs8KOYyY3jQAwD5EDMihgyIab5RnIWrM5oE6mdo2la2roRu3ulsJWdIyCSNqDF+8aWh0pp0FomHIX42QAo42bL8BQC2mVUSYKfmfdlIminAgmB5lPwhNALEpYCOWUmGyqlGnm464jOirpqcdrhkVTk8yQjVYqYM1YrGu1w1YrVTWa5qDEq0A1ntJEd4mb9gHKWuq5ZbZb0Hr774Q8SbbBuePPqlvVKFrmmafn0tOfx48di85Dw2fPytINHR9uuiR9l0nz/8SNZJ+7vt/zV376dpf1xjKxWK8b+TFPaB4vFCm0j67Uhe/H8ySqSCbzsBhYlBuP7H39L8gFtW7qz59PLC23dcLepubtf065qhrLzTmrJbnficNrz+qt7Hu5bVsuG2kqroveBWJCdXLw3rArkrElhgR81ymmckwBXhdwH/RDI2bFctGiVGEdRzqw3DUed6I6ednsj3+3KMh7PHPYD3aEjZDG2zCFiUBzPcq1c1ZBdzXcfP/Eq32GtZbFoePv6DR8+PNLWC3aFjBRjxRAyoc/ENOJUzcejp7GJbWt5Oh+4VdKeW9xZ2eUbS0iJZdNQ370ip0AYzyzqhmmZOR5H3j28JSRD9hlsZru8Z7c/YFfrUrSU43ULmlXidEgYC0lb6nrN4XAg5Z6cM27aJFjN8Xim6zqMTri6IiFtqkWzpJmeL5MZR4/JEacU/dAxDB069jhjWLkN9WRVYC2H/TPGWYiecQg4V+HHwKmXoOKhk6LE1o7oE+MYaNuWpl3i6gplnNgMRE0BobCmJhJBW6IfWDcNOzJdhOeTRxvYF67bxzAyBNl4aW1xNtE4SUVftxXWlXau0YWn4xhzQGtDQkJG92Pg2AXGcWr5SRhxSMJL6kPPkBynMXMYI4dz5KEvkThjIoVIHM7Ui0biMJyoP7MyGDNeDAiNQztDwlAXZDxiMe2CShn6vqcrik/0mTEklAeVOkgRRSDmTMiKUOaiiBNUJBez2Z8txNd/F88yVQz5mGOIJmRdz+VeoeRMraKsySmCEvsS4TPqz5AbQdFkmUglKFmVYilfm+0pKfZtQUqmTefEx5mQHa012RgxdM0aoxTKSEFky7qT9ZXsu3yG0lPhZq7WKTXTOwDyZCJYzv2fG3+psJnPZ0IOy0YqzzEi/9vjixrry/gyvowv48v4Mr6Mf9PjC7Lz2ZAgSo0StRSgjbQTk7oonyZSlimVLFcOkJPZky7tK+FwGVJSKH1JJxfzKulxx5zQ2aKskR6zUkK2MxNaYlFKyM25tBIykVAiIILv8YXAGILH+4GUw1xhm+whZ4y9KAGUgkrLzt21LVW7pF1usLVFKYUzeTYKlNcblKtEjWUN1jToWrxWMHp21tTKMvkyTETLGOPsrPxZl1fJbt8oRQieEHsxRQxjQR6u7c0dxjpaKyRHcba2EII4PDcF1cgBpSDEkWE4MQ4eZRwZQ0ya7c3dbFK32WyoFy0xRs79mfcfPjL0hWiYYOh7IeoC3333A973hXxe4b3i+NKz33k+HTsWi8Cv3t0D8O//5hcM+YTvxUH47uaOUfWMMdANntViwXZyGraamsDz047ufCYnxeF0llT15ZLf/vAHAM7nHqMytoF60fDNzdcMvefQeZ5+/0i7sNxstuW70mwWK755c896WdyDYyIbRQwjWksoLUDUjqptaDeGlCFkzZB6cqfEZykx79w0mbZuQDfijDsehAyrA5jAZtVw2O/l60oVfRzQGm7vVmQ8+13mw76jcjXLdgqOVSirqM0KSHRdh/eRRdOyWi3Y7c/oSnbpoRtR1pNVwsQsXLZs2Cxablct6809t2+Ft6SdLa2ugFGGEBLL5ZqnpxfuXn3N6XSCsiPc3GzZn8/c3T2gMvjoITjW6y3nYc/T4yc5b2C52MxcDqUkUNRpw3qzoutOQvYsDq9jEJL7er2WaINmgbI10SdC7IkTr8Np6tYSx/J+jaFZrDFI7HBKAVvM/8Yxoqho2i2ZjqjOhJjYHfdYlPBByvu21ZKsHduHlhAVxi3QymKMmCFaU2ELyqlVRVIJs3DYVUe9/Ei9NOz9SBdGQlAcStvNZ7Ams2g0i0rT2Iq60rSLBVUNTTEKrJzBWencp5CLpijik+LYBY5douuLueQ5sB893QjDmPFj4hwzaUh0fuDQR/al3fTcd9x2PXeHhuWqYrNsWLRLFm0j5oI1pKKccsagEZQiZo1STvy8lCa3YFWmLYaN1jRUruHkXhiHhhQiYwpgrAQ5XymhVEziuyZewmgt87siCYJ/haoIEp9R5spM0IjARF/jDbpiDlfNWdA7BOmaEtGn9cPqC8ozKaGkG2D+DBVhXkcKaq9E6CLIjhgmyrPoyFq8b1wx98t6QoJsQXEuiquJEK6Mms/DYIi6YKYFwdEZcgk0nltTP0vvvCZ7/7ytNV8ePQl9rn8m1+dfMr4UO1dD54TJwiFx5XpaLex+udByu+syoU3pv9P3JjedpNbKQyUQJEkY5CpdvsiUhFk/5ZUYY7DGzv1dY8xsu661FGFCEk6khMhCB3FITiUOAkSWKUxi+TyDkI1zjsLKL58vZoeGylbUrqGpapqmwTXSi3ammguYrIurZZF56pJsbqqqyD7NxQiqKBGmBzOoINOBTn/en40KrXKRyINzNUopxtLbVirPJGmlHFpZQk445+Z2ntLg+57A5IYqLsHBK8Y+YpWlagyrZctq3dD3PRNTIMXIxw97nK3LOTrahSjOmtrhA7z/8B0A3bnn7n5L027w3hP8QFA1zdryt1+vWa1W2NKSPJ9PLJoVr+5f0Y87+uMjtml49+YWXSnG3hOKSV0cLC/7F3764UcWxrFcLrm9WXE8j/zP/+Uf5tZfW8Evf/EVD/dS0ISY2T2/0Bho71uMDWgt73k8d1jbELF8eHwPjDzcragrw3K7xJhb8iTfUw5ja7QVM8GqKDHk3tMk0bPIZyYxwZRWp2HsN0XafsZoRd8/E72YIHannugDrmrZ73csW8Ny1XIfM30XGWOZyKMljmJlf+wGbm62xLGjOx7IVgMG70thFsBREYO4ZtfOUDeKRVvhrGJhLW2ZuG82W6LOtIslnU8oW+FjZnNzwxg8q/WWHCf5rGZdwXF/wLjpHIFc4WzN/d1rYmkRPj4+UTlFdx7ZbrcoMt1pR9vK86OUQZcWilaWc7fnsN9jrGwKGmvo/RlT2sAA+08HKteWyJiKRCaMvWxiho6hP1MV07W2XRJ8QrmKkDI5OcZhoDI1pMwff/cdX33zTj7fOpJW+D5Q1QuMVsXpWJGTol5XmKbMMclCTLTZsKoqtu2K53rND0hB7QnzsrxdGraLhs3S0liDteKEbBrZ4Ez+cM4ZKpvRBkjirhxTAiybEbpuZOjlnh195tB59p1ndx7YHT3nPtKFkS5r+ginQSba0znRnRLDcuBmUxM2EXXnqKuKuq7F6mNelCM5G/QkvNCGnAvPI8qBToRyYxRWK5yBc2cZujM6yiJvs8H7EjMTkxi2xtLOL4732nxukyHzlhUl1FT7zIaDPy9WyoKfM7a8dlrDK3vhscyb5enfJvXZ3yfuTFJX5nxlA62MLoWLmdcwSZs38+uE+2Nw+v/P3p+F3rbu+V3w5+lGM7t/t7rdnL3PqTpRq0IqMa8QBBFjBVMVvFCDEJtQJkFBiRDrQkhuQlAIREFURO9CLlQEIaJeRAskb/FC0DSUyRurOefUqd2v5t/OdozxdO/F7xljzrX2PufsSvOmEtYDi/Vv5n/MMUfzjN/z/X0bI3N5MclVZY5X+qh8GttIyuhCrDZS2JpcRDtjAaQELChDih01feYfRO7+YV+Pw6BI9ge4Lb4x3hY7J6PSCqvAKoUrcrbaGIxSk7X2KCt/nZx1HFLxKiDJRZ7FuZjCNRsleLlIMo2xchMaM/Flxip6cpXUeqqSY8xS4MQoURBxEOl6HPOmPGGIJC9k5BSKrbjS+BQJftykJqmKHCtsdtQICRnjcFVNZWv0iOzo6ui/UPq42tqJjK3N6eRyXH2M/WFrhfgMp8hPuZlNgCgPmGHoQTmsM1jXYMrNKfsrxZ+yhmEY6A4D3g9kAlkrZsUefug8D7sNh/UWoxNJe+pqxsXFBftuw6Hr0Fp4OLvtgaqdEaNnu5WH9Gre4pwjxIGb65vJ6+HJs6fUjSVEj48DVWP59tML6rrm408+Y3vzGeuCajw6u6A9W/D5Z5/h+zXP3ntGUJHN7gEGR05QlTljt91zfbsDt2T5+AzIfPrJR+x2Oy4WmmfPJL/p7Hwpq85Nx8PDA0PoOTs7w9SOEDLGrPDFzt9VQr4MPkN2zOcNfhCPn6grmvpscrzGOupqhnEtShl8OIhDL3Kck+qoq4JCmTneR5SSB8NstaSqW9YPCpMDte2olsXvyB7IOTP4PZk5u/UB3w300VPPWnalgDlsBS3rdztMU3N3u2Y+awhJ0Q2eZnWF7l7K59JgcFzf3UrhrxWLekUioq1D2cRucw+ADwNPP/gW2TTMZ1K4a4yoVmxZDIwmsSljraWpLTe3X1AZy3pIWFOTlRTWo3rOOsd6veVsdUXn97R1RTNbcXN7jcqe1WqFKuqQEA44Zzk7O2O/7xh2B6qqorGOzXrLUEQQWWVMpQh+wHeexWLO5mELeWA+q7Cqme6DEAbQDt/33K+3ZIUU2nbF7e21FLNFYdUNfVmMZHLyJKVQ2rDZb3GukjmoUEaSBowmB4VxFlc11LM5ttqih0BrDKviu3W2UFwuaxbLiso5kpYFkDKCqE2cCo0g4RqseZ3MOmsUZ/PZFJkRE+wHz3q/Z3sYuLk/cHPnuVv37IfILkR6NSIdnpSFM6SUKDMX85441KTGAfVrc3NKItMWxCVT2RKmjC1I97GAMGpE8yXawRbEvFVqKor6mOkHJUVPjqINsUCqpsJgevsTEu2XFUyvP+wnB5v8ul9NUkeE/c0CaXpdOm5/5HZOJOnRyuSkaNHKSrFjhKwtu6rIFgnf1BqTxyQAPfFzjovao1oKndGloBJkJ0yI+Ph5xmJnVJ5lrb5U5Lw5TlGeNxGfaX/Rkqr9NcbXKnb+i//iv/haGzsdf+SP/BGWy+Vv+u/+QQ5rtPzTGltuWGsUzmisK9kcurDmSUwq7pNtKB2F6JkUOWmykQtFa4VScVJuaZPJJVy0KsXC0aJbLlajJsjomMsSIjlGoh+kkCrqrFjULUMf6PuBEAIawxAiQ9SEDD7rKQSzsgZVO9yipVktaOYr3GyGqSu0a7BNiysrVGNVQZTGIgaMyhKpkcXGPZebYHzdJFdUoEyeUKLJIwimCUAC/7SYFTohO49S+/E9QxiIGfrtQdpiOZS4ipbkE10nxcrm/oHhsEblHZWFdnFGM3PcPdwyhESICl0e9O18jq0a+v6AdRL8aLTh4WFNXRmePX38+s2WYeh6XG1Zzhconei7PXVl2a4j7UyKgqQt3/voY3w/cPXoko8+veWd99/Fmpp529IdDlw/lwf4drvHNS3vv/OUbtix2665vFiwmls0hmWR2/aHgZcvbnHGMm8dj+cNq9WKfRfwXrKffAmv3e2GMikFFquG89WcWVOjdJaVL1OnBaUNIXoOocfaMcrATOR2ozMpFrdCImRF3weMsYRwoGkaZrOK9cOe4JWo0oDZfIU2sNloYlBYq9ne7bj/Yssubpk8xFQgBFHQ2WwYQhK5ettyvzkQH25QSiBwrRR3mwe64FA5MKsNVkNjK3IKdN2BWSvndhg6tusHVo8cwzBwefUEa+ZCyo2dWJH5Tbm+4XA4oLVm1q744osXLM7POb84J4TAZrPDF3lyjJHHT8457Pdst3tyiNSV4dHjS6yy7Pf7afINfc92faCpW5yrub3fMvjEo6fPePS4norjzu/puj3O1RwOe6Lf46ym20e293tMrTClDTxfrtjvOrpuz3I5Z75c4WPk+vqaIUewhn2RyYddZDab0fU9sQrUc02IkWEYaOq5oFVuJNJGUBbtalyzxM4eMI2lrmDeKpa14XwlC4pFq2lnjnZWoasaYx1JaZhQgHJqlRLCfRZUxzlJHB/RB6OrCbkFzSIkVp0E3l6eHbhcHHj+as2rh577h8OUZZaTRmd5oFo9SKG63mGtRlcO4/w034xzqARmxxIDJGGcKr1egEhhKAhnajOg8K4TVaGK2PKk1kkQaXxiiBKBg0XmbVOOQykg5LhoEbiUAkGOd3lP9VUP/WP7ByCcqJuOr32jaEpF1crrBc74d+MCnSwFztiyUiXUVf7EiGmuUhhtBTUxRxuUsbsxbnPKyXqj2DHGvobs6MxJsfO6WndEuL6q8Dn+7CiseRPpUUkRTtCmHza+VrHzJ/7En+D9998/uTB/+Pjkk0/4F//Ff/EfumLn7Xg73o634+14O96Of/TG125j/bW/9td48uTJ13rtP6xFjlICY1otFTeMbalUzO3M0TcEUHlEMY5FoNIOMqScCDrgsgaj0FrQjajHVYRD4bC2wppRqndMAh1TyWWIQV9K4owbBi8k5RhJQZKNh6H0vkMmJEhYojZkZzFOobOisYq6yF0Xs5rFvGW+nNE0DVWxjndNQ1W3pQ9bIEtTzBDH8LYTjpJU8+pIfE7y+0R+raWVc2IoYYScQJwxCodA69E8UTx7claEmCe+xuA90QcyHqccxkpoIzFx2G3ZFn+XOHQSTJktZ8sFSinutwf2h4DSmsdP3uHsfFHeXbPbH3h5fS9OxusBhazwz1ePaNuWh4cHAK5fvUTpSNM0zNtzjHF0hx3DMHA47Ghax644GH/0+Ue01YyzszMOQ8/yfEXTtKSc2e12bDcbnr+8BqCqGgzw6vqa/WHNcr5A60TvE7NFy6HwBJ7fvGJez5mfLXFGM1/W9DHz+YubsorM9AdBKrRKnJ2tUNmznC2oqharakzlxHRSC1lyPP5iZqZKe64mhkQKCWcasgqEwldh2IA2pJDpu4RRlk23p2pq4aTZPHJ+ubld09Q17awhhUByFTlVrLYdfd9PPjvz+ZyXtw9gDAef0Mqxi9AdAqZpIWa2xcG5j5ldVHQRau2IUbHZ9ZiYiI2mnS2YXYovkqsqUBXBK5rZjDgodKtJSqwUlE40elGugoQfil9QTlSzBcY23N7eM5vN6PuB8zMhPh/6Pff391xenHF1dc7dzQ3eR1KCgY6qaViUhPUYPfcPN/S9pG2/++57+Jz49NNPJVF+IfPkbNYQY2Z9vybGxN1hy+NHl3zjm98iRQ9EIZkjK/i6brGuQZmGGIQjGFJEG4NWM2Zzkd8HN9AdeqDGmrnwtDI0sxk4Q0hxgg+0toKYYKhsLcnsTcuskvt71hrmrTwumrnGVU5sC4wBZ5DkA0kGH+dOkiDSqvATex9xukLbWjiI2k6JndYoZq2iqQ05z1jMWhbtlrqBpt3gTOD+Xo5B8Ik+JA4+89BH7D6i1xHtDKoS3qNalH1tLDoXfkxSJBVPODOjx1eZcwGlJSrHZ2kHowxKB1L2mKP7H6hMVD3RJzIGYQtKLII6IQlPbvojb2b6d2wHjWNyJ57m/YKAFQ+115Gd4xyq1ElsUR5Jw6///rT9NDrxj87E5sTQL1vZN1s4OyNaNyI7Y8tvRHGUUiTzZhsrFSrHD0Z2RuNAeN2U8QchPPLc+QoisuGYaPAjxtcqdv70n/7TLBaLH/3CMv7Un/pTXF5efu3X/1YZRhsqKwnlUxvrhCwvxzSVNpW4HmuOF2dSYs6V0aisiEm4DVlJH1sZhdFHSFIKoCjFUcoTU18XT57TMRY6PojxVc4RgiQKh0FckmW7RtK8lRHfDAqTHo2uFG1RtszamlnTYpya0oWrqsJYK4WHgtH0MBf/h3Gn0sjeV1omWH3q/zCqDMqDdCSBksTUzJip9w2JupL+urS2kiQMF1v0nI8ku7quwVVywWd5qHZdx2G3Z7e5w3t5IGod6Q87Qgi8fHUnb+MUdVtzfvFIyOfFB2Wz2XB/vxan20o8N+5uNjx+dIlzTtpgjezrcmFZnF2yXJyTovinfPHFC2IUvkfwme29tNJSD4/fuWS5XBJNREXF/f0dzjiwjucv7qc+/NnFOTnv6PueyrZoXTF0B+q6xZkKU/o9P/HbfoL5fMEXn3/Gw3rNficQ/dlMfILQcXLZbVpH28yZNZUUU0pLEW4NmBpiYJhM/YK4tCZpE/khsdse6PZ72rplsVzSNnK8uu6AijLpqDgwAr3r+zWQGXpPVfgitrbsDwdCcFjdkvWAMYqqrukPHSGUCdzVNM2KTZ/IEbY+kcnY2qKjFki8KKEebm7ps0Jph1Uwa2ZyrzhDtaxZPrrAlDaWq1p8VlTNgpgU+/1Aa4KcqxDwMeDKw6t2FbZqqGLGxAhZ42Pg4uySu9t7nK25f5Dr6+nTxwxNy2Z9z2az4WyxZLO9x1aOylbs93u+2Erm1tXVJY+unrLdbtnv92x3dyyWFzx79oz7m1uur+/LxAJVVbE6X6G15vbW8N3v/jr7zZaz1ZIYPXXJsOq9JwawSU5nM2u5u75lVjlqI0KG3U5S4uvZDKI85IcUMR7EJdkRfY+qKmJ50ldlDhIFacQ5x2w2Y1Y3OKupXOHjANkokhWCay7mqvIAFSfoMXk7ZU+KSB7eqCrDUGfZhlJ6etC6ZFF1xtYznBEfraZppGBuhOf0uZJi/m7t6XrPzkdMpzDKo1NHpfZoY3G2nQxRq6oUYUrDpJQVNS0UIUiZz2KM0toi0TSGvvBbcgzE1JHGoj8nMFJ0YhOpZMSh5cGrlWXKehrjgwpXUetj0SO//7Lr8bR4HpUvhcj+Jk8HjuTjN7dxNDXkSC5W+TVlVdZigjt+ftAkk/6uih2dNeprFDvk9AOLHZ2PC+mUpJjPHH3nvnQMvoI7+1Xjaxc7v5nxJ//kn/xNvf63yrBaCheNOq5OQFYo+fhv7I8eaVFHx8eU5CYWBn6W860TWVmyVpOdvlguCXqSUnjtZKeoMIZiqodwdnLCh3Cs4NNIQI6FWDfevHpSXRkqKSJSRKlAChmv5Yb1PuFrjdYtUSG8GSX7JFZgdurl5jEBIqWJbzPeNFNrs+y/0UeJpFbFcbrcJBPxWo+cnTj1mXOR5scYid6Xnr6euCU5WzAQ/YHtbkvfeWIYCLFHKQ9ZkK3dRtAWrTWqMlxdXeGqmpSScHKM4e5GiqDNZsPl5TnWOm7v19ze3kOKhJwwznK3WfNQsqmapoWg+OLTL9gdPKDofOTi4oKLiws++eQz/CDH4MMPv8H5ec3FZUs/RD79+DN0BrtYcX/7CkPC98LXsKwwpqaeNWwGzfc+fs7mYc23v/VNPvjWu9Okdbd+4OaLBx4eduy3W5zqaBw8Oj/jvF2yPFtRVSPHygIWrMG5mhSikLuVRqWEz4lYiJcRD8qQkyMmiUqZ1YocMins6Ho9ZS0d9vuJnOyHHh870Ja2adlutyhlJgXJbLagrT377Y7B95hKTCnnqzm+D0Qjq/RusNyvNxy8pssetOTAqZBxLmHRpF7ev1IOVxm89yycwerMvDEsZi1WabYPHe3sHIB6scAl+PSjj6FyvPv+N9FaXHKts2jrjlliIaCscC1qWwuPQmf22w1Pnj4m+ExV9mGzPrDb3YrE2bR89/u/wePHV2x2O85XhrPzczYbeTg9PHgWS0fAsO8HFIZXrz7m7OyCy8tL+qIWePnqhvVmh7aK7XrNrKl49uwZ/WHPfcicX1xQueK4bcXFu2ocCliv71EajK7oDjv61E8Bo31UZOWYzS273Y7sM4vFClXmFqv1JL+POqOMQZMwyYi6SkHTVLgEtjLYwqpXWjh2WWm01Yh4MiE6jDwR5cMwSKETpZAIKYFPdFVAOSlKTCX3jLeSS1dXDoUWo8BKU1lLbRQzZcUUEKjdhucPkW4I7AKoPagYaayjbivm84H5XOa5KiRqm4VvWYqMMaNLChEn5n0U6XWI5AwpCBdI1EUGFTWxzFvWePCJPkQqUsnl00SlZXGizCSPNkqEHMfMxDGGYYzi0V9R7KjXCoApI+oN1EMKgqPJ35vbmJS3J+KSkWwsH0SKHTNVEZpsRVKuteQojtJz0LzJ2dF5NBrMU/EDwkcd1VlQkL2TYkcKmtftWr5EuH7j+zcLuumzluf11xn/QNVYv/iLv8h/8p/8J/z1v/7X+eKLL/iLf/Ev8i/9S//S9Pt/69/6t/gLf+EvvPY3v//3/37+0l/6S9P3t7e3/Pv//r/P//K//C9orfmDf/AP8p//5//5bwqJGkdbNVgj8rkRrVFjQZnlQTzCkqfjtFCRi6OgIJLJIDlC5CLBk78xKokENItnzghZKmVI2pC0nh4cIBbl3ntCaSWllEhRPGxG10yQeIYUMzn7yR1Va8rNpqkK6bip5tR2gXNzbCWwuDY12Wiykf1XE6lYirusCom6TBxS/MiEPcG2wuAmieMExsjE2Ucv0sassOMKMQ1lO7J/IQSRjTr5fDGJQ6x8fmkVdP1WPIVSIMYB7z2H/X4yajDGcXm5YHG2xFaOmBLKCvphleX65SvG1cnZ8pz9LmKtYTZbEGPkfnMHRvPp8+c8/+z55K9yeTnjk5efobXmbLGgqiqevXNF33k++ehjnDX8Ez/xLiAtQmMUL794yWdf3FO7hvNlAylTtw33L15xdi7IZ0iW+90e5xpiiFytVvzUT36bdlbz6sU1h4Os0pvaURvFsk1kHwlD5vLyiquLJU1rQQX6ksBosaDAWoPPmUSg67xcCEkR+p5UyJ6oHlQqq1aZkA8+0vU7tLYcfKBtS1taKTabDaie0A9TC7JqZiwWC7ouTi2nymqc1Sg9kFPm4aGj2/c0xpGNY7SU3243xNxjqgrfZVJQNMaBsZK2nQZSGNUqmawys9ZBinjfo1SLtZr5vEU7Q3fiDN3Mat5fneO15e5hzTAMPH30mFjs/Ofzs3LPBBIHjLPE7iAS7SSRKxJia6ai3lUGV11xc/sKO2uYL1a8evVSHNVT5vzMTZb6aMX3f+MFjx5dsTq7EjL36sDt7QPzoaVtRBW4WDbEUOO7xOXFUw7djrq2ODXD9x3X19e8974UUE4r6lmDz5lhGIgBKtdyGHrWuz3tYokr6rkw9Cxm0homKYZwAAPGVFOEy2TbbzQ5JYjiH2aUFLmz1hCyRVd6ctoVMcIxcjLrTCyLtBTUFHAa+0jyEmkRUsBHCFlaLK4BV0mYLghym7MlJwg2kyppI9Vzy0US5KcqZGpnNcoanl/v8D6ySxmtKmZ9oN33nB16uuIJVPcD2siibPSFkTlRCo5TFERrDUoTY8IiC7OgNSHoYp9hyzkwoCIh95MiTGuD0gajpX16LCgK+o0uitKScahP9oPx9npDbVTQkhF9O21djWNyKy7FgMlvfEZOip1RlFAKF4pCblqAFzWWytLWNKiTEM6xTXWKppwWO6VoypqgPWOuo+y1Prosp7GQKehf+vJnTycPPvn5SYfhzc+vju2/HzW+fPS+Yvzu3/27ubu7+3pbBP6Zf+af4bPPPvuRr9vtdvzO3/k7+a/+q//qB77mZ37mZ/jiiy+mf//9f//fv/b7f+Pf+Df423/7b/MLv/AL/K//6//KL/7iL/Lv/Dv/ztfe17fj7Xg73o634+14O/7RHl8L2fmlX/ol/u//+//+2jycX/qlX6Lvf3QS6c/+7M/ysz/7sz/0NXVd8+zZs6/83S//8i/zl/7SX+Kv/tW/yj/1T/1TAPyX/+V/yR/4A3+A//Q//U959913v/Lv+r5/bf9GCehytSzmV4kxuTWpTMhIuKYyGIkwF/i2/H06cYN0WkykjLUoDFYbjLJYLbGdY9pzLH1fCR2VtpZVNdY6XKmmwwgxxwhJY5UlpZ6cIplIzgmlk/TDyy4MIRG9JyUJuDTGoK3wcWxjaVrp/VeLGc1yUVCdGqsdGoUr+zt5GADoEls39VjlM4cgMlZnjt45upZsrKzNtKKKWaSY+oS4COCjELlzzgTvIUoOzTB6BuVATGPLq3A5TIVVmli4SzEeWLTQFk6DUsLj0ErR+QPWVPi+Z73dgzbUzQzbyOfabrcsSgL6MHSonHl6+YQnV894df0FTx5d0ZTV9xeffEyKgflqIcREldmuPf12j/YHVvMVi3nxAQme61dbcjY8e+cpi/mS2+s7PvvsBejE43eekYuH0WGIPHnnHYbDgeVqjjGKvu+5vbmnshY3r6Zr9vbmgZgOXJ0tWF08ZTVfYExNVc2xTY0tLqXamoK6DfR9Aq3JUZCQ6AMxZnY74T+Qe2atI0dZdfkhgtE8bLdgLMZatttCDA0Bqw3RH2Q7IdD1Hlcd2O87WfGWVVjfdei6xiiHIqBSRCdPd9ijU4A8hipGrK0YvPigkAMhDjRVDQQh956kUlMI8Y0zzKxi1rS0TYM1M5p2xqwVcu6h8/iguLg8p23mnC2fMPR7Xry64/LqnLquj7whpTDJUruG/eBpmpau67DGcNgPnJ+fc33z8XSPn5+fc3XxiBR73nn2iPW9tNZ0ZblbX3O2EjLzfrvj3fcec3tzTzufsd5tibFnvlhxfbvm4kKul2fvfINPP/2UqnHcP1yTgufp40c0F5Xwi1KPKmhoDMKDwWqUrji7WJES9OkVxmlsXR3TuaPHx0jtNM4ZQlbk4FE11NaRQsAXmXrVzEVCniM5DwRlOMRIn2MRDZhpu0GXcxEh+YyNHq2Fn5dCoi+BoeHQo3IkepmjYoBAR1aRgw9UbabNbZkSDIGET4k6NeQcWSqNs5ZmMcPHwHlxe1YmY5Twxj6/jfQeTEw87HsW+4rNds+skMSdK4ahxqKKxUdSJdcJJz5hU6tcEZWAxGJamkvbKUnLr1zbRjmhNlSVeB5lTcaJn4NxxaW6oCWTL5stpnwapez0s7G9P13fWZE58llG+w44StGn1/Ll70/bV9P/4zxu3vBxKwTt01ZYUum114hzf6FmKAWnQaBvtM7GYTn6AsmOC7ojnY8RoSnms1q4ma+1rXRJlE/je9uJOpJSOumkwKks/UeNr93G+umf/umvvdGvSxj6OuMv/+W/zJMnT7i4uOCf/+f/ef7j//g/5upKbPn/yl/5K5yfn0+FDsDv+32/D601/+f/+X/yL//L//JXbvPP/tk/y5/5M3/mSz9fNC3OOmLMDOUhG0Igp4RGTMhSAmcyKXhJvUWL2xlglUGbEhCnivOyVeLWXU7qiMWJyXGB9rTGWHHutdZNJ7U4X4ESzs7oYZOScORyibWQfvmIB6bJNEo5jatrUW9Yi6kr2rk83Nt2jtOVtNliIhInonBKY0xCKQjHnuxEspMrVmsJNVT5+P4jp0fg4EgMY2xFLmS/o19PKL8LQVp07g3yntE1tTPleCVC35Gcpzt4+v5ADIGUFI1rxzpMDPGUJuuE0hX9EBlCpG1b2maOqwzbw0hmVuz3W6y18vu2wQ8dn332Pfa+Z9Yu+dv/z6/Idn3PaqboDj1L09K0S2LW7Pqe3mfsAbZBimbfdyzmS5bLM55f33Fze8e+GzC14fHVBT/2Y+/jS3vu/v6e9eYVzx4/YdZYut0elQcqa+nCQKHWcOgUQ6yZt475bIHDorLF2Bm6EnO2XSctL23LMcxBjivczgQAAQAASURBVGfSpJTZ77fstwdpxRRYebcTt+KEoz8MxNChM3gSWlmqek4Ist3tdo9zBlNaHoftgdY1eB5I+54+RmxdkqUr2G22zFcXWFMR88BhyAwe4gDBF5I7Fjd6NvlETIaQApXzOKsJKZHKNGWcJhvISa5Va2pizPRdoKozlaux9gjdL5dn9L2nnWtC8linOTtfEkKg6zqcGyfl0s7JBqUtD9sNVVVRz2pu79ZYayc11u3tLZvtAaUyfujoekXdzjAuELOnqmaTJ09dOx7uNxjjCD4TfOTs/BKlMtEn/tbf+psAXD464yd/8if56KOPOFstsFpxc3PD+fJcVFgm0ZawyqwyMQ4kD3UzY9467u/XoALzecPQHaCWe1wpGPyBmBT90OGHgGkaQhARAYXQDMI6lNtSQ7ZHI9KoSPrEQA5ISZh9WmWyh04FiOI7liOycAF8SCQvxU6OkZzEUyuoKPNYEXzIxBFIyZBdjYoZk2sORjx7KoTAnVLhLeUK3nFkVYF94OXNltgH9oNm13keNnuapirnoKZyhugsyUp7FF24kVnIuMcGRy6JQFm+VqMuQ+ZydcKdSVTE3OGUxWKJypFyBu1K635ceLjXODTj3Hw0+DOv827y6OV20tb5msWOGou4N4ud8rukjgTosSV1Sog+5d+Mr5nm4pGMrF5/v9Mx7t+bPz9ycKSYhLGdBcLyQo7d9PqyoP4RKi35+evxET9sfK1i5/vf//7X2tjpeP/993/Tf/Pm+Jmf+Rn+lX/lX+Fb3/oW3/ve9/hTf+pP8bM/+7P8lb/yVzDG8Pz58y/J4a21XF5e8vz58x+43T/5J/8kP//zPz99v16v+cY3vsHQB6ypMEazqIopVHJSXOSMVrH0Ph0osQdXSuzF4XUi2fiAl5umpJVzJB2nBJQL3hYiqXMVRjuUHv/+y8ZRsaiREsde7emFZ60VwyzjcLWlmbWistIO01Q0JT25ck3h4SgpkLL8I1kyEGJ/JMiNLpp63A/1+kV4EoMRQkn4Hs0Ds6iVRJKphLB44rAMTEWToRDzprgCjhlOIWK0xvcDyQ/4rme7WWONoq4rfCmyrKuo5w0hJK7OLhmGQAiBuhaS8n6/5fbl8+l4tosLzi+fkJRnv91KKrqG5WzO5599UaS/UFcWYyKr5VzIlj3cbAe2u8BquUA7S1/4rttdpJkrPn7+nI8+fcUHH3zAk2XNk6sLNpsNv/b//RWGobgdNzXf+PB9ttstdzeJ6BPrzS1XV1f4QyJlKYrmrebJ1RlNpWmqGucs88USWy9xriLEHluS1HNM+P6ANYoUEzEgEv6caWc193friVuTc2Y4DMR44O7mnsFLYRjyANqQOTA+DHbrHcv5guW85u7uAZ8iVvUiF45bauc4FPn7clnTzGoyFSkf2O12+CFze/uAznYqivdDpM+ZhGbIEZ8VKoey7ZHIeURgtNGkFPFDQreO4CU6IwEff/oJj59KVMLTd95ltz1wdnHJ4Pe4uiJ6JiQ1KyTCoRyvIQdilDwwozT9sMO5muVqwcPD3STVr5oK7wcWiwU5Zx4eHqjrltViQQ4du81m4gsaDeiMtYa+H5jP51y/uuHpsycsl3OePpNF26Hf89FHH9E2DduHrZj1lQWPtZbFYsZ+L+errSsiEp1RL+eQREps9ZxedUS/p+/kQlzvd+ToWT8kNpsNVdMyW9SF75cw2k28jlwehBiJkpBzkZBEqDL3TUaUuoguMiELwuuHgA8SwZIL8TrFSD8kohcjVFF/a2JWqCwF45iRlEOkTQ7TKAYk06r3YvCqlCDFthDwGyzWVVhbSRHie17dDSQU+yGw7TzNRoww22pLXVkaVxFr4TiihfslnCMzIR9KJqMy2x7l3OMCcxxKKazWNE2DjRqfNAYnaLZyKCvcHADjCkIyclhUeqPYgR9U7Iw8nDeLl9Mx7vubRYjh9WJkVF+dqqggvVbEKmVIKnypADolI3PyPl8qvsrvfhChWIxZM0ct3A8ep4Kg1y1MXicvp5SEa/Y1xtcqdj788MOvtbG/1+MP/aE/NH39O37H7+Cnfuqn+PEf/3H+8l/+y/z0T//03/F267qeZLqn435zTz/ssKairaV9UVUVlXVYa1CGYjs+Vul5Ir6NI5WbJCszERVPc01SOc0J8aMYM7CckxWBQhFzIKRAKvLgEbRJBbXJNhXkJaOSmapmEDWWMQpTGVzTCLJTFUfiqp5ckZUx5OLdo7Um6dG6fESbxkQkGVqVoLskDxY1rghTKpPg+BnHcNPj38YYhRsbhGTsCtFR2dFNtNw8pYALRXWWoycUaKPvJMzSJ4/3HqUzy9WM2gkB09oSaKgttqqpG01WBm0hDR0vX97x6sVLQbjKqs/WNVlB53dUTmNUxB88JsPuYUOTYHG5ms7hxeWSGDKfvXrFfC7quourS1bLGUoZHravAOgG+PiLB6qq4hvf+ibExOYucv3xR6zOGurGcvFIik4fA69evGQ+X2Kt5nB4AJ3wYU9bGWw5VlVrqeuKqm6ZzRaYWnKbrHUysTmHLzlDISTIloftjt1+g86avu/ZPNzjfSTEzM2dPDwf9h3bnSQfxawYgifc7gkhsJwv2HcP00TjvWfeHjBG2p0kRY6eptboJHJlV5CVuM+k7Q5z01HXDdv9HqUMcUgMoZsImruc6bpMIBKVLrYLmewHhrFlbMo1ScbgsEZjcqauKpSSNourK965PJ/csZt2jlGWHBMhZGlRJKjrhv1+R06KrrsB4NHlFRlHbQ3bzUBWMJsvC/pT07YtQ1EYKaWoKnFlXl1eYeoFw8EToqGpHRpLX9y867pmsbISiBsTfe+ZzWY8/+IFT55ecPVYaAFDv2I+X7K+39DMVmy312gyvesnh93FvJDEc0FBXYNRlsF35Jxp6iXdITMM6+PCR0NIiv1hizGGWbsghkxQGeeEsG9NU17rUFoUeUprkjb4mFHWlsXOMbcPHUlKQQyEKIVA8uBDlMVOKXZyznQReh+lPYqgqVor3JDpkwcv24xeHlo5a2yWOUIpS61BmySFb5GTKzxNo2jaGmsh+p7BP7DfJ7pDYOc8lZFz0FhDM3O0bUsVPSEYaSUhEnSlMkpX4yQnQapGo2OUIivL/BWVIRX9rc6jWkmCMQ2WiCMhrX9V5mA5rmaSngMni9RTOfgxA3EsdsZrbZwgv7LQOfnZWMiMPz/93aSqHT3eJs8fQbVOix2p9Y5S9ImQPJKcx0Ij/+BW2g9yRD4dP6iYGX8n7ap48vXrrz/dRkrhB73Na+MfqmysH/uxH+PRo0d897vf5ad/+qd59uwZL1++fO01IQRub29/IM/nh40h9MTUozDsyzK9qhpmdUPbzmgbR2Xr6QJGx9dOeAhBnvlZI1lYiqzMFL+SUi6gHVK9Gy1tLiPbU1purlRaPV/lnaCd9IZ9SAQfJgO4cYU2Fk3OOaq2Eons2B5zx5XcOFJZ5qZUHpKx9OjtkYejiGitsEqJRLcUdCGn1wotkGgJnTVmkiqaUsB0RCIxpkmJo0v6rlGurGoiwyAtqhACKodJVmhdyXYKFoxFJYNKCXTGVeZEOWaIMeJ9xG86Dt2O7fqBlCPzWU1VNYKOAX4YqBtLrZKoT3LF3f2B+9sH6tpxcXE2pXOfrVZsNnfsdms+/OZ7wslSCmtaPvr0mhfPb0llX+tK8/67Vzx7eoWuHd/5lV9ls9ngrGH1+DHtrGIoWUuruqKd1eQIm3WHCgOLeY0xWSSc5XzZ2Yzl6oKmnpUiWVZm2fcMKbH3hwkt6nuPQXF3d8fDzTW+25OzZt3Bi+sHvI5s9jJB3GwHQrSEEnQYJOqWEA1212FUPCoTleWm9xinMCpS64xOmXowYhPQh4kHo7VmVjdYeqLfgRaWhDFGWh2jwkI5+tgTs6J2LTrL+esPA2ZWvFqKh5RzDq0Ubd3Q2AhhwM1mzOdnnJ2d0fmBupbisOs6Lh5dsdsemLkZdTUjkTnse9rFnGEYMGXyf3i4YzabEZNnPp+z229FoZWEI2Ntw2ix4mwFSuJJ9octs9mc5bzh+eefk1MFOU2eOPv9nqptCEpW4MMQpvvv5fUNVUky1yiGIXB2fsF3vvMdPvzwHfabNSFF6rrh7u6GRWk/N4207rQJhLgnhUxT1wQSmY62sagxf6+gy23bYK0jKcV+t6ddzEtenZnafqfz2JhnJ+0ERU6WjJ04fDHLtRej+ImlOJASqJjIMdOX55bPhj4m7veR7eaA046mhlndkJQiDkfpu83Qq4hiwGaDLSrBShtUbVDWoArPTVUSrFm7iqurJf3hMQ+byGf9A30MbLoeW9I0m7pjsT8wPxyom2Zq9RjjSisPzOjHJw51gveYshA0Dm0iJknRPB7X8ZiZkh6fVCWWRtmQC+dlfI1C4hlEhfW6skqUsj+42FFKkdPrLanTMRUY+qsLHHnNiNLkN74fX3OiCBtl5nn8eVloFFXyDythvhRS+hVy8jcLnNP/j6+LX/rdm39z+tqRd/ajxtdSY/1WGZ9++ik3Nze8845A1f/0P/1Pc39/z1//6399es3/8X/8H6SU+D2/5/f8g9rNt+PteDvejrfj7Xg7fguNf6DIzna75bvf/e70/fe//31+6Zd+icvLSy4vL/kzf+bP8Af/4B/k2bNnfO973+M//A//Q7797W/z+3//7wfgJ37iJ/iZn/kZ/u1/+9/mv/lv/hu89/zxP/7H+UN/6A/9QCXWDxshB3JUKJVIJX4hxI4wVAxDhx9aFosFs3aBqxzGWnLO2AJZaqVEuVVaQgL9woiExJAmZGf06zHGSF937J3nTEzCW9HmiAIhnXNyMEJMzhB8JGVJoa4KX6NpWtmmdhgr2x/7pylxTGrI4ilhJoZ+gTN1BiXEvSOyo6aqelIZKIVWsn3iSVCbFkQnFehV/BYSAWR/inV6OWAF4tXFbTlNgaY5ZyGGF8Qmxsx2u+YQOjSKlAOr+RznFCn6CSmJIdOFAWcbmnoBWfyKnj55QkoBTZp4OIdDgCA+PVo3fP7FK/aDp14ssQ4uHz8hRVk1vLx+wazVvP/BY7Qx+KhAWdbrLbv9Ax9+6xFP35G2xKy25BAJ/cDN8zvCIAZo7XzJ5uC5vV2zHK33FwtIivXDhtvbe6x1nC8uGNGyiwshxs4WM2ZtjdEO3x8khLI43ZJlhTwcBNnZb9fstgcedgfubvfcPqxZ7wOfP/TsPSR8MUIDHxQxREA8c0LKhBRQrkL5EvhaVoS1rYXB0Q9oFH2lcdqwPgw4YzDEiYORlGY7dLSugqSpnKAIwcs1lHw5zzrhbQat0VmRtJjUdYcDDFA7SyxEeastyWdCFnFAzpGYemxtOQw9TTtHm2OL9PrmDmsdv/Hxx7zz7D0ePX1G3c7phwNtW5PLdeCMJoQBqzUhelxVsd/1hJBQORPD8bqPMbM6m7PZbJhbS9/tCL3n8vKM7eaBvu+5ODuXczabcb9+YD6fUzmJ4VA28+TZEx4ettPNuNndc3P7wD/2277Nk6ePef7ihg+/8T4+9Oz3W5wV9+pxmwpLSplhELjJWg1BvE7aZn507wWGIWAaSwwZVKSyZuKvhawmJM7YhFYZk+W+dgpUFuVe1rE0aHSZJ6MoKpOgfiEGxhR65Sq0KS2bIbMfArcPiev7AaczyyZytrIsVU1tjsiB9oGZUUQd0UZafqMSKKmKqDR1URta26BVRCtF08559DjzbNuzOXTcrjv2IdAWAcD+ENmtB7q5Z5j1GK0ha6wF7TKm+OoA6GwFLc6afGKdb4yTKIhRTFp4h0opIdaKnBbnHEpXo2ZLtqk1evQmM/o1JIc8zvFHdE2hjwTlsX31ZlvrK74+5ezIZ9Ffes2I7Jy2rsbvp5FTOSfSYjvtRuWcj/SFk3bSaXI7yJMq5xM+1gkSI4ipbP/NVtXxNSdecidfA1+B7OQpkPtHjX+gxc5f+2t/jd/7e3/v9P1IGv65n/s5/uv/+r/mb/7Nv8lf+At/gfv7e959913+hX/hX+A/+o/+o9f4Nv/tf/vf8sf/+B/np3/6pydTwb+TlHZAJiNdvINL8aEKK9yrgYPOKANRJbIO2GQxSmOU9JKNLlbZdUnx1rqkoGdUIfWOqdBKW7Sp0MaVh78QemPMpBSLq2e5gFLGFKJgIuNTmAoMkTAqqjLBGEYC4XixiKogK4NJqkDQpXduxK1Wo6T9hCIR5aZIo5si2ELWzjHjfZh4PuN7gyKOF6MPQnq2hYNUXKXbti1k5uMEm06g1hFyT0kIcsYYMpGukC0H3xGjxxlJg3emxmpF7IdS7BQFiPfU8wWLxYLtriOlxKNHl2QUISS89zysb8r5coQ0cGVm7PbXNI3m2x8+nbgVfb/ni89fAHB5dcbF1RkYuLvboYylaRKrs4bf885PsJgt2R5kX29vHvj80xe0bUtKA1Vt+GD5Dq9e3fCrz5/z6OqcR2eS4dTOHC9f3nF9fcM7HzwWfgeKWbPg6uqKxgp3zDRCWu0OD+wPPd0gD5rddk8KkagUh4MUBa+e3/HpF9fc9J7Pbzbc7iJ90gxJuCs1zXTcQ/YooxiCTN6mtpiY0UmRk7AUxniQw9DhtMMag8ngDwGr5ZrUobR0S7FqXeIQBh4OB2rjcEPGGlE7qRxwxY03eI/PEbQ8NFUxc+uIxF7M6saHkS3FevCJXoFtDM4p7h6ueW/147TNGdVMjldKibatGfrA2eoCpQz36weWyyVN29J3h6kt0vcdTWsFtI/lPlYSfUBSVHXFw1aUdpLftuDJkyfc395wdnbGi5t7bl5d8+y9J/gY+PRziYv48MMP0dsHfu3XfoXf8Tt+JxeX51zfvmK73eLqlvv7e0Dcpt95RzhC3nuWqxUPmy1GJ5aLJbvNNbaW43XY7anrRriBUTMMHZVLDL2onubL2WSrUbmG7jCQk8FUjqASzjrGh9mh7yaOk63noMpckRMqleJHiZljJEpRg7QgFQgROSmGnNDKkJQBZSeSYfCBh23kbhvoektHxscoJFjryI0jjQ/yrFHeC6t7GDAaAp5ooDcapS1k+Vy5qqisJWmNcpl2lnh6dcbD/YZt5/FDnDLldvvAw+7A2e7AfN5SGYtSTlp9xgD+OM+VB7xKSi7jrEnqKBYZRRNJlZzCFAtFoRRlWWHRWCttK/lgIz9mlKAzLUDVZLZ30ko8JSh/qSg5jjd/br6kjjpZrI40GzXyYt587bGA+dL7TD8q7aQTLvBrKqg3W1c5k/KxnXrahpLCJRZT0vylYmb8pzLTa35QsZNSYvgaNjfwd1Ds/NzP/Rx/7I/9Mf7Zf/af/c3+6ZfGP/fP/XM/lMj0v/1v/9uP3Mbl5SX/3X/33/1d74sMkVSKp8zIKcjFY2L0g0nEIeJtJsZesnbSMe9KKSUsfWtxTiZ3mTxEKVXOP1prnG0w2pQKOhMzhOTxKZLicLzQkrDYc1bitpyCbJOMLU6XY7AcyM2ijTgga23RtsHZBpzBjNwWVfrIk7tnRuUisU9RUJ8JVSlcIK2mC3G8YWVbHFe+ORX5+lFxpXVZWaIgJ2Ip+OJ44ateLuoymaYcGPwgPjGDrGhTStRNjXUZUuCw29LtO3LyDIeevgSGWluhSOw2azCKxbImxsjDek1/GFiv11SleGtWDY2CrltTOUXO4lF0dfWIu/WG7330ObOVEEMfv/8tnE78xvd+DaPg/W+8Q7ZwOBw47Do+/eglt/dC+n1184BSimdPaqqqoq0qDocdJkd+4ic+YLmYsS0E4c8/+YKu33D5+BFWVcCMx4/foZ2vmDVuuj98zsRhwHuFj5bd9oEUI9u7DdfX1+wPPfuiXPvk+p67Q+DVvmOIGmsMMaeivMt0cZgk/VllyJG6rtBAXQlqGBPEoBhicYwFnJMQ0BACWEvKipwyGXFM1cZRaA0cAigSTmVi8jTa0A8eNfbjDyOh3pCTFNlRp4nIjk8kIxOiK8oWbRpSikRk5d9WDSklnjx5hh8S52dXdAWJq6qKbCyXjy/pdnt2ux2PVguGYWAYAov5UeFU144Yw0QYVUqxXC7pDx3touXh7o6zMykQ+87z/Plz5u2Cum5JIXN5ccGnux2ffvop7733HuuSo/X5559zdraksjV3d3dcXT7i0dUTYkwMMfD0saixbm5ecthrnj59yu3tLf1hSwqRy8tL7u7XzOqGMJJ+XSKmAR8Dxgl/aH9YC2eGjt0uYkoBk1Oicq74bSn2uwP1WUvygT5E0JFQiNfjyDpKiHFOsiBDlUJET1y3pEu0S64kYgRFUBqyLBi7sq/bw8D95sDhEAtKBocEWe1JJhLIzIrCipyFFxgiWvdUOhPRJOdI1uNPkGadDDmLmMMZIac/Pl+we3LJ3dpzd9cTS8aNT5quj6y3B2aLHVVtWTr7JZd8uRcoSldxoh+5LRNSoY4LRUDyE5MmI2KUUQat0BMhWduRiGxOri89FTOcFClS/Lxe7LwZJzGOUw7PVyl3yyeatitfmK94zVcXOZOiePSxKShkfgOtAabQZ4qXzkgYPhXmfImzE49FzZeKnSyWJGPMyA9FdoiE8Pep2Hl4eOD3/b7fx4cffsgf+SN/hJ/7uZ/jvffe+81u5rfkyFoVqFITGX1AlMQ3oAkJqnKAY+hAabyPr8HGWllS7KjqAKnCWj2REqsyOYOgCs7VE7yYcybkg1iDF3RjxE2zymWikfZQ7yO9TxI+F2WFMhpPWSu5VjlbIddVDdbWQqh1Fq2PpEgoF6QaL57iWaCsYDxlcstBwvFO4VRRoZUbrrJHNn0EbWW1b4whlbDSWIivKfqjmVsebypVVF0Z7wdCL6/p9vvjcTWZHD0JOGw3hBBoqoqQEj7rqY1nnBV7Ip1pqxlaa9b3a4auJ4XEajlnuZTVv9KZrttjjGG327FYrFidnXF3f8dHn77ggw8+4JsfSDt0v93wa9//ddra8O57T3nY7fiV732M0Q0pahpXc/7oKQCri0s0gegH7m5uQSXCsOPHfvybmMry6ouXhH0xXvOZ+cVjHr3zPvO5qHKWqzlaKfb7PXUhsUYvvkL73YH1+p71wx3392v2+8BHn73kbhjoyjL55UMPypJpqFzGmUDlNE5HaiMKi2rsJBpFzBnjUim2NV2X2HeeobQjx+FsS1Yw6INUuEkKKKuliE+KSbprjCUFTyyJ6n2QANikFTlrMiVmJAQpujOQEioP4sWSEyYrsBabjy0k8kBInvNVU5LDV7x6cc2H3/7Hedjcs7qUAkJrC87QtHPaxRz90PDr3/sNvvGNb9DUjvXthtl8VCJpUhhIyaOUoeu2NLWjaS1hGHj06BHX1yKEsHVF5aQxq3RFHyK77ZbV2Rl+6Ll9ectVKZDv79bcpQeW5+dEpbjbriXcc7kik1iuROl38egR169uiZ+94P13PuCTzz+iWrSQIx988AGb7T1jsLMi4aqa2HXsNx3zs3OcrdgPEZ92OKPIpe2XU4+zqpCQNVlLerprDH3fM4Qeo4VMvToLosxSjhgykRptW1C3YmSoFKY8LFP06KxJJLRC4mliZsgJj+PuIHPBi4eOzXYUG5SLKBp8p9gQ0HnALmWbtTL0OqGVwmrDoAJGWbwPGB9AayZQIRtmyhUvMYupHO0icnW54upqy27bTS2bqDQ+GboBum4ghEBQGWtF1m6K6gvE8ylqLTE8ZT+s0pgUCfTTQjUZJaIKrdDZkLMDCnKaAqePVaOlzTgWLsmMHjdyQoXuUMjK6U1F1dgKO8rQx/E6ofyrc6OOL37tv5PXpoLOnM7/BWkqraaxXMpFjDKqieXPyzGe5MJhes1oSQIl6oc8oTVjQTPaT6SUJouRU/Qn8tWtrJHULj9P+K+J7PymCcr/0//0P/HZZ5/x7/67/y7/w//wP/DNb36Tn/3Zn+V//B//xykw8O14O96Ot+PteDvejrfjt8r4O+LsPH78mJ//+Z/n53/+5/kbf+Nv8Of//J/nD//hP8xiseDf/Df/Tf69f+/f47f9tt/293pf/76PpalLyraenB5BpIkCP4pjcopS+OoofjOnRXUqZGI/RHLyRFeQnawx5ij7w2asHYnK0h6qckMiSQJ5StNKIudMMhZSJiqFcQkVMiqLbtJahysSaVtVuOLiqaqqmCQKYTmrY20rVXxZiRSinfhsSVr5+L4g/ibCCym9ZaNJ6SgrP/VI0Fkk9jknYh7T3BM5SmieHN3SwigyzBQzISfhbCiNa2qUd2h3RIy6/YaQstjym4pFMy9RFBsWq9VUte+7AVDU1ZyYFOv1ni5kqqbFLQXViKkQXnFUpmG3PVC5CoPh+fNrbm/ueO8bT7hczfjoo48AeLi54+xCbAi+eLHmO9/5fkHKDjx5esmHH34wmfoddgeuX7zk+vqe29tbzldLnj55xH63Jqw7yODmAt+/+/Q9rh4/oaprZssFjavoup7u8EBKgaGTY1RpOWpaZbyPPH95z6u7B15tOl6u99z3YeKgzFpH7RR1pWgqRWU1rbPUjWHZzKi1Ft8SQOkosD2RISZCH+gOkW5IeK942A/syiKmz4G9B1QkZkOIGacd2lVoJyvRCbVLEVPPUMQSeSAEz1S4Z+Ni0Cgtbqopky1kFCqCVVauc5VI5XyFoKgrQ12Jt5S1loxnNmvp+i1nF+fEJPuqtaWuWr744jnvvPuE89UZ6n3Fzc0tT59coCvN6CmVknDarDb03ZqcFYfDXu5LBWSNKn40Qx/pfc98ZnFthbGGZDLXL17wzQ/fQwGbtThOLy7O2G4HYk4c9h41c6Arru83tG3L59/5DQB+2z/xY7z3/jt895d/FWvg4uKMw2HHfr9ns9+xWl6Qy2rWh46mnrHvAlVjcLaY64VI26xoWjcZRsbUU9cVxjgJEQ6QoiIE2G17vO85K3nJCrF/iFlaL660vyj+Mq+1D1RZpVPM9rQlJoOPsB88Dxs5Xw+bA90hkpKeYIWMtK+7IaP3EjUDTPPU0Gc6MjpmrM4M+wDKU2MkkgHwOjLYjNFJSL/GYGctq8tznq0H1vc923WZa0qAcT94+s4Th1jaMieTtjppuRsAgyqIi1KaiFhaHEHO0uLJCGKuLT4qdIrS7sknrsxZBBkjx3GkBujCm0nmBKF5TS5+ivLkSehy+nt4XQZ/+v1XfX2KDk3zcj5FhY73xPSzdIK+fIWUHAqyk8ZjksW+IuWTbaTCvTu2pFIW7qcq8UwxHltfR97Ol5Eded/XycxfJ5oK/i4Jyl988QW/8Au/wC/8wi9gjOEP/IE/wN/6W3+Ln/zJn+TP/bk/x3/wH/wHfzeb///7WJ2tBP7M4uYKckD1eLFWFco6sI5sLMmKA/Ex4TVJRowOBDQpBbI/pqSHeIQmfdCE2IlzsDmm77rKYOJMHvLuFHiTlHPvDTlrtBUuilVK+DSlL2FtVbYlE5Yu6idljBQ7000hk45SlJ8FyTrJGchTwQOUyUCRTwyxTguckYQHQmIGaRGlHMghFsQvo1BoVWFscfrNo228l7R4JcZlGkNOPb7rp4lo3s7QWUzHSJEwDIQ4TD3tvjxkm6Zitlxxc3PDei1uvvPVUvK0iqNzKH40nd+x3h84X56Ts+eTTz6hD4Z33n0XPwx89PF3aAsp8Z2nc3yG67tbrq8lYmK2nPPe+8+YNRVp6Hl4uAdgfb/h5uUr9ocDs1lFVonr2y2LWYV1jqw83/4nZDFwdfUI7eaiogOG/oBWgboSo7YxUiQWZczD7R3f/43P+dWPX/LF7ZZNiDhneHI+Y1kyvx4tGtoqU80tZ2cttVMYBaYxLGYznDOT5aqPge7g2e/3hCETB09aZpI21HXD4CPXt3Ic7x46dh087AO7zrNDE4JnSIq2XlAby3ImLZyoYNnOmNctOURe3L9gt9uR+gMqKxiN3FKe4h80iaQ0vhDvc4jkFCanY6UzSXlcVaNL/EjdzpkvF6yWlxz6wPK8ZL+1MwbvOTtb8erlDRcXF1xeXtA0NTfX4rw+Flzbfk8Kgaa1GGNR0TB4UalFL8emmUvr8+XLa5ytOBx6QsqcrS64unzM3e0DH338gt/+2387tiptrPt7svZcrM5IoSNmePLsKYc+st3uWJdW5vMvXvLeu8949/33OOz2zBYtzpxxH+4xGHofWS3k/V20aGNompbKNQQVCDlMJptV3TAUU6Db29sSX5HxIWNNjVaWoRd+klWOSkvRPeUc5URKEWslTytnRSrpEtOzTh3/GRQ+SzJ3QtEPgUPxcDrs5ZpVWFDjwkcWjDEmDoeBdeH6VVWFMg5VO2wCQkL7iHU1JkqBn5UUslYbog0kHYhFzemUoq4djy+X3JzP2e+k4EtoQtZ0IdP1gW4IzH0kVZlkQCkhVwNknSGBUZKHpRBag9YaZSyMpoJJlaiecS4Vfo+1lpy08H7KOUhGTYKOsYCRa3083seWFkrOww9uSJ06Bavp/x9U4Jz+TAq8QgiepFuJ/KYbvkqy8ChFxchVzVmVNtSxhaTL38Q8tqgKHWMsjAp3Z4wGiTGeFDdHXqcocb9c7IT4ht/OCfeH6b3D379ix3vP//w//8/8+T//5/nf//f/nZ/6qZ/iT/yJP8G//q//66xKD/ov/sW/yB/9o3/0H7piR2lN7SpZFZbrQcAHhVEarKx2aicXNla/VoGjkgR+6iwFhhKHTUb0I4NVxxMsfeU0ydCFNCxumzlnjBn5D0JijiGgVMYoS1XLCTeKYgI4kuds4dS4kueiGFcZIZ5eKGm6gLRSKBUZ6x6DAmPkM0ORgGuyeaOnPPJ+OPadlSsXc8onpOOMqWtAY5SdlAopDcLxiQptLZTqv99vGLoOpTyVHtVridh3xDDQHXYSBKgUaEWKeXIaBs3dzR3r9Y55O6OqKgbf4xM4a4Wo7IX07H3Pk8cSKfHi5R1WVTy6WmKzh7jnYtFQFSLv+XLBzfUDae+x2nDx+IoPvvkeRisO+zuGYWDkyflDR+Ucj9uWzeFAO5/xxWfP8WHB02dP+Md/8se5vHpczldBCweJ6OiHAXIHKRDjMLWGN/2BFzf3fPbZLR89v+Oz+w1dClwuKs5XNc8eOS7Kg365aGhah7ZKFChOiM597NCANUeemU4WHyO2q4FEspZ27rBtZjGfYYzh0SN50F6/3LG9P3DzoNgeAreHwHoI7GPk0CWqegmTPNgRM7iq5erpJeePr/jss094/uJzdIzE0fU0Sy6W0YaYshDkC/ITi2Aglmt2CEJgzlnuK+dqXDWjma3IGBazM/ZFctzOK+AwRZHc3Nwwny+Yz2dcXF2y73ZUJRvL1hVd8ORk0LWmX2+oG8tu2Jf7UE2ck+V8wfZwYLVa4vuO7eaO2WLGNz94n9/49As++eIlF2cyD1au4dmTFt8PRC2ihdms4eJizi/9zb/Nj33r23K9DFtevrhltVowDAEfBEmdzcQ6oZnVo5KZ0HUkD9o4XN2g8sDDw4Z2fsbhMGCMoy2RMI8ePyYT2WweiDFiqhpUpO8PVFWFVxlTjy7vkZQCMY05eKrkF8kDUCExHYCs3HMhx6LIKpaHocSSjOqYPBQH7BPf+OK/Ts5S8HTFLmFj9xg3L6akFqs0AUVIkRA01qbXH45hIFiN9hqFxZpMXTlWy5onV0te3XTl2A70QVMZMdvs+55hCLTtibxZlwdtUkWsAWMRkQuvUGUlRTqjCqmoiKJHaYexEjOUsyGmo9v08eFdiM3j/FvmTvHBLyjUm4aBI3GaE5SE8bb5wQiO7P3Ja0txE39EsSOc0DD9TExxjwWG5DUeC42xuBmLHU0pUrIgNiMnJ8c0cXZymeOPiE0pfOLRdftUkfVVf1Niqafv/76psd555x1SSvxr/9q/xv/1f/1f/K7f9bu+9Jrf+3t/L+fn57/ZTf8DH/fbHbUdIKsS8ikP8aoUOUZrTDZyuyqFMuCcPaZNawnHe51cpgt8WODAIDfhKYN+CoTDkBMEijV92a+cAolIGCQqIYWIMmJDP8Yl6KIwOs1dGYuoMcld6SMUmZS43caUQAlfX6PIJoMaM6rKTWhkNamL4mJsVaCOaoDxwjaItDyk0b9DUekG5YTEN97ecgyk1TV6VuSUGA4dPnSEYQ8MxFLsdN2e2A/sdmsq5/BaEtC76NHK4YvnSD1TVHXL+++u6Pod2/WGvu9Zrc4YDh0Ptw+MobyXl1fc33d8//sf0TQznjxasKzh/NxgnUiBq5KifXe/Y7cNVM2SZxeOs7MzZs7w2Scf09QyiT1sBAE59D2Vq/F+oHIaqxTvv/8uj58+4xs/9gFtM2dffJxWsxpjR2JuwubEZrPnsL1Hhzi1/l7cbPib3/2MX/nshqAczim++fiSR0vDxbJivrDMF0VG3Frq2pFznKI3RG7bEGKU1ey4frSWajlDN4oYVLE0iNgqUjcOZxWzxbns66Nz9lvPo7s19zcbzu96Xt0euNl7DiHR9XvKaWC1WhFj5n79gNaWq+UZj86e8OphzXp9R1OKSJcTKWtyEkmAVhmnNCFGehTJMDn3YiVNOvhMAA5dj2ks7aJFGYNxGlMI3ffrB66urthut8xmM3LObLdbNps180VLXR9DQ0MIzGYzwuAJIdHOZ+y2d9KeSAdBSEux4ZyhTQ21q8hhoK4cQ38gZ8X7775D1w2TXUKOnn7rmc9aus2O+9sdbVvTzs9479kzHh7W5WNVuMrQtnNyVjRNxReffcbjq0uqtiFFj61lX4cscQ7kBEaQ1JA8VW3pun5q74FEY2itOBwOxOCpXEPlWtyQqapaglXVGHg8TMrRIFbAxd1cE5V6zWcmxkjGShGqIWpxHBhCpBsifTeu6EvrP49tmZPWjpYCcixkD4On7T2ts4BGG1eUqlr8xU7aLeJZJsrYbCg+QIoaqCvD+dmM8zMp/F+8Osjrs2UIib5k5cUYCSliFMcIhCgS+BQTuSy+VCqLuhgnYmxkVMYKmVlljVbSUjNaFLgj8D35l1EQFtG0w+ilw+stKJl3y99Oi8kvK6BOx2vqpPE1X1EATcGaY4HzJWRHkZFiZ/TCmXxw3iAdv4a4lDanLuTjkI8IDkCKkXSCzryG2hTfnXhS7JwWNqd/M/7TJ+hSzhnfv64o/EHjN13s/Gf/2X/Gv/qv/qs0TfMDX3N+fv53FB76drwdb8fb8Xa8HW/H2/H3evymi50//If/8N+P/fgtMXZdz2B8gWZLDgwZpwUhcc5Ru4qmtsyblqa1NE2DaUayp8WcoDzASYuqGPNNaerS85R8FVd8aoqj6Bt93RASPnr6rqPvD/hhwFWNoEWpkqDNOGYS2YJCuQLBi7FfjInjmkGGuCCrQpZDyHPlilATWAjRB0ChzXGlkQrfR1psHEljRaY45nPpLK2arBXBJ7zvpoo/E6eWm1KKPvT4mAkJTFUTBs/17T0Am82DyKadEGq9V2z2O9AVTetYXgh0P5vNSCpwe/1K3K+j5+JyRRwOPKxvWC4Njy/F6fjlzQ0Pa8+TJ09459E5RgVmrUO88QLzxYLNVo7rdtdxs7/j4uIKzADpwPd//WNW8wVGwYuXryZS+/nZEmfg0GdmiznLiyucWzBfnuPqFqUUZythhjqtJVk6Zrb7A747MPQHok988eKGF9eCFn3v+S2f323BGJ49nvH0suLxWc281cxmDfXs6MkzonnOWYR6nCW/SIs1pcJgygqtUop21qCrGb0XU8thGMixJyCtCWPLdTOzLFrD8txxddmy+GKN0wlzH9l2mV0M7LsHuZe2A22zwtRLHh4eSCHStjPef/c9Pk6RoRcSb7IaHZA2qsoC5adc7pkiQZ3yhDI5e7QyzGZzmnlLToKi1s2M+/t7Hj2TKBlrNdc3L1jMV2y3W87PL5jNBq6vrzkcDnjveXR5IfugE1Wl0AoeHtZyzSrHvhsIPtF1G1wJoZzP5yysJaee5XLOer1GGUvf97RtS7d94LzI35M23B0O9H7Lw90N3nte/tW/wT/5T/6/WC3nYksAdPFA38GTRxcsZg2b/ZonT64kQTxHjFLT6jVGj1LSErNGnN1r16DJOGs4OtQW59+cWa4ecXau8d7jfZRw46oixcjEAyl+SCHmyROmsrW0r70i5SPKmLJibCbklAlosrKkLLzEEMd5ovjERLGxUBNWrSAJCn30TdWCCkUIEXwULlDCipVG0qhU4LWoiREJePUao4z4Dmn5LHVjWC7kfN3c7sk5kLMrhNcS7FnQAxGPlH0gEKMp3JCIwgmBvjwL0rGvNJHtYxILhhR7VMpUlYHRUBCO7auTceo3c+qzM7axpgyy8dzk9CVU56taV6/9/wa3pez2sT31FRye0bdm/FnOYfr+1CtHPtfr7a1TsvGE7OTSHixtrBCCiGzKsY9ROHny/ZGzE0+4OrEgaoLwvE6Ul+s84Ye/T8jOP8rDFo+blBVxvLHJYiasFN5VeDMQvBW4Pzl0ypjRBrSqyPY0FV2T7BjSmV4ziFJKgXEorbGmFDtZg0pEhJtgxwIJTyBinEVHg83Cx8lZfDMGD7oQ/YxxVFWFcwlDNUGPMUaZcEbENkZySuK0nHPhQuRRTjZ9foCqPoaCgnh95OKwnLICdby5sz75utxY3nuBjcf217gdI71vRWboBw7dlnRiH975YeIirS7m6BSkZRil/WWtxjWO1dlictUOYaAbCpyvalKOmAx3d9dcntU4a9nu5CGznDcslktxHlYeULx8dcdqtaKeO9bbgeti/vfixSvef+8RTa3Z7/dc7ztA8fCw5v7hhiePHnN+IQXMw/0G5xpc3VIv51R1TTtf0M5qnFG0lUONBPiU0CrQDR1+2NN1e+5v77ldb/nVj275+MUdgCiijOK9xy3vPm5ZnTna1nB2tsRYsJWZTBkrJ0nouFIsx4yfjCk1IWbCdH1T2paefhBvXGVrknbEnHFmVIIAKaCztG9ny5an2pJJaJfZ7SN3+4FN4aSt+y2Hrqg96kzYZZTRvHf5lMt6yXc+lpiY3W4jxFAUMQ/klIkosgGVzXTvgLhoN8YQoscPGmcuMMYRA8SoWMzP8IUYenZ2houGh/Udi+UZu8Oepqp5/PgZQ79Ha9gVAvvqbM7QHbDWMm9rMRtU0k7qDx3WNKRiqrbbdqAys6aV+9EajLHc39+SYs/5+Zxf+7VfAeAf/8d+O3U7w/uIcjP2mzuadsH/+xf/P7z/4bsTx3HTRfr9gc8//5yrizOsBjF6dBx2O2btAl/iUITcGzFGYlCsmdFUNeSanMTleGwpC8E4UzwGiTlisiSIV7Vl2BkOB2kfNM1A04pYImWZu9r5DGMbYrcnBOFiABKJkz0oU5K0S2siaWkvjfWTUjinyFGMS1MCRZCiR8t7VE4Wh3UlMRMxa3zWYCuyMUQMubSGivZB2iWR0saK1MaKoU0+qvBmCzle1kHoPMk4YmWlBRrFwDUnJS21NKqx5F9GHtBZF8+cnIhFkwWIaWuSBaTCCG1ZieeZ9wGLp3Jy0IeQCj+zFDUnrf+xZTW1scprxqJkHMevXzfUe/P3b5J3x/ElI76TVpcUEcdiZypQSnsrZV/m49cTx8fiJuc8cXTE+T8JNSIfzQVTiGIaWp45Y3EzFjIxxsltOaVECieqrZN/o49PPvXZUeCHr2d587bYORnJiGJIoUmll62ySKNVyuQQyFFs1L0NhNrShYgujqEYqJQQcqeU8iQ925DTa31rrXWRWzpi9BjjsKqshIrx2hj5kZUW4jEBay2VdWUicYVUrI7xFqdcHSTjKhFF1ZRPq3zJ1IopFHM/ISSSdVFqHM0QYwx4n+hLIaJ1whlDKsaCOR7TnLGZFDLZaunZ5yLVR2NcjbXVNBl33b5MBIbg0+hKh0oRP0ScbWkLiXR/uMfohMmCcoWhp2oWLOcLlvPVdA5zVCTf4/vIsN/SVJbDeouK0n93pmLeyjY32wOHfotzNX0Hn376Cc+ePSKbGvSS3WHNi+f3ADx9/B4qWD799ec0leH8fMW+3/P8+XPOV3Pa+YyhEDht6wCLsTUoS/Aai2JR1RijJG+rLFKV0sTBk3tP9p7des93P3nFR1/c8Z1XD+RCFrlcNTy7mvP00Zyrs6ZwxTJ167CuKM3GyBBrqeuaIUdyyEDARAgpYHGFxyPvvw6Z3dBjrZdrD12KGvl9zEpcluWqJWswyqIsuIXm8buPqOuam+s1xhwwRfqtcmA/BLbbe5LWzK1hvX2gbSzvfeNdTC0PuV/9tV9ms78hqCJHVyJTzhGUEbdwZUfFkEVlhVWKlDIxZkKIGONIIaGsoSqv9T5SuQV1lbm/f+Dy8gJjDF3XUVcNs3nL5l4Kyfv7BxZzKwIDa5nPl2zXDzRNy3yZhIOT5XN1vQetMNbSJElT7w8DV+dP+fzFp6Rkefb0fQA+//w5H3zrAz7+9BOevvsUnwPdvqddzdjs15ydi2rr/Pwc38z5tV/+Fb754Tc4v5gzGrD1fU/XWUJJdjZkbG1QeiDlAxmwTpHpcFXA7zusmeBZeSBrK+e8OKFrLVycuprTF8QohSQP+FFhahxVMwNriVliZsb7NmSRGwvJ3cr7BEhDJPYDaiy6jWbR1ihl2Hc9g49I3lPhAxlFVQpyZzUaJZYDRbFlEAf4DPgUxWQSyX0KKorwAyVfJ8nrciqgjGbWCGdnVtdsDsJzDF7T955hCASfSFVBDEZuolZonacsK1CFnyMP/SlYUIv4xClHzBqNRVlL1oYQIikPR86mdSK3L8dOlS7BKFpRWh+5LYyk7y/b371ZxIyFxGuFUz7yZN78m9fQpPIzRSkuTi1Oil3Im8XOm9vPOU+RRSHnwtd5vdiZeDjxaCI4Io+pxA7lFF9DdibEJ2fya0RmIe3L9k5QIKWmBc6PGm+LnZOhC4ITc5wut6nyViDFQ3GczIk8BCHSlRWPikKYAzkRIQRMMaOc7MEnrqXcxCEOoBJGO5KtiyeDlQKkuMySMkPo6bquZGclbOVQylBZR6XLyobSVjKFtDzKHbVDq4y1JxB3cKQUUMU1UyInMiAE7aT0pATKUaSt4wokxkK6Hn0bYsIWeXBWgapqUEqjkCIPLdvWuoQ3jpNmimijyVEQIGNbKgVDWoMPGAuhK0z7wRcY3RECrM6XVI3D1JY+HlBaFENRO3ZDx8PDLefLhn6/Yd33zGYzlmcLHtZrNntZ9SldEVD4PnHYbTC25uqdd2jblt2+59WrF6yWRSKtej764hPOV2fM24rtbs3DoSMZRb1osLWlKuhSFRUHP6CtwfcDs7M583lL7zviEGibijG9LnSBEDv2+wPr23s++uyav/X9V7zYHMgq8ehcPte33jvnnUdzzlY1dSOTbd8fSDlgTI11R7jdaUEiQvAcuoHglQQ6Jk2XPYPvpniNhCNrQ1VZ2rbF6kz2HkpILSkzZSLmRFKZwUSM0lRa4jiWM0VTZwmPLMt6TcLajD94dvtbtImodsXtZk/d7Hj32RMA1nfX7D/bMPiEMtIqUGn04pHUOFMmt8ZZdMy4qsEq6PY7tApYG5jNpAU7Ku1mywXOGuxgWczm7DY7Bjdwfn5JSuJE3S6k9el6AwTSEDDWoHKirhyb9R3tzEFW7Pdlkk8BDcS45249SG5YlmN++fhdPv30cz74QIqd67tb+rDn2dMrQh9osqaazXHnV/TxwFDCUM/nlsY4hqTYHAaWlyuMTgz9A3WtGfrd9PBs2zOqqiaoQPQeH2UuSYOn0ppOxUmZePA9TT1nzLlzrhI0SuviMh4whSgeE6Soi4OxJmpD41ratkXdy4N5lEhbFQTZTZGkDT2aHsUhJPbDcESWlKJWhnk7wyjNNu1JSawxopI8tHGRNJJghzigtbSgopIiBw9V0tRTOymRrUehsKLowGqFJpOtCDFmRU47qxUbEiElhpQ5eCFQD0OiqvykRJWLVhOcIHUojVYVmqIszRJMDGByJqvSplOOrCRqJyOK1ZjzMb5G6RI3BCFElM7Fb0c+i4/HhQWM0vPXC5s4FmMni9WkjsgKOR/Jx2+SkWVD5V5PX0JG5A2O7+eLSndsg8WxXTURkk8sWfJIVi/BqKXd5qO0q0aUaAxOPbajEjGW62REeMpiIoQgbuwplcJICuuRNJ3LsQd5b6315NHzo8Zv2kH57Xg73o634+14O96Ot+MfpvEW2Tkd2YIRctUpQ0WqWoWyFKKeIqVBwhmzIaTiLaIckz8DQULyoibFjNa2OCiPlXeYEBKhAxevAi0tppjTZLQUQqDrOg6Hg0DNOVOFChMDqnFgLLb0iFW22NKW8ka9Jn1MJ0ZOaeojS+Gfs7S8JKdL3mOSRhaukVK6EJJl9TMSi5U+cnpMgWkj4zYLnGuc9PV9OokVKYJ3lYUwSSYMPfvDQG1qMj1DQQpCFD+g5OD86oocpP3lu0xVKRIi993vdvSbHU471ps9w36PNiLH/fSTzwFYXghB+XDoib7HWU01r/j2T3yb1WLO7f0Dn3zygi9e3XO+Kh4zN2vOVgvOFiv2+x2fffGK+aziG8/e5eJyxf7ghSAADD4SgLqe8fTZJfPZkr7b41zNrF2Sc2bohS9ye3tD7zsedj1/+1c/57ufvOT5ww5tFU8ezfjgXWnRPX40YzG3aBNQMVO5meRUHTxaJfHV0aOfRsB7z37o2O86hi7Qd7EkOUtGVV9QBZRwL7S2bF2Pm9lJclw7h6vSREy3lcDLKhuUcgSkG2dM4uLRmaAGpS2hXzyQbj2xbnjYB4bthtY2RLXn+uULGOR8zWYzZvVMDARjlNBr36G1JRUflzFvqwseZw2mUrSzmrptcNWMwyHSLBy+9zQFrTnst5jVktl8zovnn3N+fk7XDRwOBxaLGdZahl6y1yTM1wuiEUMx7xT4fr/vMMbgJ7sFQ+VqdusO10ZyMlhbM/SJ2XLG2dmST37jEzlnj694+eKaR1cX7PsdPhzohsSjtqVdXJKnRrV8xHeePSIOfXHLNkQlBgHaGkzh7x2GHmsdvqx+D0PPbNbgwyB8m5TQxYzU2Xpqh+X8OtE0hnxEqTlFDMa2R8I5y8VyxasXjp4DebyXKYHhyhCj+OioIUPI4vo+GlaSeDgcOMSIj1EQCiuEchWjyObDKTE14FTC9wO5suQoLf2UAj4yzSXGCv/He8FAnFYErckpYb1ksRXnECqnialnSOIInlIq0nNPio4QhsnJnSzHW+VinKpGBCSLuWceicPSskkkyY9XkjEnsZny/9jCIQhyZEbj1UKKToWfExXTVaAzJKUYfzKmioeCkLyO7PAashPIX0J6JuTmhKA8ojZwbK2dZk2F8hw6RXZGbo9KmZCPEnFGLk3WE6l7JCPnmCY3c2IiZT/xcQTRGYoP2xj2Gcs+pSkkNOPLdVH2tyA8E8cpQfRxam/9qPG22DkdWjNeaBNNIRcaQS7W9oWPM0JpWavJK0LaOiPcLfB2SrGQuzxKqSmwUheWv8C4I6lZ/h/JW7FMBN57CbLsPaM+gXAgmkQaLME4YCSW1XIR5gBZE5AARVEdHOG+WC5wq0UBo7XA26bMEuYkZTgE8aaQ+0iCRlPUaDO2TpRAv4B2ViYDYe2hCvG57waBPuWWk/cwwi/KMTAMQizuD6OrNPi+Y0w4rdsltTPo2hB8IEWN0wbjBCLuD9K+uH71EpJwmw6bA4c+cnE2KwTKzPnZFbkUp7vthsopHj89o1nMWT9s+c53voM1Le3inOXKsynW+ykkXNXwsN1we3PPcrnk2bMLrFJ8+tlLFqtzmhIsWVWWRdtwsTqjaWr6bouxYGwgxp4QEpviyTP4xKcv1nzv02t+6dc+o4sKU1nefXbGh88qnl4I96BtoXKqkE7FTbie1dSmpZ7X9H6HHyMFvFjj7/cd+20HPhKGTB88OWmGnPHxWMiihHthjMJFg7Pi0xRdTdVk+vJAbGsjbRs0SknhXBuNtYFKw2zleMay3D+RMNyj9gmVNXeHA7v9A01V04eOm2LnX1UV88UZ+10HRkzGtC2FcRKO9es6FOi6jr7SNLMFaMV8dTaRQN3I8dqLmaNWirPzSwbvqZsGV1V03YGmaSbzvTj05KAYkseoTCIxhF4KIGM47HtcXaw2oi7XbaCpZoQYyUpjnWXwexazhuEghdzd3QNVW7Hd9YQhcX75iF//9V8nxgtsNJOx42azoalqzs6WbO5u2WzueHR1gdZL9vs9fZeZNUWskHNxo/VEFM7WkC1Kyf0pfBC5DlxlGHop3obBS4tOCf8n+EQ1m03QvkRDJMCgihVW5Qyr2YzlrOUw7KQ9AZBEwZkpBqSFUO1jJiaOc2PO7L2nj8IPbF1FU7cYrel6LUac4figNUYzDLlEW4TJX0frjMpx/FiQBkiGrBQpKLxPmCTFRNbiaG/KBF45g1GycEyhI/lW5lYfCGGQczCZBebJ7M8ojdbycI0hSPBrKbYimpQ1MYuARWlhGFmdCwXhuFQeuS4jyT8qhYmqRPjoiRMETO2s0fPv9PtTkvDpz8YCJ/6IYue0cBn/Lowqr3jk4QSKAmoM/kzH18hnYTpfozoKSoGSByEcl30ZjUNfSzgPEg0hUSNhanFNLa/CIZKfjXyhMdpIvbaAjlkIysNrztI/eLwtdk6G1alM/MIelyFoi9aqOKkqrBWHTKMdCjNxGjQJpQvDP2eYzJnk4rbWTq7EWmlJe9aanMPrduJZk07khiKV9KQccDmL6sAoVAzkLH+fygVgTUKbgNFCrpMKJYrlOxE1MmPHHBetsdbibC15ONoUWflROWbVQNSGWFQa6HKzGls4TkoS2AHisY+rtSb4spIKcpONXCKQh1gIgZwGYvIYIyt2lRJDfxAJdJk4nKvp+wNxvy2FoGG+WjJrLPtuz4sXkkq93+1YLBt0FnHsvGmZzRv84NlsB7Tp2OyuAajrmrOzM1JU3N/teHV9y6PHT6iqiu12z8WyZVbQmhBksru/v+Wdd5+wnLd0vmO922HqivPLC+YLedAvFivaVqS9ftgza1tm7YKUEuvthu12Swjyua7v9nzv02v+n+9+TB80xiquLirefzrjammoyyq90gqroWrKeWpqtBaUJoSh9LnlFPg+Ew+K1EHuMnlIQuBNmRAjIUQhiyKGkeKWkIheyJKqaUANbHuPPeTp4dk3c7mG64Gce+n91xVKa3wSTpAu1gvnFzP6LhBeHMha45Vhfdiw7+acrZ5MZOqkLGerC/b7PdttIjKQlSmr5kjWGlXuResqUkoMIRGipq4b2rZlv33g7OIS4xq6gtagNdv1hrOzC+q6pus6rLViMthW3N3dMS/FznwxI+O5vXmgqjQ5Dsznc0IY8CHRDZ7LpcjJh5KcXdc1q7PLgrjuMCoScubQ95Op4O3tPa6d8eM//uMEnajblg+//W0WbcNuu6YqT7NDL4htZSoWqyWzeU3ve9575132mx3W1dSVIIwhD8QcxTo9JmazlSAP0SCcwjChCiJA6DnsO5S21KZFGSl26romFfd2mTeKEigG0BUGhVWaedWymq+4fbif1FhZeTTgc0Jpg88anxNDCIQUp4IhF66izYaqMlzOV5wvliiluN1uuPFeHsCMGVYQcmJIUQjrFOsOozBZDCcBiSyYFvOK1CeS0yRliA7ATaaZlRHkWOZPAyoJOl/MTFNKmBNpuLh3R1KUgkrk5YmQ/aRaSkqTsaCsYDspE7MnJgqKXE0oa4hFzVQc9VNBdcbifORaynx4LGSAY2HB6yRk+d2xaElJCoyREzPidVNhNBJ9x0IoiQGgTwWpTSfIjsqTGmosiMb3yCkdn4vjz6KYCo7FECnLfZvSxO8hHo0HU/BT8UMSLpWQok/UWGnM7BqNDU9cn2F6rcolziMfj+EPG2+LnZOhR5KuymRztPseWzoahbEGqzWmtHSMUhPEnCNEldFatoES9YEUNWYqFAAJsJtcNK2gPCheC6IZyWAxiColSziaQIWiXELLREIoF7YRRQVaTaoMY4oEtcRQAMSiAjAKNFmcn4vHDyqdoE6gq2ZiyMvKccwCK8VZkZ+C3LBKi7LGe89uJ34qgtaIJFpNqoZQPHsytXVi2U9mt98QvcCcoVjybg5r0tBT1Xry8Kmqmoe7Na9evSIEUZU8ulxhnWK3WXO2qiBrfIT11jMMibu7B548E3+VxWKB7xO6qtluNlycP+HqcsVmu8ZZRfCBppHj1TRzHh5uuThbYLXIXmO2mGbBs2dPmc1mnI0xAVVFCFuapirXwcC+vxdyOQdSPnC/FsTok+ef8xtfvOKhG7CV4XI148MnZ1w0DqfVZD/Q1A313NHOWnTlQGv6ztN1A2GQCdWXAmbwMHSBkDLKQJ979v1An2B/iAxBocqtr41CDwmtk+x3jHSHHeRA2wrx+QgxDywWjjx4qtpQ1RqrS5BszIIWljnJVJaLywXDIZIfBsLMMsTEZvvAfHZO05SsJ11RNZbz5QXDcCCGhA+hKHIEORgfclaBM5rL8xVPHj9iuVwyn7ekBOv1mvOLmqb44aAsm4c1TdVi64rZbMbNzQ1aa/aHjTgDj+hmiX+Zz+dst2tUDqST3DV9MpeGFFhvbmiaGdv9nkW74Pb2lhxhtphjlo5XL8Vr6OzqMc9fveCXf+1Xef/9d7n59FOevvMeVVWjl4lYFFZVVTH0Hp0lAqMfAo8fPyYmxXx5wdDtp/c3rsFWFYRhInlOPjClpTAWEJWWVnOIB1bzGdlYQk5sdwes67GmmhYTShmMrcQ/JoknjlKG2jUsZnPappmc3eMgRHWjsngx5Si+O0keWmPtkEBc55Xmar7iyeUFZ7MVQ/Ds+h5rzISEH0MqzTFmIJ/YeGRp94PcUjojCxp5Hkp7xCSUF2QunnQ2lFLENCBeOwM5e1IakR0m/x9Bt3ppM4WCFJVMqJgG4jjHZk3Cop04d2OEC9D7obieQzGxJhtdUJU4ycrluirFRQqTn5rScr2Pz/XJ12hEceLrpOWvKna+Ctk5dS1+nWw8+uOcIDslvmGMfpheN8nBjzEvx/cP5XspoiIRdfLaqS2V8+SYPLotk1JxsC7XQdkGZE5px6o8l+TZON6QCp015sQW5YeNt8XOyZBcqUFgWTVW0Kpk9gjy4ozBmow2CaOywLljBR0iWR19E1TJWRmLmvEky3ZHHgzTDZ2zWKinHCD5ScKp4oBWEdRoux1JUZQpJmSyVdOkNUUyZFtaU+bY61VHzo4mCqNfiexvGDIxGrQeIWUz2c6rZEobS4odraVoEhNFg9XHImqK0lCC/sxmkk8lsk6Dimp6KPti7hV7+b8LHZT+rfc9h91uMlPLyXO2WpJUEjMyrUjJM28d9sn5xANyzuLLyvXu+h4fhVO0P/RUjePdZ0+nWk34GI6b+1vqxvH06Rn+sMfEyGEnuUrtrKgmhi0Xq5qh6zgcErFRuPmMJ1ePefzokraZo8YMmhAxZoFSjoyoyAQ2l5yf7qD46GPx+vnVX/mCV5sd2jhmFbz7ZMmjpWNRKy7OVsyKOZptXUFQFHQQYsR7CdAbgicS6Yq51tAHwsETkyeHSExWkreHSKQmW433IxdqwBDRWuFTptKmJKLLeco5Y4rXkY+e3X5D01hiUOTWgjUYO9bwubAYQFeO5WVDzIZDvOawG1i0jvVu4G5zOxU70lpyXFxdst6vOXRAGMhe0Emb1dQCIEecqZjVlrPVnKapSWi0qwj9VpCmcs+0bU1azllvH1jpc+q6ZjaTrK8QByrrJgRms9lwtqyp65rdTnF/d48feqwVQ7y6bqfrK4RI3c6IEdabezH8HCIxdGirODu74LyYFWZlWV6ecXNzw/39hjhEuv2WtjZsNtvp4VlVFYvFjJfPP+Xs7Iz94cDTJ+9xGBTKNvRxiyoIgMpQ64qshefX9+IpZYwSzkvdTMGICUNWYnQakiaEniGGqbCIZA7lGPS9x1pHVdeoFMmFY2KM42J1zuX5Bf0LWbgclKB9WhlUBpsVLiusvOMUXksGpSzWac5mC87nS+q2xe/S0ZpjQioSOmt0zKiQ0XGc07QEU5480LISbovShqSicNRE68qQIjpGfDgWgElJLEXICZ8kAzDHglTEQJhiGSI2ZbKWPLY8zdWKmNPUcvMRUnZkHzEuYyojeX9KFpCn7Tnl7HTecs5i16E1rsT6pCwSepk4yhr3jTbWVNh8RbFzlH+/jsDEkU8DU3Ez/iyVoifG8Jr5H0nUWDm+gd5kyQA7RZYERZIjl3MoHl4i/8+qoEvjuT3h8eTSAp04PInXt8tJUatHfpGAB0ppQXimS0GT9JEH+6PGWzXW2/F2vB1vx9vxdrwd/0iPt8jOybBVjR7Ns0bVVIGGbfEdsdpgVcYqLcyeHPCxoA/a4HAFniscCnXS0lKZEMaVjPSSFQptin/PxLZPhaTsp30QcpYiROEAqZE8loL8i2UlEyLJBpKy6BBRVkL3xJTJn/R8k/SVT1oEWmWyEsvwEI5KiXSyStD6yDWyktlHzmZCs2xBdLKW1lllCuqjjfBEUp7cmXOS4FOKJXndNAQ/MOxEeZZSpCkGgIv5CqdFoeKcw9UVbV3RDwdyjhOR+LDvSdlzd7vmcPC0zUKQNZ05Xy3RhqMaLCl23YZnz54xW86IQwckXrx4AdawaM/YH2S7OUo78NAHmkXNfLng6fvfZLFY0TQVKQjnCMBVFdYWnxrTioGW8ey3O/bdjlcP93zyUjhGN92WrDSVMzy6qGltQuvAcrGgWVa4trQinSErR8qWFMGnnbQbDeDBD5nR21L7LJ5PMROzJllDsBW7Xcf+EFDKHnvg1hCSxiRDzpYuRZxNOC3BijnHk365xhAJBDmfWuNsi1MKZSQpu2lGUvsAKbNYtVxezRlCIodMaBLb/R0PW3Gbns+XzNoF8/mcL65fchg6UeAoQUaV0qNHrbQvTOGwJc8wDMyNJSZ495332e87xvVb1oZh8NTNjP1+i3OO5XLJdrvnbLliv99zXtqOu92G7XZgMW+ltXnY8/ndPYqxhaUZiiLE2YboZSUbY2SxmPHixSuUUrTM+OLVS1Zn8tn6LhCV5cMPfozvfefXsbai6/bc3SVy1lOL1x563n//XepWjlMzW7LvPLNZDdpibEsuXCiCL4KBhLWObtjTdR3zeUtWULmaoR/duRXWVDT1TIztssKHBEaT0KisJkO5g9/RHLZoK541CjMhuYvZnCcXj9mtpT03hJ6cEyFLGCfYSWWEykfOiVYYFLO6Yd624r+FJnMMSbZ5NCosrD9VQkfzse1zdB8e1+Yna3StxHE+lffNEWImjaTbJOjFqUHdRIBNEkCpJlEJk5lsOiHGgnCSQlH9eK/xUZNcja3A+ERVz7FVLRcoxxZS7LrpuQFMTvJJBVG2WjMR8LXQMac25MQRmvgsR2+cOL7HD0F2pnbg+FlznNRQQiA+4c/IGxEIk+J35PecEqGn5lI6cn8ixVQwF4NaNYaYTqQjUbblkdpRvINKGKx0PY6nNDHGJYk6KI+tK62OKJhcYCjlOaFc/dDxttg5GbauUNmifIBSwEQiSgU0WUiiJ22qEALBWhgENlZ1jSBvtsB4lKRwJTdSzmQ95ngI9Kycw+i6bDOSdSL6OE1oZSdQSU2yO20MWOFZKB0gDxMPJoWuuBFnUG6StyqlSOGYITIaMlnNVLwoDFYZKqeIqBNZaF+cV3WBn0eScSH+jRMdQNYkYwoMnHHOEWNk8EMhsB0v7KqpqTDE0BFC4NDv6XuRB4NmNm9YzmdlH+Tmm89q4ezUcoyHrLndD+Qivfeh57AN5GxoZnBRTPmsisVYTzEv2wwhYGtpNXbbLX0X+PSzl6SUOF+0KNWTi0ld07T0KnP26Cmzdsl7733I/NEFOWe6wx4VA25W3suA0ZEYO2kzF8j80G14eXPNd7//GR+9XAPQBYc2PZdnNY+WLReLlqZxJG0YgicPI2zcY2yDj8LJiBwIvif7ANGQcqCyJwZtCXZZsffw0Bte3PV89mLg/vaAUZbFTNpjl5cVdaWplUNFRwSx1FcDOItONdEf27Ixa6IC5TJ+1wsZdd5gTIU2IrGVyyDjuwGlMxfLJXnQqLRj8AmvEtu1tPH680c0V08JPnE2W7F9uBe4ekKri/oQMWizylLVc1zVljZoKNLggdmiRZe2gQ+Rqm4lxbxteXh4kNiOtpV2j3MTz2vRNmy29+gUsVazXC65urzk7u6W6+tXtPOOJ0/fLdeBkKD9MKArx3a75/ziEb/2q99leXHJEDTDIEXBdtPx+J33uLi4Iqvvcn5xTt93BA9VrahKe3C3X5PyE7KyzFaXWGtQpioFY2DW1OjygO9jRg2BkHy5J2XFkbPCWjdxb0BiXnyQ1o21tbSJtOdQUsnFMkLOV0qJMHT4Xrh1WcdyXKXCvFydsbl8DMD97oG+H4oqCYacGcjoYq0xtWGswWnLrJrRNA1W21JklXkkj1JrsIgyCaWkRa2QokxBRIQhI1PweI0Lb8hohc5CrNWFixj6Mc3dk0/ceUNIDH1P9A3JGxIwjKaCSYQVKmWSKaTYnGVxQRo7pPQhM3iDVwdsnWiaTIiGKgJFtKEL107bwkEqeW953L+RG5OPgo3RtFFMVvNR5TuqjdKxNRTy63lUPp1mSL3exorBv5ZHlXwobS1fipYjDyeWvz/lA8l7j3ylI5NGpSRk6+TLmjlJi0ozkdRBFimlqYfK49KlvGUxq1Unzoq6UEdj1Ghly+t1aVcdTQUho5Lj6zao3hY7J6OuZygiXg9QjHsZlVIZkZaXSVjIvYbUB6jKqitm4pDBJJEjKkMQEg6aWHJnCpk5GSyywo5GQhAZiWRZEXHk4mkgrslHtY0UJoUsXEjKMfVldyMxeILuUUZQmKSl946ZNFOklLBZbi9jNFkZQowkJUQ9k/MkQ0+1qFZU4RllJdL1GGTFpOswyWg1ihC0OAvXDUnJLeBUImVBKFJBoZTWQkj1Io3tu47kRelyvlrijITRAcQw0JZCB6A7iDRfJ4OOGqPkHKhKkeaB5arm6vICYuKTz54zXy6ZtYqmMWz2QvhcLpdCsCSz2R7o9z3aZB5dnaPqzPX1NY0T6Xe1OGNWOWwz4/LqKa6Zsb5bo8lE39O2taxakAlptz+gkWPZ9z37/YHt7sD6dsPD/ZZNkScHpTib1VyeNVxdVKwWEsVgrCIkTyqTtnIVw2FHUk4m6K4jxR5jM4qhBBMWPxpviThclUkh8LDb8fyV5/p6oO8MWWvW+yKP3vU8vlzy5NLJ9WIbyEHUJSqRquPKNymLT4bcZapUgUkcdsXfBYWzCa/LgzRDGImHNlC3idXKcPADQ4C7EgS63q3Z7zqqqqZt5miliD7QWIPKEZ0TujgCa22pnaWdOc7OL/n/sfcnsbJtaV4n+Fvd7szsdLd9jb9wj8CziqoBlKAykqKqRiGRwYRuEhIjkEBCAgkxQwIxQUICBjQDkJBKggFTkJggIRgwCYWoUJKVmYQKIsIjvHv3+bvNOceavfdqc/Ctvc3u8xcNqSwRhe5yXT/vnGPHbNu2vdf61v/7N9pZCoau75nmgmtZrwOUZrftOJ1O2MbRZHj75g13t0/RJleX7KneDZqmaXjz5kfc3mzRCja9JcwdIdzSuK4W4IIwXt3ccX//SEkz3nuePv2Itw/3HI97dpsNDw9yfb19/YaPPvoYWwqqWA57z6cfP2f/8EBjG26f3wDw/S/gcJQg0W3fMwwD5ELbKsajx1q7+vyklEgoUgk4HFoZ2qarm6VMzGH1N3HKARlVAikommHLNHtS1pQUudo2ZFWVWzoTpwN50xCzpVGGGITzZYqisY67a/Gn2r25Y5rfUFSQ2IhcMEU2YwVDVnF9/abrGfornO4xuqXkQEy+ut4WVFUlmoqIsGzo9EJCFhuDouR9g8i9S9HizZRFmZZXorEi+SKLPxBzJmXhMObMOawyRnyQfDu1eOKURKw8QllQhbuDNswhEiu6F6KSoFJlcFEKvpCLePbYts7JCyJrsW2DVVbieMyCastC4udwRsWrynXJAEsXbsWX6Aqcix2q/DsU4cTEFNaiZ92splhDOGP1GDqTjpf3DbJ2LDyceEGAVkCKBaPUKlaofyhfaiGkjSKWIojhBSiAuoiA1UsBZSqPtP7+ouiucA+6ZrvJwpdAGSHOL8+lFEWX9xyof7Pxodi5GG2/lQlW+1WirUwkRykktM6VKLfIAAUajPVmMVkId0uaeMqiUlAochHPHVN3nhhBa+Siy4J+pmoAloDKfpeRiSoQVZSqOxeceOsLRDiHGqYIhXll9GcSSltJa297IRzXYqHRBnJEVzlvUQmlTS1kElkZnF5MxGQCCLOY1YUc6vUnMREWKarkbQnykwuEstjBK4q20oopajWey8vugsw0ncg5Ya2h7RqcseTiKbHeBNpSisLHgEaJBXsp7Kd3dL3CmkVSX3g5PEUpzeO7Iw8Pe549lVYWqlDI3Nxdy2eLoSSN95FSIm2n2W7uaFzH9179kJwb7p5/Iu/LGG7urtHK8vbNK1mcd1cUrel3V2KkWENUFdC0PSVH/DwTYyJMM69eveaLN4988eZ+nSA2vePpbc/NrqPvGjb9QDayw3JKSz4RMKVAKYrHx4MQUjVQFI0ztdV6niR9mgkJjiHxcErcHxKv7w94n5BbPq+7o3FKvPrynpgSHz2/pbOCIeTSEAKMSdPWotc6jY+BqBFvmerVcxxPxBzpuw6floUuY6v1vSbjjKZrLNtNx8kHxvq37978iHe7Z1KU28ScApnMFBO9kR3y2k610HY7oKB0pus6aWm6FqMtb+8feVb9cFrniDHgnJUdvypcXV2xPzyw3co5XdBQP3q0jeyuNrx+/Zrrq129Z1ru7hwlax6PUsCcjkeaxvLpy2d859d/jTJNHI4PXO8Gpmni/v6eZ09fAPDDH7ziWP2Uvvmtj/n//E//Eze3vbRKtOK6EpnvxyNziKiSGDZCVt4/3JOzzBV9K+1deV8GjXzeOUZmP+Kcw1eTxk3jCEH+OwQhmTvnUKarc0GPYqTrO1zbkuviO82mqh89nYsUlWTjsrQSUGyrtcKnL18Q4syPHt9IG6kUCfU1GucszSyf17Zt+OTmKU+ubgRJI+NLYk6iyLmUXmcKSmWMVRhdowdyhKKE8KwyusgcU5IUMUYVtAOWTVhRUCXlqR5DDKyoBuQq0vCEMGF8TVNfMpxyJNTcuIy06GJt5WV9uSBX8rQqYlgYxJYDXTC5rFmG8pwam7xkfhmDds05e1CJxciyfKdU6QZLG3ApepaE9kXBBMQq5S7Vp2YpfpbMqZTCWszEGMkxkrPM3zmelVjksqL/JYo4ZFHBCblbSzFRSeJ5NTtiXeveGwqhTdT/Bqpal3Nxs5zLclmlLDQJs657C8lZ1bl+IdYvR1AQdLJ8ICh/GB/Gh/FhfBgfxofxYXxAdt4bXb9DkTFmxlTo3HtPiIacAiip/lMVKy6mSUu/0SaLsme3RxCjNWlays8rAHKWf1a7dTArGSylQMjxDC9SbbijBKflkkg0GCWoRCzCWQBQCH9GKythdQpoNDpHcGDaitY0tvJ4ymo2qI2EIOZSUDkxq8V/IRFjIHqBQQOLhF7Tais2E0nQr1SgaEso4It4Vjjb0W6auts57wxCCIR5Yvaj+AipgmsMOUfmKCaKbQ3XzD5yPM00rcE1DafjzHg6YTtH4wzByw56uxO35LdvHiVhuu/pe4cP4iuy2+3WWIeUCofXjxyPR4aNoe/kGD//4RcYY/jWT/6UcBaAzWbL5CMxBExpuNk+p2jhdzibiX6kqeGDTXUATjhwLafTA+8ejuzHke+/ectD8Nj62M3GMLSW203P0DqMKlgLyhiUbfELlxrLNE/SfrQWSmKexTtkHEcxVKsptD5BLpZDgPsx8fqdZxwVMQlUfibCQ1aGcU68+vLAcZp58XxgNzjh5yhFsnlNXicIJ0dLaiTJakxWhAwxJMLk2bQV4WuFa6C0RltL00ETCkOX2fWJU23PPZ4O/OjL79P3O3KZ0SWgqzxVayseUBUut1YCbrfbrZCTd7VNm6TfMQwDP/ihRIK8fPmSoW8wxqyoR/Qz26EnBs/peFh3pSEEnM401jIMA+M4Yqvzt9aakCILIFtKwk+JNESeP3/O4+Mjx/09V1c3/Movf4ftdsf3xu8DcHf3hC9ev6LbP/JT/823efH8Oadp5OHdPcMw89FLCQy9vr7lhz/8PmEeidGjSsQZhSoivzdaMc7SRsMWYgo0wwY/T5TsaVwHxQrxPotMGGCeBBmztgFtyCWT00zfORqrxWG5ImxFFWn5TDOl8aAaNBpnGjHYNdDUvfGLJ8+JMXIMMw/jiEXk3VZD17rV1mAYBp7ePeGq21KU8EW898zzzBi9GAeu8m5EBIKp9hZabAdSJqRAa1cthUQR6CRoTypkXTBZaAap+rj4tFyyhVjN8VKGUA3uYvL4KVGMolQKgMy34iNWsiJUjosxBuvaNezYoUlZERDkw+hSg5KlbSueanWSs6pylqupX67Ug+qBtvBQ5BzoSl4+IzjCVayIxkIcRrikYuonqHssgvIIiiMmtAtBOUdBdFIK1QJDOgShJsWfIaRMqSiMqQToUq1LdGUUZX32RVrsIxeuUa72LHmRji9flRheFoTDqvXCP4WzLfaZbygRRhXdUYLiLenw2hguwKX1WvntjA/FzsVohwFNxhiLrWRP4yxmVnIB5bmSQRd34UTiDIenLP3DkCImy0S8wKuqkngX3o3KNT+lpOqWbOQmTglfPJm4TvIxQw6QZ+llirJqJlth1+cSCUsrTUHXNLROHFCtEUJaKBOZZvXryEpV52QtydkStlIhxyL3QF7gRIGUlRYDtoVhpor01sVwUH6WQgQCpm1o215IlEqgW+ccIY7nXjIRH0amaWRoO7SBeTzh/YRRhbZtV+v9tHi+dJZxnIkx0rQt1irG0wFrhVtDaTjuDxweT9zdbLjabfC54LRBlywKmFrsPD4eODzuefbsBeN84jQmyInbuxd0m46mM2uCtNEa6xxmaFDGYYzA+lrLbdo4h65chXma8DFiTcM8J7744kvePUx8/sWRH7w+4ZPleiO33kfPb3l67WgbQ06enMFpSwEhly4RELlwGmecBWsKYRaVYM4FpR2j96vDbS6OOSVOofDuceLtu0eB67WtzvAXhHKlUMoyx0y8nwk58PHLJ9xdW3LOTKVQKlF+Dp6hMWzahoIiBihJfHliEe5SU6sCHYWTsBkMzsKowc0JowN9Z7ga5Ho9TUdevc5stk+wRRHmCEpUUCHMuKYhVVzfGkdBo7XB1PZsLJl5OnDlrri5ueI0n71zGneDUpq2bTkcDmhTcI1GJ0tKYW01bDYb9sfXFKVomka4Y1kWym7ohCMyl3rN3GNcgz01GF3YDht+8MVrjB548vQWrSxjvWaHfsvbh3se9ieePHnCtz77jM+//JLb2zt+9Vd/lZ/49BsAjHHm7dt73rz5kmfPnmGUJkfPdtOB0WiTWeJgFuK/tZrxlOibltZKRl1OwplrbFtnNEkSN0ZIvyHNhDDROoMxGlmAzgIGVZWKMUacFdVM0QptDSq5dQHq256Pn3/EKcz8yve+JzliMbFtGmIDqZHn3O22aCPt6hjlnp2D8JyWhXgRWBnODvJa2TWuRsj9EY0V01OEwyOiiGqoFwrKinlhTgmSOrd76j2Ui5J2ckiMp5nWKHTXYC+c4ikFpzXKWIqBRksKvDEG2zVYe+aO5aIYUyJjoHrsKCPxOFjW+8tog7Nnccfib7y2kcz59RVL6+i82MvGuaz8nJWzs0Q11DUj5vSVYieufjkhSJETarGTosQRxeUzqFeLOKyXmrwu64xCVRL5wuFZPHD0eu3kxRxXsf6T75dCWoolKKLeRa4r2WwsLchlUal/AzXRPJ0z36yrgMGFiSYapS+p67/x+FDsXIyuGTCmYLUj1crbGiFgphCJyUhxEXWNRBAS8hq0mTMxBpQSRRLaVGJcwmCqlHEhnWlSlkA+bdWaR5JSEil5TMR0zsYao1+txxe5oVJiXiUogiweVmnmDoYWnNY4K6hOLg6t0mrAFKJIH01V+zS2pes6UX0UXWXpclHFWF0v6+LAGmtRe82LigK5sI0xNE1D21ZCcTEoU4hpIs7zWuyMfib5wLYf0CjG+USMka7rUCXh/XzeyaRI3/dM04mUEsPQ0bYtWhWMzhwfK+F12rM/vOXJ0y1D5xjnkYf9gaurG6bgKbEwRdklG2X5iZ/4CcIUGNG0zUC/3QjilAJtabBVMTOOew6nE8+evwRj6YaWOXuKT1xdbXHKcTy8k/MVPK5rCcHz+PhASDNznHm3f6CQaKzidiMT522vueodjRXy6/X1DtNZTtPI5OPKrVEa2s5RUhRTRq3oN1ty9jhtaLTFVk7BaYrV0bhINIVPUnAXdSFjzevnJedCAZb9Q+JVOaKU5nrTUkparQKaaq0wxcTQOFKBtjVYV9A6Yw2kql4rupHsmmDRStOYwrBJjGNhniNdXY8bp0X67SOt0ZTo0VoRs6BQKSXsgpw6w/X1jq6Ta3W5N2KdvEspgtwBOSWmyZOjoD4L2jmOI9fX1xyPx9VUMCro+575cCCQ2Gyv8PNJTCX7FmPUai/x7u2JZ7dPmUPh3ZsvuL29pd8MZDJtv6Xvexonz9u0lp8YPuPXfuVX+fVf/3X+u//2v+PVlz/i7skd3//ud7h/eCOvXyIvXjwjzCOPjwdurnbM44mutczTxLDd0HQiZ49pqtJwIdz2fSebqBBJecbYjZDl62N98LhWYxvFdNI1vFf4DwZTw4sFkUlJE2JmTplOK5JPFF1k/ssZW+XvkUzXbvjWy2/gR8/05eecThPKewatKFWw0SqFoeDDJFljMTJOR7yf3lvM1zlFJ0HvjKDdJXshupZUJcgL0i3/y0k4MckoDI6k5GcpnsnEcxDn45yl8MkepjHjm0LrEtkVjF4EE9Xt3jhSKehG05gajNu5Nf/PaCd2EShiVoSsyMWRrZbIhwsei5ipqgu1Kuv7XjksdSwRQWU5L0Wx5GEtbsOrwiq/z9lJOa0oT4pRVGjpzNlJMRLiudiJMa4S94WLpIp8tkZJr8FqTSoZg0RcaHXBv1Eg+M/yli6Iw+ia/XiB8ChBcnS1QWFND0CQpffyxNL6N0bLpssYS0gFY88GtspI/Mf73J/feHwodi5G2w5YrbEqEIxMWMqIbXw0nhAMSU9EgzDfcnnPT0Cq8lKVBLoWMPXDXVoHtQj1KWIrqWzJ9jBaiQ9NlMC0UCXt0zQx+UAIAVUKfpZWUgyCGsUYaZq6o1aBbRZE1jYGEzRNU2iyookFs5BobUYpMK66PLfgVSH45QI9E8V89eeRzBch6znbVO8IjdWL34YQ5xvnME4WuxgKSiX0LLBqCGH1uVlgT++9kEidYre7JqWZFES2vgRmKmCcTrS95fb2KVprptOIagzez1hXBYqqsNnerTL3xrVsh8R42OMjeB8ZajL207snpDyTVGC36zGNY/IHQNP3Hc41nE7yGbz+8p7r2xuCh02/xZqBxmT6XcM8zzweD+su1bmWmAIxBXyYOM0Tr97s+eLdnpTh5rpnO8iF0LfQdobb6yt2t1c455jDRKpPtnplKHDOkFSGWONClCJlXXeugv7UkwBa44PndJrJQaGSoZgkO/oL+b/4WRiUkjybojUPj0cyifTyjk2nKBWx0o1jnCOqtTRZYwikOAtZWWKwaVtZ6FLWFFUY50RnK+StoHWW1iUUUhQ1rcaawONpz4yhsw5HkQk2ZzAKvWThqELjNLl4SZkuBW00jWtrDtN54yERKRGUxsfEcX/g9u4K7z2Hh3tpj1bi9TgeOR5GrrYD47RHN+KmLJ4oGYVls7sBYH+Qwmror7i+e8l//OVf4bNvfIzrNXfdNff396LABMIUePr0lm9+6zN+6Zd+idEfaSyQPd/87JM19yyFwna34fmzl/zoi9e8fP6EzWZDCIJElKxpGkEu/SGiNcSSyCUQwoxGEYJf0YIlDHX2I03TgXGSr2UN7rqhVI8iIX6qeslYbNMQsmeOCe/lfRrbkOKMUhd9pGxwznK9veWbn3yTuWT897/Pu+JJWlFsrvPGyPGwx2RDVAkfAofxwOQnub7IZ38VXRfJ6tC+tPlLFHLyZVRBqdEBRutztAJKVEgzhAAhVJTVByHvosk5ViWYoURBEzQSJgy1JWIcRRmMArRkvRlr0Y2cQ7m/HSiDQxFzwQaNj+JAk6hS+KUzUKN6lg3jopg0dX7NRZ3jIpQStZjSazH03r+K1AHnAqj+ThLEL7yEMmvBlyvyE5LI9WPMpJDFL0ve5vr6MYM2WsjICDE9o8RCRenVIV384erfVWVwrsqqvBRFiw0FnC1bFpSoPrY+ASyu28h1sBR9ANrael1XtMlctLyK+W377HwgKH8YH8aH8WF8GB/Gh/Ff9fiA7FwM13Y4a7E2inEfoM3CN/HY0BCDI4aZaDwpu/eyRUqBkgMUCBRSySgTJQ9EFQyKsuiDEZ6LZMjVNthiJlXJyAtfI8ZMjtKD9Tkwp0iIBR+pvegoElFE8msyWG2E1IXIblVK6MauBlo6CZydi/TvfYmkMImMtIacLruulPNFQrsBJS6+aE2KhVANzgCcbcXDYr+vLssNTdNUknPd8VVZ6LwgRkrTdR39tmc8Hokh4IzhcDiuCOUw9LStwzaGEGbmOdG6Bu89fd+v/CIJrNM8PuwhS+vLe8/j4wHXbri7e4Kqxo7T/MjhcKKgMY0hz57rqyuGfkfKcBoD3/vuFwBsd9eEbNjePGHTb6qTtCKFCcqJfqM4VnlyLoakHMf9xMPDzJdfHvnVz9/yOCeUVWgyjRV0yZiGvu9xfYNqNJ5IVEW8YUo+t0iL7IxcZ8gFHvZHRj+jiiKkQsqKuSJmCYf3hcMxcTrJXkwZXcMIM+QzrJ6BVCIq57oLDWilOB0Db748oJ93NNsqozWaOUSMDzRasWmkzVS0WCDMk19DcVOvMRTiXFCdtAMlZDcSSzi/fg7yukSUFv8Yk63sFpUW+fggaNHQt/RDy3boV+dVjULVvKGcJcwU4N3bt2yHHovBtI7pNJKCtIkP42lFCwBcY2iaXkzeaqurcZrNpme/P5IpbHfitvzJJx9x/+aRN4cvefbxc77x2cccDw9A5u7JC3705g2f/cS3AOH3aGvY7HYYYzgdJ3Y313jvGbY7Hh7FWDJrxSYrTOPIMTH7kRdPbxnHkWEYaoZSbV+kQNeIJ1LMGZ9CDbC0aKPISa/3TAyZfugIWeG9ICR93xO8CC8ymskvmV+ZzaaX3XNWTP6IUZJVlTPYZrO2YIwWiTDG8OTmOT+VMyTD//fVD3i9PxErg/TN4Z7JRhxOvJty5hhnvEoUJYHAZkGLVM0QtELuLdVV1+dMozUlQqxbeF1RwqXzsYSX5pAJMeF9ZpwqKj1n0AWrsyBbtuBMrtmGFmObsx2IVhQlru7KiDcP2qCbHusaTA2ZddahrKMAJheMKahQ0CWLO7QzgoQAIflVsCJ5ZFWcUu+TjKIsgctlQUISSqtz1l4+OxqvwoKVqCzBnrnIepNKJtevy1h4XmvO1YKsLFzTC6k3CAq7GMrp+lqqFIqGUvERdeGds7S+9JLxyPlxUINPL9ywRZ7+fuvpK5aRa2tKEL4lPLXyiervdO2EfCAo/28YTWNx1pIVaC0XtjEGpTMpWLSzmNlgrbibxjQJIbeaeJGq6yiK1fSkyEevlBEviq8Maxv5QLMSsnJOQCGrc6x9QZOUFgO8RP2AFY0tpCKwX6yKAmUtviSyEUjUqIJK4ttCZ4iLUVWosG2J6ALRNjTWyc2SoegzIVGbwjDYqoZpwFYzxFiY5yBmhcsFt1yzzkiv27iVYJZz5ngYz6Gd1SdFK1EYHU97/DShtcbHjHEt2+1VfcKEMYp5nEg54GwLJmDJhGmqUQEwHidSKuzvH7i6Hnj79jWneaJpe3ZXPdN0XF9/ngOohidPbokq0NvqhUERrs/DI9/8yc/kvJqGzc2VOMEqmMYTSQW22y2mRkIMu+cA5FwYp8gcTrx798Drd2952D+inaazsG0VrkLIm9bQDw3owtFPoAyqiHmldXoN4fRzZJ492hoKpipMxOtCHKrjSpQ/zZHjpDhOkdlnISaHgnJGlBOG1b5eJmNVDSMVFCNBr7lwPE70B0u7KKxMpm8dKokDa0wFa0DliG6gqZ5NANMp0BorRmZaWlE5StvVGEOo3J5c8soj8hRUTeZePJcUaj0H2+1Wog+Kqqn3zZmwbAwphTUQ2TmDcy0pCT+gdR3jaeJqe8U+vYVccDXoNlabe20sXeuYTkf8ONJ1HSUmXn/5WhLsgcZY+m3Pw6tXfOc//S984xvfoOSW/X5Pt72m7zaM45JmPnAaI1fbHS8++oRpmri+u8XowPFxT8nyGQxbUYCpylsZhp4YJyiBvu0kEHFxuVWBrt+iXUfJFmtbnOvxecIYaQOt91drK1/JMvpZvF2MFHxN1xJSwS8bkBDps7RXtBHFE47qSmzJIa4KVZCNS9vtcL3lZnfDT36mUY3lP/36DyhZ+HNvjiOfH9+isRgrfEKZWyufo4YLA6icoHU0rUI7yMUTAjhdUMqSc4G4FEYapVP1w1HicaOk5RWjxDrMVY7lU0YpIXT3vaPrLH1vaBu5ZpSqMQQg4adao40l5CILsHZY12Gbbm1jFa3R2lUicRI/M1OwiL9YLIW5UhBCvVdKqYVAbbVaq7HWktRZTbR2CVF1cc8y+9dCfvGaASrZuT5+aRHVsbS9zi0vOUdF6fVnl8+xFo2oGi0kvCh5TCVQ12IlcS6MVq5TEToD6kwsVhdGgUrpVVgDS0F0VnXJ811IrDiH/67tzFLWttj6u4LE1Fz+6W8yPhQ7F6NpNzTWknUEsxgJygIYbcDHCWsaYpows8NGSzSRVG3nY4yUNK1W6AWgyleNlaLBVmTFaoszGme0fPBa+qkpRiFoFUFkQHgotshOJ2RRzxhVaIymsTIhnTdIchOTsiQAa80hymQy+0TXykfeOUs7tJRUpZ6qIRdNKJX85qf1Juxtj9UNaImqyFphlCGlQtvWXU59/aaT4i3pTN/0TNNE8hllxdFTO8duEBJp13WUUpjmI+M4C3G12woHyM90fY9ZCcqJGBJFZdqmZzMMjIcj96cHgp+YHwVVSSFymkZyzty/fUBrePLsBqUU9+8eOZ0mdCUaDsPAx598xMP9I0mDanpSsfhSCCny8ScvMY0QQ43uuLl6hveeN4+PdF3DzbU87zSDNo7apud4OuAPJ+7fvOb1uxOv7yd80BStaJr6tZOFw/atuLbOBRdF3eZZCgG1uk37ADEbSrLVMNJgrSKmwpg8+yAkdLkILDFEpocJImSCKEWKIuXKOajFjkG4KdhMibGS0jPZiLrwcDiyq8hKZxts34ONnGIklkhbDA4pahsrBpQgar+QA5rMnD0WS8qSuaSLwWjhoKjsEaF7JNXCrTEOU4/D6Mymcltuth1aFZqmIyahzbnWUpRe+Sd+kntxs9kR/IzpBqZ5pulaYvRiXlkk8dm6BSlIKOs4PD5ydbWl6XruHx+YU8F2PfenE+71AwCffvopdpq52g78yn/6IRTHpz/xTWb/JVbD9W4gVBsGKcwSSsNmN3D/8JqrK8em7dG73VqUlOAhJ3ZXO+LzJzRadrbWNLi2p9GKd0fJaMs5E3OhLZqm6RjaQa6Z+Sgy3aKYqwFhNobj6OmHjhxm5pJwtkdpVwuHQNPIAq6toRgLOaGV6EAVLaXIYp1VueDdyqqW4kjf9qihx6hEqz/i2ll+6bvfA8ClzJc58nCY8SFirRVRgdZrwnepCIR1is6aKrlfEAjZeOWUQJ/N73IpOMRUVVUEwSdPqQ7BBx/YV/T4NEdshivbMmhDX5Fm2xh061BWChoQtZ9SipiUSMU1KNfIJteYxf9QyLdFHPRRmmQzJokbfE6CLi0ijJAqGdwYjBZ+kLUWo10tCFhFI4ukWqHEGXrBWnRBSg1NqZsJrVRFS8RNX5Ew2koskVEoCrnyKLWxmAImJRSZVIRInVSV2i+qWyXKK2U0uQhHZ3E4Fk6OWgnKSkkBpavVdQExU6xIq1w/C+Kiay2kVsUdtXBb3/vC73kP0Tn/N6WgKsfzvcckmcV+O+NDsXMxnHO0TUM0Zs0kKtpgjDj0mqSIJpCyIWpHTOJtEX2tOHXALLL06kRpkErXVPb5ZcWqjfx7z2OnZEKseSxrHolchAmxT6eIpLHvGhqtUC6vzHuxOjeUXBhJBC/ZQSoXjtNMe5ILcLfrKU1D2xqUMeKMqYQkLbsds0YzWGuw1kAuTONIVpa+6XHGYLQmqTOyU1QkpkSMAqOXWDCm2vpvBpqUzu7UupBTIiXxprjZ3ggZPM10naEwnyWqSlWPhUzbGErypOxptMGHyOkkLQGjNdNJdpa7bc+z50/ISnM8nFC6sNn07G7F9v76+prxcMIYw7DZ1l3xjHOGp8+fYXSD0uK223VbTuMjDw8PPH36lN1mYPYjyXt0Ize5r4tMiBO5zIQ48+7wwHE8kkqmtS2aSN8Mq2rImoaCTISpRHJWkjmUIITMEpcR4kTTtaQcyFhabZlDJOeAc4aNlogRgNEbfJnZjyNJFUFtkFaTRpNCXmMCdtuBm90Vh8Mj8zRJsZsSShkaa8ipMJ7kGO5ubmmbDa3WhOlAThNGO5rWkVJknBJDVQJpLS1amIkpMU4ZU0R5aK2ibeR66RqFs+DMmay57uRyQivW+INViZISTWPFnt9plGlWC4Rc01CXQn+eR0KOGF2z0LSrrZyRUqNbQpjpGkeME2/fHHl696TGR7zh6fMnXF/vePXqlVwz22usc4Q58tm3/g+8efOWV198yXa7xZqGti0sIUrbK2lfBR8JU+HN60dKinz7299md9VynOXz+s4vf5dPPvmE1rZs+i3TnPH+SONadteOotQKagzDTgo7lcUaoWnwYRLX9JzQqSyJBMQ50LUNVjvCFHFDR6JwqqjD48NbDgfZJHT9IGICBN3tmkbUn9nTNAVjGpY4FK1EfLEIDuww0ClRcZonir4Sfp9vv+SXvvcl3yPy7hiYp0CswoOiZUF2aik4NU5LwLEEdwZyJbtmIyGmpZ4Ea8TKwygtLssZSKI+8j4yjZH9UTYMc4h0VkoFo+s8bgzWNFhr0bUFKvNRbSdpCf60RgqThfi+zlsX7RpdvYFk/Y3S8lFFiigQNazWOCPIeFmys5ZCYFn8602jyjlVSilBdBRncu/y2KWtgznDHEL4znLvXQhMck6k5W+NrnJ3sa4olbawvH9xI9bVb0fCrg2KXBQGvbaXSkHafgUEidGitrpQYel1rTsjOqoWzetrqq8WMMvfnNdKeb2LwudiFFXQ5f2f/UbjQ7FzMcR6Xrgpy5nONqGTpcSEihZnEzHNRNMQk0V7j61OgbYJpDSTSxTJaxaOglWVs6MW4ynElC1KhxTqji15Me2LnhjSahGfS5YPVStoLE1lwgsXJlAyVI82EoLMpCjGfCqLyZ1VcnstN2wKcDx4plmyv1yjGYaBoWspWpF8INRdcphHSgqYGjxoGkfSCoojK4VxmnGSySUGKXyiktadpcEYS4oZX+T9LUWUyXIzG32OsxDPjpm2axmniVCjOmThDXS9ICjjeCAnz3g8EU5+hVTD7CkkNn3PsOnIOfNweMC4jqZpaFzH06dP5RykjOtaenNNSNImur4bJJ25dLTNltMsi8HD45dY1/L06R3kxHjcE2OQxV1FxnHE10XEB8/xOPHuYc8cC2MI4peiA51W3Gwa2kauL9dUSWeBmEslLpiaybOme9CphjB5Qim0rREljzLgEylH2sauBnEppdr2muuuqKonFvWNTuTV1mDi+upj7rZbXr9+i2oNr9+9xfsIRTN0W4xeWjgdjekwumDagUKDUVl2lChyVmv7oOsNJUVMI75Mo/eoCHHOaNXT2Lpw6YhRHoUYzBVd1SQlo5Smq+n2AKVyx5ZdsVaFEAI6FRprUOj12hIlkWaaRja7gRQ8Tevw80TbWKx1lGqnb4zELWy2PZ//8HvstpJ+/vr1a1ISL6iul3v8zdtXsgCaAha63Yam75l8YguYxuH3ch1sNpvqAyPoyOl0Yp4e+MlvfoZtHJ2ryjWlQUvBprUWU0PbkJOHYmpLU4rItrFM04RtxOfEWAVTVWAVA+qsWrK2ehHFSIwJW2RxWVpdj4f92nJTWiT2zmliSCvP43wuw3mhU1aK0pTxacSWjsY5kmvZba4wWs7rxjluNhuebT7nl3/wmi8eR/YpMoVCLhJHQTU57XUvbaVCLWAMWte2iqpZTSsCIrw3rVm5gLl4YoDTlNifAvtjRdtToTQavahkNVhlVq+ckAumni8RMVpQqs4VvaBApsFou5oKGmNAK/EPKhmTAAqtatGmoJMkrcvBLu38yivjzJWTa/hcHNR+VBUslTNaX4uty25NprZxyILEJeH66AJGJQh5beku1gvFVjXVe8qqi7VOaYpKEt2B/FgvsnNqpEc5F3zU6wmd12NT69+qy2qHokVNthQxuly0sC4KmMuflfeKmFpEKrW20tZXTL+9YueDGuvD+DA+jA/jw/gwPoz/qscHZOdiGONwtkWrtJKhckxkaykmgRNzQZ0NxgRMtGgTiFZ2RyZGYnTkEikxiDkgXyFQlcVjBnECLQoQU6hU1VhGUQPXFhJXdUFtat/XiGLBWosujZjlVVPBiOY0TxRgjhkr9mMUIKpCrLsYfyrcHycSgrTsNh3XIVeiK+RYmMfjctCE2TNsGjFzUy2HMEqSr3EYZ/G1PyyEbgcaXOOw1lBKJs4en2W3cakwMsYxbDdoa+sOI+M6IYCrnBmqAiLMR3QRRds0TUzTxNs3bzAoQpgpcYGgLUYXrKtGcT6ilKHvN6AMNzd3uIoUmFwY+hu++OIL3j285vmLpzRuw9ALmjHPfuVV7HY7lLZ473FWA0aUMiUzz5XgWg3aSoH7/VvePp54cz8yBrCtpW0NVxvY9pquld1J66BYcSq12lRfC43VwuNaTde0xGgUpB2jyDRWMU9QkiZmCBXmj3NkPs2kkIW0rIAKH+cksRy6kn5DiPz6d7+PMYZ5nNCtERNMI1fpOJ9WdOnt27d0rtDaTEmexil060TNFzMpBJypboHJiFFhSpQUxd23FLRqCDmt6LtRSY6xCAJUtIQq2pLQpbDtO57VwMyu69DGYBtBdpqmwWfh+UzBQ1GrCCCXTKMc1lqm00jnGoxNxCmQS2IeA9eLAWHOuKZBW83V9TWPhz1Pn7zg5uaON29ek5PhtCCXSXh2zjk2g+G2vcL7xGbYMB0m2rYVRAa4f3hD23SE5Lm67vn4kxd0nWV/HLFNR9sKb+nx4Yj6zOCM5tmTK159+SVPtlcYjDheZ2kt1MlAkFOfsdphVUVDq+dQCDOukqlDShhnmOZ59ZKRa65jOs1Y03JzvV3nvhgjSme0KWvbhGKgLK2GOhvEiNGGiKgF03TAdT1tZxizoamcPNu09K7hpm14tm351c9f8523J+5PkSmKSWlTiW6tqw7JOUropEwOaH32TloEG5lMKhCVR5dCDp6SM6c5cn8MvDtMnCrCqFEYFiWgBOBmVfApkuaIiRFbl8GmuiAbYzFdS9tscF2L0W0VZywOyhUNKVmMPFUCMkkVdHX1tQvpubat0GLUt2ASi0N0Vhc53kYLsrUQhktF85fPvryPgiytIagp8KWs92pJZ+Jz0RatC9okSOLaTNGQKpJUX3+5hi6Bk6JAaVWRqHObSUxngeqErC785qqQa0V7jBzEeswgSM8ZUVofddnHWihL57+qvzNrjJF47uh8ucD+xuNDsXMxrJO+qtb6HKugk6QP64zKhqgjJVoCIvk0JpAWZ9HoCdmQklh2i6PlDClSiJCE1Ak1T6RU6LkS/oTnoFHWUlKqeh3kgtSK1ji6xtFYu5oIlgS9bQit3NynacakwmmeyY1MVAnwIeFjEHUK1D6yxqhM14pQMMwTh+Dlwsx5XeitgWAhecWcM3k8Vd5ES9sNdHq7GmM5o6XAqV+naWYa9xVKj3RDv7rfKqVorKNrehSGlGch42WxiHfWCgsVapFh2e+PPDw8EMNYTd9E+RS8LDCliAz75vYZqmkgQ990oBxPnj3Dte1601hjmU6ex8dHrq+vcbZF4Qg+M6VRuDy9LAYlK5TWbPqBmDxNU6X4OYvKJKvVkff+/sCrH73h7dsj4xgwxdKYhm3n2AxCKGzNkoqccaYBpVFkQqjO0Rls61aJadEZ21qsbmr2UMIah3OKKXpR8eklbycRQ6jZOXrt9ccSVoLhMgqa/XgSIzcyLlU35WqGlnPmNAo59m2Z2G0d9NC62tOvpEenDekifqBrOkqYpEBLCaVLzVkqBH+Wxuaq4MhFCaxeZFFtFDhraKxi6KUo2A2bamXQinFjlMWr1EUghCjnEpFGr4UiGR9OOGOYTnuM2lBSYKxWAc5JflbXWK6urhmPE8fxxLDZcDge8cZyvbsG4Dvf/QE//fv/r3znO78CauT29paH04nNcI3PEwWzdGZ49+Y1H338DX7tu9/jarshlcLTFy/x44lpPtEPojRsu4bHh3tud09onKXrWqZpkrywDH6cOVZuzTA8ZQyeq92wypnlOgoYZ4lR7p9l5BKJXlq7Wp95D/Mc2F5dMwzCScux8O7dG3Is6DoHhmTRGrE0UKfVQVnbFq2UhLApRU4zISr5uTU0ZlEtGVSXuaPQ2MKTTcvHb4/84O2eV/uJvQ/rMTkdMUXuDU1Nds+IS3sulXdSp0OAEpmjhiJkYB8S+9Hz9pR4O06E2tbvrVsLnpQzISVOfiYpaLMUzCYtDsJildE2PbbradsNpm3qvXFu9wgpWBLARU4uZN2cawtIKbjgwSwcH7UQimtbSiuJUFhbN0tBsLzPxT25yNwjvKw1bwiiSPTF+UHOnakmtpeZUclI+8lU8UrW6UwUXiRUdSztqR8fQoJYaRicCw45BlWfqpY9l3wbpaqIQF2QlC+PYT1dcj4uuFHvHdf6iAv+TtarKe9vNT4UOxfjjJpodHUaTkqLM6fOIoM1spBrrYlR1AB5UbYYg8lWXDq1p6Qo/eR6owkuUXf/S+NSl2XjjUq6Erek8lb14yml4LSjbSzbvqPvGoyTbKuSCt771S9D54TdtuKBUvJK7DsUz2lWzGFRgxWsNhgDrbGYlAhj4ZgLIYKPad2ddA6s1RzVjNWCnixFIWRCnNGVt1SIzF4QrWPcs38cyRl0a4QPZc5EU60NfdOiUyGEkVw8KUVSnGgsxJg4HMRBmZLx88Tp8CD8lpDJMdP0ll632FFef79/5ObmRtAmnziePLfXA89fvqSo6gtU3VWdg8PxLdc3G25ub5nnxH6/x1rH1dUN+8cjTS+F2fPnL5n8kVIKXddWtZAoQ6bgmf28yt8P44m2bSmqhv8Z4QxYbej7DmG41FymbkPUSlRmzuGcQQdbIyEuvCrQNWeoWrnbBmMbhk1H0jN+Pkl2GkLOjSmdd8SLukYZ4V9cyF1FEiuFZusaOuu43u64P+xrbEaidXIOfPQcx5HdsEFcToEkHi2qFMgKXwu+0WaGVpNLEOl0naiLhjn5pYYlBpF+JyU5c6VEtMooXWiMoXeaqyvxJBp2WzklC3EVmfDMej/G1TOldaIKbK0hRM90Gmmvruj7TXUPVpxOUsTd3l0zziNGdQSf0Uq4XWsW1NCulg2ffPqMRODFxy/49e/8MsMwsN1uyTkyTRPjdGAY5HyVkDidJg77iZIy2+2W4BNd13E6HequHfrOghIhQcmabhh4fLcXC4i7a5zRa8FntaVUflfXdWSVsVaTkxTbKRaGoV3njXmcBBfICdcIDyZrOE4jt8P1eo04J/ey1g7vI12nSCljnWWeD1A0tua5qSLHahrx4los/ckBp8qa00fJNK0G5djZK1zb0LUPPBlaPj4ceHc88a4iMFOUQGOyq6iJI1MVqlrUpssiF4tcJ7lmYM0+cpo8j1NgP2bmIGolmWM0GdmkKQ9KTfjs2eaMUh1NI8cHoLTwcwR122CbDmWWBNhLkmxdzLOu4aoLAqtRKtfl/oxQXBY7aL1yYZSi5gsuEu5F5LH+aXVJXu7jM2lXZy08mKpokxgGTTEJlTXamjVbUWW5N5X68X+Lh80yy6Qa1bDOHeXs3vxecaLUqtDTyKbFVugnK41V+mL+uiz25NQspctaFF2iOJfozvmH6/Fcqq/0xTH9VuNDsXMxxK/DVnisrD/LJmGz4ItaSxbLYipnjCHVmdtaS8yGEAzZWIGFlSKWuQbaiRU4CLyq9dmLQD7MQK676cWPAi6Lg8qS14piNboVybdrDKUqwmKJoBJaZdrWkTOc5kAgY0Mg1asq54yPM8Y6QoGjL/gYOPiZsbak+kqgHKp8coiFrm3YbhvavsfZOvHGiKvHGr18jxFvDG0E6u6HgRDEpl5X+XvbtmgD03RaIfQYI23j8CEwj1Nt8wEUYpppG0uYRqzONNuOtjGMKF69k5yhpmkYhh4/zUwBPv34E4ZNx/Fwz3GKdN2Gri4c4ygS9asrSdHOubC7usUYx+PxEds03D6pZOYipnttY6tapJDLOZfJ2ZamXVjij6uKLOYghE4rRG7njCSCL+nCTkJAxWBRoXRD3yuMy0x+ZpkFwpzIRePDTMwK51pB4Irh7vaa/HhPStJ2LGlEVTm2TLZ1wkoSDVFKXqWx4jUiSosn1zd88vwFjW2IMfJujrUNWVUdyXAaMz4rdIYWUNoQU8YpuR9yNcKcJg/F4hpF6xwlVeTTB4rKTEGKosWHROVKnsVgirReb4aem23HtpKDnSkY51jUG8aIgm1ReTStW4nX2jlyCPT9ACpyyoVpCgz9hvuHE13fkJdk7BDouo7941FsJrxYHDRNw/b6ShCPqgj75OUTpvGeq901m6sdD4cD3/rJ38Vxf+L67pY3P/qSV69+BMBHLz9hHEc2g1x/u+0AWmGaluMXn5PqBuUbH3/Ef/yPv8zT62s616GQ+5aqIit4hq6qe5wsqMEfwFl0kqTveRZhhLPtBbFYWgVdu6GosP4uxZm2kQJx2ahrWyqfNK9rVAievh2Y58D+4YiuRni7XUdKEeM6SkmiJEwJowohyyZPrsOAn084Z1BOY1yH1rDbdDybeu4PR17tpT34xcOBY5jJJMiWqKuvTE6oGnB6RrEKsSRUVkwxMM2R4xg5+cxUlRpLjl8G5hTRQfzPlJVAYLTCtQ3NsKHtZD4wbYtpe1zboWwLyoppX22fr0WBLpQipNwFaClFNrQSCfG+6nZRci15T1rrWuy8T1BWS7tQ1UW9aFCykVBKrEdWCgBZ1vxFoW5MLXyEiF0ui50oqeFokZUro6UgKrJhuUy1WtCe99qWl/9WtHRpa10gLuVc5GV1JgRLWytzLnqopoNih3Fug53P19f9NzVC5vI1k87k/NtDdj4QlD+MD+PD+DA+jA/jw/ivenxAdi7GZZ9zoTZkndG1WewyZK2rnbmWytpoTCXZxRjR0aKVIyeP1rM4g+ZEwZFywbG0DwqZSE4JU3eqRWkh0CHEK9ueCa9KVfmpXvrDBZ2E5FcUaz+9awfiaaJoiU0oWXZFvW3o20R9SiE1ZnFPzkniLQoGnwsxJ5wSeBYg0DJq4YI4V6RlpaVN5mNEZ8fqwaElqRYj0m5rFVo7cWRNCtvaM2KlpOUTYqwtLnGSLqah+IjQqxf5faFzlpQCtmkoRiD64yGREwz9ghZ1hBCx2vDRi+dYC+8e3nI6TkIy1MMqZw8+sN1uxP14Iz4pPgf8OLPdXnN7+4RUFuZUFhPElKu7baFkTwyBpu1JqRB9NUhTLeHkOTw84lMGWygElE5ok2g6S9dXB+M4krQDLDFlYg7iUK0VvnqZLNdLih6tWxyScq2bVlqB3ZYXtsdoafkdHguN3VfXUbFYF8t5QRKlrXXmbuWUsMqxbTfc7rakGNG6Bv0pST8GQQrG0TN7CWG0YseHRonHB2klPmclpoSETGuctGyLYfYz4ylSQQ18VJTsKNmDQrgaKqPJtI1m6N0FUhBRuuDDTDv0QEEXLeGGs6d1LWOV/5dSRE4+dFjT0HUDwSc2XYt1evXoAXjc79leX4mjbQ4cjg+M3vLRRx/RdQ1N0/HqB28BuLt6TmsdMRS6rsfYhtdv3zB0PcZarm5veH3/INfiZoeLic++8RG/9D+/4Yc//B7GKcg79seJoRce0PV2wzBseffugadPn6PziWHo6FsnPJAwkmpryPWaok6U7DB05Kzxk6A61jQUq5kXVLHA0HVgGzoj10oIknx9c32NadrVSTulUNsMItlPeSbnWMOMNQ/3I9uNfA7X17py40acNeQYabSubX5HmMd6bYFxMPkjXStxFm1naJoNdrC0m4Hra3nOZ7sD371/5OADoQgKkHIh50DJCUNZW1OS9i0E7NlHjnPiOAZCEGTRGrdyCHPOzEWiHJxpsW1D3zXSfhx2bDc79EZ4S67pcP0G0/Zo41DKQkkLcLLaGiilhZ6QIyFEfDynlWutxQeotlpyRXUWegQ1AX0Nrf0KsoNc1WevKaprcUVKVmSlXBKJFSWXlf9UsiKXeF7LDIKWFmk3ZiNInCA8F+25Iu8xJ1aEh4reqIvzCedzsbpDZyi2+mQth7UKbC4wFYFwBem6bO8tv64taqXUijpKe1Cvv1cXGI0thfjBZ+c/fyh1hiqX86cRchUpo4yQ0gyKhGQCaW3Pfh06kazHJkMIUrQkJ34SWmmycqsai5zJJWAKkhVUpGdulAVThK2+FkYJ61S1wBcjP4UiTZFEpLGWWC33AZR14o6ZIkZZlLYoK+7Gp7n6aiQrsGhRqCTKHhRctw0npZnmQO32i8nYxuKcxhrIaWYe5X0Y43A7zu6iJeOMYwpBHHuLJiVFiJM8NkGqPhwqSlaTsUICPI1HGutQ2kjEgQ/rQmuyIkwT1hSaVrxGiEG8Q1NmU8meD/sDrjNsb67Fb2YKjLNESNw9u8PYhtNJyJ79sJUJbtPS9g2HwwFlDddXO8n4ShO2QvfGGNJ0IgWP0gmD4jCK+iaWTEiBlGtrJk+8OXgeJ4jF0lmLUdCagtIRayxDVYRZbRhjqMReTaIQvQdtEepvzZrKkVwMykqh4pWcO6VaKA0le3bDLQCfPnPosMEfDZ9/+QafkxDkWWzX1aqOSEUg/1gSU5rFJBKZpLGu8jOWpGOZmGO10s8UcoGSrbSTisYukLguhFyIIdNZMYgsuuBURue4cmBiyYxe+BpWOzQFTaJrDRunaBVrphpI2yVFv6pKtJZWg7KOVMCsRRxQCsEnjLOECMYqYjlzZpqqrjnFET9OdN2AnzK22zCOe/bHI5tuw5ObZ7z6Qoqd7/7wFc+e3jJYhSmGRhlKDLTNlhRGrC5cV45RyRFMYdMNPP/oI0pM+LlwYMTHhKoig93dDR9/+imHw4EQEo02uKFHaZj9EWeUOAYDZTrRUSjTWDl5GlUCKkLXOrRrOY1yHep2QzNsGH1AGYOqRaExhrZtUdaS69yVYiaFGYum7TpKsbSt5IWlPGPbwhxPdT4qkpUXM1Y5MIYYagaV1ZQ6F5WcGboNcfZMB4nDMG2DbVpsbgk20TQyjwzDwO6643iaOcyRwxgZU8InabmWklclafSRkg2zL4yxcBwTc9EoY3Ctw6GXQHt6ZxkaQ98Yrjcd19uBq+stu6FnuNrQb65wtY3lbI92Fm0sWSVSiSxRJKIwrZvalIhZoilKKdIeKtUNv0YzrNlUKkoentXoxZxQmfVekvuq3jNrirhscHOSQsCiKNXAb938KKFBZIpkeSmNMbJxlZrKrplXWlnx8lLxLL7RChWpxcy5eCi5VL+hxXCwHl3lHy7Fcc4ZXSwoMc5VWjZTWVeCcinCd6WqblUSnmIRJatWUqwtRo5n7dYi3qmtfqWAQkKMTjF6Laaq0fhFUfSbjw/FzsV4L3tktcWmuliKPbdKClRFJ3KthFXlCWiNzkt/NWNMxllxqtQajBGzLJBYg1xApYgqhqITuogSS6myqnxkaJQr9I24vxql8SURZ1/VO5MgAsjuO2PBOkiq5riIW6nVtagBppw4+ci+FIiaLjU0xpJLkAWssWv93DmxcY9Fc5gLPo84Z3FNy7ZvsKZjuVizyoQcRG6cgZxQttDqDmUc1jp0vWFULrRtA1bz8PAO50RlM08j83REq0SuURyH/QNdo0k5MAfJxSnKUUqm3/ScqonY0G0oRgi82hmm4Gnanutuix8907jHVQJp04h1vDGah4cHcoK7Z3coDKfjyDAYcpFd6v7wwNC1dF2HUR3T5FcDyjh7gk+rlJhyqDurZecjZWuKkeCt8G2qfDKXgIoJsGhnMMWQ4lx3r1VNhUyAS3aZUlpUHtJwp+RYeTfy2W66jm994xukaCjhP/L911/ilCMaKVxU1ph6facUUNrQu47nt89AidxZl6oG0XLdy7FKsdQYGBqDyRmVEoEC2QvSWJXnjVTSwg3zns5m+SyXwNHK7cmx4KOSQNqS0aUwOMfWNHRNT99txDYA1t1wKZLvZNAkJcqvrGTRWAJpocZiqLy+z+1mi/cTfddwPJZ14ej7tro0S0bb0AvheJ4D262jqMQnn3wMwKtXX/DLv/Idfu/v/b9we3eN0Y6H4z0xRobNjl/91V9juxUF3zzPbHYbQoo0TUO7axknLwq3yTOOFQFRlu12i65/o3Vm0/c4q2RjYxbGBExBVI3Oiev64XTE+8Cw3aK0JpW4mq5tmlZUoTHRtA1+FhK1aRrJmgpx5Rv66URJkamG58oitHBPNM6159yzaRJFZVrmyCJoWS7EKH8PsH98oBRx+B69WFzM0wndabq2p2+HVfE5TRNNCzfbQMqaFGGMntMUmeaZOWVCRfiO48xhDCQ8jYZbK4i31YZt07DpGzY14mTTN/Sdpe8atkPH0G/rPd9inMO5Ftss2W8VfSlivKe1xmlX4zP0qmRNqdQCfHErriR/WZcFIVlIxdai9RLJc4lOfIW4LBdCvXJr6CUiTV94nBh1fkjKpKq6EpBFNsfapPoVdK0fdJWhX/JflqJHnMrrtFWfb3HHfp+PU3l7F0q/ZCTGQuUqsskLKRzgfVPAQiGXzJL5pcwSG/G+KgsWKfqZZH55DD/2OGXIxvDbGR+Kna+M5QPnougxCooWkhpKC7tdSRGTUmIx+NZaU5I4Xzor94wxBuMiOYlHS6kyx6gjMcjOGCVdoEVmLKqZTKwGPXItnzNWrDYS7GkFlgyxrIRT0Fir0bonZy/ZMiphU2FLT1/bTcEUBut5nAOjTxwnz6l4jC5s2o5N061QsC+eL/dHUioMruVm13B31dAasf13OjGfZOIOZPGbsQ60Fd8G5Wj6BoVDwSrRlknHEMNM4xxd35JTYL/fo5KHNDMdpCXgtEGj8ZPMKLMfRaVmHFYb2l4mt7dv37K7GmoBaLi6fYpVll//te8T5siTp8/Z9AJbWyuv/+rVj2i7jqura3QWe/imaUBlprpLFmv5mn+mJMTPGcfxeAQKrWs5HOQc/PDVa968eYNI6+V68XMkhkaKtAKneg6c0TjbkbHkWCSYM1dUIKuVZBhyxphCYx3BJ3RRNEq8TlpnRIa6TFo6YtqG3c01u5tr9P07QgrEHDFKJsxl9+2ckyLCGJq2xzYtappRGKx2JC3KG6hxDFnX67ihIDEfJRdSlLypBeHLMQoKaBTH6QhWiJI5F3xMzPVaH1MmKEWo8HdrNFed5vmNZD5pZ1dCuWsaUhJUKSWRIxcjROVcvWa4SFN2bnFaTjgrhUTTOFKMNG4g1wyrtm05jicpYNuenAu3N8948+YNKcp8YGto6KeffsKrL3/Ew2HP8ydPUUrhc8vDwzu2V59hKjJQb2RKkgm+7Vucc4QY6XuR0M9BjvW4f2DTSwFsnZFYA6urf1HEgVj1AykWUFoQoKbDOZlHXNcyjZHjaaRpKuHWGBprZdHJ54VibVuAIGRADEe2g+Mwynm0VYQxh4C2LXe3myVOjZhlg2Urkd06MMYSQ8BpQ6w+Q9ZKTtz1bkeYNfM80fSDoDRpxlm1FkbONgS20mZLErUzlMwzZTHGCWJSW3nH45HDSby2fDiRs0Sx9H1P02r6vmdoN+sc09pW5ppOIiKyViuRuGR1dnQ3Dc400oIysgiXrKq7/Tm0dF34a/ilWVtTS1fggkCrFiKy5b2IhIWg/JUiRJ5fUZCNhrRzyvrzdZSqxkpyPUhyenVKzu9Lz7W+yOeqLSxjDKXY9VyvT7usf7UYWwjBayF0GeCZEqo6+yvAJEFkVC2Sl4aWqusnKlWStajsliLn8hz85iMvV20di//Qb6+N9YGg/GF8GB/Gh/FhfBgfxn/V4wOy8zVDZH/y3+9DjRVOVsLcLFU2l8u52s0LbK61EFmSmPPFJFBorLs5UwopWZTKUKSltciYSeBDxtRdl7UaEwqzChgz0boGbUAZJQ6dNsPCLUF4RBpFpCOEGtZnLXE2hFl2XY0tNNYCJyGYhiqZbA3JOh5DknwvwOOFxJwi5jgzzg3RR6ZRk6cTYefW5NwpAsrQbXfoRmPtQNNJ3pTsEjShQqGjn0hIrk8p0rpTORP9RJpPGH1OD3adQNXee0opnMaR7XbDdteTi+LtF+8AOIyB7VVD8IXnT18ytAPf/e6vsX+85+7ujtu7zeqL1PYdb9880PVb7u7uxJek5kkNu4FxHFf55WazI6eAtUbOV0qM40lgZOWYp/POr+97clIr10RaobL7tdaKwaOvXKTekZQmK8nUCkl2Uko79EqOruGH+rw7Nxpco6EmpTurSfV6Mc6SskY7SaTXBnQquMVo78IzpLGO3eYKixLvoGomGbIQGE25IBzWNOOYCmOI9E64VTnPlCIEV189jLqFoK7lvpnmjK5kfVImJ7le5yA5ck5rtMr0VvNyu+Hl1cDVtqPthhVVsbZhTpGma+tuXBNTXgnMqLIiVpBJKQjfzUou2uP9O4Znz0gpMwwDr798WJ93s9lwPMxsNlp2n8bx9OkzMdgrmX1FGG9ubthut7x5/Y7bKyE1923Lmx+9YRxHPvn407U1A2KGKbvohLUtuQSePP2ImL65+ljlSsxurSGEGaxIbF3nSEEk/LksAgCN9wVjtFwjNmOcImEppoCytF01wiziR6WUwc9R0qgLqyCgaRzjXu6bh3evub2+wjWG+/t7bBcYhh3aODbDDmPVai8RwhFVnPj8RMmU6zqwTlA/VoRaiXFjjPS94/6dvFa7MzhrifG0bspd06OUoe22xDQJmuI9oHB2wNml1Qi7zZYUZub5RIrimdS6DusalGuwjbSn5JKVVrPRTu4HpVY5eaoGfJe8PGftSs4tpRAplbd05kRmCkWJLxtAUvL9pT/MQlAWA3ODUkvgaDXXu3CG5itfl3bQgmIoWNefc0q4qt46pfrs1PZQlXZf8k91zcaqeBJG1VBplrz0pTVVWAw65fop7xGlZf4+dx+WJPNYW26XZpZyPGH9b1U5NwJAmfdaUpfI0vL9gib9ZoiPLiJmMITf8DGX40Ox896Qi/bS9OhyCHse8UaoxY7Wem1jiWnaue+pta4/U+CLxEFUkp383lJMFOKWynITFTHlKiWtpmONqzyeIsGHYgYoPVdjoDhHu0CxC/RYwFZ41TmHcZ6DVoS6gHof8SkStUwIm97goyhepjhJkVG9KnwMTF7aN41W4rL8EMjBYQEfpgsVm2Wzu5IJp20ZmgFlnZDwtNjZx6qGslZg5WXxMUbjw0SMEsmQYqLrpOU0DC33b1+zPz6uN/9us0OXzPe+9wMeajJ312+4vnnC1dUVuVi+970fsN8f2e123D1/hmlaNlV94eeI1pYnd8/wYRJCs/fc3d0xjyMaGLa39cPPtE0j5nHjnnmeaZ1FK0XJXhQj9TPo+4HWNVgdIKVVXaCNkaTmlFFI203RymRaJ5ymaYT8p4womipPwBqxq89JyYRcCxfXiG9OKdJGArDFYpSlsw2uKJosqcVzThhrxaO2+jt1uuH//K3fhU6Fq+2Ww+mR0zRRokQ6RMo6F9tKBvY5cwrCbwmliA9IyaCiLNYAxcp0ryOKwhTjSijcB9jXomhKEJQkLxsim6bhxe2GZ9cD3W7DZrPBVE5F0QpdhAMRoxdelhGXYLUsXK5ykaInBOFVzaeRTd9x3CvGcY81CmsatlshtYufi0KR8X6ibXtiTrRtizFiTng6iIfRbrPFac3Du9f4+TkKCbHd7XbkmLi+u2F/eAQklLbrOgkRVor9fi8FszZstwOpnoM4e1zbsN300sJV4P1M4xZOhT9/to7K02hIURF8oes2hJhIUWGcuHHLdbjBz/nMszCapu9E7ZNF0bkU5NN0gtsdQ7/lIRw5nU70/RbnHDkWmsauVm5JWQqVrxgjuURxhO62MkdVN3OtGzabHfdvXhOj8K+Cn5nGEeVAa0euC2JMBm1bjDIoK/ygVBTeR4IP6JjXYkspg+02KNcRwsg8B4K2oDpRiha7egIp2RXK8dYNx+J0ptf204WPmYpCEaibt5gyMQViuliQF75b3QaIF9hFC1XpsyNw0ailHbWmp+sLYu65uFg814qum+1FFVVbSJceM8Itqi9RWH8nXmyiUvyqX83X/VvT0zk/h1wvZ7Xm8ruc8/oeJby4FiuqxlWwFEeVwHzxt1qd55GvG5cFj+bClrGc2135a/5evd+5/k3Hh2LnvaFqkuyZoFzKYoB9FrHoYiuHR/qdS82vssLgYLUEN3V3Kfpu4ffIxJ2zKAx0rdZjLmhlq5OuoSiRbQP0reTmFJJYftcPv2QlV51WaxWdtSgClNFYV0hRo3LGqg4bWG/slE7kgvABDLQavE5iOqgV0Sd8veFDkcIs5yKEx6amSxeNnyIpioEhSJ8+xsg8BVAtQQXmwwndSqJ88CeuKoGzHXqCL2sFn8JMjoHt0KNSJGlWJ+vT6cQ4jmiliDHy6ScvmeeJN2/3pOLYXUkB882f+kmePb9j/3hkf/+aaTrRNoa7J0/pux3atJymylsKgSdPnpBSICWJV9hsNuvnPgxD3V1S35+gBfMccK7FOE0IkZwTSmmmylsaD0daZylF3IpDTBSXKDVlWGt7nhdLwiqwJROVwxlH0FVqjaapJJgpT+hSwMhOPdWeOnXCcsZifL1mdSFRaLoGZZUoGCI415GyqGQWdU9rHY2xEmXiA2PwnKaRlAPaWYiZRQylFBhliEGKsJAUE0nug5zQKZDiIhPPDI0VXk+JaGRCnIPiNCvG05K6LseiUuBJo/nsesvT7Y7tpqfdbLBtQzf09e40EGtEgdIUZbBWzkOqqrHOCvl84YU55yQuoRi5z5JHK1eJtJv12pqmA1pL4TRNp2q+qTiNM7cVzQG4f/Oan/jsU/7H//F/4HC4p+ueklLgartjnGfmaaJv5RhSiOz3e+GQdBseHx9pbYsqhcPjnsNBHJw3vSOlHtfs8H4Ws81qs5DjhI+lxnOAU4ZYEsY5tLOYIIRtVTKts4Qpczos0m+LwhCVqhId6Poeo0TNqLVeVXHKtIAlI5sfm6VA67qGcRwxWNqqHguzxmoj8S9dRzyOSJK6p2ksISzoo6YftiQvcv6r7YbNthfnd8TiYsm7CsrjlJbCRCohmq7HtYXoxbwzVGSnbXtc22JywbgO4wLaLon375vOGS0bqlIWYz8jfEuJV4eSiQsiaoxIxQtyTxck+icL12wpGpfYihXNWchMXLghr0orxCxwEbysKqwLsvJXODuiWCoXTspnNOWMBpUVwTkXLdVKQuX3nnfhxFzyY75a8CxjqTmEiyPrWIxnRebC8QLpYogIQ1GKxBvpAq78Rq7GuRon5q99/1833nsfX1fUlHOS/G81PhQ7F+OrRC1ghdNgIV6d/SZRko10ebEYI8WOvsgfEYJgEpSnQm7JNVAFxzEH0JmiNUpbnAZ0Xu8hrUU2a1XDAoPmKCGiOVMzos4tL2sUzomyCg2lSMZQ0zqutjIRt9agsmLOsphPfmZ/POKjImZxplx2N5tGsan27SUZjBb35WA0IUW6xgnBErBNR9N1OGuZxyPzPAtkLrpgur4RC3lA5YTV9fh9pKRM5xo8kcf9nhBnSvD1sRmVCuTMiye3+Dly//goDsSbno8/+QYA19e3jKcT03Fk9ieMLmRt6TZblDNY55hGkdA+e/YMpx3TNFGKtNOMURwOB6xWpOBxbiGbCqo2TZPA+sYwhSOpSJ5VTpdKPpksCpJFlpUUBktej5CdazvTKLSrKGE6yz2Xz325tlzS5JyICdl01cDLkqvCyth1N6lMwKiCacQnKimNL3p1e1VFrQ7hw9CJeo5ESZp5npmmqaKDpSoe6mJQNJ01DM5i0aic8Cmg8JToMSmuUgpnYIqJoiKNMaQSCDHgY2FOsK/BrVPKGAXbBr714orPnm3ZbVqatqfve6xtVpl8QYm83DnsOnHXc6pEtl8PFasMSius1pymkbbR7LZb5nmW4NhSVjWUtaImECWUpmkcn7/6nJvrpwzbDQ8Pb9cMqS8fHxg6zU984yP2D2+52g4MV9dgCmmcOe333Dy5ASS49Ps//AG7qyuM1jx9+owcQiVYJyHBA28f3rH1nqfP7miaFmtdRXizhDDOB7KWx2Yji7fSCbLH6izKNqMoOaFKpq9k/ZSCeCyRoVha01Iy5JSZpgnbSCQCwM3NLRlDDIWiDF3bcjweGDYbSknvtVCdc+QgakutNa4dJJutICrN6rzuvRcE21mUVYzTka6/rVJuyMphaxQJpiEiEu2hlZbW0gqao9x3cdkoJhhTxGiHcSLYsBcByZeKIWlrLsh4oJBZQjNRmZwkLwtkY2WMqeh4Wl2OlZLcNl+Va7E6GevGYvQSxaJW9dCKSrC0cL5SzNTxY2qs5TFr8XN+DkFdLp/D1KJBfe3zfbWIUkoJ7SGWr33d5XGllIsooKruraiOriToemaBpWi5/AqJivIs6JA6k6zXz0WLvYpcV5yfVymUsu8VYT9WDF4+DwFM+rGff934QFD+MD6MD+PD+DA+jA/jv+rxAdm5GJeV43sZIKi16r38fmkhlIu/XyrSlCoZLRcJkzOOYs+S3xSF51CSUMUAjHZgFZmEUQ5jlmcWuNkau7avEkl81ZTFqDMcnWMh64xPAdt0WCOGUiklOpdoq9uWbwo5azosqmhOe3Ap4Utimj0HzJKPR+8aLIpQYPaZ0c/kUvDaEG2D63t0NWhTxsruOUWGYaDvLSFEMUDLoJLDT8LriPGctwOazWYHKXI4CKqjSkTVJqEPEqrqTMNpP6Fby9XVjjEkXrx8zrARZGmcHskqkrIHNNM8cfPkDpRiGAb8HLm6Eq6Gc444C8FxGDayg4kFcqHf9mitWFTEp5P4/vRdB0Wkv9ISMuQUV2Rc3omi5Cg+ScqLq2wK+DmjtKWxGmqmfcoFZQZKtQwoCKcnK8CYdTe5QPHj0aNqUKb3E84O5JTqrr5ehwXIkS5nbtqeq+2WKWRK49CloFPkqpPd93bTo4pwlXwOhHkWeb1W+BBICqyu2VRF0WKEn5MjKSbIkZxGKJmQzi63pkhytTYWpRAOQYxoLCHMjJWvoo2lIfHxzZbf9dEzdqYwDJph44QwWsnrck/mswQ2g7Ni0llKwWhLjPk9tEZ4TBKAOc8j1jb1HhXju/XzUoUQj4zTyLDdEKP44ry7f8P2akcpmXeVXNs0DcfDHkrkMB1493hPMc3qsTTNJ16/lvd2e3vLsNnQ9S3BR5y1uGEgIajHIru+uX3CXNtuOWe0NZyOR9ps2LaGoBS5yq69r/ysMZG0IaaJ6BOmaTGuY7dpmSsaqpWjmETrHJOvyHKWNqhkopk1F6qkLdEHtHXoFBiGjv3xyOwnjNXkHFmWi5SStCtb2fH3vZgP+nEkpbQSymOMjOOIogiCWQrjeESpgqUVIna9/xs7YIqYUI5qFpTGKox2NJ3DNpWsjZhMlljl0xqRktdrxGcJxFzaLSknfDytiKmkfqv1v+GMntrqfkwuNbuJKnkXkcdCPE9FQpgveTJaLVmHZ4KwPLe0rpaW1+Xa8XXoilzrZyRjCRiVcdGi+0obavGM+jpkZ5Ghr3L0mpFFVqwkVZZ1rayWDSEEUpZcLb2cp8Wo8EKe/tV22mWrbDmm5WerzFwvOWBnJAuQ11L6x87N16FRQjFpftuIzX/RYuff/tt/y9/6W3+LX/zFX+Tzzz/nn/2zf8Yf/aN/dP19KYW/9tf+Gv/oH/0j7u/v+YN/8A/yD/7BP+Db3/72+pi3b9/yF/7CX+Bf/It/gdaaP/En/gR/9+/+3bXH/p8zfgxOXL4u6hX1/mMX+HL5sJYQtvoIlNIk5VBBTNNKToSyBPo5IVaaBuci5FJbG4WUDapE3EKyK7KAplLQpQj0Wl2Xs8pCrlTnvvEcZJI3/kTbOlpnUDozdP3aI28bUQiFHCQQ0xTspsNkSdZuw7j26J1RtEYIsbMJUGbpkxbL6ZR542bGCmEORV7HWk3rGvEVKhpi4hRODG1P5H3iWqLQ9z1Hf2A6HSS+wHQkH3j7TngN03TCmUJpG4xrUEqjimFoBboevRBIZ58ZjydyLljTcn3dMmwHjJWU68YNNI0URn6WCVxEczOUzOl0z3a3o+068YQJF07Rpq0TwNLmScQwQ85Mc1hNz9q+k8nIGnRw0h4oidM8sz8eCE8HqGaBBiecFa1QxaAxZKPonCjcwkLgVIkUC62xzD4KQdf1FDIxerq+ISytzBIJvqBt5uqq4el2Ry63fPR7/h88efqc//jv/g1XShbXwcyE4wk/e3xJPJ6O7KcTyhkxMStmnUhzU9CtJZSMLYnkEzol4jzRWI3RZSXH+ihFvk+QQwGd8cDRa94d4kp86Ih8vDF8+/mOq23H9WZANS2uu0a3js32iqkWfCFEoh/JzuK6Fq1z9S9RKCIhHs4LWCmi8rIKrTMpR/aPe4ZhINW07CXmJedMt7ni9dsDoRTaxrLdXjFP79g/vuXZsxdrwTUMW6xNzHPg+d1zci4cH97SPHmG6wfmyZNOsihzpfj0o08w2nLyJ2xt5znnePr0+brxydFT5pmHd/e01mJzoFERfEDZVgr3uplpdV/9lCKZgp9mude7AaUbtOvQpfrcmCiCChxdu0Fr+eyMTvRDQ8kBVzc/sRmYwxFjLEpFumFLDJngI41rJfRSLxEBYt5onWKeR7pmg7Mtqi1Cvq88s6Jn0OLDQtKgLCTNPAeMsxiVsAuHMM4Y20vQKwajHTlmIgWtk7xeV83/QmZGwjyNseiiCDETC6Tiqyle3ZhGWc9LyuJAbwzFQGNblIbWtudJvcjxk8VLaKEHhBDIOaybz1ZbaQnpKkrQCq2NZHIWDVqL6z5CC9K6rIaCwuxdiMpGxL3rWlPPb1X9lsU4C1FBac5FXVHnVp0Ur4Wc0krozZz9fpJoysi5YJS0/LJKpFq7LDEVWmvMxlJiEVVdLigtxmBmOY6Fa1MUxkpRIg5oYlS6iHe00utaKPVVI6IeNFoblpgMgxQ3SzCytANrIaQXtVyNz7Baiq91vQWNYd2R/hbjv2ixczwe+T2/5/fwp//0n+aP//E//mO//5t/82/y9/7e3+Mf/+N/zLe+9S3+6l/9q/yhP/SH+A//4T+IgyfwJ//kn+Tzzz/nX/2rf0UIgT/1p/4Uf/bP/ln+6T/9p//Zx/O1fcxl91cuDa3Pxc/7KbBSJV9WtsJzuax65ZRrnTHaUWxG5RZVMnOO5KzIaFHtLDeBEY6FyH4zPkSyiugi5DGS2O4vQ8jEmYgSRr+R3YJWFtfKzd1qLeZ0WZQLCnFkzSFjSqGzMjEAGLtwawrOLzsJ2Tz5aebNj0bSVsiemxc7crAcY+I0vqXvO7qmYxxH2rbH9O26IE3ziWk+0TQGPyWiKpQoNuklKb5888j927qjNpl204mrconYRhb6putF/ZEqKTSm1eTMnxLPnr3AJ8+bL1+z3V1jtpbDXjg7V1c3pDBTlGI77Hj79vWaAi4OohpbjzUXyX4a/YGmTpA557rLFaL6wsG4vt5xe3PD68cjbi6ckkwe82w4jp7HhwMfPb8BwGIooaYSq0wxoKvcNea8Wr77XPDBS6p4JQbmFCgxUPBEd56Iss7MSZCtYejY9JYrPfB/+2//7/z+n/5/8v96+yPe/Pr/AsApzIzxyOQnxtnzOJ/IpeCsFJHRp1VBqLVdJa7T6Mkl0ihVycfCH1BLVEDIxCIW8yVlGhJzdHz+6NnPiqZOhE/alp98cc03nj/l+nrHdrehGINpDKpyFRa0hlSTzkOk6TooCZSlMZIGH/yErvOCsy1vH9/SuBuMc3gvcmvZnS8KpHm9b9uu52p7Qw6ZrKI85/zIuy8PbIeG2yd3cr5OB1QqPHn6lMfDyPE489FHHzGOgbvnL3gd3+I6ucdfv73n5cuXjOMocv1pwviCN4bdbiMLCjCPwt/xfqbfDMx+xBjNZjPQNsINuwgcAjI5S8TC6XikZDFZ1CYzND3zKM+bQiAT0WbAGi2xL61DG4f3nhimFYXp+77yhKrVg2sYhg1TDELUDxKNAhJhQRIFndZybQ+dIZExRqGq2lKTiD7w9uEdV9uW0/EBO+woc2I0hY2yqKYWJQXm8YRxHa4VVG8hph8PJ+I001dXZNsY0OdspZwF7bJoShFH9oXNWkphTl4c6a3FKr0iF6oIApsrepxSIhZBwJIP1USzEpPVuWCRtVqjrFgvFKWhLBtOQfTLagN8IZ8ulxtovW6ev4pWfJUvKgTgWrStC72mfCUnQekiKehkTEVPoNqgaFGfFaMo/oxylVJWjlXTNIzziRiTbL61xhlXhTVnFdaPjfq2VyTJvM83lHWPqn4Tq4y8vD+tauzSBT+nggvKGClAOSewLxJ6ebDYAPx25Vj/RYudn/3Zn+Vnf/Znv/Z3pRT+zt/5O/yVv/JX+CN/5I8A8E/+yT/hxYsX/PN//s/5uZ/7OX7pl36Jf/kv/yX/7t/9O37/7//9APz9v//3+cN/+A/zt//23+bjjz/+zz6mS5hQDuQrv68ooy4iyxUo7eueYyl4qhOn0iwW5CDMf2stiowumZIDQeu6uAkZbN0hKXFEEKJaVW/FgFGZlKDE8p4sz1qwTStQoZEYgmW3o2sulVaWGCXsz2rN1XYrzx8KfdvJolAXuVwmjFYEH7E6oYrmcJw4RM8+TMRUmKc6wb47sRk6TtORoW/4yHSkMDL0LV3X4MPEfJDJUFxYLdY0GGUYmpZ3j/conRlPJ1KeV/v/RkMOmWZwbHcDymg22x2hyMSzZOGoAkp1VQWzIWVPDpH5NDIMW6ZpWgmkpYjz9M3VNX4+oShsdzuMcaJm0hoqqhFyIMZA27YXrqJK5M8lk+JZHjydRJ1i0XTOMfoT2nacYmGcMqdjWBdwoxOlGIpWNG0P2RBTIpdM4tw69dHLjW4LIQhSobV4TZQwoeJE/WhR0UNJhGxp+45m4yjjyOH+B0z7V0yHR04nQczidA/pRMwZbRv6YSuTuMria6IL2S6thhqPESMlBnKW3B9rZLlwRVEqObQsLrUloRPMGfZj4s3jRAiFp51c2x/ftPzEi6fcXe1oNz1d1xFiWgmNOccVpjaNxRl9Jk/HQNNaYgpQEsYobN19N06ck1UJxGjo+5acIofDI8Y42rZjnuXzkqBGx263Y5wnCglVFF3TQokc9we2u1v5bKeJftsyT4Gd3vA//9L/mydPPqKpUS4fvXzJu0cJZFU6kbJHI9l279684fZ6Q/asLSx5X46u9EyHR9q7W9JxRBuD957t5gZjRBUHrNlWaGicw5qGrArJB5wtzON+jVgR35uETfL6OSeskciTlBIxiKBBJgRHWzq0j8yjtJGapiHpgtLSFlw2KV3X4cdJ1KNayfNsOowJ0sqq80YYZ6bTzP2bR4gdTWuZ59oKotA2mVIz9mzjMKatDuXSWlZa5si2H4gxrvJvaw2NcyIEkGAotEqUDCFKrENTURLrLE02tdUp829CNik5TVJM1LkzxlidwNPqWaWUqS7053m+aLGROI+8OLBRSoRsWQpqrczaivoqv1YKNUHK5Psf95ypj1xe+Ss/K4isPq1tuoXMDBcimyJNuUv35OVr17biyg3M00SsPl/WSpGj5EJG2Ur8vuh4GH1Wesl6dd7UL5tGeL+NVmrrylwUq7I+XrytpdXFV1p/tdJaip1SCrqcv/+txu9Yzs53vvMdXr16xc/8zM+sP7u+vuanf/qn+fmf/3l+7ud+jp//+Z/n5uZmLXQAfuZnfgatNb/wC7/AH/tjf+xrn3ueZ+YaiAnw+PhY/0su2aVFtQylKsN+4UTkpc798UIHluq8Pray5tcPfoEqrci+l+pdRc8iVwfhFOR8NktTFAyWkjVKOSi+GtUpckkXuSSSvdQ2/Wp5bo0lFvA+4KtFvleREMJqorfZbMR4qyl0CnRQpBptEbylKEViIqpIag3BiwoJZVEqSbI1ImvWIeGi/Et+pt8NoBQPj4/EFNYJVjKJPEor2q4TJdB4BGSxs0pRqtw0I0GobadxNuG6Tb2pxXcm1fc1TzPTHMRKv2354svXxDmKtX3I7K56/CTITo6RzabneHrk8PggJmkoNJrsA14HdH39EiO2ERTM52m1ri9ZMc4zRWlMVUgdDgfJYtpumdJJYkaMxafAYYw8HEd293IOGqPIZcY2DTk1EANKC78h5yhxGyCBkyyhelryy2IilZFCpIxqVYWmOWAijD5jimLbZTr1lunN/8D85prju19inH4kx689/WbDdrii7zY4K4jb/uGB48kTc90lIlO69x5SQBXRXJALWUVyFi7A2j5AfFx0FnXPg098+XhkTrDrDD/xVNRN/6fPXvLk7ort1RbbteQCtm3wIbPpHdZaGnteWJSWoMJ5PAkq0XXkFNeFONbPZZ4nhmGQXXqOdO1GojU6x+kov9vUVvf3vvcDPup6Nturmj2m+PyHP5DPcv9I23f0V/JY6zI3Nzd88epLulbxf/z2N5n8nrwPvPqB4tnLl5jqoYRK/OjL19zd3tKonnmKjM3I1XYn6MDCbzKKUAqneWK/34vFRDHE2mKOMVKqlK9xNSqjFGIShWA3DIQYSSkwPZ7WgqLve0qSjY0xBp0hJo9CYllSiazpk1A3X+eFxjknKrOUaDu3mvoZ4+h7KRCVskRfVWxOPIVitWDoGkvrJM7l4XFku+nZbBpKTIT9iaG/xrbVXHKOuL6pSkVZjE+nk6gUranGhhcoellUV8LXck4iS4rJ5CkyLX5PcyElyWNzWoJ0M4miMlqLijIunk9jpKTqW6POXJOzGeByrjQ5VV8akykVYVCmkEqR1syqZpLNjNZVqo7ItBWsRdAatHtBh7j8urreXKA+l+OyJSb/976KaSk+Yjyb7/V9TyYxj37lIi3xRiVJ8Wa1FNXpoj1WVnPL9/k5Wuu1JaX1+dytx7f8+0ohs+SRfTXx4T1V2lLs/Bg7p6BU5rc7fseqsV69egXAixcv3vv5ixcv1t+9evWK58+fv/d7ay13d3frY75u/I2/8Te4vr5e/33jG9/43/noP4wP48P4MD6MD+PD+J0yfsciO/+/HH/5L/9l/tJf+kvr94+Pj3zjG9+4qOI591N/g+f4KmH58ufSQ176rQu8aLEWKOeEdAFjMjlJdau0RluzKgkW53ulDblIenFKnpKSIB4ZjG3Q2q3GhnL8mZRnjFJY14q6IMmxLVX8EsOQs/wsl1hTvNd3siIw2mkMikYr5jmg/UxoMvMosQJFq9WA8H7/iNZX7HqHdRptHdOceHx3L62JXLi7vQbATwFjxWdhmo+cDifIMxojYatFIg7kcCaG/gpFpnUNMQWUtgzbLaB5/cVreVhWDNc9zjVM3nM8eRrbcX3znOcvn+G95/EoLZyXz55RcuD+3ZekFBg2HUZZGuc4Hh+IOa5RBM426CLbM6M0MYoB46KWcs5yOApJOsQZqyxD29G3gmTpojjNmYfjzJOrgbf7ymswsLvqMGFClRo4WYoQGxXkKLeocEm0qJpyoUTha2lzAizzPKKoirTTCe9hTjBngaNd3/If/sO/Z5wnfJh49vwlAMN2Q9/3tG2LcwY/H8n3kqK+7F6XayLnSC4aW1uvSpWVPK+UImtHrr20GDwYi0mFEBLvjonTEa4NfLR1/K5PP5LP4Pkzul2HHXoJkYwFqxoiQdyHSxFPGYRkOk2ezTDg5xmfQkUcFodpu3IKpmmi7wdRQ1b1lVUanxNNq3jcv2azvQFgs+kZxxlrO4zdoAxY16MNzG9fY7TFVATkur/heIoMwxY/HXj5/AblGrIS9+8wTfSDq8eQuP/ROwqRJ7dPocxMU+b2+kpIlxWNTMmjVWa3u2KeA22n6BoJadSIqi8uaEvT4b1ncb5NJaKMgmKJOXE8Hs879ZIwthUuB7IRjDEyzxPTdJS5qgIFmTOaIyiZRFJQORtOmxUNDzlxvd0J6kLBhInoT9iuISaLmiq6ZwpX1z2Hfc8Xb15jJkXMkbuba1IuHMcjpfLc+s0NIUuSfVeRvBQjOYmCi1y4ut4sk5Mg5EoRo/DFUlGknMnJYw2rQ3iMUQw4jSKSUTGDru0ZXdCpvIekxMr/UaqgtBZTTOUqIrGcqyWiwYISR3KFJpfqjoxZvaF0DVRdELOv84pZxlcRneXr4lrzPoax9BbS2kU4rz0Fil5bymQFNfA0Z6EChBCYRhFyLArKooWfUcpC/lUUVQnPaWmVyXmV91JDctX7CiytjCA8Fynvy/eX5OOvC0EF3vMlEm7V+V1/9fzpYtZ787cav2OLnZcvZTL+4osv+Oijj9aff/HFF/ze3/t718f86Ec/eu/vYoy8fft2/fuvG23brmS7y/EbXYhCmjpfgJcX1+W4vNhK4b1ix1ornJ16E8QYiSVXifp5yOJiRXZdD8cYaZellMSePVWuW+WcWG0wdmmTLRc1YigYhXAXQ8ZPYYVMY62kur7DOpGWej9Rkix0fevW1kCIhZiRC7/RkMA4cK3D+VjJssITMCWhkmcKCVTD/eM7YshgLK11GAr7d1IUaAO3t9ekaHl4fCCmCasUjSlMpwlrYfGnvtpdI7eBYRo9x3Fid31LnD3zHHio2UUvX3zKdrsj+Mj+/i0axe7qihcffUxRmcNpZLsVvkROgcN0ZBwPXN88EZMyBWk+4UcpiGxtz7Vtj09ejMmiSLWTls8xl8TxuOR2Q+salJrFqdgZtpuBw8MIRXGaE/fHmV2/A2C/T0R/5GrboRlFbussMSMKvoU6phUhSuGUFVA0fvREDc4Z5pigTkRTKsypEIsBBc0AT5tr9hN873u/zu56wBoh8m63W4xrOPkjx/s902HPYf/A4XCosuFEY2VBMprKlZEWq1ZJWp+IQWUMeeWWmFxQynLwgfv9zH7KbBrHi8HyUy+f8enHck9fbTd0vUjildbYVhFSkVgDJURRX/lFzloUCWfA50CMiRBafEgousorkRM2T9PKpwthJheP09ICMtaKEKDeC13XEUrmMB64qnlX6dkdn3/+OT/5U/8N0zQJf6fOBY+nI6jM2zevePHiBd12y8PjgXbo2e4GQq6fw+S5uX3K6XBEPdVsNhtRR7YtjTWrnHxx6b7abJinEykIB8nPI63RtNVkTw7AVnWSrbshTYoZZwdCiISQmI6itDNOo5sWTKHoiFLSFjyd9hyPR7quOy82FGII2H6QZPgw03Z9NS4VW4E5nOXNpt4XKUQhgMfMgBPH4nptHcd72tZx++Sa/TQzj55YPA/7A7c3W7SGeZaWl2s3mNrSOp0ObDY7GtcSVRTrhhB4eHdf78V2JVaXIq1VHyLWVIWPKivnoCix4oCyqo5CSDWHUObD9R4rhUwhl4wqkZwNZEPWCGneLKRjSTAv1fFZFndLWTaH+mLxveCclFLXkSJF1FcX+sti6JKo/NWMqq+Or/19KWf+XLVrsFVgMI/TuSAmrcebyZX7ZqXNliERRFJfBSwrFqBUJajXzK2vSssv3tfl71bSsvn6AmV5vksqyUL1QEvRt9JJaqZg/lrW9I+P37HFzre+9S1evnzJv/7X/3otbh4fH/mFX/gF/tyf+3MA/IE/8Ae4v7/nF3/xF/l9v+/3AfBv/s2/IefMT//0T//vchzvf3Araecrj1ouqkwp6T1C2uJNIHwcvT5FKYV8hlHeY+Aro1FFrxU3SDGRQ5b+fcpEJd4uOUeKbTGtLEiucSijiSFQksZ7CRcNXrwiVk8JJ0XRMuGlIJ4Y4zTKRZ3TSqJsncH7QIgJYsFlaHKh05rYGI4xEyuR9zCOZBRNo2l0oHUtQ9vRaF0JrgG7EAKTpxDZvz1V0qnIEqfgMbbDH464VnZz8zRj+4ZcDI/7EYwEX87zzOPjI89ePAWgG1pOx5l37x7waeL6+pbbJ7cYp3n3sF8zuECKx+PxxGa3o9vtsLrBn/b405FchM/0/OPPAMRbKB7JOa9xEWH2pOghZVIIxLn23nPBGvF/NVrTWUfvPFCYo+fN48R1Lba3T7aEkNgfRP3RbwdKVviQJJKknqxcAwpzTrKoJY0yjeT4eLCuWXfnTd+iWsMUQOuW3Vaz1Rt20ZCS44dfvOKwl4LzcHxkmiamMDEejszzSAxBwMWSGHqNc3JtOgUqJVD5vKurrrWgyCmeVRPK8TAl7g+F4zFz22q++eKWT262fPbJM25uxetosxkk783IRKwLaCfnzY8ndIHTUQi/jbFsb3dEPzMe7nG2RatMyR5NK9w1FhJtK5lU1mJsYZ4nmt01ru0Zx5Hd7pqHvXD12rYnTTObfkDVMFGlDFdXNxjd8uTuGtvV6zCJvFlooS0hGm76DceTX1U+rlk2NBPbbU+KM11rGIYOZxcEIWFqEdlQKEkiEUSLmYGMLhJp0jTdWuzknPFenL1TLIzTTNdf0Q8b/MMDzjlOdX4ax0DTXfA3cqFkUfeYitgs80HTWqb5hJ+PWJ0l46xr10VKuFhVXOGMeOZWEYUuraiepoRWjryiGi3TONMNW549DezvD+z3e8bDzNXQyr1YixaVPKa0ouSxLWSEI6ct4yhChRCliBsf3+GMxTnHNJ+gaJqmYY6gTcYqvRZDjXU4tXBnCr7GP6SSSalUIvI5LsKqjLIGlCUlRUyJlIvE/ZTqJabTSgAxxoibuKLygN6ftxeJ9foHqwpL13vlffXVe7ydXH9X2c8ln1VJhfq9WJyvXJq18FEZvWyAazEzzgHv/XsO0411q7O6LqCtk99nVVEpVxHA9N7xXRY2BdmMmQuEZ73mOKuu6qHKeWPhKdV1ckGMhOUKBWKpvB2tEX7OVwGGxbn5/w/UWIfDgV/+5V9ev//Od77Dv//3/567uzs+++wz/uJf/Iv89b/+1/n2t7+9Ss8//vjj1Yvnd//u381//9//9/yZP/Nn+If/8B8SQuDP//k/z8/93M/9b1ZindVYyxf1G1bU5yLnq/Lz+pe1QFJFobIENuYLaO/y9RYSWbGWEL3AfUvFWiIhRVII1f9AEVVcpYG2MXQb2U11XccUIgSIaUJljZ8CwYvl+3K3qKLo2w2i7JKE81Jl7z5GUvSi6AKK1UIaVYkpeCY09xHGlBiV4agK09J6U5Z88txq8fexZGwJNE2h6y1hmihlqepzhVOPhDCzHTqxaUmZ+/2B05wJk+xAGpPYbFpCEVly2zrGcaQpgdu7G5r+qp51y5df/IDpNPHk+S3batU/jiOuMfRNSwwyaR73E43b0vU9FM0cJsI8YrSQjoftRiB0ZJExJLKXRW0cR07ThNNCPC4ps99XFY7S9G3HwQWYZpqmYdtFpuAJqXDyiXePQpIeWsPddY/SlnEWMm2/dZUcerao93NCGUtSmVIMISW0a9CliIpLt5SKKJRcE871hA8FFQI+Hmhcx8nPIheu8uAfffE5fpxQtZ0Zk+xutda0jWXoDEZVonws5GVHqg1FJXKpJm9KTDKXgmucNPtj5DBDpy2fPr/ipz655sXtLXe31wzdkqVmyUnRdBtpvRYhP+YqvQ/eSx4WSF+vJMZpYp6OFBcJcUuIEW0KOaT1xtVaM55Grq6uUKUBldfg17YVv6ShRpwc9geUdczzTNcOUDTj4YhBoVVhs+nZ7wU5HLY7/lf2/mRHlmTN7wR/Mulkgw9niuEOzGSSzCJZBfSmgQa4IMEH4Y4rrvkA+Qh8Am74DtwWupdcFgooskBm5h0izuCDTTrJ1ItPVN3OibiZl0SjSRBHAgE/7q5mbqamKvLJ//sPjQ8SXru9YQyZeQ7c3t4yTZ55CgVJKARfPJVTkDW3+7sSXDmJfscsZnYOsmY8Xch+JjEy9pk5RKqmY5znzywrcpKFJWdoqpaq6aibCtsbjNPc3t7KNZOgqjeQJRwzlNgFpRJGZayxgiIBupUA2vP5SFXMS2OMgsjWNTHmtYAQRai0urTW1O1mjRiJKTCtrV3H6SwFXN0o1E1plfY98zxS6RvqtixyWpGSX+MjnDZrIeaqikt/QpdYAB9nTucnmTOVFqJ0jlRVg0bQ9csoiFEMmYjCGkPTVMWXacJphTYWi1qFICoLwT2lAM6Qs0FpaSDFq0XVaIO2lRR6SvLEck7kQCEivxSR+g90WH4u0fu6CFm6CbkQsXNROr6Qlq+pEsgGXEnhplTGWrMISfFBSMgpFCPNLK0razUpXCWpa03Cv8R5lDQKpRTGLZEVnyvCPkNsitJKF0n7cn2jNVqcTtf3phafnS9I2XKAKLUWu15T/IXS0ikp5zbn0kb/G1qD1+O/a7HzH/7Df+Cf/bN/tn6/8Gj+xb/4F/zbf/tv+df/+l9zuVz4l//yX/L8/Mw/+Sf/hH//7//96rED8O/+3b/jX/2rf8U//+f/nMVU8N/8m3/z//f38nV8HV/H1/F1fB1fx/+Y479rsfNP/+k//RtQE6kA/+Iv/oK/+Iu/+IPH3N/f/zcZCP78SOQlMbb8ZAk0i4UjU9BgeX0sHgoLDMn6VaWSlq6MPEZi7tDxhXSmUWVnIn4SlTOoILJGqzVayQ5JZWkdhJTwUUmyrDM4Z6lsxWa3oWpEyuucK+2giA9i900MgMJVjUScyzvFZ02cJ+Y5MPYzfo7k7Jh8QOUApfffxIaqqtCqwtrE1jqcMgyNKy0IxeEovIrDpUgYVSTkGR8TPoHzmvNzT1ReYhSA1jb0z0eeng7sdxsqFJUynMeZFBWugq4UtilOGLf0fhVhTAyjFx8Z19KW+IMff/gAGl69ucc2NRnNEEZapejqijQNXPrT+vlVlcYmmM+PzOOAypHH04X9/R1KGfISa6DAz5G27eiHE4RA7RynY88cAzlk8UNBeC05jjgn3i9OWWplcFgmnTkOI6Ykm1NFsvUYu6VTljhNjNajXSPcq7nsOrWT9mWM+Fg8J5wFJC4h+oJKAH4c8XOi0pZLf+R4OpG0ESt9HCZEXCzy+3ksu74X51VSomoSXWdQThyaQUifVV58UBPGQMqTyOCVBTRzUbc+DoF5mPlu1/B3Xt/zv/69X3G3bek2Na6qcOW1jsPMdrslF7+UbEBZzXzqyWnGkLCljRbDhMsbhuFEf3zA3N6Rx5EKK7EfKa/E+7arqRtFYsBk2NZWogowmLohJkW7eyOv4eGv2VQa8szsR+qqpdrUPH564N32DYrEPMu9cGtv2XaNIKX3NxyeTxhdo5Uh+AlrHU9HQYF22y0qB/xlgFDS7duW3/3mr9hsNuy3wtvqLxdCCFymEylGGm14Gs60nRUSc3K40vJSlQI3kNRExuDaLca2JNVg3QbFSNfJddhZx6ZrsSaT04yrLMMshE/vvaSkLxy+2aBp0TlgtSPEyDhPWBvJShCjhf1dKQ0xYati90+idgaiYooTQwnaVY3GmsxwOZPijNFQVQmDw9aWfp6xjaBrTZ1IeLTyZFcz5UwVM9ZWtEZBbhgmuQ4rZ8k0nM4H+v6CJXO36yB4tFPEKG0qEJf0OYnhZ1bb4lGUiSkK0VjnVVIffEAVxEUljdwNC6fJrKad1mpMZSRSQmcMCqUkcBcgZpG0g4At4jmTVlI5LJQHPhsvqeYLYlOcgwtFWR5XkJ28EJEpXMHCDTWKiMZHxBwQ8DFKw8fIuqSNKWafGmWu/INiwihTvOS0eHgpXYjoFM7TIj1/aVeJs3SUdU/Mj4TUvXYtFlQSjBIkKSmRtyuKA7pZuiSKiITlorM4yi9rcpY1dQGadeHs/E01xPX4H5az899j/CG2/Evh83LcdZ/1emhtCjHyb/8AshLJzeI2+WVPdBmSOhsLmSxRldRs68DVRhb/YhGfQiREj0+eOUhP01SSEm0rmZhAeth+OoGxAm+mDBF89CglN8M4F2fRLF48u42j0YaAZ9Mq4lQzT445JlLx9qiNxk8zVjsm7zl5GFRmSAHnJD5gKguHUQHCTG0D943DW4VPnss0YVyLSoXUB8SkicrSOM04TQSfqDdbdLeFpuPHj8K/GAPc7G+FZxCUWMwHwEm6/DBfmKZ+PcdN19LPRyb/wNSfcarj/vYGsocwkIoaK8ZITBo/9/gsraTj8UQKiuQjOhucKWnPMVCbijie0CkTxgFTaTICkedkeL4Ud2qjMWYUT4t2g0kRryVSIC85PwjMH8glzkYKX7zEbcyTh6zpl8yxGJlCIAaDTQobEoOfcU4zzCd00DQFjt7W4uDch1AmT09dK+67CkPCRIVR8r4Cs6iCUqatakhCbDdGERIMExyKO7UGfv1uyz94c8s//ru/pG4sxmRMbWl3W3yJP3B1hdKZNHvJrtJZiKNKiN/Rj6RUFrnKcekPHI/PaK04Hp/Z7Dc03Z5xPGBNw2Il4nyNcy3zNKOsoq1q1DSJXb7T+N7TFG5N19bMU48zlvP5iN5rXGWoG8cc57I4yhMfDk/cvXrN4+Mzm81G3LiN4dJPYAzHy3l10h7HgVd3Gz7pQN8fS9aXJSJk3yXPbpwnxrHndDmz23ZSWCgxGM3aYJRZWy0Gh7XCc5imicoK0ZckrZNm060KRu3sau4mLRIhuM/jWOaBtJJutRHejlYVzmjCOEIxzVRKk40VAz+ZZQpvy67kV8khk9Z6LB43fUykqJmnRIxy3cTwYjo3TRPnc3H9joZmW6HJqBzI2nKaLriUaOuKdrOlrsviHRJ1ihLp0R84Hw+czyf64Yx1L+02eV5kwU6Q/IhK0q4MIRDTkgxfOGlGFf8jg7aGjEUlTcIQlV0XbSGFZ3EwzrnMUZlUojFEWVs2Pqo4MBc/nZzlc8osytkX3qbKZWu98jrVqrjLxfxnbXWtG+vFRVoKkZTKXBXjukaJ6Z56UXOphDZgFlZD8WhL6ioCCfHEkV9lyMLhWakV5CuF2fJaivHtlTs0sLa/ci6xEEpfrW+apbhbX14p+lJOQkj+WxRsf2St87XYuR4qa8nauBqfs9xfouT1dd/wqo+Z8wuZeWWQr0Sz/JIzdNV/Rasy9cgNJFLRuLpgh5iwRpG1RtlU3IIVKWSC8gxpJA6lv2mr1XArobDW0HS1TMAqrfJR7cWEi6WXnUecy5jZlIuzFlUDIqvWMZK9OCkbpVDG0fsZnzyH/sRUOCC1bTBKM/mZgEVphVFWZMxacTqPnAYpdrRVbBvLXdvgKkMA+mJI1h8PxOzpCkl6t9uIyZxOqNowW0vXtXS1oEOXw7KbviHGyPHSs207rAafZsKcIWnGfmIodvr3d6+ZfU9/PjP7mca2NNuWYTwToijTlokbJC4jRU3MGoWTCTxrnDNcLgP9pSBxOA6nHu/lRu3PJxKKu81GEAuTGMuu6/Hci0UAkPaZTWPIxxGUoW7MqoiLKorQqeyqU8rMORQTsEgKcS0MfU6kqAqPQqNSpNYwXHqCD8ScsYU3tdsopjlwGacSuqjYNxUGRV2CbHWZJivrBN20CaMSKc8kYPSaQx84jImm7G7/7NbxD7+943/59S+wBrwf2Oxfs9/fY23FWIwd201LChFbdSWfDFRMJB+IQcj1tlry5Cr6ywXQqzw6Bk+OE5d+wGjH/kaI6mN/5uZmg9aJlIVTsNvdkELkPF6o6ppLIT7f3d3w4WOPc47zMArvImd+/etf8+HDe/q+p+sEiXr49MSrN29xzhGJQrJVieFyZLdvuZyeuX8tr2GaZmJsVpUmQK2rwjvIq+P26XTC+4m23WCMRqlMXUvExTwlmtquXCgrUwrDpcfaClIsJpMF0Wp2q+t4zAFlHcY40hwJSUFKYsioxbV2mYOMgaYyTAlUCmgiKiWhXWRZoFKZDxY0GoqFRpkHcxFkdK0YMB4PT8Qw8fDpuRDZdeGGzdzUFZWrGIrzesqDZG8pS+0ajM24bDifj0xDxWazw+kl2sJRkUl+pq0d2+2Ww/OHIlH3xPCC8GmtsdYIKhBA5YTTgiRYJ/OyWwo+bcWio1zxSmes0aK+0haWAqYQs7OSXCyVS4Bvyb2Cz7mbn42sV8fiXIj+y7GRl0JDrpnl81mKqpfnzeW5chYOV8hJeG4xfb62XP/pla9JUVBBSmqJs5MiT5X3kzNGG2JxZ16MApdsrgX9WqxOlFIl7HQhaOcXG5fy7+uiJecvAkuXgmnZ3CX1mQvg52Tncv5Yq7WfvNefG1+Lnavx2Qn9OeQmL2S6zwnJ1xfW3ygP/MlFqNevL/JB1ko9LUGBCciF0GUsBf8jxix+JkhgHoBziaoQw9qN2MnLTsrh4wtkaV2NNZmkDTl6ciUwYbepMSU7Z9lEZJ1JSdEHCSx1xSVzGiWCorUV7UYuJZsTPmqmKaNSpNWOzhpsZTn3PU4l7kvGzaZRdLXj7c0N5+eepA39PDPOnuhn7vd7WlcmmJQZ+4G6hbqu8CXr5nw8MZ4vdCV1XUfPh8cjPgpJ9/n5keiLh1DtOB6P3N/clrMe6A9n/HgGAsOQeP7wgRASlVEoHVEUiDvOkA1G1+x2N2Qy5/GM0TVxgP5wIZXJsL+cmPpBro0kUSGXeUSRuW0dz5cL2r1YEHw6JUKCOUVuOkdjMjGfuNttMLoUUEqCNSNFgZETISp8nAT6VX5VIoWkmOeZHAPeT0SUTIIRTPEjUWVx3FWgdtBaQ2UstY2kML/IZ/XVRJIk8DBlw5wNk49cpsh5SOAzNxr+9O0NAP/Pf/ALvn29w8eMz/D9L/4uu+0WSEQf2BaPmyV6wzlDDJoUE/M0YbQmm4Qik/NCjJVcK62hn6TQe3464WzH5XhBK7dGQHz7zfeM/UTbtvR+AqPJPlA1NSYM5ByZRiGf282OrmlxroZ+oD9fsJUojHbdhufn55X0e7Pb0Pcjm82Gw+GJptLkGNDKMw5BvEuCHHu734vLeNb4IC7D3huen5+4XM5U78QeQxk4Hy58u9+QY6SPE5u2lTDMlCX+oHLr+XKupp/OOCefR4gzJgFa4edIt9mXOcdjTIU2Dp0jlc7MY2T2I1ZpYnxpNcRpLL4+kZBmrBZy9jiO1NWG2lToRfGDnHsfI3VdY7SoDEOYqZ2YugJczkfGs1gwRDLTFNm2HfMceX4+8/r1ayiFxjBNZGvRzYbh3NPUmrquydbyfDzj50SzE0WcnjxNU2FNhfeBrCyvX32HJTJNA2N/XjdU3numKJlzrmQMKpVwSuYRqzS5XOveR2aV0WgRlSgjYb62QmlHKsulEHgNylhxWo6KiOQgJjLkl/ymtMpvF/XV5+OalLwMpV7WBaCQiik1z7LQlziWkAX1z1lQrCgqrSv1/fpvmTc0Si1eQkrCexf1HOCz+om4SWsNKVyhPkUirotCOZsS5llS4NcC5mUNlbonI47d190LLe/3OttxfT3SiVBJiZ+QXlpf/21eyP/DOih/HV/H1/F1fB1fx9fxdfz/YnxFdq7Gz3FmvpQISsV61buWn/702OV5siKT0TkSr36/hLEpZQryYiUF3Ti8r/B+WivYGA0qJzIGa0ulrjUhJEnjjhGlSostZWKB7VNQZBLeB8Z+wmfWfva2FbJeUkAKnM8BchRuhbZsavG3kPcAyiomP5csq4BzmVvj2CbH5C2hGI6F4YIi0bmMUSJjH7yiypKntBDNAJrast92fDqd8XOG6LmME662VFWHrdqVQPnwfGLTNey8oq4Vrqk5nnr6SbKn+sKMjfOROSmauiNH+Ou//B1N2xUpt6LtHLOXVtn8dATlUTlxeDyiQmKcBjFirMWkrirS2G33CmUsWVkmFMMwcHu7J4XM4XCRNtzCL8qBSOZ8vhDQdJVhGCKVSwwhsK0ch4JAJG2ZQuLxnMh5ZJ4yd41hPo/kKV5JtAGjCSRCCQ7NGKKXTdEUhpUnkFXFOPoiU5YQ0ZyET2aAKmeqch36NNI2mVe1AzRhjswJMC9tMVUk7T5n0gxTmEnZchgzgwevMvdby//j2zv+X//o75frqzg858x33/+a3f0tWlnG/kzdbFiwc4WSlPCURao8ngg5oUv7M8R59eAY54F5niAm2rbmdDhy6i+8unvNdBnYbCzH5wdADPpAwjC7ulnvOShBlvOVwWYI3NzccblcqJuWkCKdtQSfuLm54fn5mcPxCYC3b76BJBLe6BPONuTo6ZqK9+9/ZLPZMhVUYb+5YZoHdpsth6dP4mXTC39os9kwL47EU8KZiuHSC+eDiDeZMI80zYaYX5Lfm9ZQG0vOimmMtJ2gA5Vx5NmTsyKVz82aCm0d1lhSKqGfKdOtQb+ZXEhOp+FMXYmD+vl4YrvdE0JiHE+427pcg3J9RTQxK7yPOFfaItqS0oUQ09qqFwPDkRACTVNTVUWMUUlO3RwyVUmId84SlXD6Ns0igx/o2i1vXjeMk8cqOTZkeDqO1JUFldjUDVYbcgooZWmqBuVEMNGfTzQEslL0lwtKW6IOGJVJrqa2BleuL6M1dRCUBq1AW0E4sxGOTpnv5yhcOVMJtyQjCeqLNDoV7gxIS0ypF66koDYF9Un5J+vL8igQEjNATqnwNl+QnVjaV0u7K+W02orwcyaDFIm2ls9ORDift9oUYJVElqtiL7ByT9ViKnjliny97ukXSfiyjuZlnVTCvbzmpSpYQ7VzEf6sj+XzNTSnz8nZq33KF/Ytf9v4Wuz8LeP6RK5s+qt+7M957FxfwNcf3JcfzAIvKiUOy8k5iBZjFckHloveOumTaypxt0wZcsKYQNRiFrguTMVYXKHEVM1EnNHShc5gSlsi40EJuS548VYIc2IcPE6Lh8MiO4sEYogMYcYYqJymrm3hBihOPVxKkjnVlmEeOfsB74PcEDFxiWKGF4Na4yI2m5bj5cw0eKbJi1KrpC13TcvoE6eDEI9j8my7HX1IhJww80DtDCkGTpeBsXB9drsb9vstIUT+8i//Eq0cVbvlcDjx5rajwxFHec6+H5jGyO3tPW/efoNWmctlII4jWnmGS8/5JDfw8TThNhuUsdy9ect3r78lkujPZ7Aj261beQLK15yfDwQ/ULUdKWluuoo5RTaVoZ89e7u4HYNGnH2fzzN+nhlrQ2MyT5eJ+71wlroanNVoq8nZE5VEkPgobY4MK5l6ygmfEjmKL5Oks1tSmslRODFm8aPJWbgYOjLHmRQTTlsyEDMEFL60L0JS9JOnnzUhSTvgtoZf7Sr+wS++4e/96Xd0bWknGkuz3dBtWtrGgvGM00S92ZJChEK4rRor6p8QiPOEn6fiDpwhGYyu6Hvh9/SXEa1KBEDyKA05BJSOWOPx8zP70uqY5yNaG+axpq4lmd5YI89lNFpbFgcLrcE4i7aGbbXleDxilGLsezZtzatXr/nr3/wXAN68ztRVRYyRrmtKK2GmaWo+fvoB675nk194eUop9vtbzscnnK1JOWOtKzODXFsPnx7pWkki7889m82GafL0Zyk6XO3Whc9PM1XbFP8YT+TCvmohJsLsifGq1ZEMGk2M0t6J0aJypGka+su5kPil2Dkenmibim4jbbr97R1WWQ5Dzxw81nucK07aZaNGFIdrW1crTyQET4hFgGAUo5/ph4mYErv9ln4aqGpLNhU5R1IsDuVNS7PpUMqicKAMyirmFGjblvvNTtwmgTlEtJ7p+zOZyHjp2W12srGbLmitqBpRunWmYRjPzPPMGGfiPGF1QruK7DUpGaJ5WTyjQ4wGlagOY4iElKWAXG1jNEklQp7KAm5kHiW/OHOXVkwqfkG6pHwv3BeQz0nz07bRQne4jhz6LAqCJbJCSMvkvBY44qqditprmetLgy1Hcgm6VUqhs5GN+DVJWokCTesXA8PlPUsB88IZWknWZU380jfuBQp4ARB0lqJqCVoVzpK8IxmGxdSz/GVEaWY+i41Yzh/lff0x42uxcz30T6vsn0N2rs/5HzpeLhrhyKiUiMWKe71Y03LxCbmUmFAkjM7UZrmvS7GjhaiqCm9HnJMTpeZBxUjmKiG9EOdk8glYa7DWrAnaANHP+GmUmyYm8YN1hpSkgs8xv9wsVhNjIClwShQKcczMk6gEJp94eCrS8yFz7EdO84wm02nwQTJvlFK0TbUSKD8+HTmdTkRkF7utKlzliD7wNBw4Xy7stkIMvdk05DAwDJ5JKV7f7hhOF2Y/oGLmfi8FlLENh8OFYfQELGTF8PGJ796+wfuJx48PxCSTcdd1OFdzOB6Zc03dNMzWUN/e4hTs39q1rp3nGZ8zVdXQtK2oHYylqnfc3Vd475nLJK83ge9aUH+d6C+epjEQJKMpqcBtbTn0QswcAugIU4YZw9PFcwmRxhqcSTzPUsR1NrFxlk1nihpPOBkog09i7peL9P3kByFTpkCM4pQ9+0jKYvynk1q5BHaxgs+iuFDKE2Ig6YoxwBg1U5HRTnOg0pnvN/CqMbzeNdxtOl6/umG73bLpalxBUbRz2KpB6YzrGlJWVJUtbsd5VSwFH9C1JxEYphlrHJWTMmCeRiY/0Ze4CKWhrmrCNHM5zxilJUPKj1AysJZAuaZ2dJs9PgROpwO7mz1zUaudz2dev367kmNzFjmuqypiLC7lOdK2NR8+fOLdu3e8upfA4aenI++aDfPsOZ2fcM6RfODu7pZvv/2Wvu+5vZN7cRgvgg5WLZvdbSmGBeWY5xlTlC3KZrRV9H0vXJqQxPhS2UIMTmxKxEl/PKG1RWnHOI4wB7bbPX6aMSimML7obhI4U5PCTAozsSiByGIe2DQVTS2LyinPPD8eqKoK52qystiqJeRP9FNP1+3X+QCsoBI6k7JcY8tvLpeeaRYulDGGtm0524p59oyDp3KymdG1wRhB3kCsOExKVLVsKJXV+Dngc0LNDm0F8QFoKCRut2MKHj9OnM7P5f2LE3VVyWfbNA3t7oYuZZpxZh4HnDU4ZxC+fWYs4opYok5S0kQyRmdMtZgHmpV8LI7CiZxFLKDLPBw1pKgJ+SUKQtAmJZE/StBK+V54LtecnaWgUV8gPotqT4qf5djCu0mqcKL8yvn8EtFZDPleOEULV0ZI/kvRLV2LIOVFkp9qvWzoF1n9S6GGETNRobDmtaAjaxQKq695r4KGLQSkpdDRWTg+YcEEWDIAoxCeSz2nc15RoCULK+dM/kLR9jeNr8XOF2MlH+efOYHq51nunyM68nuti+MkV0wxEC0kkItteUriYxLCLAtoEmKW047VxlwnKYdzJkWFwZBIxBxRJuFqt5LarJHCyGRD0gI7Cvwr7PkFCs4qE9JEyB5TXnuOiWyEmCdoT/FHIKKM5N5oAJ3pfeAyDISUOY8Tx6JwOlxGtLLcdy2UDKmQFH30tE1FpRKHwyMAQwySa6QMxAqPhWg4XmaGYWDT1sSyKHdVBXEmpontdsswDByPR25v99R1varMHh8f+PA4MHpoN+JVs99t+PB85HJ+ZNMYbm+kgMre07aWpumo6obN7oYqBubRM4TMHAyb0g65f3ODcmXiwspNbyLaOFI0zPPMUCT1KQfu37zm17/+JU8f33N8PHA+OIZhYiqE4n2J95gCfLwMHMbEOVuqqmGKgcucwMFpIRI3ltPkqSZP2xoaZ0k5UFmDURLauexwYkqI70VGxUQIUdyxVSLHRGUqcrkOQ3G+DkkzzwmfjOxkY2Bbd+yrjCuBlfd3il+8vsVpxc3NDW0nDsKb7Za333wvMSXhxXs+RWj29yjVoFMihUDOgbppuPjzekvUakcKnpw8lbNYq5j6iRiWDKZC5vaJKcHlHBkuiXm6cPd6w/F4pK4dmbiG107TgLWam9vXHE9nyBtR5ShDywbFEnMBp1MvES3IvXN7e0tKkd1ux+PjM4+Pj7x69QqAH3/8gUt/oqoq+v5CVdXorIkRdts7fvj9f+Sbb+Uc9P0ZWzmUkUX38ekT03zGWEjTLNlLQNdVtK3jfJyxtsJUdbGGEDXVNAeq4jVUt1tiUqQk5NuYvBSPtZXPW9dr5tY0J7quI8SZ4Ef8JDEK8zjg55HgJy4HKUxymkvobWK73VK5Rs6JUvTDhXAbICxRM2YVZng/oR24SjMNBh9eUN62dlRVVc7jI5fzhLvZMU+RTSc5Zrm0vLTK5DChmwZbZZSrQFuGMZSIjHGdW+u6pWobwmWkqzXRKHKlJSMrR7wXcjRANZxp2pquclRG4xrHEozss3iP2UL+znkm4wV5CJGQgizG1oAxL6hGElJtjgXtyGbdYJIzKuYVrSlTKEa9qHcFxfTr99doCMhDXzIW86IM/6yNtcQSqbQUI0WZFDOkVByWP1+rvuw8KLWsUVfIi9aiXDOyDqkSK5JSWbrMS8dCKw0qoYsKSyk+CxZdBBM5ZfTyuGUt1Kx0EJHbl3VRi8VB1pI4wFIAlp6F+A69tLV+rl33h8bXYud6XKE2auXlXFenar3Jy1E/aWMpVaSllIUx5dWaSjwT5NiYKdkskRAkNiFOA9lPkhkVAnaRBGaZHLXWJA2mstgkbaQcffFUKD4cxohMPWc8M8sfVBmcVdQlbG+YPDlpCDCOEypLxEFt5AZItSpmhKC1E7UMQXa9KqOConUNMWlyhPpWnvd+JzvQGCPPx57BwxgC5EytHcd5pC87aqUlkLEuHbNh8vR5RjmFtoqcPMnLSbicA2H2VK1jGAPj1LPpOrA1xyHy4SjP+enpwlAM9nzKWANx7NnfbLj/9h2bbU3VLhk3mbrpaNu2oAIaFRX7mz1NV0uroEzGh6GnTQ1t25K0mD6GMDJdvASEUrO/k4iSbrth7C/4+cSr12+ZhyPjcGIaevrzhdPpzOlZCqPTeWC3MzxfPI8XxcUrDt4wW80YAqks9KdJQVOz7VqG/swweJwzjAVB/PxaFOv2mMWnJ+MFLi/+73Ea11k4ZYuPQfxySLzeNtxuau62NckHhsvMditS6tf3O1kI24ahnyFr7u52bG9vpD+f1YraheTZbjc4WwvfxIA14JTGzyO+8Fru7l6RoninKOeE9wBMwRPDRM6ptHRBBThfHhm9JyjF02XAdJbNpiNXAVKisbv1polJ40OmKflbbdvhfWnjDGfuChr49PAMWTOMI3Vd4awhRk/wM+/eveM3f/07Nhu5rptmI8qaZLjZ33M5HQgxcDkqmlazv+kwWq7FaZiw9pbh0oPOXC4XzocjbdOgkuN8kqLgdPG0zQ27neb0fOB47tnv9xgrqjqnFXPhz1mj0UTOlyeCnzBVzZQCG61RriRELwqrPBNyEN+lWXLxhsuIUppxlkiFS0HNTk+PvH79ljl47l/d01Y1KSs29Z7T6URlqvVeEGuLiDYQpkAVLBixJtBJ1HwAgx/puoZp9Nh2w+l0QU09r9odKSU2TUtTMuKSUvRJ3uerZkNNoL3ZsN0aToNHm4Zp5eWdsVazrRxTiIzek7OmqjfcVY5NPePnYp4aPCl65vNAMDJHh5QKf8vgx361G1mCLitXUdVbUtT4lAXpyS+cnYSgMmJUo0m5PF9MYsvBywIcfClYsngQZW1QKRNF80VQoBe6QBQuWOKnbZnFumSBdlL5LGLZgC/FkfQQkrTCCmqkUyRHmSNUMiulQV5FXjf4Wku46aKSSimVYF+LUhFjXzKtZJYRPhO6TOBK4VCkBTAoa6jWEkOkUJi8FMoyFy0/dwuEnhGgIWfQlJaWljVnVbiVUToo6sv+1h8YX9VYX8fX8XV8HV/H1/F1/E89viI7V0MXj4D/mvETpVZMn8FrgUzMQqoN5NUPJ5KJGuHWKOGEzMNAnAZS6sW7o/BwalfJRrwYDhpjcCUROEYrO66ixjLGkIthndimZ6Yg6b42q/UTj1ExjgLTpihOmW5xcjaaRmuKvYm4cmaFj4Z5jqSkiD5jlcVWjlpFGiM7+mkM0q4JIyEZtKlJqscozXkcGceMKo68nck0lbTMslbMSpNz4E5b2qLcGEY5B//Xxwcq63hnt6TLwM3tliFp3n964thPpPJim67l7WZH6zSNNnRtTd0Y4VZE2b3FAsd32w2V1VS2wVUVORvarqATOZKVJ5XP1zmHqRuSEbXMOA8EPFiDzgqlAnGSXfJ5HnBtR7d5TQ6JZvstzTQwXJ4w2wfqmzO3bwXZiOPM+XJi7EcOh5HLZSTkhn6MzLlBuRLGWkh8RmduvvsVv3//wOkyEJXBx8CU5tXwy2rH/f0rfv/hPVpbaXvGiDGaxjhaq1EFtWtax77b0lioVOLN/YZN06JdBdqx2e6pW2nlheKyfLz06KajaRr2t3eSeFx1JSB1Ktehw1SOT0+PGGPZ7zdQgj3HYVgTmed5JitFKDtflVJphWkul4Hb7WZVAU1jzxQmUkrYSlokVSUOv9vNLc9PDy++JiUU0YeRum0l6V5FprlnU+9XvhxAt2moGwl3rRvHPE5UleXh4SOv37yjqvUagTDPI1iDqxuqpiamjtPTE9M00VYt+/0tc4n4mKeIbUecrckYLv3Mw9ORbRcKx+hl7uj7nsophslzOB1pN1vevHmDszV1o7HlfQ3jAdd1TGMPMdFtNoIoGAPaELMEP4LwOqbhzDSO+GkmaUNKUFlo2w7ZOr+0V6ahJ6nE7f6GIWu0rXEL9wqzIgWZwgMbRCHks4bsiCoTs2Iq58qPJ242HY2ZuWlBBYXJmcpU1NaJEtUJYuZsjTWGyzBzOA5w07DfGhpXk5ImeOEeAng/ceo9tXN0TUtb1ZzPPQ/nZ7RJhRtTFGlVTc4WHwZmPxKmEWMVOtdYayXWwCyqoWvuSknqjgkfIxGZS+VeFP5l1NKqMVpigJR+8YBZCbZLiwnh3CycnOVXSX+uNvoS2VlaTl+2bL7k+sTS1lq92iLoVR0qSMrqSHwVyHlt9iek4pfr4XosLalr7xy1iGK0FjC5oIq5kI+v19JV0rOSmEWVprOciKyv/96i2k0oNIkEq9mvXs+f/CH4GSDsZ8fXYudqqKub/+VnAvcB60V37Y75paHg4smUkYLmpfe6RB8scJ1caLE8bg6BYZrw44DKohh4+TMJq3WBHjOZKBNAGFdoeYEMUxJFhLUW4ywpS9p5DhHv45pzFGNmmidyFHM+hXA2xIjMwJXMMMbI5GdQTpjT0VM3HZUTrkrMmekivf+hD4SQCCGjlMU56FTH7AN+mmiMYlOga1cp+ssJays2m40416YEPtBPQVLVx7G8v8BuX5FcYI7w0Af6y4StG3ZtS9NKAfXu1R1v3uyIU4/SCZUTRomM+vl4pq32dLumfJ5wOE2cLoHKOpaYjxBm2l3LZrOhKtyaqmpIsZxHNNrscDowj5O0ELNnLFlirpKJFK0xjZjTNc0t1W5HO72C7MnjQoocmfzI5Xwi+oAfRk6nA1M/cR76lVMzejH6c64WZdGrltf/4JdUlSWEwKE/cznL3z88nzA2sXt9J1JqL6nHdzcbXt+/ksWuZBLFHFA54cPE2E9UmxvefPdLut1WrpGp57ykuROI5XM1rmJ7e0vdtVjTYU3F88PTyi9wXcfHpxPBJ7759p7oR5rKEYzkui1F/zB56rqmqhpi9OQ8o1DM84hzNd5H/FA4KJPH6JbZX7iMIxlD5Vou48S9ucFVDaHwYJqqEwdx45jnSNe2aG3ZdPK+2nazmsTtb16RgXa7ldaustRNi77MYAy3r+4ZzlLINk1NVtJeitEXsqnCh4m9u6Vrt5LUDvJ5jgFdO9p9R123aOuoXIMPw2rB4FwlCx+Kum24MVaMH7W0CMI8Ujwz0SkwXY6QZvwU0Cnix0GECFVFzvPLfRtG/KwIsyeTGPsJbUUEsL3Zo7Vis3C3po6xP2Kd5nI6YutE1RZz0oWQfyX9DUG+DylR50gKI5qAnwYOx1LsTCPRByor+Upt02CVZlM7qrrEXugSG2IVm7aldi19MDyeLmAdtzfCtZknv/LMsoLsxfV7Oo9Cqm4cWzrOlyN+mpmWiBFjMFahkifG4vQbE9iAwaCKU7Q8sSaZxRJBMq8W1+eVo4J8TpFFiaSuODbSdtGYtbUiRc9CLC40iQwQWSSPyyaFlMuP0sv3Oa/rz/XatBY26qrwyaxu/QuBGYQ8ndPCRxUFkxQ65vMCZzk2L21xBSX+yFxJ0JfxElXxImVXLOKcz8fn7smZFwH+8jwvx4qknhdn55xZtPy6SP3LL4g6EfVP/97Pja/Fzn/l+PxDW75eEaaUVNDrhVqKHJ1Zbi1gcaVUTElyjiQqQhafSikaZ3GFtFNbi3XFZVkZUgjMRKZpkgtHf87qX/hFpnj4WAOmUcQ0MZeJ2DqD0lZk6+nF7hs0MWZ0NmvvX+tM1xh5nQlCTlibqG2FSoaQ1JoL1TQNwzAyjiOZTBg8TkFWmk23YdvklaR9CQlT1Tjl6FyLNonTZeB5isQocQS7Ir22StO5lnGWaAGlFHf3DV2ludm1dKWAqiuNNZHdq1tcbajrmuenJz68f6AfEg8P79ncSmF2c7OjqWtyChyPTxjjcFVFSvD0+ImxH1CF23J/9wZTOZxtqZw4z9auQbUbVBZ5ry/REvMcOByeUMqwv71j0+1Kv13I3/1lZBjkHGzbG16/+Z5vvrX0/ZGn5wfczZHkZ+79hF3iInSUolRlcbj2UFctzog0+08rI94pgIriODqEkTBPhOjZ1B0aR86K0/HM8SwFzPPpSMqK7777BX/6979bnZ27zSumeSDkgCnIytgHtK755t0bbu5fkXPkdDpBGzldHnk+H7m7E/fc9w+PjOPMr37xPafTidppvAdrFLNijRQQWZkWF2BjiEkxTzPjOKOJTLO4+CJXND5kUjYcjwfubnbM80zXSRxJ3W1IxeW82WwZLgMag3ZGEC5lsK4ioKiqakVgmrpl8jOVMzIJK4Ota5puS04KZ2suSc5XXTvqjRRMz08fcVrCLmvr8HOPIq1RGCDOyUopdG/Ybre0dUXdOGzMhUcBjgrQgohkw/amY/EemeeROB0JZS4Yzwe23Yb5MjCOI5bX5DiTw0RURtCpci8MfY9WmThHVE6c+hOb7R6ta+q6xpciGGC/3/Pj8UB/OmNNy927G0GJtaKpnJDbl913LFESRiwDVMpMXlRgISXGUZ7T6ppAonYVSvUSXVMy4pS2Rfou78sDxiaaeottagafOJ0HQoRNu0UTOZ3GdY6rtKZ2FUOYeXw+YKy8hypVxDijS66fNRpjEOfxoCBZyUKOCp89IM7NAFpZVDQCkltxkdFKUVlNQFH2HYSyGMcQV+m2bGQLYgJrUZB0LKiI/C6yqJdkjUjk1eJjKQJimcuXYnhFlAovczn2esS1uElck5vLwSgyKmWMEQ7m6u6e8sqB+VJ5vERBCAKzoDhXJOckfJusc1krSjGnl0yvKxSofKWoxRYEbpGWL6VPXnZL6NVUWTK7SpGGWvJo1+O+qrH+G8b15fNZJAT6JxfXHxqrNffy/eI/UDx6TFyqUs2cRFcnBYsUH9ZUWBOwVnbAIAqrqsD+WWmCT3g/i89FCIScV9VSzpnGVRJ+p6wsJIu/grY0TSmgXEUOkbnyTNNMKIz4SCg3n2K5t1TZAcTijZJyYBg8i6EVSJEDcoM4ozBGYHRUpq4abPHmGKeXrKkuekYmwHAaRjwJYqa2ELJC2Q60FFH7/Y44jry+33G737FpHXd3tygdOZ8OhOIXokyWyT86oMLPkFXFbn9fkKnL+lmez2e0ytze3nBz22CMIyfN+dwzn7LsnK0c++H9j9zc3lJVM0/jTOUa2u2GqpIcqRgjpl5QhRrbtEyTZzqPpDFhKkfTNOioqJ1jUxCjlBKHi/iAaOvAdexetSgifuiJxbvHWktOmnGYyUFTVRWXvifMz5AjelR0RVVyOBw5Ph8wVUVdt9zevuJ8GplSkHZBt+eXb74F4B/e7amrCqtgHifO5zOXy8Cn3z7QjxNN19Lt7gD41S/uqOuWpmkZzhdOlxPKaM7DmcPxzKu3r/jwXkz9jucT//DP/5Fck5MqcH+NjyNGO4xbELOKYbhIS0lLu3Ucx3VHXTf6ClmFdtswxgljA9tdTcoerSvGcWJ7syeV1m9ViSngpX/m7s07vC8ojHVCztZKAjfLNWvrCpMUw+XCZrPBp0DdVZCRVPaicBqGieEycnt7i8EQgydMAz5fqNOWDx8+rmGkISRucsZsFErt2Ww23N7taauKmBRhXuIXNMMwoq0UD23b8vz8LAXZeOZyPFFtuvXv5yjPPU0TMczoMDJP52JR8ZJfFGKm70eqSmTWziS0DuQQIEYeH5/IpUDfddJWmufA0E+8NuL9pLWWzLRisrgM5yqinwFpjQ3DRAwjTevWoiikyP3mFpWiiClyxjmLTxGbEkYbVFGHDjGRQqRrFEZrtk3NsYePDwemjefu7o66VBvPhwMXBV3d0DYVbeUYxgvz2NO4Cm8t01wQ0amnwVIpI5EbMYEzBU2fRD1Uig1rQTkjra2CjmhlRLxw7Y+TZGNKFoRHZbHqSGqxBBE1JBQ/GcyaLycFhCoIECW65VpdxJpovvBuF6Tn5zzdkkpXj/0c0VlVUYWegJF5KvjlmKImu6oVVkPARR21+vIsnY2rvy8yrLWQeTEpzD9pY12/fuloyLZf/2RdfVGXJfV58bW+z6vvdY7o9Mf1sb4SlL+Or+Pr+Dq+jq/j6/ifenxFdq6GUhn0zyM4X/Ycf+53Oi+KOVXAvxfzNslgU1AQGiVdDYwRk7hgHck6XNOg8oS6QnackZiIJclcG7DJQM5FHn0Fb6ZEMgalHLo4g1ZRPE+0VutOSmuNV5GcxVY+BS/tAqtxWpNUvIIUIcUknAljiL44LydVEnz12hKomobdzR3aWuq6Fpdf79Gr78NudRpO2jBNk3AKcmaapM2mc0t1U5GN5eZG5MGVM1id+eZNR9fWYB0hJJTW2KalMyI5FulzwkdpoRmTaOuGm+2Gb97s0ajVfC+EyDhLK9Bog9GGqhE05N033yDyy5f0ZB8mFJn7N/ekaJliIM2++IUE+kcxAKzr9oWgaBPRyPs7nmeWuJGpEHlj9Oja4YyBHLDa4mPCqppms39xN9WK4/FA0xlyCTxMYWSYIsMgHk2LRHu7a5mS5eH9I6fTBa0NNzd7vvnuHb/4/g3WVMzFF+nx0xGnHPtdR4yZTw9n/uP/9X8zDgOvXr3i1zd77u8F2dnsJGDy6fARZyrevf2WaRg5Txdub+758Xfv6Ytvy5//L/+Aw/Mjzlms0hJEmsWwsm06Urm2xkG4J2rZFadUWlMdY38SQmchpqY5EafA6XRit2lJSbyblFI8HQ8oa3AFXRuGgbbdMI1i7dA0HTkLImJ0LryyghgRQRuapuZ8OEvAZEgojARh1jVN05XPK/Px4Ymu68Rr5zISfYTksZXn8PjEZiPXrLWWeZpwrmKeR0GIckLpTNc0qMKJmfzM8/Mz2TiO/cDrd6/F/XmOBA+Pj8+4gt3HGIWQ7jPjnDidz7zedMxhojZKUKmSqq20ZRhHqmZDCh5rNXGeGHMmRsVf/ef/wn4r901j94XIqhhDZJhnal1Ja6e0PNYU69JatdmIA3cKjP2FeTqw2+3oOmk9f3r/kWG3wxpDP2natiYbyEZzPA3sTUNTL2RZiRdJUVqdMSX2+z1KGz48PjCGxOvX4nV0bwwfHx/ppwlnNV1T0W1e0fcSH+OcY9tIm9RPF9LkGdUk8mljcNTiRG86cjYrz0zbCmcqjLZEDcEv12QgJtY2VkxGuHTayM8pIZ9K/HayeiHRytewRkNEnVeKg/qSgpBenLc/44L+Ac3McoxSCoygL6ux35XPTohitJjC0tZ6ISHnK3KMJATE9fFCEl4aTLKiZfWCjyxxET/171mk6Mtx8uj1kSmLbXmRngPo1bBSMB+lkvC5VthJvTzD1etXKv+EZ/uHxtdi52osLHL4AjLkJSUWBE5/cZV8OS6pjMpxzUhZnnN53iUWAsTMzRiFtZLum4JHhQ3JQIgKazO2FDvaIEosBcQoluNWepUxSr84FdOmhQcAgIk4U1FFQwrinxkKoTmEQCiJ1DFk+n5mHj04i6oVkcWLApw1NK7B6okYM85YVh+GlBnn8ercKHabDfXtVtyRY6Qp7RXnHFf1EypH/Cg+LDkbns8XaYNViu/evaVtHLuywN7u9tzc3GCtOAbHnBhnTwoTxl6wxUpea42PYg6Wc0SlzKW/MGnDrttSdx2uE07DNE20Udpv/TjgXIWtKsnKSYq6bvn06ZOcLz+ja0tbOaIfSRFcZVFYrK1pN3vqVgqIFKGfRrbbHfM8cTgcRNViLahQJkBdzklLzJqUsiRjoziNZ+Ls5byUGbbedux2Ow7PUkxUVnN7e89mE3l6PDD6Gbcpqeex59vvXvHrv/c9ZIXVmso15Ky4HE9En6gKQXm323LuL/zu429L7Ejku1/ccXv7J9zf3rHbyXsA+Pi7v6LrOjb7PX6O/PjxA6C4e3XDb3/7W87Dhe9+Je2xTx9/RCnFzU4WqK7reHh44P72Bu0svrRwNIrj4cxuU2MdTNMoTss5YpzDKFHqAMwpMI0jlaloKkftpO3j3IbzeeByPLG7l8U7hUiyDrRi6CesaWjbjnkK6wKz3Iu5nCNXuAyL95UpBaufptWAMKXAdtfw/PzIdrtFo/jNxw/yoZtJ8qSW9lRKaOeo63bNFfJhKmaCzepJNM6eCMzjzPPzkYyWz/rwRGUM4xw4FfK5swZta2JJQx/nRIqaaRjZbCNV41aOVd11zDGSk2EcL+gsijaVItMYefz0sOaGDYMnZcsYPKfHZ3ave3bZ0e62n6l1lq8hxlXNE2Mg+olhGLBGrW7PH98HjqdH3r5+Q1ZJ2jHaYmzF4XQkxBP7nZzjttWlKJxBWXyAxlW8evuGOWseHh6gkIfv93vutnuOz8+Mo1wvKswolaiNIiktMicgRytt+BSIccJAiWwQ7kxKGWsK38+2VE2LMqZsKj1+juSwGMCWOT1miIg/FZaUoohbytyrv1h8c37h5ZDK8p4zOWXJrYuLuCSJoeFSNJTHJz7PpFo+A61VyVU0K0k6ZHEAXzZpy9/MMZN0KYBKkbUURtfRRunq+Rc+6MKtyTmjrlz4V/6NMkXccUU2Vi9raIaXJPS4tKGWdt7SF+Nnxwv3SK84xHUjK5b//pjxtdj5YixV9LVRkfoDpfXPFUZJaQlpzAU1ybpUw4Gs9Lo7QCuiNgSlSjieIzUtc/YY7dFGXCSWwGq+AAEAAElEQVTl+SNZG7HVzqmgMcI70NbgQsCn+NlrSiqRg5O/GQLjOBOKbBdAlQlxDpFpkso/ZjEas/WObbtdF4NmU6OUotIwjiOxSF1jhCkELJFYdslpToxnQAVqa6nbBlc1HOcLKIXNir5EJfiQmCbJy9psWrZWscsdN/st3719TdtJUJ+8XkdUgVhMwXKMbNs9p/4CCs4FqTgdHqhc4tWtoBHTNOOT4zKNHPsf2Wxr2n6RhWpOZ08M0FQtr15tOR7PVIXr4kNgf3MLgLUVSmXGUUidKYJKoh46Px/4mKBuZffv6o7t7pamBD7uN1vOwyB8qkbylFQhRMUYUUYmHR9kd1vrDckGIR8fhBjbPx44P53Y7LbMIfHx4wNKZbpNQ9NV3G7erAZtBiPBiNkTQpLQSZ8JOdNuX9EPp/V6HeOAMlA3W7SaCfPI/bf37O7uMcZwGC7rjrBtthgMp+cn+r7nZrenrhuG0xGdMvv9lo8f3wNwf7vl7u4OZzTb7S0/fPyAMg5tHTGxFlB+mtl0BrKn7wX5cq6mv5xoO0eaJRgWim2+iliXsTax2zimKBMtsagGC5nZWAVqMcHUeN+IMaCKpORJOa4Oxm3rUBpimthtRdHTdB3Pz88YlTk+DzS7guyQmPzE6XDi9vbv0/cPONvw/PTIFBOH00A1yoKw3d0wT4mspGAxRtF2HaZyeO+xRgoNHzOb7S2Pv/vA4/OJEAL7/Y7T4QlUpmnalRtn6479zSs+fvyINhZrKyYfcFlJ4Xc1B1R1SxtFvxm87NTDPJF84OHhieDndUMz9BMhKZRt8cFzPvfsd/doLRw9Y4VPBRACxJTF2M5oZj8TVGIcZcO0qsyUYx5GdMq8vt3R9z1102JdjWtaHp5PxFIYTCmyNYZGT/iQqWoJSm3bLb/8/lcYZXm+HGSOOR2plcY1lnmYefbP3N52xOiFJK7Uy2JvNEbnYoFReEJBgkcxijknkpJjxZIvYrIV4rGyxZFbkWJYkQmNLOgpBlReJNhXvM7r9YD4ebHDcsgLJ+da4AIrFWb9HK21n0nEodiBxLgSzD/bYOefDxjNUUwTBZwRa4bF+bgccfWYBfVZCiGJlkgrAsPnJNfrUd6rufr7y2sSpdqCPElhmPOV9DwXLDsXDlDOa0wSeoXW1ufV6J8Ul39ofC12roZSkuQqVeoV1Ce/Xb8vR38OI/I5m13n5YqVaz9hSuVdkoNVKiRiaWlVyhB0cUBWNQa/3h9++evakL1dLjusAmUVrXH4tCArmhALcThHxnFgDp7Re+Y5rAGQJol8M4SAjonKGpxxxGgJIdFfZpyTAqaqRL7pvaANUuzMpCI/7doXd9VUki2mmIjTRFSafSNKKoPCk7DbIuH0GTYbohZbe6s0TdOw22zRWjPOE2NxUK5xaFtxPl04HS8Mw0DXDVRNTUKtRWo/e/7qhw/8+HBi323YbRpu9hVN3cnCfOnpJ2k3kSLOJjaN4+HxkcPhiW67EUTn6ZPs7q0QaW9u7mmbDVY7qqbGjxNTSFjrqFqFDoHp8gTAdHnm8PADztXc3N1SVQ3GWLSyhKmgP1fFabvp2O32+ADzFLjNEh/i54nhTpCc6Kc18NU5x7tvXhF8Eq+gqiFeTabRB2Y/iQF2TlyGET9HUZNVFXf3bzgXO/00ZT6d3vO73/yeu/0Nv/j1L7i9vWXJ79l3rSiugMPhINeL07x6/Qay5el0pisp1Q8PD7x58waAb96+EUVe1XDsB6Z54Ga7IyeNxlB33XrPaCUur6fjkbsbyZDSygrZNARi8VpyWVHXEqWgnZYU+OlM0jCFkVpdXYchM8wzRjum4chu03DpDQpHnKOo3FaZcYmjCImqcUxeCyE5Bdymw6cX2XWcPWny6JgJ4wWtE/XW0fiWH374wNxHBiUydW0N03zhu++/oetaLpcLlTbMl4m223LuSyszGZQzzAFGHxhD5lXdEdOJ508PjEOi6uQCn2cpUOpmz+k4kY1jDIn79hZtGnycVxTKKIvJQtpXNkkUTeUYx4nD+STFYMlem8eEtpbdvsVUms1+A85QVZ20l5NaU637YcQYQ4ozicQcRNY9jwNWvQQz7m9qHk6ecwzcdB1VTsQEJot6rbUVQy+LtWzuejAVzmQa1VBbKXbruubv/Pp73j/IvXh4eiQwUlsLG8fYD3x6GNh0gl4O5zOuEIIbZ8i5bAZjxkdpV5EVloqmdisqrtDonNGEkiIuZOEpBKaJtT0oG0ZNUgajtPDdyWsKudAFXubjnPMa7pm0esm+QpClNYKh5CTmLNSEJQh0ntNn4aIg9Gel1AvaYfR6LylA2SIQ4cviR0F+KZy+TDI36mV9M8ZcoTMR1EvrqhwiX3RELUXL1e8TV0XIYo1SlFo6vaQRKKXWZAG9np9IyAvQkDFZgLNrIvRSNP2x4ytB+ev4Or6Or+Pr+Dq+jv+px1dk579i/G3y8+v8rCVl6yemg1ffS99Uf2YumLN4CqQQUQW2M0RizNTOFq+CUqWXyjapF6l8TomUI2DF00FbGudwOuPNSxsrEggJVJYU4qZyxedkxvvI+XLhcpFjh/GCcw7vhUCccy4p7EUSHdPqszPHGT/NksFVJZE9mkzTtpA1rZIAOgCfy84iw2azoe1q2rYFowjTjGsssZBup9lz6XvOl4HJzwx+4uPvHsT4zzo2nbQEfvXdO37x7R3WVIy9mK1dxgFrN9gY2G63mFFe68PDEx8+PNN1Hc1uK54h1qG1pnGdtO90aaHMgcN0Evm4FkTNVA7jaiorJMxlRzucL6XHL8TtFGeyDuQsoa/H0/OK8AzDwPl8pK5b6nbPm9fvuHl1x2azwTYt1WZXrhWLMQbvI33fowlrm1Hcoef1++EyoJWiub3FWUlkP50uHPsLDz/8SO0sbiH95pnbbcv+z39NbRvanSSVt43s6P/zf/4rnp+fAfj222+pqoauq1ApAhmVPe/ffySExP/2j//RSsx+ePgoZpE3lt///ke22x1aVRLeur8TR2PAVcInSwQhsltFCuIU7r0XAneV13OwCbq0ERTzlJgGyGkWYz4iXZH0D5cDru2o64o4W8ZxJOHYblrmcSg74uL31GchRA8T+9u7wrHxWGuYZwmeXXbV3faOyziyu9nz8PRI29Y8Hwc22xpXJZL2lAgnfvfjJ9ptxff9wJ1zJG1ot6/4P/6P/5M//dPb1TDyNBzZbG4wlUPheHo+8fbtN0Tb8H/+l98xHc/83V9+D8CNauiHQMqamOT+1sqikqZyHSElQrkOx+lMP/WYOeFHaVnEPpDmgdbkQnounLC6JuaMUZpXd/fsug1t3WC1QtcVWr+0HqdxoGkapmEkR0/yE611eC8GedbJzrtrGsYpYMi4yqDNlufzBWyDMo5m00lgGoCSNuU8TlCJbLntHGTxH2q6Da9v78t8mBkuzxADrbO4tmGees7HE8bKHHv20s6sc0XdSRtIV5p5CsVI04hknGJHgCA+SmtCmZPIGpVZzQcXB2nvI96LI7VGkZJ42IRUeDdX87xRX9iWlBypnCPkLAjvwtmJkRziyms0pXuQzcKteeFNYQopuhCJs2BLa7uTaK+6aSIZz2XNUIuMfrFF+Rl59/I05svf8fmQ9WjpZiwugJ8fLO2w0gXJEhQa1RIA+/lzLrJzlJDWFT9dQ68SLK8e87ePr8XO1VgQvOuwz8zVZ6fSZxfGwri/Jk7lQuz6Ur0Vkf+//GCWYkeOkzTj6MW0Sy8BbUYRo8co8ccBsDqJ30YMnzHfFxK0NQ1BZViC15KiqdSqhBqjhpSxCiprsEajckAR0SozKlbPEuUzSkXxy9CUM5LQRlM5ja1fPBWqphWlS5rKAt4KYXf24kBc3iMIr6h2DVVVMflMk4wkW18G5nEqXivlgk4JnTJdbdhtb2neiilcQtKOpzK5zSmSVBLLfFPhdIPRiY+fLgzjR4zRMokClbXsb3dUtqZtatr2lrrb4L2nP51JWdG2UkRV2TDOnq7b4gyElKmaLbMPGGVxtqIq/Idde0+KMI4zoxfPmHM/0LYdxjr2yjKWVlq7u6W7uWeaZjQlYTkHyIHsWVOho/bkaJmGmTgHhumC956m6ej7Hmvyahh5OYvhXNU1bLdbtps9rq7Y64RKE34Y6Uv74OHhIwC393e8+u4GXTnO556/+svfYK3lm3ev+LM/+ztyzQyJy+VCCgEfZz5+fODDhw/8+te/5E/+zjeE4Pndb3+zXNnc3rZ8+OED27YjZ8Vvfv877va3oPN6HRrtUC4z+om6aYSHpiWdO+WRfhoWrinGOk5Pj8SY8XOgaRpyzrTNhrpxHA5PqyrwdDpx81r8XZyrUdjSEhiBwKV/5v6ttNwulzNVhGmemOcWYyQRva4bTv1FuMel1eCcY9t2KAUPhyPT8cjxeOT+9hUxKEYfuRQ/mjlEdAfj2GNfvWaaIspVbPd7+qlfCzNjM1on9tua+1dbPrz/PX/29/4EnzPnyZMNnGe5vhtvmENg0+34Ib7n0o9UdStFjp8YwogtESMxzXz8+EGiGRD/J1d1/PD+R6xuqKpm/RzadoMzYkx5W8s92bhqhf5zhGt1QUqJEGeIgRAmjNMkq3l6OnKzLUG7uYg7gifmSNVUVLP4vCyJ6LoU6LbqSMgCPc2e4+XMdrejaiwhqs/MEt/c3nPQif58ZBovGKWxTuOM4zJeCDGQyoR47Efa3ErYbxJRiE+eOfriIfSysOtSFOisUTmhVcbqRNAZoyKmzMdGZzyJ6CMLMUC6ZKkUOy8tEx/ET0aVFsxCW9DFVDBfFTsxenKJG1o2wEqJolcLq3o1HMylsBCX5y/WK6Ughc/pFcvPl88zZ6kprtczpV7cm/np7+ALX5ysyx9cXtNy7NXf+HKotL7Gn+MWpZSuCqwXPyApmMqau/w+ZaIJROV/+nd+Znwtdq7GlxXu8rNrM6TPf/nZF7kwlw+6XIBfBrJeq5bkOWXHviAKGQg5S95SkZtqo6Wi0hpbVYUKlMjKo7IhF6KZPJ/BaY2zjTgyh4zPEyEH6bmW91CZCqcr4SYUxCH4SVzMIyJjLjehMkoKMAVWSzFljME1NVVVFeJYWQyKA3Eko5ShqTuqqiZMM+M8MwbPMhVopZj9QAqZal8zzBPPpyPD5VAkti8nr67F9bUyFSoptG1orLjmxhjXO22aBj58/D1Pj4+cTidyyDijqazFWkV/ubBQdm5ubtjvhYidlOSDzfOIztDWFcHPjOcr6XmaORyONE1HiooUJ8iamDSnPnA8CFcjJdDWUVctEYnpqKuOTduhjSO0gVQIyk3TYCsxXPSTkJ8v5wOX0xmlzWrWmJWQpF3lsMYwTyfapkJnz7axuK5ZyYp1XWHtK6bZY4wj+Znn48Doe06HZ/p+5PGjqMx8ivz5n/857969QRnL5XIhBM8vfvEL2lZ4Jr/9/QcAfvjtD9zd7rm72/Hhx98x+5HXrzZ0m5rn52c+/PCB3fYGgFfffMNvf/N7QdKM4bc//B6txQxRDN3ktbZ1g06Q0oVmsyGkstNT4lA9csEXg7jKiYHd8XQmZsMUwVlRiISg6S+BaVfQUOPozwOaAzf3d8V8sFsnz3kOnA5yIex3t6SYca4mxowxmqw1zaZl9BMhzti6OHlrRTYBTWbXtZyPF54fTmzcDSlrTpcJXYjqBoszFX6ameeRqmk5Xc7c3t6y7SpSMSo0SUOI1FXFtm2pG8NwujBdRm62N0TfUxWSdls7VI5oZ8FoLv0I+pnNzZ5u4zhdTrSdoIEqZQ6Pz2ituL+7w206pgRPfeBm11K3O7wvKNDYs9vtcG2NtQajCk8jO2KIaCdGggDbrWy+xAE5M89RODibPfMksnUQl+OcMsEb/KgwyrHb1jw/HQlOjCaVXrKxWtrtVpDLceZ46GnbI982HdYZpnHmcpnLsQanLG1Vk5NnGnus0tR1h0KsC+byvogz3k9idFpXsqGIJRbIajH8W4jASkECRSYWzbVRCqcVo3oRFUiieICkiipObDpWWXaKq7FjTgvJVn6Vc8QoyapSKRNTWNVYMcyCEOXw2TqhXUXWGpG2f7FGaQ05r1EYS/ETf6bQWIqI5bUt3Je8WBKrF5hlRXyuUKqfWx/lPf080pK/fC6uuhsLKLAc/2UhBpB0KT6FN6sLpnNN7LbZYPNLhMXfNL4WO39g/PwH+8fBZfJ4U44P6/MtUk2QxVNZg8mZjMUFR+VqYhVkkgmT3FAAWVxMjVm+yu4/YqiUKeQ1mTiz9LSIORG9tAKmOAixEcMS6KYqh3OOoDPzMDIHT04LlJpLq0p2aKFIC40RArVyCmUMTdtKG0vY0wBUTsi4SssuJwUhKgPs9xta8io7Tkm8e0Kc8WHCWIsx0lKIMXLsz+sNY60slIt6ZJzO4vBqFTm+QMWVcry+eUWlDJvaEWOk3TTrjTtNE9NS7RiJeZimibZrmIfANE1SfNW22J++7OiNg5wDYTzTXyaeYkDhxFK/adnsJDDzcum5jD2n/sB+f8t21xFnz6ePv0FrgcHbShbEh9GTK8Om2+EqBTHRNJXssudILAXMx8cHTqczPmXu715TtQ3NdkvTdOgM43BZkSXVKB4fH7gMR06HM+fzmcpUBOV5fHzGGCcBksCf/90/45tvvqGy4pLddjtiChyeHnl8+iS+R+WaffV6R1vXohLKmZvdlv1+z6enZw7PJ371i++4uxOp+cPhWAjV8Pj4REKKCIxmCn4l0SqV8SFIqG0OWFMTdGChQhrjMMUbSmVNypk5iHrn/HTiF+/u8EEBgXGaOZ0lquHbN6+4XHqGPLPZRmzXEHwi+JmqcXRdt+au7fZATmXdiFwuI92uw+iKttsxz6H4SUHVmbWA3NQ7nsdnLIrf/e63uKbG1RVTkMVru9njtKJtWzIBhefufsfUTzhjMcg18OHjA1UloogQIhtVE72nPx0hzTTGcV/UhZuNZQqzJDcZzRwyZo4cnh548+oOP06kKNdB3e7Y7295evpEP4y8sTXoia7bcrlc6LoNwRcVY7GJ+Hb/LTFNkielRJQQQkQpsyIrTosEX2vo5wGyEJ27ymFu7zg+PwLiyK0tzPPA7FuqOtJsWrpdyxgiRuu15TXHwMZZunqDNTOza3g6namaZ25v71E5MJXW7zRm5qEX7y1TE3RknC9AKpuDvLbrvVLMPjCoiFZQuxqtk8yLAWyuVi8rBaQsRVgq86lSGmNUmXeKP5gPEqyaRZGaksy7S9Gg0kt+02Jb8pJZFSlSLtlM5vRS7EQvBVB+KVyysYQ5ojRY97J+pFIQCZk5krXQAzJCqk5JpOlwJZzJLz44n0nOV3FDXp2if661df1VxueBpcvzf1n8/Nz4G1tPi4/O1Xr7mdLs6tAQ1aro+9vGV4Ly1/F1fB1fx9fxdXwd/1OPr8jOHzGuJXI/V5Fm/Tl8d33clxXytSmUMUZclzE4J9lJ5IQ2iTSzwveL2ZS4FmuU1RjlJAFWKVIIKwIQgkdF2YVMPhJn2ZlFn6DS6EJ6zvNMwJOQTBdrKtCRQBIjMi2SP4Cq0liraZtKPB+KC/Rms5GdRU7kQlKLZQc/+0Bd12QVmWbx4cjKUrkaW5VQQx8keyYGkRhfvPjS3N/TVjUhzKvHy9LGEWRECLen52eeDydyVsyT7DKapmG379je3GKd5vD0hHM1dd2A1uy0Zi55QMnPOGtRITCMZzSK25sbkYjHmf4ycu4FBdLK07WOtqlwWrOpLNm0Qig9Hjk+HSlcau7vX3NfXHdTCtLyc4LI+Wmg7/u1feBqEK+eH8Bouq4jRfjtwxPTHNntpC2kXc3d65Yff/8D/5//9/8OOfInv/o133zzjjB7fJrXa8vZmnmeUZXlzZtv+PWvO5w29H4khLmEQcpnYJ0m+J6chBickDylw9Mjfd9TNS3ffCPcFpXh4/vf8fTh99zebHC24uOn9/z1X7/n3be/YLO7Y/LyeQ3DwN/9sz/hN3/5W/px4PbVLcpYNpuO3//+B96+FQQoei/E9WZDGsXhVilF29akLNdw1QjCmHLmeB4YfMRYMR7UumIaPdpAInMu5nvzney0665h9iPxkui2mhgMrq5QGEIYyz2TaNoOpSQXLUXkvbuGeZ7xPpOLZcTUJ3ab1/ihJyfP4ekZTWC8HLnpvkETmSdBl17/+hf0xycxz4yBisymdeuu/XiUtud59CiXGKZRHMGrisfHRx4enwWNytN6zzXbHeNwxvuJ/e0tl+NI5SsUjnGcGYaBCjlf9caxu7ljnmfC7Bn7Hn+5gB/YOCvHFsPPXHx6Vh+uZd4yoJUl5fiSpp613ItG3os2jqEXU8e22VFvxAh0mJ7IyaOMFl6ZrbFNYrO7wx9Owk8rff+mrQnTRL2pyU0N2mCV8MeclrkxeLkX+75nU3dcTj3KKeqqZhx7DocTyiq6usEt2XNkxouXTD4ljr3OdajsiSkzzYm45EBVXvBEI7TtGCW/KkXQSijAcqCH5CVbKxuIYvCaYizztMYsCMx1OKjcycJdTKKlzimQikdZjoXHs/ynFDoFsA5SJMeXbCoxIVYkXZCbhbezcGGIX6xViphLjlX5fFd35KslajE8vF61Fs5nzoC6RnNe5OMLsgOCyHyJDl1fV0qp1Tjx+rmAl8DRa7Lsekz+yffKJFCBP2Z8LXa+GD9nFLgMiU9QL8qnlb13dcwXTPQlJkLlzz/8xcckAiY5soHUBFKOZDyesEKpOc5rbzOlJDC1UZJivcZbLF4hAYrjptIlyM9kVLbS519GiESEnGesISsIk3gbYCyWjNFLUePYbRpRCFmLUsIx0ZU4ns6zx4dFAdKTM/gUcLbCWjHoczqR5kwiYe1CslZsu5qc8zrRPh8Gno9irX+7v0WV1oyPAXJFDp7jYeI3v//IDx8+lqBOLSoOxAfl/m7HftdRN0b4LbNn2+6lmIywaaSFI4tARDcwxMwwTfQPZ4gJYzxWG3SYy7E9RjVYmwjeE4In+ojWlroy+Gnk/CST8eHje5RraJoOa6VIq5qazWZH3W4K32TxF7HUrmF/ey9KpJTQGPb7W1LKxCLt8X7m8eEjOk782a+/BxJVZTifDgzDwBzEvRekkH51/wZNAOUZLs9cUuI8iOrr4f3vuS3Klm6/Yxgm9vtbyIrHx0ceHz5hHfz6l78km4r/8p//EoD/9B//I8l73t1vmMcJYwxPjyduX9/y7ru3HM8HYuFZfffdd/R9zzCe2G52eO/57s07zuczbdswjOIfVNsahSHHREoSztoPF97c3eCDx1YOq+Xz+vTxmZgTTVPz+v6W2ipclUk6EGaJhFgWpNOlxznhLsw+gp9Aj2hlmaaKqqooIhwOhweMe0VdbchawhhD1BiridlQNfXqMTONE6/vOp6HM1lnNjd7LqcnFJlKzby5a3i8iIdRTAltKw6nAdu0NDVYHFMMeBTGtWUysPTDvMamVFXLj+8f+PDhWO7pmctUgi295of3B6racLO94/FxhMtAUnvmOJO1YizeObfOst3f4P3Ex/fvOZ7PTH7mw4ePbJqWnBNWSaxCVVU4V6GVo3IdWllxeNaalOAyDgzTkuYuKiOjLEbXBCZO/TOXqWf0E/v71/Jax5F5SmhjmYJnmAeqsWFXt2zajpDi2sIxSmONmGrKFKQgKtqm5fnwSOe7lbd0OXkeH95T1zVznxg1tHXLPI48H58Zq5HtVgouHwx+Fv+X2M9oU2Oqmna7W/koUyFpUwJPc8woK3EOKeTSFkq8UJmL+32GECU8OWcjrausSSkuyQ/kwpNU+WozzCJqUT/x/pVCpdAIlJZiKU4oo4kxr8TkrGwpMBRaaVJey5hyTYUXrulCaVGmtOXNupaICKT8WkkLT17DUqRdee3k/NPWWDkfSmlQ0opdls7rNTTy0kr7/L0WXtJybhUQX+gDPzc+UzTHjPkjrXa+FjtX4w9lkCyVcPqiAHqx2S6P/wPozzVfZ6lwdSGW5ZzBGJQDVEPygWAMsSA/8vxConNWcoBiLBejMWilMc6ujHi8Jhc0xBKhgpg0E5GYA2UTg01CIPQqY63Yo0creS8mZfLkUSySSA26JiuLMhXOaLSSQk0IiolQdvTzJITcpAJeB3adoeo0rrKAYkqi3oBioGgNIUWsckQyrm2IfuLHH3/k//7Lv14Xz03b8erVHc7Igvj4+EgOnsF7IfYVLtJ20+Cjl4lZVdi2JiT48PREt9mhtWZbSJHaWRqnOR7OPD6fSAlud7doF4EzSkW6vRzbAaSZ8XLGmYoYFaaybDYbUtR09ZZhlZNPnE9HjpcD1mq6bksODTrMTOORnBSu2PTvuhvazU6yrZAokBASMURq11AX632VA1VtSWQeHx+ZvCeguHv9mjtjaOsXQ73L6cBm0xLVyPH5k/BhfMIpQ6dr3v7y77Eri4FuNM/nE7OPDMOAdvDu3RtcZfjw6ZGnwzM/vhcOxqdPJ7rKEVLkV998x/kk+VNvv39HjDPDEHjz5p1cB/PM8+MT1moulxPvvv2OlBLH47PwvMq90dUN/WXCTzOuUYSQicXeIGVNVBpbuGOjl1RtrQzZz7zebzkOR169esWUBlx+2fkOw4CrbjgPnvtabAXqWpCCcMl8u/+WUJaaaRpFxZVnmrqj70eUMlhriTHTNAZ0KeaZSLGj2+z47e/+Cz4MKAV1bdA5sGtb3tx/B8B//svf8b/94z/nr354T86Z2+2O/njAVo7Be8aisPru+zd8fP8B6xSv7u+YZzGQ/HR+4vbmnrbumBbCrTYcThfaqWXTKmIOfHx+5hfxXjLflGIuWXk+jDStxNGgLVQN4+B5njLH4cRN53CFT7fbdmit6ZoNWmumyVM1EWNA6Sy8uoIeO2up2g3O1VS2ZhwUoZdstnEaaVopoPbbGz4OMwkDxuCDKBRdPdNstpwv/Zp7djpPbFFYm4RwnoQnV1UVmZbz8UTTyCapbWqOh0f68UxTb/AJVErYqsGOjmGYIApqVtfyGqdpQlsr/JYMRjmctRjjGBY37xjx2eMcEMSdV+TZYuBqC4JQO1dm11kSynVGNBJSfOT8YgCYk4ei2Fqk64uaVWkwyqwFHyvikSjaXlRW5GxfnIa/4M6kHDF6KUjUatqXRV8ux/Lz42d5qelzVOczx2ReEBp5Dcu/8/pXPlNiXa2Di9hmGfqKy6S05jpzS6kXhMooVdysRZUmSrPrIkrmiD9mfC12rsbi33FdtYr1eAlFW4/8gqy1HGv0Cs8lJdI+tCGnhFqUUGXSVFE+NJUysXjW+Cs0LueMXeMiLLo4LiciOQVUCjjToBHVSrZll5gcUxjKy2rkwkiZPItUedF9JyNOpoqMTmLiKbEFovSYDYSCKowpoS8TytQoq+TmJpFDwhhH00AooaO6kkU35YhVsOlq2kpRtx3OVQzTuJI9lXNUlUNHU+InIjFGxlnIqXkcmYbi8Pr8xHB8QluNNoamLe2IbDG2kzYdorDqGkvXdevn0zQ1WhvQFZVrRGkBnI4HpsuZ4CeszoQUiPlI3dRsqo4cPXZRrzUNcwj0g5dJK2RxlQ4GX9o/ppZJ/vtvf0lOgf505unpibGfiNqirGK73WBtRVd8geqmQRmN1UI4VVkzqxllwViB7EEK8aQNd69eYYzh4eEjOSZqlWkqi3KaeSwTfAPen3Bdxdu339DVe0x2qMrSNjvGEDif5dj5IAvr7D3jMGBNZPaBD79/4nAc+c37DyuhvKrhF9/f82d/8g2n4xNZw6s33zJ7z9PTkW/e/UoWGuB4fOR4PDMHxd/59Z+y3W8Yx4Fx9NzedtQlsHMKEzMjU5rpmnvmcVrdlYOf2HYbYpLn3O53PB9P7He3fHp84N27bwmnkePBo5Ti7mbPuURhKAdZZ5Esf/8NNkZUyWWyriEEjasEMfJhxE+BxhmU1uUaPFN3Tlycx4m6KQjjODB1W7SCaQ70p56h73GmIiTLNE+8uZPr4NOnT0xh5tL3KFcREjxeTny7+RbjR7ZO3uegLP155nwRRVQmkXQmqkS1cdw0Lba0nzW5LLai5Oy2tzw8PKGzwakKRUcsBHyNwjmLMwpSYO4H8BGDRhNoLDROnrfbtoxzIDBT2w3D1NOmW1Q2+DkwTxlfyMzORLRyaG2wTUs+Sa7V4XAkeMW5kMTffnPLdryRgGE8TdMw+IB/fuZN3bDpWvwkBV8/9pyHmbbZkqIjTIn9tkJj2N28Yg6J8yhIl1OJ1iimeSarTLu9YQ4BhaaqWyH2l3vfx0hdO7QWhWRlq3We164iw5pRpoIiIxEMqsQaKPK6iVi8oSrrIEdSksDPpBQ+J+akCEVluCZAKVUeLyGh5ChFzIpBJmnnATFnUgkKBYXGFsWULps5xRownLIEEK9FgUahUElJ8cOL07B0t4oCDFXUvD8/lg3/gi4tsUnyb7O2m+T8rG48V8VXIXGntIoQgBXZWp8PjcKCXtRhS5trKdRkjcwFiUogwaDlsctr+q8RDX0tdq7Gl+ZFPxnq8yr35xjry0+WWgfkUk0qi4RueczS01zkgEnk3ykG/BxJPokqCyB6IplQWio5Z6zJOO0E2jViwQ+yk9G2BLNpuWCTl2ycrPK6i8h4csqYqgJjRZKZ05prU1lLtWRjuWrlnThbl5wcT0Yg6krbFYbMKWFMIsw9GsU0BvrzCVd7bu9fU7sNSzctJ5GB1liST1x6Cc0cZo/3kWAcfeFVHM5neDpjDWzbjrqqgIRWif22Y7eT4qF1NY2xOCy5BN3FDDkbSY+vHH6UBXGeJvHC6WdOJ4mgaLqa2/2Ok4H9dsPtXhCQttrTdJr7OwcmEeaJ8+UJBfgIVdWx9EWU0ljb0LWK4TIWoVwiecme2rQtZlHFJcVw6QnFu2a9jsqkdniWCd44izGa/nJinAc2+5a23fDx8ZGhn3h1t6NbioQ5oa0jhRrVdPg5M0w9UcNvTr+j6uqXSRNNTnA+nPhP/+k/Ef3Im/u3hBB4fjwynIZ10upazbs3d8yjZxwiu5s9fs6cpzOvX78mxH69J7pNzfl8Zrtt2e03QCSlQF1XEvZaFpiUEl29I4cLYQrEGKmqRmD5bHGVIRZPIKM0zlhS9lzOT2z+5Ffc3DUEH3n//j33r27YFJXZNAzsN3tGM3E6Dbx584YYRl6/fs0cJN27ruSaiTGvIaiVa6kqyzSKvLrtGh4eHnBWzu2m3dL7iXkKBDS/ff/E1M+8vXvF6OHpeaQqhdyffPtLDj9+5N3NPa9u9tTWMY/CN7NNTSr3t86WYZx5//ED33z3LVkn9MMDLiledTcYJLgTwIeJt29fEbNmmCe6TcPt7Z6+P0velnMUmx2mOdNUZacfAw+ffo81HZdxoNaSzr20UWKR3oMuvCmHUhLyGKOXeIiyUZr9wOWSadsWY6Qqr5quPN6vx6WU2N7dEJ8y4xhLi67C+8jHT5/47pvv1kDacRwZhxlrvHRbtOL5fMI1NXdU3G+3PBc1lFZgUXgfGeNIHi90mxvmyaOyRM4sBUqMwgNbkuutLcGgWoNKZdFe7oVE8hL4mdVyzQkivW5WoSSna/FNI0n7OCdSTJDF2O+lKCjnN2d0yqByKbYWE9JraoOEc774yyw/L+qpq3ysbDJJJXTJthJqhRRepTm0FjuUdWZ5ntVckM+HmBO+/Ht5TTK+4MsQf1JnXHc2rjk712iQKspesi4tk1Se+8U/SKlCGVFSJEoSu2yGP1tzy3F/rKngVzXW1/F1fB1fx9fxdXwd/1OPr8jO1fg5x8if+9nPscK//H59XIEtDUtY5U+r0JQDPkg7wXtPTGKTvzLYi714TpGF+aZqzRwDJhiifoFYbVWjonCDsjbkEMlmlp20ashLOnnWJYpBr20leDEMrIx5ST1vhZSsnURQzPMkzqCpWHcbCQoFaJMVkqEpu5QkxN/HcWIywnGZCk/gfDyX81TC4GbP09MTMcbytxVdLc9b251AnCmScyT4Hk3CVpq66thtZYeotUJXBl05qqphmjzRz5z7Z4wSt+ohCMweZlFcXU5ntLbs9x0he/rhxKAz4zxwOEm7p+uesZXB2ZpIxo/iRWKUQOdP5yNzeAne89NAThHnDJttxWYnbTWfL/R9lF4TkHyFcorKWEzW4varJd5gTiOunNehP/PDDx94ejyUxGO5PnL07HY7SInnR0GshmEgTDOmqSTiwSrZ7ebE3esdbV2t6rXnp56HT888Hx4hJvb7PcfTM84ZNBN3N4q2knP7J3/6Kx7ef2Aez+J9ogx9P/DuW+Go+Hl82ckmJR5D+1ekCD74wr9K8tpjU+4pQ4iiwjsfnxFnbkEkbSXE+eX+ulwuGJUJ80hVW6pKrs+UJHEbFE35WfYGP/dUzpHiRH85oJTCasOYB5xtqStp/faXiarR9KO0m2LM5JAxiILO2Xp1Go6ZsvuHyzgxhsyH5zO3774nZ89h6pl6QSP/13/0jxn7M21dMQwTQ+dRyjDPgapt1vv7Mg/MBB6fjxhXUzvHcB5orWLfGTlvhef29HigqSru7+95//6Btm3Z7/fknOn7HtPsJKoFQTVCENQiRM+579lsLShD1IrLMLPtCidMZbIKqKwhQHaR6Cdy3azzwIKaDUNmGAe0URhtUdqSlaWua4m5KZyh8/HI6+9/zRyFtHo+jbRbaddexpGn85HX+5tyzyiJDUmJfVcRM1zCzLk/0daGxlVynQPTMKK7HXfa8vDpt0zDiWnK7HY3GJtEzMDSehJ011oLWuHqCmucfJ8yKcdV8ZlCFFQnQyhOxkmJyEMQebU+JzpRqQpUxJiEIpIjKFJpxy8cFuFmEkUZprMW0jcIYThGWNATLQaZuTxGuKJF7Vv+V2bxaSsoihIULMFnaMr1WBVQfEZhXsfSukoUldjLIz9LDfjbEJQF1VnCtBduzWfGuoUTlNfn+5KivQiB8hfIjyo8KPVZh8Uo/RPj3j80vhY7X4y/qX31h6Tnn9lyF0lfJrLYUC25Jl+2yRZDKJmUJIFcvvfCeymFjU4aXYj0yiaBl0nE2TMqQ1aOei2iys2ZBTJNuvR8jYU0r0nPKYgjp8D3GZ3EtK/rWpxzxbB58ekHV9WEGJn9zDD0GOPKRRaJ87Seg7btqOqGKlmMsaSUsJXjtdHsdh0+BfIoEPE8PHM8nEmI7NXZWnKpio290fC6pGjvNi0JCEnaAB8/fiR7UXb5OfLwICRa7z3ZysSntSaHhFKJxjoSpjhxLq06x+5VR76/Q2lpI85zYLfbSUZXisxF7hr8hMqJFCIxReZpJlwCVVVxOB1JKa3FTt/35OiprKPtHHV1w+VyYb+7xVUS5bGqWLNGJYurW4wWble2CVtbcuzIF78ed3d3x7fffoMxht//+Dvm0eNcxXi6EGcpEgDaTUN9f8Orb+6FC5QzKmn8nPjhtx859/2adzUNA5U1bNqab9/e8PsfHjkcjmy7GkXk1b7hbYlVGI9H5nHk9vae+zeviSlxe/9KzsHhwDz168JYNxvatqaqHE/PD7x9+4bHx0dC8Nzfv16Lh67bEGNimiaG4cJu22GMwRiFUlWJI5D23n675enjI23bsul2HM8XThd57zc3smiGQpo0TjOMF7abPQbFOI5oY/jxw3tev3tN31/Y3wqZOiUY+pnb21ti8mVxbMjJkJNif7PlcHgApJDEWPa7W4iJ7f6W//SXv+XxONF2lsEnTDkH5/7EN29u0CjmeGGYarmXksKPnjQtYgUDaM7zzNPhmVc3O96+uuHw+AGlEq9e3zBepEBv2gqrNNtdi1KvufSRYUoMk6YfA3c7saaQ59USJ1K3+JA5HS90mzuwTpLLQ+TV7a18XpUpcSPFDNTLZ9J0Yqnup5FNcYb21uK953A4iL0EmnGeCUnUoKFc3OFy4TbA/uaeNE8cpolxnthsd9icefj0xF0hyld1Qz9N5JxxdUVrK0xpM5+HM3qzxZSioK5rITq7mtev3vHhwweO/ZmQMvvtRgqwYlaINihjMcX9OaWEqcwq/khJYmvWOXkhCyfISXhTKeW1yACZz402OGVQ2mJNkFaYF56Kn8PKZ7mOcRClZSpPrlcaw7XQRRRKei0alFLk0r5S6oXzwheb8euvaxH05Ub9C7n3Mv7QZl3WOykwlFQnJOWvHqN/wnEV+sTnZOrl739GsF4k7Eu776pikRaZRqlEzoth7NVrun6tOpH1HyfH+lrs/C1Dioari/ZvqG7XD1xJxzQVmpj8brngXo6XsMjyfyGExSw7X58CeZESK3A5SwBlqYvnkPDR47L4YCh9dWFlX6SF5YYyoJ1GJbcqrMT2Pkn0QgZIggBUFoVmDDN5IUwH8EFkid5nwOBchdFOXvs8rLvUnMRdWQioijkkXL3BKkTWajR6I+ck3NzRmFrQl5AZvaeqKjabRhQhflxltOM8SB9cC/+IbJhChDES/LxOXpWtcDmTB4+pXLlxAsMw4+oNVVVjV/deRdt2hCDFZlfv2N9q2laydOq6hlQKs3nEzwPDMDBNM1Uhly48AGCV3z8+PvLx/Qem0RPmxOHxR1ztOGwGuv2eqhrwRSpvrUW5CtBY7ahcwxglcNXVzZW76sw0nLkcj3Rdx3634ZAOTP2ZOQ5sb/drcTwNM7VruBwD+33H7D3H45GYA2H2fPz0nlTIpnVl+P6bNzw9nvntbz6A1tzd3RL9hM6aqmp4/PhQzsHM27ffoG3D6Tiyvd1wOQ88n3uMdmx392u8xTyPGGN5fn6krlti9IQwo7QQK4MvQaC2JTk4HA6F57THe49xDqUi4ziRYuEBtds1S67tdnx8eMRax6YRX6EQArrIDVUWp+5YJSYf6FqH29V8+vjE/ZvXeB9Wr6PKNRwuTwzziA6GyjXUyhUV0ogxhq6TRXkcAzG+iBacM5jKMIwXumbLrq5Xa4N4OlO9Fj8h5zp2m1uOw4mQ4Xw+cnsjEu08Drze36KxnM89N53l22/u+PhpCyqxv7nBuZK7VjkqZxinnrbdMMWZEDNPxzOv3ohn0eKI66cRX7WAZRgz/Rz59HQkoJliRhOYiku7MYraGZTOWGvFayum1a+lrusXdahS5JTohwFnLKfTmX6cmMYRnxOhoIZt1fH09MR3335PvdnTxUAKHmcsyhoOzyeej4JG3t/fy2vRFudqtLI0jZB7cwhM07h618QgrsPzFAlRcrWqMHA6PAOJrusEoSr3V9O2Mj8JuYWQouQAKiNEjqUwQYQVKSVSIdQun7Nm4dNIViEIMGOtIhgj86oO6HXRlvO62EGgBBF6QT1K8aL1C/ShNDlLOVTEVaAkEUIKnRfOznWRtHwm1+OziAY+7zb8XNfiy+dZN/Yld3F9js9UVbnUXFd8oJxJ6XPfGylyymvP0nVQNrGyaLImszwmys/V4t2Wy+8LBxVQ6YWgnBZ+zx8xvhY7f8zIRSbOH1dBytDIxZB+tkBaqtzr/1NKRclkiAFCkUSanMhOih7zWRUbMUaR8rwGRuaciSXuIRNLoKLI3uume4EwYyCngPeFXJyF3JdSKIx9kZcDRJ3wMWPKxLcY5BmjCFP47P2F7Amzp1YVWhuUknTlqjZr/EVcso6qirdvO3yYcLZmCDPTGJmToLu5qq7e6bxOEk3txOp+mshx4nI6cynqonNSJCNBkrYgFtZFbrcbNrWlqgzPgxzbX0aenp5IQRCVqqpKrIG08LbbrSgvEMWG1oakWmY/MY5iT3+6HHGuxjnHpmQSffPNO/bbHT/88APTIJLdx6cj58tIfT6z3+/ZdqXtZgyVzRitSSoxzScSnsoZnPEsoLNrDbfda8Zx5He//YFLfwCE6LtvN+y6W6qmyOS3W6qmRalMWzc8Px8lvNKKj8lms+d4PADw+s0WlTOPn45sNzV3b294fn5m6hVERQ6e+ztZ6Df7BmdbHp4HNts9Rjuenp64fXPPdrNju72RQhTI2XM+9wzjyJs373h8fGQYJr7//ltAr6TnnCPH84F+7LnZbUlIGKrsf4Vcuiwu8+hJWlF1HZGKw2lG68z929dSSJFoi5lcCGLp/3w8oK2h6zopICvLMHpS0nj/UnBmND4IKRlVi+eM1iSs5PgUDqurW6b/L3t/EmvZluZ5gb/V7PZ0t7FrZq93j4gMjwCRVSoGSUgwQSDEgAkxykGOGAIDUkwYQY5yyCiZIRghBGNmMESkVKIKUSkqgwiPCPfn7z1rbnea3a+Gwbf2PsfseYYHWRLlIFuSPXvX7jn7nLPP3mt96//9m9MJNzjG0TEMjrLYcjyNbCrFMChmaN5HzduHR3JjWV8bvqzXnNqG6CLtNLJLs2/ft9zcXPHVyzu6w4l+Z7m7u2V3c8ex7cisxq7ku73arcW/qOvwhSJGw7E7slsVoDTT5BJRGCYfaLqW3vnke2f47u09x2ag7RxqpRnTBxtGT5WJtYXNNMe2wZqcqZ8wOqPIc3xC2Ky1CyotU8nENIy44NG2YP8s11bIJszpxDAMbHe7peCNCkqT4YqSx0TAr9dbXt+9pus6ojKMPoAWEnR0A0PbERZFmsFNnsl7nk4N4zgxdD1FntE17XmjQiITZ8Vi+xE/KmLma1CGXHUhOGmrhZB2rurCz+yCqJwQF6e0OOZo+e59DBBns8YR78+IjFYQluDmkK6r+XeixpTebaIYq9S+SkX+Uoyk//8YwflN4+NWl/pImnVGonwqts7xDJEI8RKxmjsdKedqOUU/RpDkIyWExmhpm36wLP56+vAs+okxomNIYuJLkvJf31TwE0H50/g0Po1P49P4ND6N/0uPT8jOxfgRhMdH/cvf8PzZEVIOstTrECMeJ+hQOq5PrpyeiI9KcuFiwIWAc45+HHApqNASCV7Sfk1uBcq3QrzTWtCgad5NevlZYYSfExCHBqUwVid7Kwha4SeF1y7J3IXLErWhKEpqmy1GfX3o8aOEOsbgUd4TxoBXhr7rCEYtOylrZuOu5PYcI8PoaXuJTYhJggzgw7R4uPRtx3qzY1UbrJVdjOyI0pY6ilx4JgA+H088T55j3zIojU3kybLIsFZjYqAoLWWRUSatu1ORaRzp2mH+wmCcUD6QFSWFsUQbJGHdZhityBJ0bRCIWSvF7c1r8jxnCAPT5LDaSNzBHD7oBqpVxXa3Ys/Ieluz3smuudxUROfxQTgYQz9xPCj2zy1DkNdeJ4M3ITym1kGcGEfHfr9PyeSjIE/1ht32GpVDkdCisizJ84KmaThNnWx+lKbrB46HA2PX881XXwGQlZrHh7foAnZ5QZnD1bbmL98/s9uu+clPX1HOzrXDQFGtKAbPw9MDVWnZbjbstmuMNrTdM81p9tk5ELxmvdvSth0PDw9ordlsdpxOzdL66/oG1IQxUVK3s4KxPxEQOXhu7XJeu64TT6KyYmyh6wKrlUhTd9s1TXP6wJZ+d33Du3fvGLoeZV5xODxzdXPH8dCwWu24v5fk9/X2hiwreD6csDbHZF7QS53hQyBEjZptaJVGGc3xeGS9XtMcDlxvN7x/fOK5PdErmBJS0I8Bd//MzfUVN+WKpu+5enHH89MehaVLcnKV1/xP/8//N19+9TmH/SPBeapqxesvfsKf/smf0ZwmXHKcXq1W2KxgOhyYXENZ3RCjoCBN31IPPatkwujxTMNAP/ZCzM1yfBiZtKX1gWwynFLL6dQ69FpQ4MELydcFQU9sXhLGgVM7+ziV+BCI3jF0Dbk1WA1Oa6LK6OdJsBvZ7SJD17Le3LHdXjGOLc1xT/COsi6Igzz4eGi5urqiilpCi42h73vqssKnKIvZmkFrzdhPi4R8GAZCEGuPei1J6EYnH6tMTFDzvFzmXJnn9XKdzPO+tEjTm/eOM5BviSYQWayI5XlGEHNrIkpZ+bfECJyPE4goL07Msj44uYYWAUtyH0ZI2nJcjY7nez8aITVHpRbO5Yz2RPkQy2dBn3lA55ZX+pwE6TdctMISmXR5/tLuOmvQlzXrR9L0jxodH3N3uHysisQoPkYK+wEypD46xmzIeEnNmM9P4ogsPwc08a9Zxnwqdi7GYqj0T2g7zTfI7H/z6/qk54vlfIxA8l7gfOHMXJ0PW1nSpA2KxN2ZOTvimmx0kO/apGwtpcXnYRjxzG0scEhCeW6lHWPUfLGy+OiAQhtD1AV9jGKUl9o3eZ6TG+nbAzBFnPPgFZkxeBcIUXK05htcpUspeFBkeCcRENM0cWp7hilNuDZfYGAVI95LptMwDByODavVhuvra1Z1hdEXxWFwxODxOjKFwDC09H2L8o5tXbG7kmLn+vqaIrOM4yhcIO9BSQEZR4GxbVmnL0ahc0duLEEpxskzdIHeBfLMEeOEzYWz410kGIWOkl9VjNI2UUrRTyP94Jnv/uAnIiPrTUmW7xj7icoU5FmFySTFeGnjhMDYPzH092TliirLmfon3CiKDqsT4bcqGIeBoW1EYecmjgdpAeyfnvns8y95dbtZruP3D+94eH9P9PJa+6dn2qljVVZ89dU3lJW0e079QNeLL9J2s+KQiqnPvtjxzddfElzPw8MzALYsePv2Lcd2pG8H1quXfPnl1xib8fb9A8djx+OjEMXLuqAsS8oy57vvfsWpbfj8888xRtR+s51+CE7I29st2uS4KeKjQceAtQUEt+STeSJ1WbBbbzicHhndwGdXr1A6MHQHdPDskwljVW4oPASv6NqJcfSsV9c0p4F6LZNtSPfzMEz0o5DdQ3CEOKJ1LXErSjFNw9Ky6fqWrLCcho7V7ooxBKZJ7uWn5yOEyNWVmAoenx4p1ytud1t2VzV5blhvtjzvT4xDxym1U+vNLcdu4v7+L7i73oojOvD6xS3f/+I7BueWhdZHI9N7lsn1HR1lWVJVFdMkm6TNTtqOcYJuaBmGCa2MuBFrjc4s0WY0k+PYSQHRDgN5oZlCZJgceVahtdxHWZZhMs2wl0K2d4627WjahhBdMg0MqJj8oKwUGlMIZFlGCI5pdGw3O44nz9hnDGNLpovlOvQRpsmTFyV+6rBanIX7vpfCX+tlURyHni59pqquGLueQzuiTESrKBueRNa3Ri9t0NxmeB9x3gvPQ5+pAzJ3xrSB1Im0/OE6sPgHqSDFelqoJZpHE5Vs5iQaIc3zUTP5SFAiPonBp0IkFUXxQl3kEc+0aIWrMxc7WtpxUZFaZSzqq0WyBUuRI+oxPixMLsZcQ0T149//VZSLmas1P+f80B+fJ2kBz5ETqUhJ61+IIWV5zXwmf/YEWgjJ52ZVnHk8swfPAkQkX7jw12tjfSp2Lkf48Rf9gQJLnb+8Dy6Aywtk/v8ksQv45FocUBfmSkZpgtaLFDxqhdEZWlsUOTpmCyHQh4noA0oZjHNoMrQaCakPHUJgERF4L7k25fzVimnc4miZPoNXCp0ZIThrvQSJamWJEQYvfAD5SBLuGVQkGr3sYqxS6BBwbiCmXdeIFGa5sWgt+TpX2xxPlW7E8yW3ENqiwpiMU/PM09N7Rjew3VzRp5BIELQiek9ZQJnnvLzecrvdLBbys5V9UND1ga4PjIPj/v2D8BucY7vd8PrlC17fyGJkrcVSUBSS7zNOPfv9EzEqyqrCjZ4uucEOTUu5qdlud2RVthiwRedRuWJsGw5HIfL23ZEiN2SZwSpNZqRX7YaWGDKcizw+ykLXtQ3bleV3vv6SiMHkmchnpwmdlag475Qcw5Bh84zvfniPNTVlWfLZl6+5vb3DZJYpyZMf373jdNyjoqOwBX0zkmvD628+5+b2lqxYk2nZ/Q9Dw7YuaA8l++eOrhmxaG5XK9qnPc0UJX8JGENHdJHJDbx+ecfrl684Hve8fXdPOwwcnxo2V9cAfP75a6I2PD880BwPaKUoTYYfR8os5/75Sa43rZmGQL6rMFozupHgRgIBkytciGIlDXTecZxGXpqIVo4yV7LRjYpjO6C14Smd19vf/RyTGwY30fqAQ7Fdl7RPTxh7LShVmqQ32xWqG7Amp+tGqNYcTi15tUZHIerOSqDD8556tcZPkdwqVqsd75/fMkbD5CaqzGCs3GPrtUVlHmUkbqDMc/JMU+SGw8HRJHJuWa24vbrif304UQ8afMZw6Lh+ueLrr25ZVRql5DqPU0eeF6zyFb494toTu1VJ3zVkWcboAJVQDRtop4H21GGN4Wa3YX9seB56MgUq+GXOE3m7pj/1GDNQrXZgC6I2+Cj5bnNsx8P+xKkdJbvMZwxAjwarKXPLdSWPm3wkyyGvLU1/pFpVlNWGYZg4nFq08RTVjHRHnk4nXt7cUmQ5WkWsCkzjyGq1RlmDmmX0QGCiHzo2ubiSuxhETaZzTFZhE28poghL1IKX42YQXCB64QAGnxSqXhNjKnqj8M6Ci6Ac2rGEKKOQ/CxliASUlVBmljDOHK1n4rdhGD1D2hj5EM/E36iStcKMMkWUNkQzry1aclK1x+uAVfa8UUwFik3mgX5GbxaRjLpAOaU4C15igbQ+b95DiEtRBUGOE8WSxHyQuXXeTM9Dx5mzlIqTeelL8RVnt2d5byEE7FK0p6IvamKIhAshz0ziDupsckv0EgsRL6XmWt7XX5Oz9KnY+TXjR9XtR87JH0vIL3X+8ePHpaJIxx+hfksVbkwmAZNmTBdzlBTn9CWGqAgx4JzCTRGVUsatVYt6YC52vHOE0BP9QB5qnBPBtdYam52zuQKk1pMw6o2RAsaY+UINi/qgymsJ6kzyLJ+8F7SaPXUy2rT7tianqlZoLaReuchhDOKcSlRLESfyYpVqQYFZy3yiLGpWZUFhxZMEADcSQ+TpSSZ12THCEMBNLATlafQYK0qHoW9pTnu0CRSVYntlsOW0KLymxhOdIssyijonyyxGi/+JnwLReYZRip2uP6EzaJVGDT2ZlVRurTU6FYVVUuFED31/omsd0zRgrShMYlD4rqM59ckXBkDhleHd47MgNmk3vF2tseWZUnfqhwTXwxevr7m5usa5wGq7wo0tTdfTJk+gEAK51mhT4X1Alzlf3L3k6sUtoInTSNPIY/dPT/zFn/+CrutYr7e0bWC3XfF8alKb1dAlS/8paoos52Z7xdXVFX/+q285HVuutivcMBJU4PPPX8u5WFe0bc/h8EyMkbyqqNYVZZVzOp4DJYdhYLfbfbCrJmqMNSg/4IeeGVEtspJVZphOR4LzFJnBao8KA1YHrM7YJsdrFSNlOo/9IMhMmMQLJcsylLWCVqaR5zl5XvLw/p7N9oqx78WR2Gj6vpd0ZcDmhrww7A8D333/PV//zk/502/fY7MK3EhlM4qEbOSV4eH5CZs9EnTG7+VrinpDDLKoPj5KcXz3+hUhjlSVxoeeYWoxuSiwdrsN0fnFHXsaHMqU6Fzx/f0vcM6JHD54ysJ9kFwekp2FzTO0MWw2V9T3z+yqwNiLgjPVUIxxYnAD/dBSTyv81KWWCviQg/dLq3qz9TRHhdUrQYyswilHudpS5RWbWYGkLWVZkdmCw7FnmgK7zY7gPV2zF5l2UsRlNmPoe47HI3fX10xjizWi9hyGnjwzzHmdxhhBfoxscjJbUBcFeVJ5GWOxyaHbaI2KjhgiMajkMKyFRBwUIXj83FZ3EzHO6lSN1paYyK8fyKZTi15fFClaG5RWKFVgTMCkYqdTEyALtNOBaRJid1AhoTvhg5aR0mdrDNKVH7QUNJcE5UWNtfxJyq65mEqPn0fwl8XQx8ricPF6IR3n3I762FpFXv4MHf3oMczFz/m4ZzVWOK+ZMbIQPxZF3HwuAD/TKz78nPi5uBE08deBFL9ufCIofxqfxqfxaXwan8an8X/p8QnZuRj/JA+dX2e6dEnauoRzlDwguQuDmx87y8svql3huuil4p6r48wYnLHoJL12CqKXHJRZ5icpuxNhhgMvSHbT5OldZHA+pf6CtQYfzPI4Y6y015RUx0orMm2xRvhGLkzMEemZsdKjVjrtaETe7r1nGEb6cWBIRoEU8hhBMzK89+L2GSPj2C5ZNQA20+RZKS2x3JAVmwQNa3RWUBYlWZmSvJuGYexou5HuUQiO3k+sNjXrVUVezkZqE86lkFJ6rlc5q3XJqt4wjhOHdyd+GISYmuc5VVFSr0pG38v71pYir8gyQ5eydgCqoiYzltNxTyCm9y2oXL7KpYWQrAJ8dGLiSBBOzgD9EBbn477rlvyk3WaNMjCcHKfWiYT9asvu5Q15oRYOzOQG+nHisG/QWtOPDVdXVxy+3xODph8HvJPvdkrOzddXNZttTT8KmTROI82xpW1PfPfdD4C0JI7HhjLLeT40nE4NZV0xHifquuTm7prNjVzgp+eG46FD25I39088Pj9we3MFwNgP/PR3vlm4SGEKvPnu++RRU6CsoarFD0fQTPn89w/vuf76KySAsafve0l8LytimHDOSWgukJucIt9yPHVUpabNIn5yxCyhhtmETYSEYWjZrKV1ul7VhEksAIKHb3/1C/7Gz/6ZRSb/5od7Xn32cmmrHvZPrK92KCJhcgxtR70T6ffh8CxBvDjyTHM4PPK7v/M17+4f8JMhJ1CnzK2gNc+q4PnY4/0b/sbv/j4K2G1X3D/FZTfbDR0BzRQ83TThE8/IDSP4mfcij3XBc+oHolE8Nx2Hw4kqK8iLDG0z3DAypSBQW+QSPlttmJzDGsXnn7/C5Edym/H2+R0+tQ9cCKjMYE2ePJ485ToHkzOOE8ac563takWzWTONPVpbCcHsenJrKcqMrRaEMytq8qzEuYBzE9PUY+2VELtXG3GLT23assilPRUC3TRRZhX9OMAiSmDxsFFKYY3BKIsjLO1bay0mF0Rn7rcUmVhrTJOXhG1lcXFCzLzVgtLAzKOUp6pI8rhSiVvpL7gkhhghmJCQSDEABCWIpDpnOIlh8twCGglBSetIz/zPixGiODibD3+nVQqXRqc1gIWInBjK6dU1KL8895IbeXm85XPMoMrFu5A1Sclz4iw1/zGnR7oVZ8M/EuiilEqo1YfID1zmWp1l50p93O84jzlHKyTkZnZzPvMdFQ6V7Ht/8/hU7FyMj10f53+7NBVc/u3y/39djZRujjk9di52ft3xZ5LcAuXbjCwv0bPRUnREZTFqNphSxOhxLhJTOFpIxDUVhSAcYyBTVoqu9PhpCosKxhiJfSCKhb2JFmdAawkADN4vFxlR1Cla5Xg8Kio8I5OL+CARDdud8GACkmQ9hYnBTYTAUvQQxU/GLCuiwk8hKV8sIYrBW4wKFQzOO+ZLNLM1xbbiantF2xxoTwea5oiaJsYGqkomWKUMPo4c2xN5lrF+cSsePt5z6nuKouDF9gZIDrO5cHaGaeC4P9LHHp9P+DCKAVoii25WW7IiZxylILHWMk0DLojjdTOO9KmVFyaP1jIhr7cVeV6i84JhECVYWVnyLBVRmUDZ1dWa169u0Nowecf7+0eC94n4DG3n+eH798Rh4sXtNWoInO73NMOIMRnGZhS53PRZgLu7V/gYeHroWF1t2d7e8tycOJ4ONA8PfP/t9wAcxglrc6KW1tdmWzEMHZt1yWdffEk/dvTNXr4v78gzxS9++QODm3j1YsXdzQ2P+z3Xdy+pVztM4nVElbE/Dry42TIMA1ebLVW5YuonpjjwvBfOTggObaBpWnQtRZ01mnHs0SbSdMNiKB+iRucF79+/hxBZb6+xmWV/aPBeSyhtSic/HJ9Z7XZ4JYTyoe/ouoLVuuLnf/kLtm/foJW0ZVarDX3fc3d3xzfffMW7d/dkucG5kaoo2GxXFCkyo84LmsMeaxQ5I5X2/PTzG6b+iBtl42BTW2CKsK1XHI9H9KpO7ugj1mrW6zUm8UraZmB/aHg+tNRFSdv1TD5yOBzouo7r6+ulOOy6gbHrKDYbfFT4aKg3V0DP6By2yBfCrRsG0ApjLOv1hrZtuLm5oemcOG+PA0OTlIm7HDcpfNT4aBimwDAFNquCbpjAn3kVpbWs6ppTcFhr0T5SVwXKj4BbjCXX2x1a5fR9LzyZONL1J4qiYre95ng84pB2bllatM3wDvp+pNrVZLaQIj2G5Kie2vohgBcPHK0l/XwuoDOtufS9CwHQmizTYtY6jfI9BJU2Mnre04lAxHv59kLyw/EhbQrPi7fSkrsdfRCjOycT77wQK2tRs0OwVsQ44gN4b/AxLH4xMSo5znnlhwvxy2XLaG7xzv8WZmJy+jukgkMvCeTntUZfPCcSUWGOj5AibS43dDq3SilUmIuTD1tYH5Cdl7c9v095XVmDzm0shXCyRHWmPjjuwmO9+NJmArULFy2vdH4EMEjFWoiYADYlzf+m8anY+TXjAzncrFRCVFXz7yH1Evk1PB3OX+LHxc48PlZjAWhtsSYny0a8Vfjx/HoxerERD8LrGP0oF2YqlkLi11htkhOqKKu8n5iGgDbINmOukqOw2WXXIBJx7z0Rl9QInBVWCIlYaVGJDaPYumstEROYfJmMh8kxjiNd1+OmkHKuSuk7K02WWTJl0/kLOOdRNpPzFQNd14iUfvK03XGZuMX6vkQZCD4STY6PGdM40A4jPjkdG2OwWc7dixcS11BVQJCcnusb1vWKZEZL3/dMztG2LU13pO86SXVXAWMixipJlQfKosQWJTYLhOBpu47986NwJEyU+IxUxFWrmrrMBbczQWwF8CnZ3hECSwTCoDJUiIxDoL9vGEdHtPIdWasZeil4758bhmHiep0TVYvSFcPYsd1dUVUrvIvYeVerIzHzVHnF7vqaw+HE/+f/9T/TNj39OHJoB+6fpTCry4pdvWZTejID7x5bVjc3/OwPfof9/si7N29ZVVLIRueoipq8mjBe8/XXXzMMIzYruH75ErRlvb0C4M2btxIX4jXW5lxd3+JCRGcW7f2S5t4PHdMoqcZd16G1ISYie/AjzaknSGw817sdv/ruCdAcTz1ZbqirktPpgSIrMUoxJI5X0IZ+GsFIhMnp2CyT8u/8zk9EUp6s76Vgletss9ngvefp+ZlNveL5uaPMxdFXrq+M0+FIZhSHpwde3L3m8bTn937yFX/xF3+BxixJ3mVdc3z3PiW7a6ahoe0ytCm4u31Jl9DQH96+57g/EbyWjUdu0Vnk+XhgchPOj1TVTuYV1dI0LbYQBVbbTJRlifOCMqxWqxT7AGPwUggrTVXUsgEoCmyesT803O6uOe0FOTRRCs8sN0QVaMeJMpH+i8wQPZLZBGhjyfKCEIRzMy1kGouLLOcqBoXJjdyDJtGKp4m62rDeXtMOI0N7RmXyPKN1I23fk2UN280W50eCHwkhLhEjIchxnAvkdSEu1invKsus/KzODI2oNCGS1Hee6D3RRQEtomWewVWQhTSmXCv8nJeVFuQ5YkJNaSHPiFriaAiBqFUSbpgzcqM8WYj4IFYaPogyNyDzuCBXM6k4ihu+OSMgIvdOiecXHJyL/xVX4Ysi5J9kFHhJ5J038fL8M/lYzP7CmYm8mP/NJO8Lfk9Mm/Xz25XXngnQl92P9JqRKAgUYTnmxyKfOSJCCX114UYtquX0OEkoMISL7/qvGp+KnYsR41ll9eHJn4uaD92QQ4w/OsbFk9JzPkJ20lclcvRAUJxhfWvx1jJO6oMLwHu5QQVbjYQI3skErZI8e5EEZoK0GKUJbiIGlyTkQqKb5ezGQ5ZLJk+MJJKeSQ6VEiI631DW5MSo0gTjGMcBa7OldlJK41KrYRo9bhJC3LJLUBHjAzEGgg+ENJnoTO437W3KAhvP59t7LNOCgBijMMoRvSJ6h4kOqwNjTJNHUlTstlfsbjYUWcb7dw88vbtHWyPhqmak7w/LpKmDlh2jMZhCsdmsyE2OnxzeO4zJiF0iGjZ7vN4TY6SwFpsJYhBjhEyRZUUqrASd0pEU6jpwOB44Nh3TKJlDxpiFYzeNnsk7uqZnGBqudltWlSz80zDSncRfJdOR7cstBE83jvg2UNcbtCnIygrNtJCejw8t2zW0upOC5f0BPzrKqqBpWp6Pe+ok+f3y1YZNlWOtePi8en3NF59/zdv39/zln/+CTZWzvn2RPlfF0+GIH1qur68Jk8jGr1++QKlIWa84pQynYRjI85yiFnfp9WYn/ilacpVOiVAumXCBzFY03SnFFkgUyTQN5IXY/QP4aaAoCnwVKPMShZDbj4eOPhfE5Ob2Sr6vrkUndUzfDYIWWoPSmqwqMLYkJWbw9PTE69cveXrac3O1oyxLdNty6lqGdqBRDdd3L+XBWlMUBWPfcv/wTLW+4mnfUAywWu1QGNrkHfXll59zfzpR+VEKCaNxQ49SHp0X5wXKGnRuiUqloktho6FtG/zkGKsJX6dMIi2BnYf9E6uq4vvpPb2bwDtMJW3CbpzSXJBzfb3DTZ4YIbMlqIymn3g+NdzeXNFLzcnoOqagMXlkvV1z/3ikH3u8S4GzF90GrUvW6y2PD/fLhmEaHWVREYLGpGKn73tiFBfkUq1wLtI2A0a3VPWaqt5wSPYJ4+hY1zXeevqhpes0VZFT1lvG/kDft+JuDcQQGCaxZjCJOG11Rp7n0srSBp3abtoI4Tb6IIqzqIWonHIIdZyWxTp4Ua6S5qfopQ0d0vw5t3u8ktaPMULkjV7sQsTROKCNWtpNVkvIr8+k2Bm8B+8WdEVfLNQqKLxUlR+gOpEovjoXxUo4Z4em7yStXZyl7ctxzy8gx5gnHyXi8BmB8Wl1UggKZJANsVIacZnWHxZV89/qw58D8QPSsL0sdqKSdVRBjO4sg7+gDy/F5YwCJVJzCD8u6nSURtZfZ3wqdi7GfEKl6P2Ysc4MhwAfVquX3kd+2SXIzyEF66nwYbEzH+OsyDJEPYGJiaWvl68wxogIHHzqzYqlu9KzMoslqM4oiMERUUwuIUfeC19BBayRRc7mE6WvyXIpjKQgl4l2rrjnNtY49YvBlRQlgtiMTvKFtNaLRb346IjS6xJ2naaJvu9xo7vgDYlaa5gkm2pyAzHMckyF9+DTxO3DJEWJlZvaTYEhKMrVmlVdUxSCauRZzunoeH/a8+79G9w4ked6QdHywrJdy+KZFRadWYqiJCsyghNfj+OxxYeRssyxSaI9jhJwmGU5qqwwpkKbnBA8ZZ5TVcVZIt03jO1I13X0/cA0+ZQsLwZoMfYUuXxfq9WKyQPBs6tLtrkmjAOu63j30BCTfLMuc5QLeDfx6vaGmxfXlGVJO3r2j0c6N3J8PqaLUOz73+4bpmlinRtW25q3+xPDMLEuS169ENXSZy9r8ANaKz67+x2cNjw+7vn+zQPHU0ddl2RJhfN0emIYO4Ib2W1qjoc9WZ4zdB1XuxucG2lT4rdzE13X8vXXX1BVK6yVDCUVB5qmWZAUay2r1ZoYI8+HJ4ZhINtdM+HwRLK8JEuRHU9PR8rCECZFla8ZB8foJlSW0Y2RwStsPmcwOJTSDL3nzfMzn3/+OT7Ioqd8ZL2peXp8k+4wQ56XBA+nU89qtWG7CazqNVZZnp+fGUf5XDHFAlSrDcVqy1/88g03r+74s5//Bf/MH/5NnPMcj89yLRYFN1dbVmVGVeSYLGcYBqyN0n4ZpNrKtaIucvJM4mBUEBM6jRFzyEPDMAgCogtZyIs8o6oKTl3L8XjkdltRlyXdqVtsGMq1xKZMzuGCkwVeZQyT4/FpT1RQrQS16/2A6UfcFMi0wruRoU+xFN5/gB4URUFV5BRlSdvJ6znvl3nMJGTCuYmx92gCWVERoqdpT+J1Q6Sua+r0+mOaF7LcUDuD8yP3j/e8evWKyZc4z9keIwLapLgbydPTRq4lrXXiF4ZlvtKkLlT0yybROZkTZ+WVjMRBmZVIIcicqwQTUnFGQKTI1sEQvQbjpcgLjuACKEmWn+djo8UiwWppswVtiOkc6aW8EDl2XNpTiqhVOu86VRSXRdDMHyJdl+ILNK8pl9vwOeh0VkDN0m758bymzf825y/Ofy3nHDhHa5Bk6ZdcoPTvYe58yHBhLpguopGW3tSHqMxlV2U2nzWoRYwlyJK+eKxiMQz6DeOTGuvT+DQ+jU/j0/g0Po3/S49PyM5H45JtPv99/v+5eg0ftJniBWQ3Q6Jz8vAlsiO/SH+ps9/MUiFH8YIgWogZMaTfp5TlQAQDxlpi9FiL9NIjC7U+Ri/KBW2SwsUTnJP2UnRk2cxs1yg1ABk6T66bMTJNg5B8UeiFZCctGzE91KAqCRt1EzrO0Q6JW2MSvKilV68x9ONAN/R008gwTmRpd+CT/49WCe1RCh+d8E+sZbPZLIRXicDQ5IWYLap4/g7a02nxbjn0zxz7FuccmYnkZQbKMfQdZVmyrmoyK+hWnuWsV9KKaocGP3qOhwZFRlkUGG0WtUCea/JMUdgMCExjR8ALIhACp+NA3wuy8v7dA845trs1q1VFVQvRcpo8TQMxnPcYMUbCNFCVkGto2hNPh45+cJwGx2otn1/bkdW6ZHf1irKsGbzju198z/3DMz4a+mHCWLmOdpuax+cn6qzg7rPPKNcFP3z/FqVHvvzslug67raCbuEmum5gs71l30S+f/dWkqiD55uf/pR6VfD//fmfA7CpVxijWG8KysrSpZ2XtRZjFe/ev2e1Ehdn5xxVVVGvN6xXG56PR4HpvbSwJi/P/fLLL2UXGzxt2xKjpyjELycoKNcbskSqr1cdwXUc+kdMVTOFifv9nmAtSqjzvHn/PJ9YXmjDdr3mcOwJQfP8/Mxmt6V3nusXny3372azwTtB7drTQFxpttstk3doaynrmrGVdqKO4PyIySu6yfG4f+bzrz7nxe0VT8/v+cnv/B5d6g01pwPX2y2Pw0iWFRy7kbwoyVdrMRMdU4vSe37vy89YVZZTd0Jpx77fM06B7bqkOw3cf/8tAF998YpVXYO1bK+vyIqc/X7P169vMQFOx5a8KpfvJS8zxmnCGMvYDzyfGoko6UaaN+/5/O5OTpcPhBBp+0kcpY8NarKc6hOZzfHak6X5avITqEhe5aijSV44A3125Pr6mnR7ib9RH1AIH7CqKqKPREYOz4/c3t6y3cr10jbCz8vznGnsmLqR49CR7Utur6442pz2JKT23Fgym6PQhDkgGESsMSezX/jE+OQPFv0EClyUKAznI9GzYOiC3AgNe07S1gRBy6NfkIvoIyi18O6sU2AVYb6vQ1jaU9qIZV+GxttInpR1nonI3LKZ54OIUAhI6eIfEpSJF+sSH0UzpDbaGem5aO0s6Ex6LZUUVmHW4i3YTFpLLkjJMT0moUJLUHlCVeS1Z/rHcpQfkZtBFMqR+TjnVhWoC8Ro5vOc39dC/QgfdlqUUkwEpr9mQPenYudiiN5gJg6fLcRniZ1XPtFmFDrGBR68bGOFi+dd/r0UQUvNk9jwWqODSTeukK2UJRHf0g2nNWqSxyud4UIykPKBEMG5eLEoi+V9772YERKZIgSjIGT4ON+QUYg1MUGlIVskg9Mk6gad+DJWWUyIGAvWGMYgE0ZeCZcHHaUfToJqrZAg53yrcRyZugnGgA1g0mPdIOTKzIqhYZhgHCaUEYfpsqyFAI10zEE6RWM/4YOia3ruH9/z9PSETp/fWlGjFDajrDRGw6mPKC3yeWUNZHKsUUfUGFmv1xS2pLctJgYhVkdpfWXF2bF0Cp68KlFe4aKYMebrHVZHMfxLFvXXL67J85zdZoOLjugco4PgA1pldGOHTwqCcRzRNlKvKvzU0/WOboxMDjarnN1abtEXdzuKouLUDuwPh8SNsZR5xel0IlfTktCeG8f1Z9fc3mzY1CvcpFDXGz67WScovyAmpV87KnS+5fk40jR7nvbP7DYrdrs1Y3NCMXCXksRPw8DhdOTrn3xBjJ7b1y84nVoihr5z9G1Hkclj++HE9dUtCotzsH8+crXd8vDuPd2pWQwQrbUSFeA9/TCxqSu6tuXu+obTNJLn5WKo1zcnQtT4omRQOU+nA6fjwHa1xusRQ8TOKy2Bph+4vr0jmIK26Rl9YIWRe3h0i0lenlsUgWFs8Tpw7FuutjviMNC7jsxE+skt93FmV5Lo3jRcbWtOx3t+8s1n/KN//As+GwZub28BqOsSU2awf+b26gbfT5IfFRxx6jjt38q1lVs+f3WFNpFpvKIfGvwIp8ORXb2lXK04fSsL65/82S/5/d//fTZ1idEZKsvYH/YEHPmqwg0em1R5m9UWnKKuNxyPR4pixemHR54ORwYfGcbA8IPYMLzYZLy6vsWNI/2xYWpHrBpp9o+st1dU6w1ZNreKDd47lBfjzX6SZD4/gfZmEW4YpemmAT0MVAYmp6jKHJSicSP704HNRtqp+TTh3UCmAwrh0oXpxOHZc7vbsbt6ydNeNhOdc2g1kWUQyaStFBVeafLkKr80prRmcimrz8txZ8dirSSraeFkhsQp8cIHVCBp40HDhbxZBSErmhhkDvWeqDRaOxGRuIhKG4/owShLZiT3cBY+6KhRQdzo/WLCOEciyBoyp6qHVFD8qA+TOm4adeaGzpwWfd6Mnx2J50pFPvdcnehlTTIoHMwFjhJKgzxFcr3URQEWYyAS0WFuncl7yGZn/4u3KsaA83uF2Rnfp3v1THz2ix3LXLCFmd9E4sCGs2glEj8wL/yrxqdi52J80FM8mwTgYuqjL0ScJNeLZzfi8zHCcqy/zmvN/JeZUzL/bs6oAnD9uUfpnZPr3jspyILcnAtTP0RCCstEK7RR5EqygLyPZ4+b3GBy6bELqpLiJAiifvEalRbPLDdCqvWJWzOJnXhRlOIMrMKyEzJaS+SEAucCfd8xDhPd0NMPfWLrpxsGyIhUqTDq/YTJDZlRWKuZuhOuT8fNhNDZBUGr/Bh5fn7m+eGBGCd2VztAFi43isTc5qUsfnFPrjKUMrSd55Ak4jFGrq+9ZAKNHu8mbGGJceB0OmCioQ8JWVGQl4ZMK1arLXlRivrCaILzEKCuZPGcvWGGoaV3PWEM9J2nPXU434taxCb1Ty5+PFn0aKUpjGG7slhbUtU5c+6LnwKnoaHtHEM/oY1MinkNr+9e4/ywSN832x0v7m6pNjXN6cCb++8obE5whsO+JQQwiYvUu4kYJ/ZNS6YNdWkpM8X+4Vdc79ICnK7pp+cjNy9uKYqKzWZDcxoZG8XmJud0atleXfP+vbgCn44tv/e7f0Bd1xyPDRpojie+/fZbXlzf8NOf/hSQGJBhGBhHIbNmWUY/nNBaMqvKYr1Y/98/HhiHPZktqast0/iegMKnjUNV1xeTZmToJ/LbnPW65ttvv2X34oqm7SnzAmtzNptdeqwWAmhQdENLP3ZoFFV6nEbRz0RxJJDxH//pn/NwPLGta1btyOfXNzy82LN/fMtPvpaQVa0tg3NYbfHaU5Ul3dBybW75szdv+PYX7wH4yRe3FJlju9VEKt6972n7AWVgigMvrq54dXcFwA9vH4QX6DowE9frkocfvudX33/H3Yt/jtv6rBzLK0XTHdEmJ89zjPGMbgQC292Kp+c9wQsXKVdQlwbfD8SNI68tRW0JaE5tR7Wq0XNkRVR07cg4eNwomXPKRaIJEDhnOvl0jyduXtcOZNuCkMj743RivRZkx9gM54dF3u6nkWEYUEozdi2b1YabGyHKH54eUwGQXgRRTansPL9eeufMCMql+nVBS5Ra1FchhMWBeArCxTTRE6OXOTcpXlUK8pz9YwiO4CNKBzQZEXOWUpvzZkmCRs9/Fi+aeQccSeGXaikmQCVn5g87CGfUB4hnlGdejdRFOFaYXYuXxyQka1bmXiJLaubxJGK0EkRrjn6YeTSXnjkhPVVQIxaxzAe1WbJA8XNXBAmr1shrXVKML9ErnbopKv6YmhNjxBAxv2GtncenYudixAu/m6UuTdX+x8UOQCCpHuL5go6/ocr8uD12WegoJSnbweR41dPNO4755vLy+ExrYe0T0EghMlfnYXIEFcXqHEkhj3q+weOFz875hpVWkpb4BgJWG+BsN55lhsxmKOeYYsRg8EoWBy0pdQt8PKseJi8BgW3TMY0jKgZMlOTg+d7WKhD8yOQtKigCsiu1KQ5i8eNBCHnjMLE/nui7gb4f8ZMjz3PKfE21ytMxI9qIV8/j8xOjC6yqgmq1ph9H6npN6oxRFgXWSpq2MbDZ1sToOSUjtzgJ/AqisFqva9brNVUhra/ed4QJpn5AK8vpmMi5gyBj0zhyGqR9M/SBPCvoJ090YSEom0JIq/t9A84wTR4XPTe7DUppbIoekHnWk+uRoCdchFW94tXLOybnuX/qsUnyvNtYbq8Kvn/zjnfvHyTxOViejw2jE3XM0Ml79cOItRm5NslUEQ6PD9zsSiprhLKeJmybKVarFXmx4XAceP/mvbQtrCVGxc3NFT//+c/l+8Kw2V6jtabrOvLc8u7NW5rmxKsXL/jmGyl2ulZsDKpqxaquabqWuioYvWPqO8z1C9wk38GvvnvHZl3RnRqM6SiqktPQ0HQnvPdsx0CISdEXxBtKzDEdIThJO3+9o67F82a3k2Ln3f3juaXsIn3f0RxbfvrNN/hJjP3GtDDsu4FfvX/mz+/3PB4bVqeJzOa8fffMH/7uT/j+zTsen/cAfP3VT3n+1Q/cbl+QZZqoRDLtiTwf9ry5l8JQB8fdTc3Nyx1FUXB4bhh6z7pcyYIUIlep3eNCuh9zw+nY8Nluw1MtBaMP6fd6FlFEmubE1dULVusth9MJZRV1mdP2HXmmKe0cdZIz9R1d7FHsKKylLgtMnXE8NAx9RWlnsn7P5Ma08fH048A0SDTFetWjk12DUgqr7XkDpD3RR4yNTG1PQC1qw6vtjr5zDL148YxTB2FEk9O1B1Z1zcuXoohTIdIPB6ZxEDqAEnsDk0TNSgnyCqnYUeqDTeXiWWM1EYVbUmkjcQFQYgJJkuEr/oN5X0cRUVslwgNUJDiFUgat/UVRAJgUzaHUYhCoYhBp9cVyEdMTFB+pji5TPed/W1pvpAJFJ6AmLekXxGOY5PMs7fOP16jzBj2mXKxzQ0ze5ELnuKBjzMXHLMoxnNfHS5rHB5SPWcATI+CWMN5LunJIhrzRpA/H3Kr7sNoRQrUmxI8hr18/fqsJyv/Rf/QfLRX4/OcP/uAPlt/3fc+//W//29ze3rJer/njP/5j3r59+//Hd/xpfBqfxqfxaXwan8Zv2/itR3b+2X/2n+W//W//2+XnGZkA+Pf+vX+P/+a/+W/4r//r/5rdbse/8+/8O/yb/+a/yX//3//3/1SvddnGmivQGAJzONwS9bBU+FLxflgx/vWQHeCD1tUiPzdiBjgqQTpADOlmyFWFSAgezBzqOVfl5+MHE5ODr5B5512NMXqBYrWWznoIUTxxlMJoS4yTSB0T8RhIuxV5f4XNUBccHYE89fL6wUeGYaTt22T9H1AK6rpmXZcExUJmRhkJ4czElNDbOThUpIqT8xJyCLRtL6GHTUfbtoSoWK8q6qKG6GlOCWXTEWMUbbtncJ7tds3diys5TmZ49ep6gbiHtmM4DdhMUxaWvjnRd07iCooCVUbyJNWvyhV5VdENjsPpPjmn+oSGqETuFlTBmIzoJaDx1AwYTOImGYoiY7WqF/J33zu+/e4JP0bKSlyydzdX5EWBGz1T8kUKw0Rwjq5r2W03FKtSWgFdz+Acu92OfDYVzBzf3z/z7Q/PHA8TlQkUZc6qLLm+rmjanqaX87oucnarkiofOBwOHJqBujBUmQU38vKz1/wy8TpWVcmLFzd4pfjHP/85Vllefv4V9fo6uddWqESq/+yL14TgmKZI0+zJy4Ku6yjrihevXnJ9fQ3ANN6zXm05nU7cvXjJD29+xXq9pe97xqlPfXudzpWQUVd1RZHXxPiIMhprDK4bUTbDDbKjzq3ldGrZ7/dkWcGrV6/4xXfviFFxdb1hci3rZNRXrWpcCBRlTZGP7J9bXGgYhkYkrwbGdL76vmd/6ng69Dhl6Z3i4dDzcOwo6oKyrPnhXoz6rq5eoooCMkPbNeRlwXH/zNP9PdPQL+G9v3j7SDs61us1GZG1LXChRTlonluCm5Z78XqzZWwG3vQ9XTdwfD5ytdmitOb+3QN5XlAkjlW+3i6S7jIvmCrPbr1jXT3THA2ZknBVuY9zHp4axlrxepjITERHR55VBD/gxhYVU9BtCAQ30fUnDqc9h9NJnNKLmmCihGxC8oaBEDwx2gU985PDEhnHiaEXZMfcXFMWNafmkAJvJd4iM5px6mjbE/VWrpnd9Q1qLwi884NcA9YutIBLVCRGaZj4IO9rntmVNclZWC2cHY26MGoV514Jr5l1z2naUiBoR0Lyg0ucHQ3BE6NZ5hiJihBOojbJZkSJTF//mrXikmQ8/3xuO52l52GRcsvjQuLgxQSbX3a8dEwmj/zYafhDP7n57MQUzaEWfszHHYtL6frs0LygNrO0/aNjXz5m+XwLyn/xb/PfCWmbs1JjaoVxsdYpyfX40ef6deO3vtix1vL69esf/ft+v+c//U//U/6L/+K/4F/+l/9lAP6z/+w/4w//8A/5h//wH/Iv/Av/wv/u15qLjxBCahOxtLGI5+JGJcJyVOGDC059BLP9unF50VzCfHMfFyPKpin8+i9w8lF6xM5j1BlaNJzJzCiTDJg+vEDFmyFc/CzGgd5L6ySoiNXSw9XKoLVcHs451HyjGI0WWt+iOHDJoAukDdC2LadWvEF0KpSilsJAJ1M2gM1qLWnTVhQKc8L55CeBQqPBpEa8nxpwgTLL0EWJLaR913UdXdeRUh3YXl1TrTZc374iyz11WVBkoliJMRKngTYVUF3TihrEB969fWLsBJpfVTW6TKKBRNKepol2EF7Jct7T+Z68OCP7ha+lmHpPc+qJUWHLHGs1LkysdjVuCnRHeQ+nU0tpM0xhMBqKIufm6lpyeYLj+Pgsnz/0ZAZWdYEy0LYtw+hR5NJa21Y0jSwcj29bTu3Im/sDBsXN6zXrsmC1qWnbnuP+SF3IIldXmtXaUlaKQ7PH+0jbjIy15fPPvuJ+33E4isfLT3/3d7i7u+Mf/8XPcd5zdXNDtV5hraGua969e8vkpD12c7ujHxpym5Fnmr7vuL654upaWjXOnf2TyrLm6WnPelWy3V4RomLsBvpEIp7dsT/77I794ZGrqx3r3RXDL79lGgNXL19wPP6Soso5nKSFZFWJzQqenxpevCx48eolbx6P9ONI243sdjvevROfnfXmWiIKqjVaa/HgeWpp2566LGhOB1RS9DT7e1Z5jvVeyMZa2oKj8/z5L7/n1atXi5O1DwMvbzaM40gsVsnJeE3fTzwfR4IRRdy+bXCPJzbfPfDTLz/j+Xii78eUJ9cTjJj4gSg3rcmZvERMfP90YhpHXt5sGE4tdqVYJdKvT3EuPggPrzCau6sVzXNNfzry9OSXIurYO56nnhAsj08nqgKqqsKgiN7Tty1jlQqTYkXfj3TtiHdKnLFR1PVajDbTXOQmz+gm9KjJykJiGqK08sSg1S/+Rcfjnu32Ctv3aGtSGzkt8gSGoUP3Mm9Uq4pxWuPx+KNblKQoxeRj8mSZibVcGJnOLZHZS0Y8vexMJlbCv1MxtaSCBxUu/HbSvBktWhnZdPrkxB20LMpBQbDL3KuiBu+IWqfiSaGVwmqNv/DN+WDMK/9SsaTttPJLqTALYWY/n7kQmAs3LtaPgPuglbQontRFnFE6Wcs2/kxZTSOen0pau/y5gPnA8FDNOWLLgxeStFq+AC+b5LSZ+ZCNlN7FXLguBGiWz7q8q3jONvtN47e+2PnTP/1TPv/8c8qy5I/+6I/4+3//7/P111/zP/6P/yPTNPGv/Cv/yvLYP/iDP+Drr7/mf/gf/oe/stgZhmEx6QIWF8/5xIUQLlCcs9FgSMXNfCWEdKHMZlM/yg75teOjyvbyOcETphHvRnz6G5AoBR1F9TQFgnOE4AmGM6GOeSehMWknoWJAJSM+6RlDSAuHIpeKXElOTAgBEyC3GdaKIaBO/fyoxeBKa41F4Zhw48gYIIaBgF/ce/3kxIAvTMQozKdxGBgnueHW9Yq6ECOxVbUWhZRSaTeXkDJrUvbUhElIQVEV+MmhtMdYJQXV6YTJDcXKsK5EsfPq81es1muszVE4ulPDvmvwQaEVjONETOd7d33F09Mj79++p+9GCluwXsuCV+QFJtm3A/RdJ+6oWkvIZ4RhaqUgDGIyplJx6KNmHAfW6y3Ryg07tK2o05zBOU9dyYK0294xjiPPz4/YTGShTdeS24xT0zA6n67ZiTjNCqKJaDRFXRCUxEs8Ph2E9wOEfmRoe27XOZurjfBFTGQIExjNy9srukbUUJmJ5HnOvjmx2a0xRc7YNmR1yfv9gXf7lpefy2bj+mbD4+MD3/3iPfiS7faaul4RIwzDyM///BeLSVxZlng/sW9PFEVBVpTEAOu1FLhP+2c5VwFG7yiKktGNIilWUlxmWUamz5Pc3csX9IMElc4GckYr6rLAmpxT2y8mjBNQ6IxxlFiVq+2W9XrNu3f3fPOTr7A25/tfipz7//byczJj0VqBCfRjT9c37PdPZOZ2CbYFMHnG4w/vMaWlCIYMRVHkaGNoQs7//Kd/yd/46nP5bN3A6vUrrvMrmmPD8XgkeMXhOLCfAt8/yXdgwkRpK3759plitePtU4c1Cl0E8jqnqCtMUlh55ckqw668o+0d0R54eDiy263IVwXbjeX1qysAnM5weUlRlIJshJHMKnITWBeKm12NT8VONwWGMdCHSDt6Dk2HMjWmHoguRaskRRo2Mk2O46nHobF5tcjGy7KmGaSAOTUDkxsIPlJWwnObBkHnpl5UN32THmsPrFai+MqzUubd6JgdgZ0fGHuxl8jzXBR408CUzaKHeI4pSPPg/PdMxJUAT0HDZ+m0IC6JeKwNXmt0iHitUc4QmQhRNoCzCCOqIJwcFYgh4ieVeG2aqCaUtpg0x3gfMYiiSPi/QqpVUdRgekaOgKAjl/Ly8y468X8uewgLWpOKKh2FR5SUVPHChVkQKERyHhUxzsauH65FMUbOy9elNJzlnP06A7+5gFmKkeVYF2KdJJKZkZygwgcvHy+LQ6WEp3TxUoIkBZKv8/LKUcUFzfpN47e62Plbf+tv8Z//5/85P/vZz/jhhx/4e3/v7/Ev/Uv/Ev/oH/0j3rx5Q57nXF1dffCcV69e8ebNm19/wDT+/t//+/y9v/f3fvTvl8XO8tUlqDJ4RdBzsfNhG+vyXM9kzuXnj4llF/9wlgZKGrpPTsfeyx/S7ld5RwScj7Irigly9ZcyvIvXcLKT84VCL+GeGoJbXt9qyG1yFkYRlRLpoTXkVS3tpCWBMWCQXJQYwYXI5ALjMOCmQNCBoRvTQwMqasy8O4vCZCuLiqKoqKtiUZkJmiPBfE3TEBACtrEW6z193y9Fqck0Zb1i6Eaenu/p2pb1es3t3Q15nuODPO7x+YH94cBud01ZGA6NOLZaa4mTOCTP+6Pn4cDxuIcomUJVUbDZrCnzgqAiwQemkFCgrsEHcY8tNwUxRsYmkGUR74TQXKTk9XGcKEoLUfF07Li6uqLYyC5eZZH1KsOl/CLvAmP0TAS0EiTT+Yy+HXEhLorXoi5QvsANoyhYCp1iMCzff/cghMx0Xa43K1598ZoQHX1zoqwyVIRp6slMBnkgREEfiizHR8OqKKmKmtU48Bf7I+8fHMPQcPv5NVc7Ice+efOGx4cT09hzvbths9ng3ESMnsNh4PHpPT/72c8AGPqWYejIdIbOJdh2mjzr9ZZpmnh8egJgt7vCOUffd0yuQ6tAvZJE7bouUcosiJV3gkYWeQnaU9UZeXHDqqq4vr7leGyZkoxXBU++tQQj94ybAp999gVv3vxPdF3H6quvllbs4+Mzr17eYIxinCZp5x2PXG3WHJsTdVlRrqSYLt7vceN3aB+pSo32opAMQRav9/f3lDa1f83nfKWknew0NKNnCpHv3/0g6GBSQlWriqjg6djz7btnHvcHitxQrXLW5YZhGHHpc63Wa8oyRxkoVhm3N1fcP7xjfzxhf/oFTp2FFEpHtul6NkozRsXoPI+HBmUsL+9ueUwF8hQiPtMobem94u3DwGl8JFtdiX3FNHGcvYZcoOtHDs0JFy1ZXhKHDmsVxgZ8KxPH/nTE6kBmLG7qmYXHWpvUCve4Xu7b1mqOxz3rqpYomuDwvpSYFy9tvGmS8zV0Det6Q1XUjGOHmwZkMdZoHRM398eouYA/FyqlIMGts5JV6eQTryI6TigTiMFKHt8FUh5jQEUpeLzXQoo22UIAjqjFIVinSAa0gqDReJQA+DIXq3BeE2KAJZpBipvLtpy/RFCU+6CrEJFmlxQJ0vr6WKQUk2xqUaRp8d05Iz4foz/ARTcjacY/PGb8uDFFKupYijUFhISM/uYh36N8WSEVf4KGSRV1tgoQ0rWag95/4/itLnb+9X/9X1/+/2/+zb/J3/pbf4tvvvmG/+q/+q+WHKJ/mvEf/Af/AX/37/7d5efD4cBXX331/9N7/TQ+jU/j0/g0Po1P47dz/FYXOx+Pq6srfv/3f58/+7M/41/9V//VBP8/f4DuvH379tdyfC5HURQLb+RyeC8ZRjFeMFuipFarEBYk52NkZ25rXUKDl0FucEZ4Zs7OB9I8ZlTJSXDnOKAIs/0SwU9M08A4DOKxEiEvLJkxgkCEsMCPM3cnhkB0WiC+FIbnL3qbM+HYWjH+I4C1GUrnAtlGtfCWdFS4lCkTgyIYtbSfshwmPy5ER3E3Fpnt3EOOMZLlQkKepZcAPgqJtx8HaVlpkZxnibC8qjVZIlRP08Tx6UTTtlhT8OLliqvtjqowPD8f6BNSoqNmc1VyW284dA06avIi8sMP39EcBqzN6VLS8mq14mZzLe9TR1ZVgfeOw/GJKQbKssIlZKnrR3SWsakqTGZpmgadWWyRQ3Rst1vG0Kf3IGR2pTQ3L265u7sj+iCZUGHEe4dO5nfHwxMGx82qXFDBcTzg3EiYAkUiI8WoMCZQbNY453g+eXZXL+j6AZuVaPyyAdjeSDvA+0m8gGLADyPT4PBhYL0pWCfvmmPbk5salSn6MXBsjkRVoPOc2maESfH2eyEol7ll6FrKSvH6s2uUibx595bXL+/4sz/7czZlTZFaecfjkWHo2NQbnAtsizXeOyYX6IaeYUYtrSZPXkOHwzN3L27JMsP1zQ3u3cipa/GJu9G1J5RS5EW25D9F7+malhfXN/wvf/In2Gz2RSpw48B6taIbR05tx3a7o6pK+m5kHEc+/yKFeyLeRVUZMMZitMV7MWFTOuKZIMjnyoocZQxKe/IMVuuCtm9EDh4DX9zsMIm/pkaPxVMXmrEoGdc1h2PDw/MTKijuVumeKRXBe4L1ZJkh2si+OfJy2OAqT3NoljZaZbdMVqFKRZZl1JVlU5dgIsdDy/rVDf2Q+HO6Z7XakVmDQTF1DkVO42CcIptVRV3KeWy7E1YrtMq5f2p4v++ItuTdw546i2Q5PO0FjbN5Tz8iuWQGVkVN5kdyFTB+QqVWuesbinVJnmm0EV5bIJJlFu0MU3B0oxgFhsZRn1ZsV2tymxGDxxhpgznnyPNyIdiOQ4svajarNf2wx7ue4D3aKmY+io5mmVuNlqDOEL209qOQX33wiU9yFm3I/BzP/jh4QSq0X+b5WdUdnUdFTyC1vggYleNVXNpoEhqqU/vHQBRjWp3aaTqyeMyIOOPsA7SgLDN9In6MwpzbWCE9RxE+QLbk/X7stjyHU8t6dbZDCWjll3ad/Ju/IEnrSxLP8poL0DJnYl2+1vK5ZD0InNe+eMm1OSeCyn+iIG9ayecMl22ymVCuNQG3kLN/0/g/VbFzOp34+c9/zt/5O3+Hf/6f/+fJsoz/7r/77/jjP/5jAP7kT/6EX/7yl/zRH/3RP9XxxQ1Yy8SzFBoJNkstrg+LHffBz3KQVNyQiLnzok/i5yxFjzgzK6UkpC+1z6ZpIsSREMYFzpymibYdGbqBMDms1dKeAlCRTJvFsRMvx0Ep8PNN48gLi0aCMAGsCRI6mFl0NFjn0UYLhKw0WVKFyUvE5b0HApqItYaQZRA12q4W0ymlFM4FnBsXPpJzAWMLNIppGhLsDMM04kaBqa1SmEwxjaO03/MCbTVZMRuZycV9db1hs9qyqVcQIvvTMyE41it5r9e7K9brdZokeyYfeW47jm1ks1qhI5SpgNju1mgjfkVZnVPkFd/96p79U8NmW2ARu3eAYA31JqcqtJAqQ2S1qgghsN7Uos4a0k0YNBSG3e6K1WaHMRn3b98xeUdVlhijeXgQxY7KIlYVTKNnHCa8jzw+j7ix59XrK642woG5f/cGm+Vkqx3PD4/4GHjeP1KWOetNhdGO9VoWz/bU0/qGVW2JbuLQD4CmHyLWGHKf0xyFyOuZuCoU42Ro2oax6fjmi9fsm1YW+qmj2iYH41GSpjf1mlVR8sMPbzA648279wzDwMtXN5yaZ0C4X6vVCmOMkOp1xOHRxjOFiURFwpgV4+R5eHjCWo2KAWtzpsmjKCBm6GQtv95saIcR76DOKjIsP7x9htcVu7ImzzcUZZbu24FD37O9vUa3HSY6cjPx+asdbjrSNye2K1H3SHitRmvYlDkqTNgQMNERpwEfPUNKMjcRumFkCpESxWa1Bjex3VSEUPD7f2NDooBglGLqA+a6YL2NNEPDelPinOP+oWO3lu/2m9sr+tOeYV0xDkc2RcVVXtG3HVNRE7WSoho4jSdssKyLmtxYqryirld0Q8dz17HtB8Ywh6wWoBRjGPEucuqPdENLrTW5zcmUxju5ZsdgaJwHB/3hGTdOKDKemp7eBNYayhS2O1SBstpwu1sTgyFqI2Tt6HFBiPkA3isyU5CbnK4PIqowhsxqitzS9z1hSgTprqNetdTVie12xzgGIewbJTEPYQSffH58z6k9st1csVpf41xgGlshFBtJ/HYqFdPKgPbkxtDjiZN83smFRCqOuOSJc0mi1TGtADo5BQeIqRWjohCTVdroKiJRK1AWrxzR1uDmINCYWmVFKloSl5JIrhVjamUBKCduxEGlzepiXihFkPlApiWuw2He5abi4KzlumxJSUEjLvMSSaSQ15C23tw2u+T6qCXKYi6qYnRLF2suWIRAfFkwRaFE/JrNvFIKiyEGcfWXtz6HryY1WdQoJf45s3mvBGNL4XVZuPl5fftrOuj8Vhc7//6//+/zb/wb/wbffPMN33//Pf/hf/gfYozhb//tv81ut+Pf+rf+Lf7u3/273NzcsN1u+Xf/3X+XP/qjP/qnUmIBhJCIv8EvpoJLXzQmSWU8XyyBVOh+wAaPzLuLEMzZTEqfe6Ag/dNAgJiKq0WqKI/y3jMkKXM3OYbRMThPCCPOK3SU/nIMQszTafGIURRVKAgqSfNQkgGT6cU5Nzc11mQSUYGkEOeSU0Fu8pSEnhZva+SG005I9NFB1MmYMMnSZ3Ku9wQ/pptGnIn7vqfrnpim6QNZJYijs8ajjcQ8aG2Se3SGMmeiYZEVbLdbiiLHKImgaE8n+uHAelOw2QivJM8LplGs8A+nke9/eINXmld3L9nUJdFP2KR2kDT4gapaU61XjOOEc4E8z6lyWSjmRU6bHGMKDocTeVayWm/pXY+1OdGLO6xLO4w8F/7L1e4F/ejYP96TF4qyrCBqmqZdJoLMFkwEmrFnGkZ01Fgiq+0ardSZyBsV66tbmn4kxoKiqgkhUFUlx1NDVZWUYSZTt0QCZZkzOXFf1lqjtBSyz81E18n19tnLFxwPHcM4pXiFG06nE03TcL3bsHt1u6CgLna8eHmL0gXjEHh6euLuxSua44HPPntFWZaLVYCtSza31xyej4Qgxo39qeFUlWgf2CUic64Vz+/ueXx4T11Z1ivhQ2ktbth5bkigHZv1StQ9JtL5hvq6YnwbeGgfqLeBF3eW9U6iGtqm592bd9TrjlcvtpSlcMX+xu/9jO/fvEXrnKZJ8vu1wYfIOPXkuWUcR8ax5+npiUzf0sWOx0cpTpveM3Q9hc5ZZQWFsdxeb9mucqYoysTPXglBuWkaRt8xjB22LDA6l829gYPrMC7di7sak8MGRdN0HI97NpsNmdUMfqCqVziXcshiTDw2JwiJ8tRFIenjY8QFxZCQnaLQFNbg+hGfdvt5nlOvV4z9RF5mWJv4UH7Ce8+xaROPT9O5kewUyNcl3iqGlGemOri+KsnuKppuoGk6lI64CKeup20T8dpETGaYwsQwTUQfsLlwA00WKYqCPpfCaHQdx9MTu92OLVtsltEPlqgsIMRmnZ/Jsn3bUGQ5ZVkylrW8fyIqqoSkkO5bIyFAQWF0jrYQpjEtqFH4kmmhlYJBUB/S/GeUIsaZFDs75vuPFvdIDBEdgsQIBYdajimEn5iciEWqLkTiEIW/s+R44eGySIhnEq9a0OK0mU6RGOeCJSZuTEgxPWe7gvkxfpGRfzQLXyAwP5aMe2bHY7FRNOfPPQMAszReJafnxO1c8sWSWk6KMUkkQBl8TOvTxdsJ0YmloUoE5ahTkaPQCVlaCroo32H4JyiXPx6/1cXOr371K/723/7bPDw8cHd3x7/4L/6L/MN/+A+5S+F1//F//B+jteaP//iPGYaBf+1f+9f4T/6T/+Sf+vVEXSX24PMXOF+gMSAtoTBDcGopduJFtau8IAVSlUv4mdZaimelFtb5jADFeJa7hygIj/aKMHrCkKD6aSTEEW0CWtmlEFFBY3CS0XJBarM6SwVWxBohycU4gc6W15/iRJxAmeQMGiNET/AT3mmcORc7U+Nlh6QMc6VvjJKQzkSIcwnCdJNfPs/p2HA6Hmmbnn4QNVJdlAtilGUWFSJD76Aw6MJQ1TlZLnERWSE7fJCb3VorBUmI9INIzq21bLe7pdgZh4CL0nI7nRohsd9csduusXi8U4yphZJnBXlZo7Xlad/w/PyM9x5rBc7uum5B+PKs4NQOlGVJUVdywzo4Ho5oI+qjqhQfks1mi9KyaD4/PrJdr8gLgxt73t6/xZqS46lN56DCK9kZXt9e0ewPRO3IshI3Ke7vRSl4d3fN/tAQogTI6qygbVu+++E9q1XFep0zZ/50feD6+prTqaNpBiH0ImGdz8cnpqHn9noHgPcZXecJKmOaBnyu2B8bTqcTV9stRmV0jSBxu6sbnFc0Tcs4tZSlpaoNr3efo7Vl9DBOc9EuraBuGLm+eiFE47Zn+uE9d3d3rBOqYbTmef9Ie2pQOqNtepQP1LZkqtdkWUnbSaFR12vWW8326oqHd+/xVFxdf8a7N7+ClzdURcFTQsxevf6K73/1joeHZ3769Ss22wo3eQpbkWc1Q+8oS0HCTqcDW7NmGDrW6y2rVcWxrmhOHcNu4nRqOLSJHDsqNlXNWIzoEHh1e0McW9m9J4dyk5DDFy9ucGFiChM25BigVIa73Y7DqSNLiJXyAT+NuKi4utriphaTCLxKKfrkFAyyIdvvn3hxc41VGhUlXLIspPVrTblkLRktyELfNZLNFiJFVWFNTh86iqyirhJRvSjwylJacQF+bjoeD0dsqLiqc7KsXuTMoxOEQr5DiZOIaaEcx56IVKebbU1RFBKn4tOC5z0+TKgYsUZR5Dbdt4D3TEPDNE1U1Yrj6ZGIFrm6d+iEAlmb493E6XBkc3VNVW8Zx5F+6NA6YLS5WNAVhowAWB3xMZJlMWUcBlCBkIq44D1hkmJEJd8cuaVmRH7Ox9JJ2TqThF2Si8u8IU7CFw78al5XRIgS51zCFE+hLhbrGEX6HmMkqESwjjqhI34pfmapubpQNc1Fivceo/WygZ4LkPkxSp1/J22tpZHGOS7iwzbYXEzFCzawkJDPtcqPqMozoTt598TI0nA6gwk6oU5zgSc79RAETlDJoVq6FecW3vm46gPRz181fquLnf/yv/wv/8rfl2XJP/gH/4B/8A/+wf9B7+jT+DQ+jU/j0/g0Po3/s43f6mLn/+jxQVjczNkB4euQoLv0M0qllNwPYb+FoJz+LIibkkpUXWgF5blCTnTOMY0Sctn1DcPQLagGaEkTVwZtxEBw3rWBkd7nbC4V/QJh+tQOwChyq8kz+QMiPQ8I/yEocSDVRnwWxnEgxrPT8RAmrMnIsgqjM6J2RAIhSN/U+7Mc0LuAD47gJMV4mkbGqccARZZRFcUZXlXzawjhuawrbKaJbiJow6QNXdpRhygwe0ivY7RGlzVVsSGvttITBxQjxhpUHKW9tS2p64pcK4a+x48TJvGWRj8Qxom27dnv93RdR5FZ4eLogJtG5nTevm8p6pJ6XVPkBe1RWj1umijWJVlRUSSCcNePhCD+H3VlyXKNn8SheJomCTJN53a7zSB6bjYvOJ5ajt3I4OG62DCMDVUisV7fbGnbnn5wKeVeJNI+TFxfb1itc04nIZBG7XHK8+b+e6wRn5aIpNmfDntur3eS+QT86nhMPAWDIpIVOdZasqJEmZxTM7BaCWJVljVt37HeVIzjyFdff45Smt3NNfvnht1us1gF2JSzVpYlVVWRFTnPz/8rq+2GrZvIUkti8iNN05BlGav1lv3xJAGeqxJjLHlWLmaT2g6EOLLalPzww8jh8MjLqxXNo6Y/dqzKChPl9X3T8M1nL2lPB6ahw9otx+OebFdRr0owenH0Lcuapmnoug7nHHVd8uLuhsf7B5zzlNWG//XPJYbmed8Qjabe5ExjS1YYXDBixxAi6/VqaUUbY3A4dArRzY2lORyoreXLm5ulPWiioyxynPO8vLtBMRFj5Hl/ou0G3LGRtHCgVDV1WdKeTvgon6HKMz5//QKrDde7FVlClsaxZwol7dAzjAGlDdpm6Ezk4nmeU6X3cLWtUfsjuzqjrtYYG+nageAkgw6tz8DGCIMLvKgrtNbcPz7ivWccR6xiSUev65pVndP3I6GfwMv93nUdWtnECwrL9aKVZ+g7+r7l+voWbSv8MKJxjM5h51a9i1jr6XxAHS3b3TVltZE51I2YXOa3eaINif+ijUUDuTUYZQnagfOLrN+FeG4zqUnmmpAoCMEtc7mEUiZ3aCVrgk5E3QVPUmdkCXQyKvTCX3AR5QYIAR3MZRcnDUGO9OKZ4y+QvTNqFy/aXGfy7ozuuOU55yXHXyxKF8gO55bcwrVZCM98uL5dWjN/RERejA2XLtO5PfbxUOGMB3GBLi0tyKhAx4RWyxoR52NeoHYxnOfS3zQ+FTsXQ5RD6c/itjkbMSWr8fQz+ATTnU/+bMqklJHiJqoElwrrXSk1B6Wn9pUiBI93EqI3jiOjm2iSWsXPCitrUUoufJOIyd57XDKnCvFs2Q0wOY/VkcxYYtDozJAXJUWWkWdnwm8IwpHRRlRPOgYmPwrU7CKLn73xzGQ4YyMRjw+eoCacA+f9QlCWNF+P0p4sV9SrHBAyn5C2zXIT9EOPsYp6VbFaV+SVEFqDk2iI4/H9orqpqhXjOOD9tCSaF6klVpYlU4oJeDrsaU8HQnDJp0VhiIz9QHMaUOFsAhmD4ulpT9+PWG3Q85LvPV3rpUArZsKrmKZFH3l4d0/f95KEnufkWYlzfjGnzLKM076RRG9EsTGOvfTylSF4xVdffyGnVmncMPD09MS7989kWcZ6e8UURDF0c3MFQF5mDNOIHzxRR6ZhYrMuaU8923UlHjGJ3PLidsebH75HW4PJxLk5ywqmduJq94KyqHj37p281zrncDzgJ8c3X35B33mc12hd0nYTqs6XogACZZ7RDT0BzaqqCBiKsmTyTyg8VSIIm0IxBTlneZ7TDwPb7Za7uzsKm7FZSwH17s17TqcT17c3rLY1b968IWaWQy/XQFSQpZWrOR7IK4ubJqKx3N8/8s/94U/4G998xTCN9NPIT76R83raH3hxW+N2eWrpikllPzSUZc44dku8R57nDL2nKCxdP9L0nRRfq5rj8UhebDglfs+x6TFFzmq9YxgV5aqm2G5xAYZ+5Po6oy6l6DXGoIMRDk2hOTQn2m5kfzjhg+fmRtrx1kwYhKtUFRm31zuOzcAYjgxTILeaVTrmShuu6hXdNJGVK/Lcst2tCWFis16TG7X4c7lgabuBrh/p+5H1ZsOqyqjLHBWk5WbTuX25W8PQUujAtrK4KWcwisKwFCR5JkR1ZTxay3U+TiJ+mNv+IQTsXEQWBVWREdzIRBSrmcnRN704ik+TmCcBudFEJvr+RNsdKMuSvKg4HvfoqPDO410qpK2HUKBMpGk0RVmSVyXZWBKGRAtYjFodpDknKCCFHiub45URr5m5Og0KHSJhEqVQTAqr2TH/4xgKxcxT0URl0MqQtqJcxk7G6GGSeSW6IH+HkeiicB7nIOllPveJ83jmxszHObej9AdFSFi4FEtP6+L3YfndbKb48eeZP9PHpOLzv83Fk14ee/mcD8I+l1iHDwnSl8WPCudj6FQ4yvVzDgeVgiieP4JOCq75o+qYVMufip3/3WMhXMUPSVOXQ0hg8QPUZu5NAkSlF2KVuvgS5/yoy8NeIkk+oTtulF2d1po8S4uMysTu3Ielt+ldTNI8T8KMlvc3c4owqc+plfAIrCSUz49TToGx5EYymUIIDMMJFzzBXSSkk+FdlNfSouiRCt6QZWnnk25YYzKUyhlGQaZ01Fhll53CNE1ne28DRVVR1TXamuVcNMeGvu/p3bTsfsexZ+wHqrqgykpW9Yaqkl1013U83os8+unpiRgl28ol9UA/jZz2ByKe3BSMJ7k52rZn6p1MVlqTZyVaB6bBoTKNznPGMS0czqEODb73dENPDIrJD6xu1kQ8wziSWXmv7968kQl6Gri+2TIMA1MYsXmO9UEUQrNN//OJtmvZ70+sNjUSNXFMmVt+2aV7ZVFZQV4GbCY7uzA5VvUNu6sN/TRRp0iB43ODG8HkBX3nyGxKYlcZyir6GMjTY6MC5zvKvCQGSzAjeVExuAGlCgKGPkmnCj9SVRUBxTi0xKCp1zVt2/LixQ0aQ514ML0bxJlWy6J/Op3Y7XZklSErMlyasf7yV9/ydDzw8tUrIprMFoxOprt907LZOp73ohyripqudWhVkuUbujFibMlPf//3+eW337HfP1GUyfyvKGinns9uXgGKyUtR0/c9toRhCvjEL/K+TvOyOGHv90e2ayE0Pzy9xe+7Rfa82214+/DMixcvCUFUWrcvr5nGkXpVQYiYpIwsi5K272jaXgpfF/iLH94StMS0zNlIV7sN0QdyI8XHZrPj1N4z+YCxlrLOKWo5rxORIXqUERVeVZe8ffuW06lDcpkiXS9oaE6BsVJgV1UlWXJVzna7AjzWWIq0+cmM5ZQZxrFHhYncwNXtFTFMWCsp65uNFKjt2JNn4oirEQm81po8zzFaERNSgg/EoPBuFmlEnIv0fUteaNx0JtxmWUZMi1fTHiiKiqLeUpY1QzsRAgyp2FFKMSlRq1qlOTUHbvIXVOWKEBzOTZh5IdV6mRND8AmBUSgtgnOFWWTPKkam6DEonA+E0RGiw3tBeM52Iiwy6kWirjVogzKWqKXwAYhoVHKox3nC2BMnB3HCRIMzAa3kO9CIs3AMZwNXGQE+KlBmKfdS/CwdBXmtOedL3m8qNNTZORr4UZEi/3apzLpEfM5/nx+bVF5JwBMuEKLLvy/5Qecibk6Fn6uc+ZjSEzkXRKIIUwi3SYVzcaOCwnEW9/ym8anYuRgxfWEhnj1u5iGQnhIllkr5WHNEw4LvQiQs1f78L/LfRS4FzIVOXEI6pUXjCGEi19LWIV0QAXAq4BiZq2SlvaAUJEv9dFyjosjSlRJHcTvnX00EB16dPQnmFtqkNS6KD8YwiLw9BNBZuhAL2Q0tr2Fk9xJUslC/tG/2gXGaxBl59InTeJYiTtOwLAarlRCLbSLMzTlXQ9vjvScr82WjMo09ZW5YlRVVUaGUYRwnlAqcTifmu6WqCtr2RIweN4hdQdv2olwqLe3gGZLtfWYrJhx9PxC1JzOWYlWIy7DNaNt2sagvioKmaZgmz/Zqx/PTgcmJYi4zOQrDPi3KT/ePvHr1kpvrK1AC2693WzbrHcaeOBwO5KZYzmVW5BSrGqMsT/ciwS6zDGXs0hIoyxKtDdMwgobcGMrtFltlMtGGkVMjyNLhuSEGRd86QRe0xrmJrKoZx5GisuSlEIQfnw5sr3YYBWN0lJllCPI8lWI7VPI6yrIMmxVsyy3Pxx6tInVRcr9/4vWrL3n79r2cOyB6w9BN2KxgdBNP+yN5mXGd7xinnpCO+f7+kaY7UZQS7fDy5papkxiOtm1p+oH/5U9/AcAf/uwPyK3GDSNfvX7BT7/+DOd6rN1RVDlFX/H9Gyl6/x//979JP/VAIDNGXLu1Zf/4hB0G8mK1OHnv93uUioSw4tRp+mHg89e3DH1LZgvC4LnayfmyWU3bNVgd2FS1kKmriueuZbPb4ty4qFCs1kyTp8hzptFh85Jj29N3Iz/7+jOGoyihxkKxWdf4JGawWlFmuexVrKbIzLKoRq2hqimLTMi/wZFlBm0yinJFxDAmBaHKHEZppthT5tJyCgFe3t2hEC8kk5Cd4CI6ywjjQD8FnBc0dbXOsUaxXZeU9Sz97ghhpOuOaR5xGAMqbYpcirkZhgFjI5MbUDqg1TzPBEI3oyVJAJDnaCNz6zT09G1DXq7ZrXc8jR3e9UuB3E8jRYzkuUHpiXE40Q81q3qH8yO9n2dN8QgLQYv6NSoJJ51zoaLs0ZaNojEYm0MQRaQ3Erwsalt1ydlNi7AgD1prQYy0RWkrBdTcalEyz8fJEcaBOA6EcQAiRguhfG7hRGUSMdefF/mL4uYDNCaeC6AP/Gy8/yeqsVg6Vh+Rjy+RkbkA+giNObe6wgfPFdXU7LIcSRY5soH84HxJEbMURskHSVpVghzNYwaFxABGiV44nlGeWREmHbBzjMdvGp+KnYsxM+Yvx5w2PlelJGm5PE4nbs5c3cckTko90fhj/f8c4BZCxHuXjAydFCNBoEKrDcGY5YKI0SeWvMKlL1hl0h6yWpKB3WzHraQlNbfjdBBUaBwDUTumdBNapdEYolEM3YifBolS8LOp1BmGzGwkzxHTOxNBa1kAE19nGLslWsKNI0M/EdxZlWWUJhLp+xHnRlYpG6soMrLMSJHnPc/Pz+wfDpL+HgJlnPDTjBgZTCGxEFMA3ztJF49yc892/kopvJe2zdD1+FGT6VLaipOgZ/MNO/qOMU6LWsJqjbUamxmCEq+g2aivLiv6saNalQxdy9CfKCrhPSiVMYzDsqPd7XZsNyuqquDYHCiKgqpeY2zB6XiPm2C7loXWx4Au1mx213z7l9+iVGS1rnhxc4tTnlUtKrN+HGgOLZtKOD4+etZXa8ZoCF6zf3rk+CSFWTOMuNRt3VZXKKsobSXI3ggP7/cUuXyutu+5vb2la46YshIPHBfQWpFbRT+cINkV1K1F6RxvYHCe66s7NJboNE3T8fD+nhcvpDUzOE+RVxIlEBR//pd/we/85Buic1ilyNJm4O7lLeXecHt7zdsf3pFZTT/23NzccJdfg1I8HuVzPZ5aXr+4YhpbymLHH/zuT3jeC5dmGiOn40A557l52FQlk+vph3HZgGR5yeHU8bLeLuuRtZq//MWf87Pf/0OOpyOnUyuFUPSUZcn9/ZtFPeZC5OWLLZmeqOuKMrN0TctqtcEYRd9PqfgW1RABlFY0bSrItSXqCZMXDEmRp6yhKAUh85MjRo0FhrZjd10wtCd2a7m+x2GiPfZsNptlsxJjxBiLQ6G9Q6UCpmtapvWKzbpEKSv5dSon+EiRl7SmXVqUc/7XEDTHKRK8whHZrNZYHQQBTEVMYRS5Eak+SlBeYwyLMimNuXU7jiNFmWGtJaiI9+KBJfPjrLAKaK9RJhKZaNoDtlyxW++oVxXed2eJOLNMWozutAn0bUeVr6mrteQHJiWr+LTYVM7IxpLEZYwXrZR5iDeaQmcZqSaS+J0lEDQtxD4ueYMpJ1rWgoTwhKXWUUTnCZOg9m5shS+njYif4nRePxZ0fi4APLPvzKxGuuxWndGdD5EU771sxuf9deItzXvSDxGbMzp0af43//5cYH3MTZV1afZSk+elx+i5WCJdW2mtVIpZMaqXYmp+rUvEKi7xHjEGokqZZinTaz63iw/QX7ON9ddz4/k0Po1P49P4ND6NT+PT+D/p+ITsXAwV0x/ORGI4V8A6mpSwGsGoRFyOyWMBUFqq84j42aiQyH2K6BNxbu6XhggeohO7Jo8CbdHaQEoRnsI4vzMUFk3AO7DGoG1EW4hxAjSlkp6+8LcmFJFgAlP0KG/T+wiQJfVDLp47wUnIad9N9L0n2ri4J2dJtVQUBXleUNiSXOXEYIleM7mJYZho+14UG0DsR4Lz5175/HkV0hu3OSHBkKPz+MMJTaA9dhyODYemZ5wCVZFLZEMhz8+rnG4cJH3dRrJManoVDSbLF1fmiUhdSXJ2xDB5Q9c5jM5wY8RHRWFnHtCIwXBzc8M4Drhx5NAO3NysqMtkz59aHVmW0z8OFNUKP/WsNiuqTUE0gXFsKcoSo+U7iD5QFBUqajTCaepOA3vX0vctt9cvKG16bDSMwdONI/tjT+cjn99eU25r3BQWM7nj07OQsastfd9jMlA6YzxN/OpXv+L+6RmT0JIqqykinIaG0hpe7K5p256o4KEbef9wpK6T0m48kd1d0WsJMx36SJlvKIsCHyNjiLgUr3F3m+GHwP3xHrxjci1umKiKjIc37ygri0k8M9cMbDcVZZWjdUDh0EZQSaNMUhJCpuBmu2NV1ZRVJpytpiXLSr744gt8NGySMzQEqrJE6ZzgRfW22+3QGl7d7PjVL/6SLBcEpnU9w+C52q6Z+oH9/QN1XZPbjKZ9hzKf06fw2ilAO0WUzcnsyNh2vHv3npura+HNBb/wVZ4PJ4rcCKCuIq9fv6bve2kp4TFGLaT67tTgYsSPI95N+L7n9z67ousqNquMOKXrcIrEaCiMxY8TXVC8eT5ymhzucGK3regTAd85mLo9d7fXKO2JKrJarcQRWAWKMqcqrwB49/Y9Qx9Y1RXWWKaxYxp6uqGn92IqaIycr+OxocwLrDZYFNoaCmUwVszc/OwWDyhjcQFUL+fPBE9lDUpFTl23JH6HYBgHx+QmiizHFgbnJqzWRJUzOQ+Ln9m51V2g8GPH2LeM1Yq8qCmKiSm15wiOaHLhPpERnSbgJRx4t6VebWiRFts0DWgtJqfaG0IUQYUOaomNWDzKYiTqSDApldxqCJnMm35azGO9H6Rl4z1Ka4JSaKuXwFExykvnIPE7Ix7ChHaO6J2gIhpszBbEyGsH6gJ/UIKUSarFhyKUuHQbJP4iajF61cmhGH02S1QJffMxuUp/0HFQKJWdf1ITlwotw1l1LF2OKT1Sp0dophhRaHSYOa0ucVTPi6jSwoWSyA4tMRpa3P0vE9pF6JJ4s4TkCeQAjVHy3sOsvoqKqKcP0MS/anwqdj4YHzLNf/Tb5AT5MRP98vfLUPNxPoQZl3yq8OFrzC7LokZi4fIAhNETccQgN6CxKYrCS69CbrCZFOgRsg4YI0Q1aU3JQh8vMmNmcl4MCm0i9SojmIjVGXlWkiVXZJuyqmKMTGEiTiKRl4yhiXZoCGlRztAYrVFGoF7nPMZYsrJC2xznR7J0nlzfEbE4D13vafsBdCQv5CLO8oyikoWuyDJRSVhFdIqAw2QKYzNCcAt/YBxHjBWia9dH3DSQlzVj1+Oj5EeFdMNqlfGiqlEYHo97pr5nvSnZrGpGN2FNznp7DcDpcKDIK8qy5PF0YhgcRmuasaNYrcnXJSEtcroQ08Wma3l/vycv19ze1bx5/46yzFlt6mVBfLh/zzD1VNUKP468enHH67vPOZ0OHPcnTPKId24ky7RcBzFQlWse7ve8effId9+/JUThfYC00Ya+pek9OtP46KhWpeSPRc9uW54nF13TdxOboiJT0EwTq+2OYZjIbEZdl/g0aU5Yhn6iGyeqqsSFgLeWcYq048jLl69TYxe6vgF1xTTItX19dce63AKBcZzwMx8tOKzNafuBtpX2kY4wDT2nY8/66ooXtzcAlIUlhJE8txyOz7x//8Dti7UYAW41P/n6Sx6epIXUPLfkBUyhJAbNL3/5LV98/RXD2FOajBw4DSnLTFk2Zc3h6TnxTxTv3h+o6luCqrHlmqqUdqIyBT+8eY/SFq0MwzCw3crvbm/uiDFyOj3LragmtDa0Xcs4dIzjyE++/oymaciNhknur+en91xvagqj2e/3tKM4eyurk99nxOZSGE1TCxpcnNBZCc6x3pT0Y8MwnKhvrxezxOf9Xgw2o8NEhc0VWaZ5PvSMw4ixnOX3ecF2s+HN4zMm09Q2pyittNkJFJkRE1FgGCe6rsEaRV3kZ4uKQXKssqRg9N6Lmi3PmcKIGiNudKig0VrMV2dyaQghbUTswoTs+4air1ivt2jbooxNU2dc2m7zHOzCRDe02KmkqMRROU2sYrKHkULGOUDhgxjFmqV5RFLOmkRiniSCxzuiD4m7k9zUgRik0PSkbC1lUMmIdVZmyTwbl2ObKNO+CcJH0cETvDtncymFiYEpRFIPJ/Fb5taS+rVr09JuSo/V8EEO4llhNa9v8ycOPzrebHIrp04hLNYzdWPmosYwJ5HHZDQYcFFeQU6TnPP59QM+Caq0mEoaQ4zCIYsRjJqjOKS1qZRKzwjMDtaikr58f1p4o/8kNdFH41Oxczm0OvdfL66BS4nexz3Sy4tlviDTD+kxpL9FtrcUJQqClt6xTn4ZBEM0BrfsjOTJ4+hASYidzcxSVIUIWhm0Vssb1lEvlbJSIoRUxhB9kEDFOawtinJKZ2BshlIFOrMpC0biEVByebhJXEZVWqBciAzDhBuCSKmnsPSHdaUp8wKMXMiZE+5CtIhKq2VBK3JjUTrjNPb0IbLZbMitIfqJaRjEt8YnUqKbKPOCaQxY45eJbhr6RGwW/oPWmsJUgMhBy5VY7essY7sqWa/XHBKnoqoUVmW8e/eOw+HAalXz9ZdfkWWGpuvZXV3TdLIgHptOODjHhnf3z1iTM/QdMUau72pBW8xcZBoO+4auGzi1PT95+Tn9JFLyb775isfHR7777gf5bvuOq9stqIL1RtCMPLe8e/eOvu24u5P4g81GVF9lKRleWbXi21/cs98fuN5dsW+OrFOxk+c5D/fvqKoKHWURyjLYHyW8dJOUMwDNMLBe1dgwcHh8zzA5VK14fH5ms95Rm4q8EH7PsfX4yWF0yfXmjqhL+rbFh8A4DXT9QQpwILMKrQIuTBwOJ3ATbXOkKoxEgaTbpKoqjseGrh0YJ8fxeOTzl3dUZcU0DeQ24+pKlGNFZmS6jh4fR0bX8ad/9o6iqLjerNmstksosPcTXTPxdpwoMtlxN03D+3cP7K42hOCEwwLYDO5evMB7x3H/XiwLbMBkmn6YqOo1PiEQd3d3tL3n7dv3XF+teX5+4rPPXrLfH3HO8eLFC2ZybJFb2q7DGsW+Hei6jt3Nmu3VBjVGxhTC+cvv3/Lucc9nt9dMPnI4HHAusqpkkjdKkcyWqauCvml4enhLkYsj8n5/JLOWw9OBGNyi4jS5oekb6q4iW88SfDBE1lVB0HDcC6m96zqqqqKqCuqyoMoVmYmM00TwHqWKxT33cGzlfimlMO37nqGfyAoRVsyk+q5pZfORNkp+8ikyQJDjaZrOC2+IyZZBOFQohXcjY9/iV2vKekuTokgiwr+aVaBaWykAw0TbnrDWUlXrNO9qxnGAEMX2wkS8C8QgoogYWBbwGRlVxgsXDSfxDypIEOVH877SoupS1qCtAWOlILuI2lGJU6KSAkxpkeRqknOzH5nXjOhnh3xRjLkQCSEt5TGeg6dZlpeFu5MqtYWMLAXSmVQs6xZpzGvAx+TjeEFsmQnYyV4lvZ6bJ3o0OsXToEQNLM7PmqAFbfLpetHCuRa0RyliMGkdDKigUkF4BhpmpGZ2kJ67F7J06eX9gkQ7xfjX4+x8KnY+GueL9Dc/5uNih8tnLgWSSRfbJdmLRSr4wUhV7fy4Wfrtc5PyVOS4IUaiPyujjFFLYcSiBosYdIqK8KCcqMj0+SuPQeF9FIO+zGB0htcQRjFI85fm3sHNdYckCE8BFTSZFsv3uQAry1JkpEYmIR0lC8cxSdGh9TIZ2rIUMnOMrFcldZ1TGEMIkfbU0LT9cn6NjkxKYYxmHDqyXOEcDF3POLpzKnRVJVKxJiSidtu2bLcb6qKUsNWUylzlFU+Pe/Ky5O7uhlevXgmSMXpub2/xPvLuhwd5favYbgt++OEHjoeWPA8c+yOvX76gG0YOz0+LQVuWZcSgOBxObDc1Za5593DPuijIdMabHx5584Oohm5vb9ltdhRFweevX7HdFBxPT9iMlA8lu/SyWvPw8IDNVxA1p+NICJGqrvnyyy959/bNcm055/AB/Chp0SoVPG/fPZDnJSGcoxJeXK/Zriu6RtoUN5sdRbXh2+/e0vVvKZucm6sdIFL9vmv4/PPPGP3Eu28f+MUvfsEf/OHPpO3YtYtVwM3VjuAmphDZPz/QtidOR8uqNGy3r9E25ULlJc9Pb8myAmUynDtSFAY3daw31zjnuN1dAfD2+x/YrUqKomDfWNarKzbbmr47sg8Tt7fXHE6C8O12O9788C1dc+D2xTVffPE5z4eG50PDw7Fhdf0Zj8cuvYfIq9dX7J8e+Pbte77+8gtiGAlTQ2YjN9db6rV8rnq94uWrF9zf39N0PdfXnzEmi4QY4HTsuEpoYN/3/xt7//UkSbOe+YE/VyFSlWz1yaOAAWfAoVqa7RX/f7O13SW5JDAAjvpkd1d3qVQhXO3F6xGZ/Z0zA5CXY+1mbdVVlZUZGRnh/vrzPoLj8ZEQEn0/4n1kt+/54vUrtsMzVS2tsdHDd9+/RUeN1oakLPvjFqtrhmFg1IHtXpRbm0WNH0aeP3rauuHmpeFw3JJGhcEQhnBCdjHsjweO7YHVaoFWmXEYOPYd6/UFtXM8RVEQjmNP27ZcrhYSO1HiD5jmuKjZlWLj/vGZYRionKUfxQw1JVngqiJDB0F2KutwRjMldivMvPDL407yaJVjieQxou7SGT929McDi+UFTVEQ9hG0jlhtitoQEU0oMansuo7VUq7Zpl4JJSCMKBXRRmGiCCZIlhwRc0FAGSUiZ8Vs8ZGjAR0KYnN2rEaBFUsP5Yx4oRkniM6kyIKyq9TgDASD0lpCQ4u0PPmRVNpK2U4+bzIHzknfU4GTOZGkdfkeCqJTip0ZCTkhOFMcxVRXTr4+ZzniTOMk4z5XU51J3NXU3ioE5SwFnIhRpDiaiuI5GSmXAhWIKLI6mevmPCFIcT6m+fjn2I2po8InLSulFFZpYvq3UY8/E5Q/j8/j8/g8Po/P4/P4r3p8RnbOhlZT+0d9wqk5R2TEb+ckQfzUSyDPla/KAs5NUBxq4vxMJlAnZOiXrTCljMhWq2KTnwIpK1JU6EI2C8oXyedE7JtaX4W0rBLZaExWRWM57dT06XW0JO+OHkxekdD4Umlb408EM5VIIRKTBDxmbbDGYp0RMnPdyPEC2ooHT7aayjqMseQQGaIBBtqVZjJIzwW2Xi8EEVo0DucqHndH+nCk9yO6fA5ZZxorBNZx9KijtCq8jzjnZon4FE2glCEbQcoWxZDNFTPEpsi+xyGw3Ag0fLNcsVo0wo+oBfLfPT8TC/HZqEZ2yf0g7bMQcM6xubwmBkV/GGmm1tBui61qUg6sVkvu7+/ptnuGwfO4vmC7e6IvZMvV5kp2rZVjtdbs9s84Z1mvVygcbUkHNwpS1KAMxjreffgJZQ2/+c3vqOua7fMTx5205/ospgh9QdK0trz96S3ee9YXl9y9/8jFhex8b25u6I8H7h4e6YeRxJ7V1RXWaY6HkboCVZCCfvDs9keen59ZrVZ8//NbPjw+8c1+x83VBUoZ+mJot1y3JUg10vdHcoocj0eeny1ffv2t2BgAx+OxtB40i9WS4/6Z9x8euVhdyI6RxIviNPzzDz/z/NRxOI4sFgti8vj+yMVqSd8faZqKWPo9IQeur6/48bvv8X5gdxjY7QPPe8+f3r7j5Tf/DXf30sLZrALXNyvuH7cce83d/ZEvXl2y3/V88fo1797eEQusOQwDm9WS66sLjqOnXa7oO8/11SU+RLbbJ6y9Lve4IpHZ7/dkBd57Km+JITAMHbsSsLpolvgx8v7jB1arFe1ywU/vP1JXC3bbnmPjqVppUV5Wl9T1yDAcGY4DQx/wXeLHdx/YrDb0/kjXC1oTvGfsB6IXo8ymqYhhJEaPMQptTtEOddtgjOLyYon3kRwhZoVNCqcd3TCwLRYAYRyxWpPiZCeRqKpGdufGnuYiMm3raFtBVHPUaP2pc+/5vAoUhDajtcJaIdWmMKILERsoqeXiI2OtlTaZ1tKOUhJG6o3c81XVYI1cF+PY4azFWksgYbIRn51J/pwEX1BalbBOSX/PWkmLKrn5WDUJnJ7jN7StwDjQFgpyBcXnR2e0iSRrxNw1COlYRSGV6zQhIbEQlIWWIEvJhNaoTxebwqWZEaRUUtwzpJwKKDdxdcpaQ/rk3P+1tUeriWNT5t1Jcl7WjdnduPxW+lNTq2v6bAuSN83dSRUX/izkZU6okqyhmXNj3vPj42QO9FdHiHm+N/+18bnY+cWYL4YpsTXLjVfqFZgdFU78nU9MnaYPZoLppseVCzFOVpE6o5IiKtCFKIdxJB0xriLHMLPptQuFyGYLAVQIfpOPDYijMkhdk4qTakyUGASN2GqXCxGYfHhQYpQY/SDKAaOxzmGM6L8AYpTCzSol2VhG44ylqq14+tg0t5EEQlegHcZWVM4QTUSlCudqSVUvhEafIgvbEoKoQKrKsd8d2e12DENXijl5WmMdKM3x2GGtwbgAZKrKsli0sw9KXddoK22kwUchvxlpndlicV8FOdaOgefnnRjnkTjut7i6xTnF4XAA0rwYSNr0gB8j1lZYU1GtVizqlscP71EkUokfGPqekCKr1YKUEofDHudaFssrQkiEBLaRN3ZxsymmkmVyyJoYEzEmLi6u5knGp8CxH0QxNXh2+0e+ePMN19fX/OEPf+K773/g5YtbAI6HHdok8LLA9X1PNxxRZK4u19x9/DgTXg9Dz6HrMG7J/uHAcfRcF/5UTntiKEpBYAyZgMGP8PPbj3y83zImxRgTYwzc3lzPxGvnHCEE9sdReFauIgbY7ju6rseW87peL2lacdx2VnN1dc0Pf/oB82XDS+0IYZwjO5xz9GMkpExdaZzT7LeB56cDi0UjZnPlsQ+PH/j2i6/Zbp4ZU+bD4yNPW8+oDWO2/MM//4FVW3LPui39Yc1wHDgOA+rpQGU1KcDNtaFpGrbbY7m/NLc3N9ze3vKf/ulfOB563GZVPHzEb2S3230yn2gtnlI51mgD292Otx+f+Pnd3fy4q4sLFJFj13HR1IjJS6RZWnzMVCWG4/rygj3w0/uO45hoDgfun+758PjAmBLNvWXRCscppkxIGWsyftiBaRjGoQghRI3kCr/HGSEjb9ZLjoeR3e5IdxyJTtzIh+Dxk89O7TDGYbQSV/fiT0VKOG0YCzlYKUXdWNracRwjwUe0TjRVNYsxpvaFEtoNGjDOoa3FlPZXDJLRNW1a4rgg+K48h7TNMkpMC5MiqUQ/nDh8rqmFJ+hFDGGMUASUdaik8IV7EkIgB1+UpQkVJctKY1DOkpDNjCqbiWy0mBAag1aVuOdn4RvNLaSs5O+VJZcWV9aqpMCLMexkTpuR9HRNIfJmKTqzLtmD+ay1NO+085nbsfjyTFFEv/Tf+eXXKe5oLkqy2P+AdN/ON+/T55nLmhSVpLFnKJ1IdfqXoxCV5z8tq6JKReWsT0TjSRmWT0UYn7S0YDIczMpIgZfO1lslrtP/lvG52PnF0DPqcI7k/OUOBM4umrPvJ1Ro+o3IDs9+Pz04/SIrRCmyViSjQBuysTOvwURHzo6UxkKUCzDlxXjhWkx5Tycimthtly4zGouxeibjSTzFiC6TRYwelMbqClImjEL+kuNW+EHQJSqDsxbjLEYLsSTiUeVi1VphjMU6yUSy1uIqMUqMUaIWpgwnlUZyzGgdMcpy7EeedlvS4GmcxdT2pNYgsz12WKepXU3btlirqSoJmmxKTIDWYkO/2+3YdR1NUwIlq4rKCrfo2MvN8/C05biXHJ5j15Fj4sJJyGdCSNgT/2AcA6MPDH3hB6nIdb3hsNvJ+UuJfSEzHw4DYd/x26sXmKqiXiyIQbKiTILNakG7lIlz6J4ZDoHL9RU+Jtp2iVIRaxpWqwVdN5TX79Fa1GYPD/dcXKz56uvXDEPi48c7lJbgRQA/HMgxU9eORVOze36SnDSVMcbw6sUNtzeXALx79zP9scO5hovLW/74/XdcPhzmuJLjcY8pnIbFyjD0AV1p9n3Hvh+oqmKXkDXDcZgjM/px4PL6iv3+wKJZcnf8yLJtZnXMcRD+x2q15OrqAkgYY3jeHbi4vuHj45bfIPJtY+U+efnqmnFIWK3Z74/Yaskw3vPjT+/4+//2b3Da4Ioz9f3+nj/++U9cXV3x3Q8/4IPm7mlHSA6P5qe3P/M//offyb04HnHWUtc13o/kxYL7pz3L5ZK7x3s2qyW7crxV7cjAarXi5uZG+GAXK7a7HbcvbtjvDkJWRaJLtFZUVcXh0KG1JeXIw+OOtx8e+PHdBwBclfni69dsmgUf7z4I+lhZurHDGCWfXQlY1crjasPH3YG75x1fjzd4b+jGTN51LJs9t7dyrKZYSAxjwlmNDpmhk+y7NHpwYTaai1EUlqvNEm1lEfLBS3HkLI2ryK3c4z5BCpGmkpiZWBZGrWQZmwQIkYgxFSDzYkgRnTLeZBZWUTeOlMw8b4kTscI4J9xECicjRsI4UBWe2XK5pOuFI4TS5NnB3uLUpBgqSNzYUbfLUvAkhmEgk7HaopU4w58b8MYUiUEyC3WanqUorCb0GrEYEYKyk/kaIxs9pUn5pPDS5b2hzSmItRSWZCmO07QBNkASInJKUTwogVD4KpxtrHNKZW0pMu/J0G8qUs5Yp7EQpHMqa8O5rwqnwkyug8KJmffskzZOiqcpYFX4o2KcGxJT4oZwkWwmEE46N1WQnKwLhpCJeoqaOC+8kK5AKdQm7s9Jmj6Z/k7nQIu9RzwvlP7z43Ox84sxMdhniV3Of1Hs/JKg/G9NXZ3+5tPXk5BCsrDvVan+0dKyAKloUU4goCjtK58Cw+CLrDwwVcOTlNQYg1FJvGhUQXBIM+SXCCIfjBEYSRG0FTJzClIADWMpNOIo77G00LQzmBDxWZxTo86z1ZBzRtCTWlpS0/uLeWSIkiR8isYqBEWt6Y4dT/stPnhMBYtaQkGPR9mhjUNgsXBYp2jblqptaOoFzjnqukUz7dJ7dsctx+NRJlefWS4umaDV42Hg7sMDANvnLctlyzAMHAdxSw7jyDAMaNvgQ6JeFMlviuQxy8LVd1xftIQ4UFmFJ7HvPaogRofeQ/Is1xuMyaCG0s450CxqXry4IZdJ5Xg40vUHDJbBhxJ4GmjblmHoZgltU9W8vH2Bypbt046bF9c0zvL257cs2gpUS70obrRdzRgD15eXhLHHlFiHMGa0qvn6y68YS7vJ5ER/PLKLB37169/w9sM7xvFI9D3kSNs0c4bU5fKC/eOOjx8/oqsaW2tWq5YcRiwSC9CUVsOh71mvMs7W7Pd7nKnougNv3vyKnE/oR1XVpJT48OGeFy9eMHYjbtFg64qQpc01EcpTSqxWC9q6Zr/fcX19y/u7e572B37+6ZFvv3zNxVI2CC9vr/nx3XtC3NG6C354fqbvMkfv0aYmxMy7Qj7/+7/9DYd9T1Mv0Mpx7DzrTUO9XBDCyGr9gjS7tArU76zm1Rev8N6LwskYmqJam67vrhs4Dkd+9fU3mF3PcDwwFmSlrt0c8no4PtMdjnz18iXH7TMhDLTtku24Yxw8t1ctPsoG4cP9E90QuXs8EMm0dctqvWSxvBQ385gZRrnH62pJ5TwfH7cobaiXNX03sn3aYjC0K0FaQYro5BNptaSyFU1bEUfPfhCRgGwa5Nw+dr20sqzDaiNp8T6xbqdW9mnxmWJxxEGhoJpZLDGaqmIoc+cc+lo3pcU5eZZpnNXiPF9QhaqtyCzm549BRBZkjUQTmllNm6I8d1OvCMUqx/uBkAJJI74tZ/J3kFZaGMqcmiDkgkXok21HAlFfag3ZSJGDmguwOS5IKUiQtJG/tw7lKnSOxVZg2pBCIBFUUV2hiEShJZSigjMk/1RdlHNsciEAZ5lVP3FCnv6vz4jEp7XuJMc5+ductujFH+4vlFuqoDIJJoK3MsLbiCXncCZ0K0LM0vpTCBE9T9ld6YTulNOVdSqRTXxSiE3PxRlIkPAk9dlB+fP4PD6Pz+Pz+Dw+j8/jM7Lz6TilwE5ulUqfpODnRGWYKuM8Q8EpCYyYzipPlWZ9IElIO0AxIFR5zpdKOsuupJDfxITzJCHMRIzKmLoieM+QIiFFhr4nRsl2ApHRmkICTMjOxpqE1RLAd45QGWXIBgwJHxM5eKwVt1Gj9AkFKg6edSMbGaOEaGYwKKOoq1aId4jHS1035bwptHLiBOyjGIqpTFsXgrBPhJQ49j3H7oAm0zYVlZF2Ux88fmqlmVzaVhXL5QpjbMnGkrbI9iBIwW63I4wC4ysCrWuptILg8Tny8HDP85Ps6NfLVvxWjp3sBqNh2/fU1qGMZrVeUFXlFtGqtLYGjMoCwZPRtcP3A+1qhTOyk2lsYt3esLCa+92OrA3eHwlhRBFwpjk54g4BkzS+9/gU6IaB3f6Rm8sbjsdRgj+BzcZgHQzjDmMz68s1PgzUJvFis+JDCtSq+OywxTQLlos1STtsteDieoU7HqlVoq4cP/7wAwC20qwur/jnP/6RV0PPt1+9QMVIcoYqNzwPR4aS+F27mpgTg/e8vrzh1dUVy7qiNtD3R5yG1gpfZNkuxMfGWHbHjhe31zw/P/P8vOPly5f4UZClnAIxZh7un3CNwzrNulnx/v0dwzhy9/DIxaWgRf/4T//Cl19+zbe/+S3ZQtNavv3mDYu24ocf39P7hKm+BeDmxWseDz0///wzVdXQjx1dGuhCFnfsFDgOxYCwP5D9SN2s0G3F03bL6xcb1m1DU1ccO8+rV68A2G73dN2BGKGylrZqMa4WQjrCXfv4INdXjJFu33E8HmkbB9kxjgPD0PHVy0suFnJt/eGPB8bOMx4GDvsO29ZkpWiqmrEf8SmyaeQcfHze8vR84DAeWS3WxBwhBtrG0feCFnSFO+Yay3JlsUNNZQw6BIxSPG4PjBEuwmY2yhtCROtM9pLQPjYNzz4ggfcVIVv8hGDHSFNXNM2CcQz4UdosIY7UWbMuRphVUxMpqGgSWbcnzHOQ04Zp8qwKR8dqjSuE+KxjkTUrSHF2aW/rBXbZCho1BWcmaZVo5YTXMWczB7JXZC0ihjFEiFG4ZaP/xGJEa03WRpr+dSV5VikRUy5GgRPpuJCiTSIrW/IQi6RevOvnuZssKI/KGaUrlIkkl9HZoPIoPjtlvdBJXHkU0uISboqSnKucUdnPvsUJM6M8BiXcHkDjZblJJ36mwSLOPtP7zeXMeMh6drwma7KRz/IEHBVRzdw+m34+kZNBpUzKIs1PaRLknHLPSBrwxVSw+MNpI6aDKpwRmyElXzLJMiRJO5ckAjVzGs/Zs1kr4l/Yv/z18bnYORtTj1EciU9FwQR//TWi1y/Z7H9BAvvla5y1wMTB8C9hOmXEpGrqn4qQSqONRRuNTklM+xAuy+j9TCwLKZIyZD+SowR+jjrj0Ch9ZiqIcAlqJwosH7wkFpcCwmDmC1s5If42TUW7qNFGY6qKqnJU9QJlS1owYI0lJ1X61pmYB/wYGH3hEbiTIi2EIOGH/TCrJGKMjDHgDwPdOJwIr9rQVjVt22CtQRsxFQyx59htOWzFh2S3PZBzxlWG5bKlrlvQhphg6Hf40M2LpzEG3yfQCqcMSgtMrIyjqRdcXFzKxAMkr3jedcSsqauWnBRttWC92NB3I+vFAj2ZaLHmxYsbfBzZbp+4vLllmyIYTVZw7LvZ0G4IkWWzZLFYUanMYbfj4fGJV7evsBYORQGTdSNEZh9YLtYoZXjaHlmuL0E73j49zkS9q5tLnh+fikItsVyv5NzmQNU6GldRFz4Y2tCsG4YB3n945FdfvmL/9EiXRr749g28f8/T0xMAra148eKG9x/uefXFK26vL9k+PrJYtqQwcjz03NyWSStnbKW5WFouV46UPS9f3fDTDz/y5RevMXpSxEXWywV91xGOPSrm0pqsORx6jseO1VLaQ/3g+f/+7//If/iP/zOLZslhv2O53vD0fOB3v/k1P/75z/zL738vn+2/+x2v3nzBx/st7z4+sh80zrakwxNVY1nYCqaIkUPH5WbJ034PoyKOGh80xrU0q5YwDLPf0fV1xQ8//EDOSjxlCqckxshhd8AaXcjtor7qjjuOhz3DMEgr8uVL7u7uGL3n+kYKqD/88XuC79k+P9L1B7bbJ5JyKGdxzmJyZFXUhj/fPdCHwGbRsmgcNxcbDvs9g/eAEv+rMvVobWgXNVWtaZsSbpsSIUX60RMeHsXYTj4x1ssV2kkyeSIVzs00sUR02fw0TvhNyhpCP5KI5JRI0UpbZvKoQeYflSEoxGE4GVISFY09c3C2VlpC2lai4My5xAlkIf7CTBcIIVC3DUqZEk6qSSGXAONpY3qaV0MMQIeyDct2gR/GUmSPnPvRWeOwWhU5h7TytVIkRtQ5C0Yrspoa5+psARa6gKSeT79NM+/TGEPMFutKQHICrSK6GHHKYp5KE6l4y3C2zuQzekUpdFTKxQj31F7KOZfP4HwtSuVn6eSzk40UH/PbysRQNtgpfuJ/c1oMzNlzll+VhPaZ35Tj/NrlETOpeG6O5RKFNHnkFFd7ARRM+XoSCZ3I2Sc1NAgHTH8udv7vjYmTMxUl5xEQai5uPrXZnqpg6b9ORkgnhvtfMx/8pYrr/PUNhoiZjZdSkAJGGSP5Ikqhs8JqDa4i+jQjOxIEnCX5N2XG5MV+X2uMyuQgF5V1gtAMSpyOkxdiXtZK3EW1mpVIVWXEWXXRiNpFGYxzxdBLA2ZGgQSRysQ4ClGxqDW0Kucygy8E5b7vyaHcVCHQ+VHOy+AZxxHvx/m8GFdRuwpTOcYYUEEk4CGM9L0YCwJkIsF7jK5RKtP3PVVVMfpA3wWcbXFqmuA1wcCivQAVCaMQkpumYbnZsFqt5iLNOlGwvLy9YiiT5XK5oK5rri6lmLi/lx39ZrXAGM0PP/xA1wde1wsqVyIisp7T7kG4EnVboWvDytbc3d2x3/UMJbV5Vq6N0r+3uubyxQXb3YGnpy3ffPMVzWKBdTVdQYEuNgtet0s2V5c8Pz/zw48/8tVXXwkNTGUykdVKCr7eey7WG+pFy9P2mXB7xevXr/mnP/2BdrXiS23YPsnivd/3VHWLdS1v39/x229/RRhGxjDw6tVrjt2WsSA2wXtqa+j9kc3VBj+CP3i+fv0F+8cnTOFCDeORED2Xl5c873f048h63HNzc8l+v+f3v/8j640UGl9+9YrjH9+yP3Qc9kchxw4dMHB7/RrD1xz6RwDefnjLN199y5dfveb93Ucu1i1xp2jrhtpVtE1NKvd2N4y40bBaNdQ1/PqrV1xcrgghYFD0Y5gLmLpuyVnhbEVd1SilOAwjOXpSHKmsoyoo5+P9A303cDx0VE7j/UDdNqwvVvTdgcrJfb9cruh6z3dv7zkeA8FoYgpcLdZ4N5CDpyr3YmMNyiYuXr8i+IGm0hwIhPHIYr2idZpFybQTwzVDCiMpalKKDF7ulxBknppcgzdr4b+FqIjjKEV/SrRNTV1NRoFyjzulWdYVUUFMXhbxJKin1Rpd3lcMoZCkRUqdtfBJQgiMo/yuLmRu50S2bYwBI0WG0mleYyWY4bRJWmiHrqwUdskTCwF2UmjHuYAQBVEICesydbVk1S7Y+0QOU2RFPr1GNmdcGkEotKlQZLSZ4aLihlwKmXzaHGs1oTCnYufEMdEoY4VUazMpI6hzWejDhIDlXAQfktE4xbWkLMaJIE8p/BWJ3Mj6XCI+hVSc1iD5TpAiWXd0MSXUKKboFkU+X8yURHjAWSlzvpkviJMcVHnPOZN0PFOIySsrlUoxKs92KnvkPU9IWEoJbaY1trxyUqXoO7lCy/lU+Kzxn2R9/efH52LnbBhlZq8dzpAd4OxDhZnxPlfcf72ylN+n8lXNhc/8fJ88rjgslxvPnPYRTBLzpAowk7IE9mmFcRU0J5K0tKfke6MV/TjiUyZrTchxdtO02hF9kuycmFDRkJJCqSi7GGVmWWpdtdR1M7eN5tOQFMGnAjdPzHvZ5cZUVGLJ45xD2UpafD6QfTgda+UIR0F4shb1xRAlSHRScwGslyuqqiIMniF4wiCoT4zi3lo7QQpqK7lP2opXUVVVjFHg6JADMUWsm7E6chQ/oRQFim3bFuccq+VGIiFKflIIgaqqxKU2BFxlWaxbsg5oqzh0+/l8VU3Dw9OOD/db0AarLDoLRG+1Q1eK/eOzHEIMQojWmmEYZkLl0Hua+sx6v+vQrqJtlyyWaz48P/Px4Z4vv/4CWzkqZ3DmFO/x8vVrooLDsef5acflxZG6aui6AVe3LEue01VVsd3t+fLNC3744Qfun58xVUW7WGOUZRxHvngtCMS7j3fUdgEq8Pz4AEoQhz98/56rqxuur25nFKg79GhlcZWjaRr6/ZbHxydeffEaXTtikQarKBERm4trhsOB739+S9NUvHpzwbuPB7bdyJ///D0Af/u3vwNdo0zi//1//CMvX1zz73/zgq9ev2QYPX/37/8dP/70JwCG7sh+vyWnkb/7m1d8eNgTyRyPlkUjWW+Td82xG0h4vv5qzdcvLrm8vOSLb78i+TirhN6/F+XU5eUllXUsl0si8rsFif1+j/djiVYoUv1hICvN8/OOFy8viT5wOB4xWnNzsZpbvy9f3fD2447nYaQPmeQ9L25uWa+WpKGDpDgWB+VWadq2otk4YvGtSUl8bhrXsFjWWJPLfWsYciAeA4P2ZAXDmPExgyjFsXqSPRtihhgiOUSctSzqBh8DgxeBgo9DmTsK2hzF7l8racH3fUBrL6gZoiIiig+WUkJQzVkQGJ8iLkPzi43etJnU2swxEAlBwCd6QEiiHKvrGtQobQ4VxX26+MJIMQcplLkxJkYvG4amXszKxbEfyMgmQTaHRWpe1E2pqLWszrM3lKa4P+tUvNPKBvmT9OiTfFqUspoo4YZSDLhGCqM0iMQecDEJ7aAUZzmfCrH5aX+xbqiysZ4LtjPKxTQiU1zEtJZNaIz8duZWFOm6fBbpE/L05GqsP03ILq83HdfZmqjkPcvDYilW5j9kKnYSunSlJpfn01opxzH5DRX5fWkTTq+v0POa+a+Nz8XO2Til1ir+6ulTab5I/lrLSmDH0wc+/UspffL9NP6y1ZVIKp1J0MvNZQ3Ry80yPYe2GusMUSVaU+PDlIocSElaAcZCip4wjKiYSHnETSqBJJNAiDIxyEUTZwt38baSHbUq1X5KEHtPRGGHjKki1oCu3cxbyqXQkt1IwpSeaw5e4lGIs1qjVRXDMBBJuKaS3m9RERhjqJuKRT2Zg1WMQ2DfHRl8wA89KkeqWokU3p5xkXRFUzdUzQJlHEM/cjz2xDSglMKV95VDSbNH00dPDpHVekG7qDFWMcRhVoOhFbfXG+7vH8lEXNMQo2ccPX4IRB9w1WmX+u7unn5IbDbL+VrJScnC3/d0Y1EYoRhHSf593ork3ceRMfVcuBV1KcyejzuMq6mtI+TE999/T+VqhsGjcqI2mk0xS2yWK0IODF4KT1WM3oyrUdrSD2E2iPv1r1/QD4FNs+ByseHpsOP1F2+4vX2JtRZbOW7XwsM5+IG+H7m+vOLx/p79fk/tBDV79+4dm83veHwQpdtuL9ERy9UFl2tJane9ZvRHlFrNUQ0PD0/YquF//z/+gV//+tcsF2v++MMDF6/+hqfhgbuHJ1Zr+byGPvGbb3/Fom7IOfG//m//P764+X/y1etXjPf31K7i1YvXAOy3zxglRpSkketry5A0z7tnbq8usEpz9+FnAC7WG0iJ3XbP5mLNom24ubwiBCEYuIuG3U4Qo8P+yPb5geVySVU5wigp0bvdjn4IfPjwgS9eXAFQO83bu60U0KYi9oGn+0dqazGbhsuy4F5fXtANgb31uDrxtNtSLxx17Xh5e00MA8HLYvD0fOD29lqiYDSEMbJsV+AHamfZLBdUpeiV4rvmqIU3pJ0jRo8u5nbJ+xkNHMcR0gKVxJ5g0dQ4o3l83vK83RYrgtL6dJLsHkIqfxcEtSgbRWtKS7vWstBag82SMaVswlgzy+KnzYzR4q2jlMEq2XgqJkuO0hY623h2w4itapR1RC+trKxAZZnLdNl8JWROiT6Ro5ijkjJ13UquVOHwTENUp4qMKUjIhBDJHACgjEUbQ0beN3miQJwKgVNhIcqzXGT1SmlwFmujZGolB1MrMQbSGAlBoVNEKY+gIlMB8Zdrxryu8Iu1iPPOwamIAT0XRieU5KQ8nk3/SitpNif8BB2aX1x+VyTts1/QzO85Ox/yinNRlObN/FQwnZ43Fd+eyUZlUkJK5MSZh5FSgD+LNfovj89qrM/j8/g8Po/P4/P4PP6rHp+RnbOhzrwLznk0M6JT+qRTdatU8Qr4V5CdX/47PTZ9UoFPw6A4d8CeoHSVFaQRjTiPWm1AR5wxMxTapSguv7XFGo2uK7okfBSjTyTsqbUWEwQPhojGgMnltVLZMUHyNUEH0iiGYRF5jKsaXB2pYjM78k7eCiEGgRdNhuROVX/hHQEkI3379WJZnIaPEjBY2lftcjEHVkrUwDMPu2dyFBfXy82KRVvJzq3szlJKNE3DarXGOcc4joxjoOvEkblparpjcXhNGYVFqYTRjma5xBonJOmuE85ReT8XF2uG7ojRiarSLNuK/tjR7Q9sVhcoU+EKutT1kuIdcmK9WcpzGHCuJqA4DIF+gtl9YGkrjvsDD89PGGNQJA7bHS9Wa4yS3fTT455mmdgshcvy/v6e169fE0bP08NHNHnmX8QY6fuej/ePrBZLNqs1tXUsFiuadsH7Dx+5+yhtmVdvXqKI3N5cEsPAEAcWi5bFYoFSmuVmPbem/vZ3v+M//cM/sl5uSH3g/d0HXr16xcX1Je/fvefNi1tscZnVemR76IgZrq6u8G/vePXyDXXjWCwW6BJtse8H8kEStz/eP/I//o//E//r//GPQGJVN1itufsor9/5xIuqYrWo+JtfveH+3Q/8v/4//xvr/+V/Ybls2T5/ZNnKdRisIlHQBgwxdKwXjq9eXeO0EOlvr6U9N44j/RjRR0/iwKuXr6ldzbJ2hDjivWexfAnA8/MzKa9JKWGVOPH+9POPDMNAP2a648DdR0G3Xlzf4uM7jn0QUrAf2T09Yy4vpC1ZKCCtq1hVDSpobI70xlG7ikXTYJuarjuwC9LG2voeNw40yTAOHeMQePXqFTUVWilCCPiCAkWfCj/E4PuOyohpXEwjvYfRx1mNpbXGaUPK4KylqaygpE7jdyKAqMock6Jlvz/ix8gwiteUMQrtbOHMyORVOVf8daC2Ql5GFaSnxDxMyI61FmedtK7mPXgCjETkaImEmEZMAe89xhqUMuJMnzLGaHI8EXm1ln9RyRyRYiBxAGWwtaVlQXeQg/RpxFqFykoUWJOXTIasNXF2+zXyTwn3Rc9LxYSQpBPlAUn6JmuM1mR8aX1pCWVWsXidgU6JaAbCoHF5xIeETeDTFPSc/mKtUAW5mkjc8zrzyfIlnBoxAZzWH1U4MObMQVmTdTo9cwZynJEdaZt9SlAWdkean3MyL5SW42mtSUqQLyFHi+lhzvGEWp3ZMP4l1WN6nogEa5cfZ43GfCYo/98Z5+Tk/AkTvHzQv+DqTB9GnOlg/0pxk7OYY3HGwzn7d/qZJ6Uwk8G0lhtFpVMLzSgtE0BO6MipPeUs2kdICZUy1lpqZzE54WcCGyIVTIoYkligFvKgMcL9sEoz8Xj9MJJCLPeKyDCtteg8zoaLekpT15kYE8F7sWTXluDlQtVaY6zClFneKHGHTSkVmN1iY0QrizUG42pKTcDQe+G2ICS6pjJiO68swfezLLRuamxVkWMk+QQRDtsdYfSoDN0YyfZUrDZVhasttpL35Iyhqip8iozBUxVHYK01D8ct1q5Z28RisSYMPbGq0AYa1+AKMXS7P3IoxGi0ZhjEyfny8pIQpPAq/El8SFxVlSh3SkFmUOy3O/obz+jlWJ92PatscW8s0Q9UpuL54Rn7G83xeGS733P98ks5VmXpD0dUTOy3WyqtCH5AqUxVOw6HA/u9FBvH44GcI+3C8M23X/DDj+/IGZbtmnEcWS41b3/8EYD25Qu+eHnL025LVWvGUQjlVVWRM9x/fOLLL74F4OM//yd+/umOr7/5ku/+/D2XV7f84z/+n/y7v/0bqqbmi5dSPNy/u2O/P3JxccHd0xN/+P5P/A//8d+xaGrwjjcvNzyXwuhP3/2eb75+jSLy6nrD//zf/z3/+C//zPu7n/j2i5ek4Elll7DeLPEx0B0HFosVxtTcPdyzrBq0UiyWa1Yrac+9u/vAofekDIdh5NAdSzSCuGVnpUhZCuT1WtqS1lUsmpanpycxSCwWCHVdzw7CWRmske+bpuHh4wf2fcciLqmzmotIrSpqbQkO/NhjMaybJU1Vs2xrtNM8bMVaISr5t77Y8PanPcd+IKRMU1dAwio7Kxi9lxabD4FhHDFGEWNiHDKJgNaKZSMqrymtPmUhWU8p5JpMXVmc1XP2m/eeYyc8npQjumxOTNl0zApKUxFLW1pZS1vVGBfFJVfreb6bRtYKbStJ8Y6y+E4tF2NOi19KCZJw3WpqtHKghFSdpyLlbGhtsRZy0PPGaH/Y0ixWVE1DKMTZmBHbhVDaUyhxPdYA5yZ9p/lDKVGewmkjORcKFPsQdfrN/HdZo7QiaYVWpeDLiUpZIoaQtIgSQiZM/NEU5+c5rTmT4/C5qPzUUpLjPbdNOXFMU1alUCmFEnl+LxMhWZarU/Hyabssz19PRYomTcTlM+JwVtM9MffDyuNNoS780hjw3PKliFiy4aT2kuMNOTP+29IiPhc7n4zZaZhZvplLrENO6UwGGD/h45xfYrk4BOf8KU8nI66Q083914qilIrDZ4yC+ZSdlLGWhCMHT45aJiJtwKQiUU+E4rCqrcXWVojDWfyC6rrGak32/Sy1NMqVG9EXfx9mJ1jnKhz2dA5CJKUsBY8qLqXakGMSJVrKxMJB8SlBQaa0FlVESp6EuALXuppJt9lCGEZCHOVYssbZGmeFmGvbZkZs2qIesscDqWQ+GauoXEHcJk8JI7EUOYOtHH0/cNz3BJ+wDqw1pPKc1rnZQ8jZWlAVlVAYur5HpYwuPjvd/si+O5JDZLmaoioW2FoKJGdrfJmY7x/eczj2aK1JSbHf9Sw3SykKiDw+3hOKekwlhXMVq+UFbfVE9J6QNb4f2B+2bA/CbTn2XUG8NPcf7sSHqBuJMbPZbPj4vOV5LwviF69esn3qWbaNOBD3HXnZzvvlcRA+D8DT0zPGaKogVgSrzZKnxwcuLzasV2v6YaAtsuvvv/+e1y9eM8RIxtAdOowSROD66pL75ydM4VjVi5Y/fP9nNtcrdIaFDrx8ccvjx2cW9Yqq5BzVbUPXB3zX8+tXL7m/v+fuXcXf//1/ZPf0zLevXvOT/QhAZR2HwxG/viQNmZfXNyz+279nHDvaumHofJFgQ11LbEhKWgrF1Yaba8PDx0curi9pGjfzBka/xKhEXbe8fnXD9umZ7dOjZD41FavlhuNOkJXLy0tQBj+OpOwZxp7n7QEfJfvOjyO3t9dyHTw+EaLHuQ2HY0eI0G5WJGWIumYosSVKjyibqVCsdM1Dt2cIXvgr1lIpw+VKCOVv4yMER9221KuGQ3ckZ09TteQUGELH0hZrBZXZHUeeHvY8PuzINwaSQStLjonLzYqLpfCGnHOMcURbhbJKMuy8bGaWi4a2cjNyOBZ0N+XAyXH+DDEu6IBPgeQj1lp8kkJwkS0xK3EKTglfAnGdDihrqKoM2ZFiIqtY6DSCBMSSzaW1Fff1PGKVxWlHn7wIJmIsKtFSwJDQyqKMoCgpJWIOBf0csKambuVaTCkR+o4cZTM5bXDlMzqHSkSBrSZOz4zi5F98nQoN5hBorQwkIWCLkKIix9Nm2RJxKVOHRLA1MWbhBGaJCZrUwalkdoWcBPE/c0ueSN7zZzIhQ/pEpM5ZIhsUoEshL+dAPsuYQpGAUxyppfCIEwgA6HwiKMu5zkWxrAricy6ymTg4J8m8bJRFlKMKgi0jlE9uQnwmaf8vea8iPTf531btfC52fjEmydxE8Jbi5VM0Rs61XEB/8XsyWaW5SIo5zYgQMc1o3aS8mki5MYoKYtrya21xRVWRbV3SiiM6U+y2A04JfJlymm8CjUjGdY7iY6E1OYsBX8LOeSMgMkKDmQlgxmgqJahODKdcKJMmL4yy+9MKpnBNayFL+CVICyUjKqsYhVRmjKFpauq6FuJ0kXAOMeCTpNZq42hbmaRr63DOke1J0lm7Bu8jejxS1Q11U1M3LTkmfEhzHtF08zknRWDfjRzDSF1VuEqg9MkwMoyebEZRmWFIOWPqGk8paBXz7qQfB3SKtMuWi80FxojyI2GobIO1luNe2hdPu2eGXkzakvdEq2nrayprCX2idZbnUQjCTdOgqwxV4Obmmv12z9B1kAy7bceuLLKkTNcN7LYdD/c7hq6X86kSq0XLy6tLcpGr+6GjqRxBRerVguP7j2x0JZ/NGHAWxqMUUT9/f8c333xD7ztUtjS25XH3QH880NSGtrXcvrgA4Kcf37LvOq4urlmtEj/fvaUPkUXdEOsFjw9PfPfddwD89re/5XK55scf3vHi5WuqTuOTYzjuBVnqBa355ptf4fOf0drgXOTv/t1viLkijpFF6/j66y/58UGKHUq4qHGGd9sntIKX15dsFm+Iw8hqsebQb+Xz6jv6vhfuZ07c399zdXWDdQvqesFisRQDM8C9uOGrN6/JSYIrtQp0/U4+496xWV7O7URnarxJDCkxDh05wc+Pex7vn/jtly8ZDwf0SwlkPRRDwc1yTX+I7J57Vpsly3bBql2gSsF53D6WVoyl83I9D2PAKo3JRhbqgpxWjWYc94RuyXW9pDPPqBgliFNVjAUdBAghcdh3YkS426JbybKqK01dt9xeb3BFEaYQ+wpnK1RIJONmZNRiaOtmXmRq5wnjiNJOSL4eQVsxRAWuICUGi1eZWMjDBljWLS4lfPKknGfT0D4lmpgZfZRj0pkUZS5NPpNjmtGLRJCYB6PocqZt1iSsREAoicAxpd2itRV/Ga3QXr5XWUtwsg/47kizlnlntVpxRNCYOJn9xYzWEuI5U3zL/7NSpJikEMh6jgnRZ4u8npROsdAehD4trSMlaJCdZOtlzYnKEK2jrwI6enTSaCJJWWIoGzVVTAWVkXmqzOsKQa+0VqeNtTJgIedwomEoTSJisHPQr84alC9ScC3tryyoS46UJPdSrMC8+RdOt+Sh5xzQ02ucFSFq+psJdSu/S+WYIqfw2ClMW1CzPMeEzArlGbkTr7mQPsdFfB6fx+fxeXwen8fn8Xl8RnbOh5hKxU+gsnM+zfT91DP85e/mvzv7PkmfpJC7+LSNNfN1QkGHkhDqZvfMAkMqkcT7AgPqJGSzyagvcTI/tGUHGLIkGldVRQqRMY1Y58gFVUk+FEKfgXSSx/8y6BTAulpk+aVvbozGVWIomEKUgM+59y6EyFwMCo1raOqGZtlSWUfMmVAQiDELp8BUDgPYLJyAqpJWl49hTkgfiq+OVorFYkHjHDlnBj+SSLgid5UWmSQfP26f2e+PVFoVoz/DYbfHVeVcKS1eIFncleu65aLeMAwjOmvqxonrNKBNYrFa0lZiJNhWNQ+7Z2mzuYAPnsfinTN2A8YqVC5EbieRGQrLbu+BhlUr56uua4x2HPYDrm2hHxnKruhpf2Ao799Zi0ax6zsOw8gYPC9fvxJiuDY87zvevJH2STdEHp+eefXqRdnlGeEE+ZGVhc16ReGF8nx4RLmvOT4e0DnTtEJO9d4Xz5/Eei0tFGU+0A+SbL5ZLfn4YHm4e0/dVBitefHiBR8+iLGiHztW6wW///5nVLXA6MSibvjzn+558+Zb9s9yrrrjHf/Tf/w7fvjxO2IUt+fl5gaDYbt9YrXa8Kuvvwbgxx/eMnzlUcry66++4Lvv/sRht6M2msvbC1Lw1CWK5P7+Hq0ylWtYrzT+focPLU1T8dPdB/72dxfEIOha9AObyzXONlRNjXaO/e6JRetoKkcOA7rEPYcUeNpt2T/vuNxc4JPjGDQfDyOb3R6nJGgSwFaGgczzGOhioh8j4XnHei0E54nbMwRPiIFjOBKyJaPZbrc0v/0a7RLpEGbkUjnHw3ZP/uFnXtxcoauWkDO6hL3GGOcd8PbQ8/C85+7hie12T9KKF1dXNM2CZVuzXi1P8QM5QNRUxb3Yh47RH0l5xBiLdZocpvZBKmnsMgeMxcurcjJHnLvPT181phBli1tyIbJO3JNUXKg/mWtzlEDIglKcApfFhsPoiI0Ro2tcJcKCHBNK6RNjpRjSKWUwpiR/q4CyagJu6Mt81NYNzWKFynvGUWTq0hIr7aJyXo1WEiXBKEh8mgJAS1vyjKEzGwTnQoNQSdAnMkprQjih8rnI903hDdZR3nPEk3PEB0gT2p+jzK9MRGqZm0NOpCzBnRO/RhdkJCpp+WuE64lGOFXlWEMxJxTUxZBzLGaNuUi+0+yOPY+JkH625mlJY/2Ej/XL86JKW0uevzwR8jTnvOScQRckJ+rpMae2oVERddaG+y+Nz8XOL8ZfJxafbsJPOTZpbkeVBxM5a2lNHJ2p2EnS1poem3KAs4JpIvsaYwpEWG7upNHGgRL1VM4Jo6aWTcY6jTITbFtclo30ySeX45kInU8Xq9Yaq+TiD0H94r1rtD5vDQlwKYaL5bDCSIgQzzyHjDFoNNYoKutomprlcompnUzwxZcEIGuNdba02uQGNcbgSvuqG3qGQRaOYRgIYWSxWLBYtBDFsTXEkap2tIVg6ZyTSIbjkaenJ6zSrFZLVouFFFp1Td2UgnAY8WNf3Jo9bbssjqeBnAJG1XOLUiagLEWMEqWPHyNkTUiZ4/7Adi+LZ9U2tI1wh8TvSNLfg0887w7s98c5AqG2Yjq4fdzy8ss39P2RbvQobVGjEMMBbm9v6bsRsp5VLJvVksF7addk2B2kNWRZ0h8Gsd5XhtpK8TKOgb4fMU5zVRK3f/5wz+A91jrapqLv9mxWLR8/fuTm5oUklpf2ZYjw+z/+if/2P/x7ujFxe3XBhw8fyCRevXzN+PAwf7YPj0+8ePWGP79/4P2HO3715oqcRm6vL9ju7nn5SgqzH394ojv0/Obbv+G7H39iGCPXzuG9Z3Ox5t27t3xTHtsoRT8cGYaOZVvz+uaK+8cH3t91eO+5ub5CRVk41s2SH9+9x7mRMY60qyWh70gpcf+w5ce7exZW7sWhP6IXe15cL2jrhspY+m7Per1mHHv2+yfxegH8qOkOzzw9P7JsFyzXay4vL/jx7c/c7w4srJ6vWWtERemzR1lY3yzZ7/fCbdIbjqWVePQZbS0hZWzdYO1QuHOatq358BjpynNGZXk+9PTRM2aFSYkLZWYeXPCJh6eidBsiP32453HbMwwRHne0TcNFU7OoK5rKodMUwRAlNsXKxioMHu8lJsG5klWXSqvaBzQZ55REOxhN9J4UxflYFwlWSkGyyzMzt0/aFlP7W2OnNIIS+eC9+MsotLSuUiJleV9zckEWg1WtIsYHNIaL6prKanI0MwdGDgIiUeiYWVRaGgtmmu+YXb8Vico11G0j/J/sRfGVhJs0R4OlEZIiRl/aaxmDQmkRYUzO3PKc5eu8REgxOjkeq7O1Rmlx93FGCMe1M6TKkpTDqEw3eEJ5ohiF4yl0CTmDsiadNtwnM+TizWZOLaJps0065VKppIRAXEjHKZ1UXefE4v/cOIEAE0fpUz7XeRJ7nNpuc3TF6bHTcU+xEFPRJqa3aj4WBcRsyJ85O//Xx39ORXWulPqrxU4+Q2uIMz9HSM1qLnZySjNnJpVdjEqiejAKULnsZLKgLpN80hiyEUJxKjsiSS3JGKWwzmGKoZ1VIhklKfAjuTi6WqeJSc0yQ61lh2JUhXKQfCL6QAqRWCao6SKLQQtNrNzDOmliHElZk8gioZyq7nITa21pmoa6abHOEVOi6zqISVRKSFCgMWY+n05P7p1q3uVNN0dVVazXaxZNBWSOfUfOojZr25amkGgF6ZLjXi6XLJuWtnE4Ldbrq9Vyfs7j7sjx0M+77Jsb2ZXHODAMRb1SbryUCh/JyOQwjmIo2CxWkDP7Q8/FxSUAF6sN3o8cdnsioJ0EXEY1cuh3jPRcXLwAoKkqjr6j6w9UWtE6hzVQOcOidnRRODtXmw33/p73d29ZrVZcpyXLxjH2R/zgWa9aHoqc/HqxIKXE49M9N9cvuHn5ghwSm9WS/XYHyqJ1MVbMivv7Z2qjadvE9e0LUgqsSdw/vGezXHF3J5yZy80F3/35B97df+Df/e53uEvNse94fNoRUub29pZJFPjz27dcvrjhm69e8OHndygyja1YtI797hkfZPH+3e/+PfdPj1RLw9XVLV135Hg8cnNzxTA8cnO75u7tOwBubl6DrSFlHu8/slgs2B+fAcvdx3u6znN7IworY1uqasHb9x/oxpEQHnh9+5LDceT9w56H4+/57//D3wLw9HzE1Acu1yNGa5rlEuccXd/T1I44DrPkdtweqLNmZWvG4ciqqvi7r17y8x9/z/EQMHXNdjfOn9mFqXh9dc3VwrKqLjBGMXQjh+OIj2UlUTW2akjdFus0TW1YLhwxBKw2KCwPDwU1HEeMs1SupmpaVIr4kOi9wqvE025ke5Rr5uFw5P5xRx8i1smMoXNmsbCsW0fj8ie75hCyqM6SFYuJKAan1grKOhls9sMBqwyqlrnG2oowBI7R01hFlScekAR8xhJknFRxXzcKrSen+rKhUpqsZIMQxjBL0lPhNeZwUlnFMOXMCadn6EXJWNc1yjhSDqdogiy8weCjKFhVKuSNXFJ9Uon4gW5/IFaRphLSckqJ5HtCiKgc5iJKR0OOUswJudaQAPVXVlPh80ixoPOkZ5KCIsdM0mdEYiuIlDEWpzSNraCWoOleO2weGYvbc59GQhYH/BRl3VEFBdEZzkO/ZvQsMZN+szCPyxxQ3pfSTGRVNQlzikO3/oXk/BNrFj4tNubuyPz9aS1lIipPRVcqPKIzBV2acrny+XPmOQokn5kgKqPmAvBfG5+LnbOR4wkq/WttrF8WPKl8qHPIWc4kCppTKv7IGUE5iSJrel5SKBDrNOlJ9ofOgNIzYy0lhYTYqlPRRJoVB+d+FbWt5ThCptY1oTikKlvC9abFG4U1ZpY6JwdjLwim+C+oWSYvRVPAacnIiVqIgEYp8ZAAcpqgWIW2GlfVVG2LqS2ByDAIelJVFba0Gqx1J9t5JRQ2QZ/ifP6nCITKGpZNTU6CZIScJIjRWJqqnq3cU86MMZK15vrisiigAj5GgeNrS3eQSXt/7OiOJb/HOXSJR3h62qKUEL1D+WzHcSSGTFOLmmXfHRhjYKE1KY5orbh+9eJ0HY2ed6U9qLUmqUD0Hh9HVqsVmytpDWkU3XMvZNjg+eaLN/TDEaJitVrOULCxiiF4trs9Wmte3t5ysV7R96NECfiIKefscDiwvtiwfT5y+0Lz8tU193cfWC0WGAbun5/pelkQF+2a/e6AuVzxf/7DP/D/+J//By42K7SzHLY7emMx00VjNZuLFcduACu7/a+++oqHh//Efnfkzatrri+vyvFawjDyu6/e0KRAUxte3L6U8Nfe8+HhEYDH7Y7r60v2+y1GKWLMbPdHrq+vubl+hVU1z8+y837//j3/4d//99gE/egxztI0C3FhdhX3jx+htB0XTQtaczx2bPvI09OOu/stty+/4BAh7Tp+/0eR1P/6q5fsn57oLy9wL1/gnGN5ec13f/4zv/n6DTHBvivZWE3GVS1umWlWC8Y8smgdv/vtt/xv//gntv3Au2d5rK2XuLZltWwxRooCUxxpD4cDm/WlXFtPjxhtWTQtjbX4WrOoNX7o2W4NcYz0BzkHyQcWTiTpy7qVXbS1PO06tLJ8fO74+Civf/CePkTxzCHgTKauYd1ajAqYHOeWWwq5bMAiWWXZReNQCnJRFB72Q5nnkDBgLa3k0Y+EnEkh0EVmlKmpamlpR2nnJ0AZXWIyCtHVTYjBNJdIsCpZVJ85Z0KKhMzcBlNKCfKpFEZL++p4PIoww0rLdl60ZW0nJk9Kghhrgzw/pWMzKYxiYuiOEALNakXTVqQ80scwbxLlppW2jtamICNGwkOVBISSTxlamTAxec9UW5Tjy+Sc5qJAI8hYNtJil5rRiSrXOpJyhDO0PeaRkBVJ51M7Suny9WzDrs5fE9IUHxFFdj6tX+kMNfkLtfBEGp7dlzk9Tp9ea3KLl47Gp3SISeUlGYmftq3mmNUMYMo5i2dFlTr1BE8nV4jZnwnKn8fn8Xl8Hp/H5/F5fB6fkZ1PRkonk6up/3hOmpu8cv5znJ2UEhF5vJ7QnFyq7l8Qn9Xkspny3HahoDd69hQ4IT5a2flfzJ4YMyFljEpzphcUZEVJT9gqLTuEnAnFfyTHSfJXSK9aC7KTBGWIpe01/R/ET4EkknKUEV+HwrFBqzl/CUA7cUad5OVTWKcPIkmsqwYzkahDEA5TynMm2XQacuHvKD1xkQTo6jsxDzPGYOuK2lpcVQnRGGb+TeMqrBFX2WQ0rhbu0uFwYD/D8R5IhJDZrNdYbei6I4fDQXhGxokEFRg7X8JFLT4G+rHHOY2xiW44sLlYUBfis1YV0TqqtiakiHEKZxTjEEkRLi8vqKt2/mxtVXFxdUUis1iv+OKLL9g+71kuluJyC4Qku59Eput76naJrWpc0ny8/zMqM3NAvvvpLb/53W9hHMVFVyc2mw0pjVROkVNktRC57e7wkWrVklKgHwfu7j5ycXGFtSL1HYZuRtcgcXm54Z+//5nrHz/w7Ze3OG158/Ur7t7ecbFZcHV5Wa4vjVGapnVcXd0QgqKqF3zx9VfEGFkXZGu3/cjNZcvNxYYP9x952u6pVhe8vXvg5qKhaRpeFN+a4/7I4/MjVVOTlWEYBpqmYbFY8P7jM4dDhytZYkPf4YeRpl3yfvuRfd/xdL9j/eo1tjIcdh1vP0h77otXt6iUGDoxW7yqW9qmYRwCu22H05a+cGaqusX7gaHrWa0acsyMx47sPV+/ecH3P/2MLq1qHzqaymB0YtjtqNsFOmuGwbMd9jTFakFryHGksRan4HK15Ka0RA+HA33XkUt+ktOKuq24WCxorITSao2Y0AXPkBSxfF6H/V4QSgsmK1pnaKzGWYUi0PVb+l7eV/BC4nXOYSstHl5OS75eDhz6nqEE+GqtQFshI6OpMsSxpBT5SDfKfeycgaQwRsI0xc9LneaqPAmY5doCc/Y7Ia4qTEGcTg91rprnPFMQ6xACfd9ji0niWM6XzpDUxJ0sII5SBZkRIu1s26ENKQmSNI69OH3btXCYgidNDqeRua2jci60AtBqkmWb0zzP+fqQJfNLujmk/Mt2UEGtUEILUBqjLMZERuWE/1xIToNRRKWJWVCn8/VGgKQT0XsirAsCM5nymU9tUZBrJJa2msjTf9GCkv/Mx3r6naDys9nfxFH9xH9In/7+bB08PdcpyHr621yea8Z21MR3PTMrPEsw+NfG52LnbKQcSOkUNT99ndoqJ+5O+ATiOy92puC5iR2fsjghp5kMdka6mqHR6eIwBR6MKK3nCwBti6qnxpuBSIcPkZgjTYkomD3LtVx42on/jynxB4TwidJKWXH21MaVGz/jlMKl82M9EdemAkgp5lgNUZMV1VWZMJwzotxIkTAMpFCKJqOpmwanzaxC8VGKHaNKi00lMfNSmRwiioQrxY7SWYiRRd2krSgWTOVAaXJ5zsmZuF60qCj2+dZV1HVN3x25u/vAYS9FgbWW1XpB9J71Ygkx0w09aAlKVOrshk2BylVoldke9iidWRafm0NKLBYL8SUB6sbRJ/FFsk7jrGbhavIoN+ZmtZ6T152xWJ1oljXGKPrxwGazmlsByyALIgbIUuS17ZLBjxhXY7woz/qhp11KAbHd74hJ3JlDiDjlqbQ6KfcItI2c18Yq0tixuV4zXF3x9LxlfzjKxG00ypo5hPJ4OLBerujHgd//8Q+8ulxh24YvX78RzkY/cFPS5y+v1nSHPaM/cnl5ycfHZ36+uxcFkQ786le/AuDH739itz1y++1rXF3Rj9/T1o5jt6cygeTHuYi8vbkEK14u4zhSNY6cIy9f3tKNmd3uwMO9qMF+95vfcrfvUbrii1eveHjeMgTNj+/vWS2WbJ+eORRvqD/88BN/9+s3/Pj2Ixc3t6w2G5zWVFbz07s7fv3rX+OGRbkVDfvdkUQk+IHDoWMMPSF5xtRxc7tm9PK8/bDj9YtLFktH341sH55BG7a7HYfBU7XiCbRpNc7CYtFijKEfEsvlsnBKMtqYmfRrcmS1XLBZVtROoxYNZE3S0qqtqophEH5PjFEiYzLURorPMHr6Q4ct3jN9P5b7JuNcXRyjy3xk5b5TSryvRi2PDWEkONkUVZWlqTSVzugu4Bk/UXMmlbBGHOArbQthWYE20jKb6QIRXVpmuZBflFIoY9A2c2oMyWdgjLi2aw1kQ1aibDJReIthCrSMCWWybHyK24uyEnvgjEUpTZwW2gwzkUUhRohVhbuqJbC4FHspQgwSdDy11iQM86QWm6kNCA8mp1H4L+TCrZGjiWe1jlZa+Jnl6zTPqijFQF1ZfJJz0wZHSoGYlPA8kxCKlUrCV1J6Ju5O5UKcaBdZk3M4taYmAnEWdZZWwu00Ws+b+5OS6i+LHs3UupL9+/SruTiRVy8//9Q1O5FPxVU58XniFU3r4l/UMmfczpxnTtK/Nj4XO2djkoJPKA5ATJFUpHu/5OwUadSscEopkbR8gOmc6JyLSV1KJ3b72YeY+aXkWyr/+Xut0NagbSU9cCQp26pMspaQpN87PVbZipwSakyEFGVnpOTGM1YWI5OloBiCx2lTChmFdgaVUlEuyOv7oRRKBLGHp6TDo0lxSiovuwOVScHT93sSURxCc6aullSuJqXEOGVuoUgZJuBAazHbSknOlT4zFaScI+McjZaiUGtJEB59JM5MYnGMrnTFqCJKV8INyopDd6Tre6pG1EWb1RpnFNF7tM70g/Ae6mpBVTUF1RvLq3u0hsGP7HY7VqsF1smCorJl7BKu8A9UK7yDmBOtrSFK8nF32GMUtI1DlSJ16DsqDUN3QKsFwYBzFusSYxe52KzkfcXAZtESY+TycoMzmqqyqFTTti277jj3rptFy8f7O5rGcTzu+OL2iv12h3IWU9W0q3Z2W15UFcvlisvlmnAV2O463v78gc1lzWLRMA4HxiLNJVuOXc/FesX+8Mz79+/h9oab9oZf/eobvv/xjuNQHK/bCjUaYjcwDEdWlzX73Y4xLiBmbJFSv3h1y9v3H+j9yM3NS/oukY3jeHjED5EYwqwya5dr6nZB5QoJXxtyUgyD55s3NzjthU8EhJx5/eaG92/vqHHcXFzx4+PIv3x/x/V6SUqaZTGTG4fAT2/veH17zY9vP1K1G1IYWK/X3D8+E7NiUZCwnMAXSX4OkVXbcDh41qsLvr+7x1UNlZtQzYjyA5XR7BL89OGexaIh5EAfMtvCw2mrFmcjVW1YrRbkJ7nm9l3Pw/0WZXNJMAd0Zr1acLFZYBSMQQwFbdUSwo4UB9ScEp2ElBo8KEfIib737PdHnBa34a6bVF6ay43G2KUgqjFgrcFosFZTA30/LYoZV5nZVNQAxrQYA76u5o23shrjDDklnNU4o4TYjCEj5qxzpl1IxGml1JLZZLCi7lIWU2k4I6bKZmBCZNxsABpjiaUpyHJGkXXC2brMcbKZMkYQakGIinvvxB1MmbLnJWdF5RpstcBPKFgIpOAZ4yAVQsrorIll0VcpnyTaSQn3CFOgnFRMByXV3eqTklXejJk3WdNzKJWxGpzRtMUEMjbixh5SFEdoX8qQXIqeMx5NULJxFoL1iRAt6t40b7pzTmKIWwQuwkEt6P6ZbHwak4BkQmDOU85FZBLm//+S2HwiGct3p9+XtVFNCL/8UGt9tqaWUyXV8dyt+NfG52LnbEhcw6fFzl8lJk9eEDF9UqXKz05ywpwSqERMqRB4NarsOAT5kQLDnKoegLl1Mz231lkWbJcwtiIrQ58UrZnCDjNl84tV087BoHQgBvE38EF+PhGZcxQnZD8MHP1I48ThWJWW2XSBAdhaE8OIwZVKTEOksPSV8MlmCWsQJCppUXehqaoa6wwpR/rBz8iOVRqrNSoklNMiP1WB6AOGiFNTLs1kY27QVqHrqrTbbEGc0lw4VpWVjCqrYBTllzGmhIFmqmrB5YUsXIu6QWVNsIGUB3IIdN3AerHEGMXxeCSnCVlqMSh2z08MXc+yrUlRE8ZBMrtUnHeIy7SUOAkrNutGaYYU2PcDtXMoZWcUyMcEpoQcZkscNc4agvfEnGa1TNuuWbRrng8di7bh4mqFqwxhHFmvVzzutvO5WjYt4xB47kYWzYJ4G3G1Yfv0zKtXX7Kq12Qvyq0ujCjfUzeGl7cXYDT3D++5uviWsO9QRFyZ5w65Q+vIv//2S96//8hxf+CjdtTNitvba754dcnzozxvFdfcLDf8dNgTU+LnP//M1dUVmkDT1uy7gq65mpvbKx4e71guKl7cXvNw7Hh395Hqy5dcrNd8fJDCbBwPvFis0ToRYs9ue+Ris2BZteyOOy42Ky5LrMi7d3dU7YrFcsPDwxPL5ZK6dhwOPc/Ho3gslbZEu2pIPjIcRw7s+eHPP4BNhBhplwuGoeNiKUWnH3suN0v6DrKpqOqGy4vMh8cnjK3Ybvf85itpuy2NyLS7bmB/HLl/2NONmba9oQvPjENX5o0FRhlMUKzrJTu9xfuBbtzztP9I217OpNela1nXSxpjIXtBBlLEBItOlmFMjOWxIWtiyjwPovKsbGbfCRm+cY59zAzFO0fnyFJVYCu0c1QxUdsKj8doR2XjHC1xcJrKOiqrUClgrMZoMMsW7z2+zJ3WWgiiLkJJDhQ2o0wo7SxF8mWui5oxJbSO6KRQKuNjwJpps5I/EWTkLH9vsLIwKikeVMoY62gauRm892SCZPIZiaSZxBC5kKJnZ95JGapFSk6W9rFKEa0VrmySVDD0fZaM4xRJBHw6U4/G0wJcErYkO1ADBLKWAEtpp8UzlKQolXRZX2ZE3eGMIdl+XhPa3JKiJlYKFTQpapLykKPodBWzDcrk0p/IaDSqqK404nocJwklp7lWFig1e75NijU1qedyngvLKWJiak/NVicTUTvDREifQ0cn1Hz6WxXnh0pMRSbhkTJLFeFMWVfL8YpqK84F2b82PhOUP4/P4/P4PD6Pz+Pz+K96fEZ2zkZKYU5sPefsTGSvU0J5KG2oPPcV5+c4DwAlC8yWxW/n3JPnPGH9nKQnVe6n0Ob0uAmenRAXkJ66Pm9on42cc/HsESh0SiAGyXeB0goqkG8IHjORCJWdSny0kveSirxxartNPKFpxwWykzU6kpxIQI0+kZWHfiSOfiZeJzOR6DQ5RsiJEEZyivNO7BP5pFJzgJ41YtQnaNwJHnXOUTlBfiZJ/jiOjKMgRpvNhuWihB9WBgIorYlJCMs6y3P0x57tdk/blADSgoj53jN0PWH0eK3Y7w/EmMkpzj4bmYgzimVbczgciLEFHK4yLBYLrDisAWAUeOswtchyh7GnyRqVE8P+yPJajrWymtWipq0qKmPZrNcY7Tj2j2KwpjWuHKPTms31Je8/fmAcej48PnF9ucHWI2MYsJWhOgs/PBwOJDSX17cEa/n5/Vsen7csq4auP+KKrH+9aIguk6m4urqiair2hy0/f8hUjSHFgWVJfu/8gdxHbq7W/PEPjyyaFX/4l+9w2vL111+x/XgHiBfS1eqCt9s9P96949WrL6k0XK8W3N9/YLFYsFoJqvLx4wND76nrlspUfHx4x9XFhpATNzc33N3dsSxmjevLNd99/zPLxYaUM/044JzBWYG+tTazO/fzcY9Zt/TBYzrNY3iiags34nYheVyl/Tv4kbZ2OGvp+p5hlOvsYrngauGwqeLhQdpuyzdvSCrw892Ou21HN2ac91xerKnMClvOq3UJ4wxHPxKTIgbJQeu7yL6LHMcdk4FRu66wLmGdZhgEubBVTdTyPvZDRz9Ku8XHIGiugkELghyKE7E3GocmFFTDWnCVknsC2Z1ba9GYIoMWDhOA81Xh4wApYbLI6iHiXE3Op5wjY2W+yprZz8oYgzaS7eQLAuJD4bOcue+K/UUiqlj4jL8gy8rkhNKfGqBCnucccV6GFAV5sHZCdXLhyub5eZmSu7PG51CQoCQ+S2qc5wBdiNQxR3wchZNztmborOc5LmuZ3VM5HxqDUlrCWPNpHvjkfU25WdO/QkA2SlNNyHzOUKs5lyuUcxuLfUo+c6KWdpDkTKkJxcmcbFDOOlRZTd5xkoMVP+HdAHNnorj8Z8WcuTURlafXnvip4psCZ62wKRNrOpZzr7pJoFIWm4ICTd0Szj6v8j7OTST/C+NzsXM2YgqkJBdhDhNPIc8fXszhk3aWJn1ykf+FN0G58eT3vyB4MX1op9TY6ULMxX/hl7br5ze5LqFsUwF0/hiVZHKYCalFvZTCX14U1koisFXiRDkVclaf2lgU/pCQrUGMwASalfemiZNSISdwilTaXKZGIOwxMgwD5+ZRMaoCe0riMcXAqnIa5xbYys4tLxUUk+kigJ0LtDBPzCDmg1qLi61SSkwSfUDlRNtUtG2LKeRgay0YsViPCbwP1I3DGcvTsacfAm07+dwYUbz4iIqabiumht3R45yQwE8eTWISabUSFU1KYuZWN/gAfX+kngIYc0YlRWUatE4MQ0cIUsgd+o6Lcr0Em6k2LevjElcZKmUgRFIIHA6HeREBKeKa2vL65Q3eex4/3tNWNZebDX1/BOXmAqJpGh6fnhl84KZquKhrfvXyFU9PW+y15fk4zl4sl0PPt19/w74f8H5kuWz46s0rvv/5e+5bx+Wy4YeffgKgvVgzBM/NZsmLq0vevnvk9csX/J///CdU1bKo5Vjv3v3Mbn1ks77g6bBlv3tkvbqiXtQsbUsYj1xdr8tnrmiahhwyN9cX7J8f2R6OfHn5JcbC5dUVb9++L4+tWbRr/uX3f+bFmze8fPmap93IsDtI8KHKjIVwGmloKkelDSFFhv2B6+oS5yzrppZCpNvO18y0aIcQ8f6I09A4zW+/esluf/K5+fjwzMvba+63Oz4+HwghYg1crypCLd5RcjML+f9w2LPf7xl8II2Jp33PsQsYl1jUwiupncKoRNcdkAVEPEuSVvgYOY4Dh9IiVFphtCWTRHljlBS6jaWtWynsy7xhG8163VLXFcEPhByptENpJ+nWKWDLNWutFpfvWIwIyzRhjJN9UzwVJar4eU0dDSH3ZgKJ0QfGsXAjQwYjfB7Z2Ll5Xo0+cba/mwuSrDOYUmhMfBvjUUGcncvJBfJcBMSYzloxn7Y/TiGVWhbqlFBK5vwY8icbKmslOT75IHNQZua5ZHWKgPDel/djpW2n5Z4/+a+lT14/F4WUMnn+/bSWWNR87Kp0xabfjaEWRVqU1wtnIiVV3meYCoeJgTMXGKdzMLWE5rT3yZOnbEonfuqs20iBTDwta1kXXqpmJj7BTAuZ21lZzc/x6Wcgj5bXLlvrpOCsVXUiQCsyfm6x/Wvjc7FzNk7ITZpRjXNEJ+c4E5KnqvyXKJCgDefFz7/tgziXIE7SuxPxOROj3FQpTf1uDfn0/ykNRiXh0MBk2S39b2McyZyhUGlCKxI5IqqFjBgJJrkhTNkthblfK7sjQRKmAqtIz2eGvPTTY4xUbU1V1XgfORwk22pa5EHSakMImMpRVRU+eyrrsG0lk4lWktgLZB3JWaPVhG5Z2cFkcVE2RvrpxhhBh+Zzl7CFJL1eT8TWadKqi937wDhIsXCxvsTOyjKHKwaIIQSC92SlqauKofcnC3WUONtW02eZsc7Nn2nMmXGMZOUI4cjT05arCyk2TEHtrLXYSv4mhCCTmlYMhczdqAXOOdaXa2pnGceeyohirOs6Bj/M5Pdjr1m2CzarlsM2MSTF8+Oe25tLrNJ8uN9i5wXK4Jzlj3/6E5eXG9q2ZbNZ8eHjA8fjEaM0H4p7bwor2uUzN1drlI78+PYdf/M3f8Ovv/mS5/sHtmHF2Muk9C9//if+/u//nvtxx8V6RUw/U9ULNpdL/uGf/4k3L4XXcnN5xcf7J+4+PPD1l1+go1z7FxcXvP/wjurqYi5km0XLclnTjVLcLdcrHh+f+OKLr8lonGtZb64A+O67H4SDZg3/8qc/c3P7mq9fvWH3sOVpOILKuKJIW9Q1F8sVJktRkHSm8yO2ssQsqe6+kC2Hoaet2zJnZ1IcGYsSZ7N0rJrT5/79j3fcPz2wXF+QHx9xJlFZTeUsWo+4orAiWIZuoOt7Hp6fUErRD4Gnw8iYNTdNy7KQ8sykqktBXIi1QVsnaIE1wkNSE2roaCq5x7VOOGdYtBWrZc1muSSlgm4Cbeu4WK9xVjMOSeizZQ6SBXy+beW+zKe5ZPq/m4njp9iAMHrAFvFBuR+ixNaEkBjLJinGRFVMS5USRDbGiFZmFh8kP6G8iazLom5SEU/IfKR0JppE0zTlYCH6cZ7DT3OiYjY2/GQPqMsGrGRFze/xZMUxak1d10KSrh25ZJsZJQXNhBgB5bOZywtyyPicZv7IVEzIvFEOGJnzT689JZozq1Mny5CchFA9NlKA+xjwIZHSKa9Qo8R9mEzIQBY5y4ymnIlm5DgU5HNSMYD5ZD07R8NSKbiFd5PmIiqdcYHkPWgpJFFzJtu0PMZPQIDpf+fI0JkKOJ8VQyU2498yPhc7Z2Oq/sUB+fxGLsVOQWlmpIf0V2766Qb5K2UrnF3YJ/WVfH/KEpnG+YI9/1+BcVYW4iyqBGMMqqxeCoNWQkKLWd7HBFPKhCNXRkiJ2jlIkZACPgTIojyTmyN/cnzTMZ/LFQWdFJxWm6JoUKbIWBtWixXKVBwOHZ0PWKXRrSkTIGwPe4ZhYFHaSiIR1aV4MTLRTqiXsSj4NOurtNOstSfidZZ8nZxld2etnQuI6e+sKzlathJFRTk3bduyWq3o+566rtHO0jZSlOz3e1Lq5Xw7JSoWrTFaJhIfA02Wc+C9B2NL8WtICY59AGUZfGS73dFUheyoMq62mKbCuZq2lnNhlGLV1JhyIze2xhNYuFZ8P8aesZaFrKosOTMjd+MYysRcvz5yYwAANWdJREFUoZ3FZs3jbsuhO1JXFk1i9yxIxc3VJd3hSPKRj28/8OL1C25fv+GH9++JMeCUZjGlhibH99+9RaXMarnhcLzjh+//zH/zd3/L9Y3j/vGZodw3i/qC7//0lm9+9Yrh4ZHlxTUf7+64vbiiVorHjyIRr3TD5eqSn356yz/885/4u7/7O4bhrkivDR/unnFFLeOcQ2sp8KqqElsBW/Hh7p4vvnwJWbFey+d1ebnm+emJpqkYtwf+6U8/oM0dKWXGKFLsqpAiTfL4MdMsV2g8TitcZcFoHp92xBjZXAq6FEbPOAyMXU83HPF+YLVY0zQLQoTjoeeqKOi6qyPPhyNxPPDNmxt8P3CxXFBZh9ENk2zJx8DzruPQHVHasmgtaYyM3RGTwQ8joUQw5IUsjoJgWhSRcQzsDgcO+x5SpiqohlGKyhrxt7KGttIsKse6bVgvF8ScsKXtuGobGteSoodAEVaIA7Mz4qkzbX5iTKSosFZIutNcNvlrqXLRhiBhmjlncvylLNkUV+kTIpzIZdqVDaXifLHMqGkTyWljiZ8CjKd2WSaaUBRPJSsviaovpUQu5Fet7YmYrM5RA0G2Y/wUSZe97SQqKPYjqsVVjtbInJGTKiovjTorHHIRskhQqURZGC1LvtJKYhpAJPlKiLeTcuu8zabzGWXAaJS1NOVvfcql2JENZEgRH4u3WsE+spreUzq5nsDcSZtoD6q00XOSlvw51SKnX6xrU4FDYi7hpryrc+LwLNEr6lal+MR9ZXq68nOhgcTSLpPOiM6f0jskH1J9moX2Xxifi52zcY7s5OlCOW9LcUJ4ftm6Oo0z/x01tWkKJ1+dbt8JFZn/6pMb6/S309Cm/NMWY5wsxlnaNrZyM19Det5GkIGoCoSpSdETCeQwST39nK1llMKfvX9QJHVKZVauhK2lomDIUvmjNcporJp6shAxONfQtCuUsfT9SN+PUqS1reTolN3cMAZGH6lSJJFpCjx84iQJBA0yMZzzlXLKaGVR1RQOJ38RS2ForZ1bWtOOblIPTC0wciaNkcpU6EZ2xEpZUsrUdc26qnAFiTLGlN9rqqZmHEeUkaJyCJ5uHGmSQDvel10MVvgUGcIYcI0lpswwRrqjFFmuMmSVcI3EfFRNi9VF6WArkjqhhsaquWU3DgeGj/doa4RDok9FpF62HLuhhKauGINn9zhy9+6OL169RuXE9vEBgNFo2uWCpmoIIbB9euDVqxf86tuv+fOf/4zSFcuy0I8eDoeBf/rhB24vL3j54ob985affnzPq9dvuL42/PSztJF2fcfFxQVd39M2Fce+Y4iJevRcXV6yLEXJbvtAUxvaZcVPdw/sjgNv375ls9nw6sU1d+/fc//4CMDrF6+xlSP6QD92XF5eMnx8JMbI+/fvubzYzPlN69VKfEx0xXcPe47Rsz08o5TBGagM1MUTqLKOY3/A1RXNUvhIBI8fBvbHnjEElis5B+v1BdunrSyaSbN9HtCqZr1aMOwGYhRUZroOXr24wfvI4/MzX77+kqbSEDMhqdm7JBtN1oouJNwQqBxUzlE5RUqZ/b5HL6Q4vkbh6ppMnLlq3dDx9v6J9/dPUuRPmXoqYZDW2bKuaGtHXVnaqqatLUEhPlXAarHEmoquH2Rhz5lxHAlRTAutrmaUdWqfw4SqKtnz5IhSepbJ55wxTu6/mAQNNpoiOxbkuOT3Yk0u7UWFSMjFc2t6j1NL7HyOFMVSmWsRxEdbOWeheAJVxuK0cH9yinNxIfVD8fmZlEC/oCAIeq5Pr1XmY6M1RimGQQJb67alamqCl/lTZT178kQ/iPWHn4KYYzl3GtSn83wSOtmsbJ3Qj5n7UlBz+UZQ7sokcpVZkPBJFJxj8GKMWObvUHzfotLkzKzwnLsXZ7wclZMgPqVgm/g46bwgmz+EgvBpBRgm2XjWYS6qpqEno8W52D19juWpph/MxY6871T4Q8I5nd475dmNOoWb/mvjsxrr8/g8Po/P4/P4PD6P/6rHZ2TnbMQUhZj8Cx5OKgz0c+dk+JQ8Ng090aomRr0+ta2kXzxBsefOkCfuxzTO/XtAeB+5qG6MMRjrcEjiuXMOMykFCss/ZyUmhDpBjngljLW535mndouQ56zTJONQWVQSShtCntQFloxYk6vz96rFGwdjSaU0t7rGNdJqOR56jscjIWnazYq2bU9OzzDvnlRRN9R1M7flBHK2TGnTKHUicBfkS86n7Bz9eNqduaqZUaC5LVlQIiFzy3vw3oMVZZfWiUxkTJGMlhiCpmUoQarRe0wScqarDNqZwnep2B97IV36E3yvVCL4hHOutNw0cRjohr5A/WWnlDLeJ1F5MYqRmpUuqo8jaXpfccQoIRCOwbPbH9lvn/jmm29Y1S1V5QiFSDwOgdF4+m7k8mqD04pFXfHup3fUtiaMflZjfff9T1TNgpfXS3rvsQMcDzuuNwue2pYPj1tUmSY2mxU/vX/HTz8/slqt+NtvX/Orr75k7D3PT4+8vF7z9RcShvr++Y/88PZnvnh9JS27VWJ/PPDh6Zkvlxu8FxLt69ev6f2R5bplc6iorOLnjx+53+344ssXvHhxxYcPpeVVPVGtl7R1TTcEfD+waBwpD4TRcjx0lNPKvuvJKFabS1arFflhR1ViSupK01SGxVKQHW0SL643LJcNXQpoAxebDd3+wPYgyq05UkAZjJE2TNzDdnckpcSiaenHSDdICwFg3w88HHte3txyc3VFW2s2mxUhJIZdz1AcnJvaFVK5tOYOfcI4CUUdgienKGGQQBCWB0oZxjCIsadW7MbAUzegsqJyU2J4QBGotWXdVqzalqpqUNaIUamCtpJz0DTNjJLknOZ2tzEKZzWVkaia6b43STgatatQM0cnEEJG1WXOswqXHWMs7XTAqin1mmLoJ/e3NfK+BKUxnE0zp9b/1Eo5Q86ZXN1VMaJTJ0NBKC7S1uK9P7W+ODnbi/LoHNmZev7ytwZRoBp9QpzTZFpo3UwYruua2iq89wyDn/k9kaJkVYmsS/J54QvlrD/h96SEfAakkgGdiyFhaWWpUxL4tBZYI6hKoC7tt8wwCD/SG0F6Y/LzuYATT2Zedz5Ba0rraTLqE2kUaEF7TgQZBSrMKH/OoIo/kIqmvK+T0/Hc0pqjHgovdQJrzohTk/JqMkacgSc10TlOzxUUhM9trP/rI3iPnxC+ucA5KZSmFtUvC5HzYieWlolS0l/NWtLJc0m51WeqBCap5TzKTV04XuecnXiWoD1Jqp1Sc3Fgz4qdkOWaPWfrT7yfCeI2VUUKAaVO6oIoGk1RMhnJZQEIxVo+JbDKnDBIVXpryqCLsqRqWqxzHEfPcOwYx4AxrtifS8bMBK8C2MpRNTWuqqiqiqqS9xNTgR3LBGOUPnF10qcKuBDCLCOe4yTmx4qp48TZETt2Oa8heawptutZitOsElioVS3PVRYZDTirWa/WjDkKObGch3EMbDaXLJdSQOQkajStNT5JG6CqKvbHjuPxIEqY8r66fiDrQMyKEBKVa6h1MdWKXkKLgO6wRWWFyhDGSEiZ/XEUYrQGh+ZqPfGLjqSqJmYpMGpnqdqK3Fu+//Fn6trhapForzaX/PjjO2x2XCy+IOfIbrcl9JrLyw2Pnefug7S8fvvyhpcvb/l47Om7wP1Tx3q55Wa9wg87nree65sNAL/59jW///2feHp64tXLl/TjwO3tLTHfs909zDytw+HA1998xdgPNE3LYtlwdbHm48ePfPfdD/zuV7+mbaUoeH7aU7U7lu1Iu9jQH94Rgme9WlBVhmP3PLsXWwf7buDY77lcONY2E70sfDfrmlXjWBaF04urS1ZryxdvrnncdsShg2XN+nJNUomu6zgcSup5XYkU2jgwWlLcu45D19MPA37KewMSmec+4u+f+O3rK9bLGkzEGMvwEPlw/wTA9UWDs5arZUs3et4/7ommZ7eXItpWgazr+Xof+hFtZLGomwY9Ro4hMMSMTmHmmWkUlc6smprrzQWLRU1TVygtHC/rNHUh4Fe1ZRgGQvD4MEjbVGma2tEYhzOnIsIh5y1HT9U4rKkYx4EYE77Es8i9aIg6Y5UlqlREDw5jHMoWJ+Wy+MUg7fScFSlmVJlvjNFzYTNHMEzfK8VU3RolBOWkMxjNWDLtslcsqyUYS/aRcRznuWEiB5/ifsp8qbQUVkbPFhf6zELDaOEUZiMcnZgVYyiKVyMCiGkzE0OSDaJWqMTcijspdfOZi3Th5iA5hBEwSRZ3cTY+SeopFiFqmvO0IbmGVZvkcyhke4A+DsXpvWzWi2pM8jk+XX+k+CsvkU+y9DxFHX1CspmI6mU9TNNnEz9ZE5WSiJCptSXFT2mPnSLZywvpUuxQxCPS9FRzoafQ+bTpzTp/dlD+vzViIGdBRmKadiuJU5Fzipz/BNE573kaJTEJRWupkjDVtZKFagpDMUrNqM95dQ8QtfQhz90mbVZkXWEquRXII5aiytIWZYtvShR+i06ZmEbCGBmGkaHvCd7PduPSjraEnNDWik15kAA8Vy3EYXNi/seBmDIoTUDjTENWipDLJGMNrhBuXa3JeWDcdxwPHRmNXTeYnBj6I6RAX3gVfuy52FzhjMWZSqSr1pX+vsYYe1I0JeTG0IoYxd02hCB5PyHgp1yq2szyYO/LziNprK5QOWBRUqQBzpwmOV8+K2cMrrIonYg+zC6kzhlsfUG9WJAPPXWdwGS6YWC9sqzXy3kBN8ZgVMJViqE3KN2yqBsO2yMqQe2aGS1JDByOI7eLFeMQIA7UpkalhFbNnLN06AUROo6RZbOkskbCRXtZmBZLO8t4c448Pz+y3NTEMLJPCYXB6IZ9dyTqily8WK5W1zy4J7ow8tOHD/zmV294fNoxNDXGGF5fbBieRI3VPe/58tVrXG15e/eem2XLqm4Zgngk6RAZHoX4/OXVJf72FSmANhWr1YoPd++43VwSY6IuJPGE4uP9Ey9fvGa9EUL5f/d3v+Xu4yU/3T9wtd3y6oUorLYPT7SVwY8D2+09zlmCH/n5x7e8urnmarNm34nHDSmR/Mhht8cqxWq1oKcTgnrU1NRzrtHlxTUvXi5oGsu1WvD0uCPHEVdbFsuGYew49IUL5FeoaBjHgWPf0fuOlWvRYSCR6UOcuW4XmysGDlgN61XLsl2wH3ZorWgqzZQAMfhAyoZF27IdEu93kc4PGJWpFSx1RaWkwFA5kOKIzom2XuAMhHEghViKczvv/p3TrOqKi03LzeWKddtQO4OqFGhRY04ZbEopxs7THQMq1Sg82hisrs82WGVh1IaMJUVbOHag9IkPqGdeaixZeAlJR5EcPWVc4RW6M0OOLBvA0+1ZlE3iUQbMi7c2kj11ckI+zcWTHcZUwPi+41g8qDyQQgS8zOdanQI0kQ0VRiIqrHUoo9G2kpy8wpeU1xAujzWy0Uo5Ev2J56OLq/10XsWPSDg/s2rVFEQ6hLmASHlygpfIBikKhA+pMLPVCYAOCRKkrFFaUxdlX6orQqzox2ZGpVuzZOePxFzIzzGL95oRl+UTX2ba6Yu9wYxN5YzFEbwnmVNxpCZ/nfJZzKqpac6eHphz8R6Swk0pJeWcAp2nTfyExp1AhawFy0uqWLGkKTbitNHVv1g7/0vjc7FzNmQRLblNn5gKTonlk+HS6W/mCpmJST4hO+dKq1OB9EuF0/mY22PCnZ93/9ZaKWiUEuWUUmgCOgVMuQnVVBlrhY4lgTiO+DCSgidHgUbTlC2q5AZ2aGLMOC2E41yKCGdrVLmBBJYMM7EuKclvyiUjS1uRjoPcln3f0R+PhMGjrEPFhC/Iy+CPbLeyeE4p4lUlQZ3n8LMu5Of5HBb4NxUkJ4xChpxMHKuqtCjqmpQD4xDImbKLLOc/SaGo82kiiuEkSXVGWlSSAp8k0XqYkp4ti4W02VIlSJCPAa0t69UFF5uLswlXY3SiaRQ+HKmdwSgh/FlrqRtH08r5Gn1PU1mMUowhEEbPclUzDJ5JNQLS7tK6tL2GUZAmY3l+fkZrzXq9nts9rq4ga54et6zXG354+47b6xv2hy2LpiKHA8615bGKy4uVkK1J3N/fs1622NoQSs7Vcn0BwNNxz/rmhhcXV1yvNuwOR1abC6yBd2/f8/T8OAd8ogIvvnjJ73//M0+Pe65erLHPT1jtZJc3TYw5czgc+KjvePHqDc7AzdUFt9eXXN5tOBx27ErS89XrG9rViv1+T06K+4d76rqlGxJ/fPuRb3RD3UjBuX16Jkbou8B216OoWNUwDANd8rQqiOoICHHE1S/IClxbscwtlbN0nSSe17oilTDUsR8ZhoFh9DztdzwedtS141Ip+jGRkmbs5InrdsHtpWYceiqnsBpyUDzstuyPR9aF+O29ZxxHnHNFUTNy6I5UzrBcLmiLggqEuOxjwNULhpzpupHjKDEBlTNCyC2kY2M8q82S1y9uuLq6oq1Li1hNBnSnnKFJMeSMQtlyX2vNlNN0Pm9NKLHS5T4lzG0vpRQ+nBYjZXXZvcuCLV48rqAKn4ow5g6SmoxdPw0lNpNYIadSO8g9ofVJWp3DWNCa05wr5qYSahv7RMxxloMra+YQY601uSg4dVGW6aIMVeo0NxFFhu5DnNtj4r00zko5V0wola7wYyR4P7ewcpHep+k151zBUxvv3Dg244tC9mRWGKOIOnQqSLtVGCSvrGkaFj7QeUGF+2FAj7qQpKWtJmnskFMi6jMUpsjyJ5RranWN+FmRPH3OlEgNkdCdfp71GambT9c9PRHAzygdSqm5PZbOrqOYzgrGVEjT6STbB/ApCQH73zA+E5Q/j8/j8/g8Po/P4/P4r3p8RnbORoyRiU4yGTmdx0VosbQstttnRlYT12aSTp6N/xyS80upuXxfpOrS3EVNPeKS0CsHqSBlYvKoqLGWQhycjkEXYleS3XPW0ru3trh3nl5z2rHlnEt4XZwdTpXJM8Qs/hdC8jXGzTu1afc38YZAeE9j19P3R0FfciKnQPY9MUZ2h2fGQVoz68X1DKVPknORHAoPSGFO/ewkpzYmOcaZyIjA9xOyZIzB+0gIEeMkgDAXYqLEQqTZ7dl7IRIaK++hsgalE2EsBo5RdpcAlatlRwpFOq84HI5oW9EuFyilCUHQK1N2pgaFNhBjwAeRmV9frlk0bvbLUAoWTY0mo5C+fAiB49BLEGKBd42riSEQfSKPI0pFjHEMw4Bzjsk4EkAzsN4sCdkzhJE+RL57+x6nPc5sSCnQ1qtyzQdcJe2Cm+tL7u4/cH17Ix4kLjPkwOVLQXbGu4Fh/0RTLyDD1cWGj3fv+c1vv+Xlqxv+6Z//xMOD8Hu++eoGazXJwZ9++J4Xb/47Xr14yXa7x2o78x+NcYR94t3bO5rVmpRWRN9xsVzzzauXDMeOp4MEge6ft1xevcBuVqihQwVPN/YsL1qeng/cb5/4YnkLQLNoUBpsbekfvSR+DxnnljirSFFTtYVX4QNx9PgkMQGLxZphDAw+EpTHOYMvLZph7MWV+mnPw/bIrofxwxZVbYjeU2kt8wTQVkrsH6LsSjuf8FFxOA7sDgNKyWSzvligdUCsfQR51EjQZdNYLlaO1eLkNVRXDcYIV2zf9/T9iI6Kta1YrxasmhOy8/JqzYvrK9bLFiaSbRpmjxlz5vulDdS18N2sKyhD4euFYg9BucJkB54IQUEWNHhqP0980RgTKkdpUWiDNhVKa+GvnLWg5tefzAoLopOjuNdbVQxOJ6sWpUSmDjOKPqVoS/tdz8RX4ex5UhLUYzQGKH5ABVme+Y5aWkLWWmI5RlMk0ymdeCg5QIqRGAdSCGLKmjM5elLO+HwyuqvbBm3ORBdlLooxMlnBziuEQVo+ZV5WE3qlqsITjidqA8IByjGiFaioUVnm49pVtHXDsi18v77HDQOD96SYyEibLzLJ9k+YR0ol3DNOvLPppE9djXkBgRm5ObksKxR5QvbOPXlUaV9NpHCYv07eOvDpujjzhdCkElwqP//0eVP+tyE7n4udsyE3xUmRAOXkT4XPL/uDauLwnCDOX7avfvn9L4uc8zHf+FMRdfa3OU5OznFmthtjMLpYiKtTsRNTJGdIUZGSJNfKhKPmCyaoOMPWTDkoURgqylSgzJz4HcsxoTTWVkQlRGzrLKqYloUCmQ7HI0PfEYMnB8kNwnuyTfRDz7A/0q4lb2rVNlS1tLGcc2hTbNq1qEV8Oln6n1QMBRLXVojRpd03KyVSmjlQitMEY60sADEKrA3Q94PESFiJCzAqczz29MdeCNdJUVXSPljUDbYyQuIsBmFd17FZ1zRVTQxxVgIZKyS6Lg4FjhWFxnLZ0i6bAs3L59U2FYuiwvFaJhrhCGjGfUC5k+dQDJnkA2NIs0v06DMhBi7aC9arAsfnR5at4+gD2lo2qwU/v/vI6DT+cceqrihcZpxNtLWoVVarJY/bZ96//8DXb14TfGKM4+xH86s3rxjHQDaKj49b3nz5BT6MvL/7iV/96lfkNPL4KC3K3dOOy9tXvHhxw/ff/8hxt2fVtgyuJ8ZMVxK/l8s1X33xhqZpiDHyvN1y2G857DvefPGKoA11ySfLSbxNVos1+foGbRzjINlkldvi+wFf/ItUhjAkXly/5H438Hx8INtEMp5l4/7/7Z19jF1V9fe/e5+3+zZ3pi8zHUsp8PuJJTxIq61tBv/Q2IaqxID6ByHVEFCI2iYgvkGMoP9QIoZUCAETgxhihGCCRiLEWmCQUCoU+lB5aYyhtA/tzLSdztw7997zsvdezx/7nHPvbQs/nie2tzOzPsmknXPOPbPP3edlnbW+ay0sqLgoBoX0nNBIIg1PupCUQBLBdSUcT4KSGNIRKKcFYZKkBU02SypsKSjtoNmKkKjDqBR8DPSV8tBQomybBxcltMIEiWmg1ohxZGoGpaKLchrKDBtNFIMCVGJQ8gKcMzgA98hxOC5hUaWM/ko5D9NKx4EX+CBtoBKbcWeMguvZcPeSvhL6y1k/N40FA1X0VQO4nsyrB+uWNQY8tMPtQlgxcFDIwjZWOCuETB/O1BFi0OkLoLbtIpQVvZpMR5P1qQKgtIEnPXhOkIeD2mGNjl590rZ8oKyYXSoPsJXaJSBlO6QrRG6kZQIfSseZGTuZaDWr8QPhIAgCoArEicqNnOx6y+6nWS0hhwSgbXIDDMHoKNdi5UVeTZa5a+0we3zWYMo0Q0op+zJY8tPzLIYyBkYYW59IdDwzSHY8A+w1L7JMLJM+k7JHhpFpBElDGoJI59eBgCsdFP0AUcG+fJULRVvvLI4RKw2jk/wF2z7fOrOxOjKM0+cCIPOeWXkuFbUz16Roh7yI0oKPad2d9rbpXGcZaJlQ2VhpQtYtIH/hRUeVHtmh4aF29pydi/Zn/yfmjLFz//334+6778bY2BhWrlyJ++67D2vXrv1/2ochBa2zWG+nsdMWflojpN2gUgjRFijnD+P39+h0pl5n+2+nVmYP6XYx8WybrB+P1jEobdgZuC4cR6KzEadV91uvjlLKWvBG2xJ30rZIAGB9IlrDScu4k9bIm2x6HhzP7zpGWzjKZj9komAgFetpkxfRisIQOk5gEgUgLTYGjaiVoNmYgRACfX1WqxAERXhukFdMdhwJIWybCGOAJIlyw8STaQl52L4vtrlpWv4d7bRK+x0Y+/k4hiM9SMeFlC5UpJHECVpR+kCUsJVyU+FfqxVhemoGIEIg7Y0z8xj5vg9IiThuwvd9aN1CENiHSDqTHXPeftMIApt6ruIEhYI1mOJY5R4213UhCXm2j+M4CEpFoN7Ib/L2mACN9HuJFRrNJoIgSLNAbN+ywSEr5HUdZW/siTVYFwz0YXx8HGEC1JsR4kKMSlrld7i6ABICtXoLjdoMlg0twf79+3FAE4aGBuGICCayc1BaPAAvTNBotbB44QCmJo9hcMkQWs0ZJM0Q1UoRKrZeu8npKQTlCv5r2RCaUxOoT01iYf95EJ5ArT6dCkWB9w4eR2nFRVh+/kdRb7Xwv/e8Ad/3YYwPd7KGgf4+ULpPrRRcKVCrTcLxfLiBj9iEKJcKiA3hSBxisma9QNVqFaEBpqfr6C8vwPjRBgTsTbdcKmF40SBcNzVgohiRBqp+CWXfTTVcgFdyYbQHozRSWwN1DUw3pmHIZuLEKkFiBI7PtNBSGs04hp/reH0s8gsoekWEcYJmrYVmpOAGPoqBg3LJ6qZ86SOOFYwrEMYtuA4wOFBC0XMxUPBR8Jz2eebYcy2Bthk3QsLziyiXbYr5goEC+lMvkHB99FWL8IqB9fC6LkgDWsY2bVj4UKp93QghID2rV4Fut6KxXttuDUZ27duCnpSKlrUtlpgLXrNiqo79f9og0+ov7Hb5lSIAKVJB6gn7d5y05YJoGzu54YN2X8DMe9L+ntr3Ttd14fg+ykEAJ7TamszgyQyc7IXJ3jcNVKJgtAa0gdFxrktqexKyCu7pGKQtj2EAZI1bVZxYzZEj8++SnLR4K3U/3LNjy7NnjfXyZBWVidqPmqzwIBmT9j90AMeB49m0b086KKa6oZLvoxX4KET2PIs02m1AqKMydccfsCU/sorW2hqj6UteNs5Mx6RTr5cQgBBp8dbOF3WitHChhH11toU1rb1ruo6/M4M4f1bqbg1tuyFsKsruyih7f+aEsfPYY4/hlltuwYMPPoh169Zh27Zt2LhxI/bt24ehoaEPvR9jNEjLrknvFFoJkU1yNjmnNmy6Mrbyz1gLVnakmp/KICKyfpvOk9Ce+BqGkjQNPoaTultdx1b0zEakYJvWEdk0dykAqYUNi0kPMr0APCEhoaBUDEnWAwTYGjW27LqBzF2mMj+ZbbsFa5hkWQ8aCjrt4WSSOFdB22MgkNJoRk1EUYTq4sUoltK+UF4A189aAKTdcgFoIxFHyho66XfgFZzUQMjeNO18OdKmfKqO0uRKxVBKQwoX0rdeliRUaDZtCCLrYeW7Lvy0t01rpoVGfQatZohCauC4vgeZGZ6ORJxoOK4L3wtsC4FqHwqFQn4hdgqsiWwVZp1+PJEePC+A46a1P2QWavBQr9eRaGt89vX1pS5uoFgswnPal2gmpBZCIIxjuL5vU+aJEKsE5T6b9h2rCEkUo9pXgNECjitQ8AMIIyHhoBEmUOTn+ywUfMQJIUliFJ0KFg/048DEMRQrfSgXCnl4Lk4EiqUqmmGMvoKLZrOJo4ePoFAo4OiRGs5ZOozxeAoA0GwaHHj3MJZ/ZBAX/fd/ox6GiJIQlVIfGvUmjtWsmLremMEbb72FS1cV0F/pR7VSwLsHD+OYewz9i/4Xms1201Q/9c5JKRGHLZSLRQReFUZrFHyJUsHFxHHbTT0ouOgrezgyNo6J6ZZNs1YehLDtNQYWVLGwYr+vI+MTaEUzMLIPvl+yYRmjIBwHMzNR2s0+ffuHk55HAo7rQ2lClGh4gY+WikHtylAImhIL+4ogCIQtjVZLwZFAf6mMUtHJPUuuQ1CmgVbUhIa255+KUAlcVIseAkeimGU7FgJoI+FoCVdKFHwXBd9F0RcoFnwM9g/AyXpuSYIX+LZECmmABHQqpkV6HmW914xxU6+2yA3sE42d9guFAykFhNDp9Wi7UVsviwOVpSdLx4aB0n59WbjcGIIRtsVD/kAjW+qChAAc650Vju0OnoWBMrJU8MwAklJCkMjFvsaY9OXM/k03Da8ZSAR+gKITtEtRuG5+f7dtggxMnEDpEDpReeVjUDthRJJnP+O0vx9rpGSlLgiy834UJkjIpCH7IA0725fRTKycDiD/NxNmkxDIejKS6Ui/z3tnpd4m0hCeDY9LAXhw4KXGYdH1UfIDlH0foRsiUTaclAvN0WHs5KGzLKkjXSdO7oeWp6jbnPP0AZkZhAqdRgx1eImQtpfI9tH5HMz6HWZZXvm4OtZJ0bE89RR9GOaEQPmee+7BDTfcgOuuuw4XX3wxHnzwQZRKJTz00EO9HhrDMAzDMD1m1nt24jjG7t27cdttt+XLpJTYsGEDdu7cecrPRFGEKA1lAECtZmuDkFbQ8mQtTYbIU/8yT0+HRZzjdHl22v1c3l+4LDvW2boCJ3iUCIAQcIUEhIQREm7247q2hwyyt5PE1poQBr7vQ2htY57KNsfMtqP07cEoBZADLdJuvGlBPutuzI7TumEzS14AcB0HWthUfQkBkxa/M0qnb4AGcK1bOQxDhEkE1y+gOjCQF7TzC5lnR1pRsbbN9AxsR2QD5B3Ibfq/AwGT9kMxsI1LCe3KqPZ7S1Ri4+jp22QU2zHYmjUGgWv/fhD4kA6hVmvi6MQxxHGMSrGEwC/aIoYdWqxsDEEQpLoiCc/z4fsBjErd2alA2PYtsh4nmQo9PVmA77swaZ0J2fH2TERpp3OBYrEIE8fwXQclr3iS10hKe0J4nn271IlNV49LfrtUgV9CkiQoFH2Q0tAUoFIqQ4QRAs9HGArIVEVaq81gQaWCQtGF1oTJ+nFUFvRjYZJgZnoKgwuXoz5t53ZmZgZxHAKSUG/WMVAt49ixaRw93kRfXxU0No6+fhtKm5ppIFEhjk9PoVqtIAg8hK0WiAglP0Atre9CBEwcOY6J8eNwpYdzPrIU0/UGJo4ewcTEEZx/7rlopmULVKxR6BOIQivgD1sxkjiBKx0UpIuS9FD1rV4lqTXg+AEG+io4dHwGUWIAY+A41rsgpURf2Xp23EEXx1pTMNoWjpRkdW6J0mi2BJrNJsppHCuKYhhy0IoSRFEMz/GRODFc6cBxBQCdF6J0HGF7NSkNZWTq8DQoBgUUApHXFlHQqIdx2lsJWFDwUHYrKHppI1vHzbVjhUIpL/6pXQlXFhAERRijUC4V0VcOYIx9248NwXV8uKIAIQWIHECHSDXHVjuSnl9ZXyejE0iZQKbnsO+nXtcOXUfW8BNOYK89ckA6sU4acq32DsjDVifqFLMeUUKYvBipVRMqq3lxrA4wS8HuTMPOyL1OqYfH5mJker52JoYkAI6wgmwHgBRwHWlT1bWVBuQFStMaSUYnead0W5Ej8/bnitl8DIDVkqWKFRABTof2hihtQKptsT8gvWenHeKVMHCSrKKNBoztTSVBaUp6uy+XVVRkcay2tjQT+GZ/JxuXnwqvi4UCKipBK7FlE7S2iRmGrAC8876OrAdAWkMn74xuJNAhubBeobR3Ysfzy+p10rF1apEEAZDt8aJD8E3I/aGdniPqfmTm9Yiy00EDMEJBzRfNztGjR6G1xpIlS7qWL1myBG+//fYpP7N161b87Gc/O2l5sxVCqVN/JVn4IBPWIb3YThQSyyz+21Fa3daDSC/qTFf3PqEv27QgczHadbaJsK0UqdN6A7EycIQBIbEaGmQZRio/mQUZCE0QRoKMjfGbrLmnsQ9K0vZHC1t2WxiC43pwXYkkLTwXJvYiNUpDQyNJjQsjCWEUw4PI65A0whBRGEGD4BUKIKWgwhjCd1EsFuF4hVxNr0lCRQpxFELp2ArnjIEWtgKx5ztw0jCOIQXbrtRmQyVxCClkqrPKGm8CQhJMWhdJSoKIbT2RZrMF1xE2s0bb78DRElPHpnDo4P9BbaqGSqmMICgijOK81kepaA2jME6gDUEnMRKlEMXp/EQaMAIEkzfUM2RsRkJiII0LbTR8x4OJFRIdIlYRglxTIBBpY+fTdWytJ9L5zTVrfie0gNEGrThCs9mCVwigVDvk2QxjTE5N2XPAaByv1eEGPmZqMwiCPlQqFdSaIaQ0qFZ8RJHdVisfxWIVnucgjELMRAoRIiwaHMTYe++hPl1DkIZb3jt8CNUFVXiOQKISzLSaaCUJIpWgJAymZ+o4cuxoOgZg8tgUfL8EEhEi1cLRySm4rg9HeqA0vlfwy4iTELVaDY24YWvsDA6ATAhKmpipT+btDwCJmUbT6q7CBnzfxfRME4IIA31lRJCgNEzbaNRRj1uYaYTwAgE9E8JxXLiORBIr1OoNTFdtAUInEAhkAa04xEwUQRBsmJQkWiEwPlEHweqGSkEJzVhhulbHTKsF4RACR6QFAG04JZBpGBQBYjJohA1MtRII6cCVGkooGCqi2bLXzLFGE5MzTZQ9Bw65UE2FwPPgOgUI30dECjPpdUuJLSanMxG+K+EVPCgBkGvDEyrVHSYQkHDTyrbW2NPKZoSRVlAmaWtc0oyiqBWCoOEKAW0USgUfhWIRoqNlhuNbTYhjbAVc25RCIFEaRDrvuk4QUInO69BkrWGyCr9COBBZ4VKpbQ0sYUNfVoRMqSbR5FmV9hqXkI5Ka3GpXC/jOG764BZ57ZpMqOxAANpFojSk50MnidVJKd3xHZDNHE1rqxmtIRyr6TOqHVK3XctT3YmUNnsWNkNLpKFA0u3wEgTlRQJNaoy4gZ/eY9JCfwCUikDKtAstZi+8woBS3Yo0mSFp7xFZ6T9jCFIpiCSxGXGiXYRRk9VUFfwAhaCAlkoQJwZKW8Mqv8eQAAnd1t2kddfsuNN/O1/k84GmY8sMluz7yJ51yMJutrN9/gxN11kDqQMpul5gAeTi8+zvZSiivB7P+zkp8n3Q/7TFWc6hQ4dwzjnn4MUXX8TIyEi+/Ic//CFGR0exa9eukz5zomfnnXfewapVq87EcBmGYRiG+Q9z8OBBLFu27H3Xz3rPzuLFi+E4DsbHx7uWj4+PY3h4+JSfCYLAhiNSzjvvPADAgQMH0N/ff/oGy/xHqdVqOPfcc3Hw4EFUq9VeD4f5kPC8zU543mYnc33eiAj1eh1Lly79wO1mvbHj+z5Wr16NHTt24KqrrgJg3WI7duzAli1bPtQ+Mvdsf3//nDwZ5jrVapXnbRbC8zY74XmbnczlefswTopZb+wAwC233IJrr70Wa9aswdq1a7Ft2zY0Gg1cd911vR4awzAMwzA9Zk4YO1dffTWOHDmC22+/HWNjY1i1ahWefvrpk0TLDMMwDMPMP+aEsQMAW7Zs+dBhqxMJggB33HFHl46HOfvheZud8LzNTnjeZic8b5ZZn43FMAzDMAzzQcyJCsoMwzAMwzDvBxs7DMMwDMPMadjYYRiGYRhmTsPGDsMwDMMwcxo2dgDcf//9OP/881EoFLBu3Tr84x//6PWQ5jXPP/88vvSlL2Hp0qUQQuCPf/xj13oiwu23346PfOQjKBaL2LBhA/71r391bTM5OYlNmzahWq1iYGAA3/jGNzAzM3MGj2J+sXXrVnzqU59CX18fhoaGcNVVV2Hfvn1d24RhiM2bN2PRokWoVCr46le/elLl8wMHDuCKK65AqVTC0NAQfvCDH0ClfaGY/zwPPPAALr300rzg3MjICJ566ql8Pc/Z7OCuu+6CEAI333xzvoznrpt5b+w89thjuOWWW3DHHXfg1VdfxcqVK7Fx40ZMTEz0emjzlkajgZUrV+L+++8/5fqf//znuPfee/Hggw9i165dKJfL2LhxI8IwzLfZtGkT3njjDWzfvh1PPvkknn/+edx4441n6hDmHaOjo9i8eTNeeuklbN++HUmS4PLLL0ej0ci3+e53v4s///nPePzxxzE6OopDhw7hK1/5Sr5ea40rrrgCcRzjxRdfxG9/+1s8/PDDuP3223txSPOCZcuW4a677sLu3bvxyiuv4HOf+xyuvPJKvPHGGwB4zmYDL7/8Mn71q1/h0ksv7VrOc3cCNM9Zu3Ytbd68Of9da01Lly6lrVu39nBUTAYAeuKJJ/LfjTE0PDxMd999d75samqKgiCg3//+90RE9OabbxIAevnll/NtnnrqKRJC0HvvvXfGxj6fmZiYIAA0OjpKRHaOPM+jxx9/PN/mrbfeIgC0c+dOIiL6y1/+QlJKGhsby7d54IEHqFqtUhRFZ/YA5jELFiygX//61zxns4B6vU4XXnghbd++nT7zmc/QTTfdRER8vZ2Kee3ZieMYu3fvxoYNG/JlUkps2LABO3fu7OHImPfjnXfewdjYWNec9ff3Y926dfmc7dy5EwMDA1izZk2+zYYNGyClxK5du874mOcj09PTAICFCxcCAHbv3o0kSbrm7aKLLsLy5cu75u3jH/94V+XzjRs3olar5Z4G5vShtcajjz6KRqOBkZERnrNZwObNm3HFFVd0zRHA19upmDMVlP9/OHr0KLTWJ7WVWLJkCd5+++0ejYr5IMbGxgDglHOWrRsbG8PQ0FDXetd1sXDhwnwb5vRhjMHNN9+MT3/607jkkksA2DnxfR8DAwNd2544b6ea12wdc3rYu3cvRkZGEIYhKpUKnnjiCVx88cXYs2cPz9lZzKOPPopXX30VL7/88knr+Ho7mXlt7DAM859n8+bN+Oc//4kXXnih10NhPgQrVqzAnj17MD09jT/84Q+49tprMTo62uthMR/AwYMHcdNNN2H79u0oFAq9Hs6sYF6HsRYvXgzHcU5SqI+Pj2N4eLhHo2I+iGxePmjOhoeHTxKYK6UwOTnJ83qa2bJlC5588kk8++yzWLZsWb58eHgYcRxjamqqa/sT5+1U85qtY04Pvu/jox/9KFavXo2tW7di5cqV+OUvf8lzdhaze/duTExM4JOf/CRc14XruhgdHcW9994L13WxZMkSnrsTmNfGju/7WL16NXbs2JEvM8Zgx44dGBkZ6eHImPfjggsuwPDwcNec1Wo17Nq1K5+zkZERTE1NYffu3fk2zzzzDIwxWLdu3Rkf83yAiLBlyxY88cQTeOaZZ3DBBRd0rV+9ejU8z+uat3379uHAgQNd87Z3794uQ3X79u2oVqu4+OKLz8yBMDDGIIoinrOzmPXr12Pv3r3Ys2dP/rNmzRps2rQp/z/P3Qn0WiHdax599FEKgoAefvhhevPNN+nGG2+kgYGBLoU6c2ap1+v02muv0WuvvUYA6J577qHXXnuN3n33XSIiuuuuu2hgYID+9Kc/0euvv05XXnklXXDBBdRqtfJ9fP7zn6dPfOITtGvXLnrhhRfowgsvpGuuuaZXhzTn+fa3v039/f303HPP0eHDh/OfZrOZb/Otb32Lli9fTs888wy98sorNDIyQiMjI/l6pRRdcskldPnll9OePXvo6aefpsHBQbrtttt6cUjzgltvvZVGR0fpnXfeoddff51uvfVWEkLQX//6VyLiOZtNdGZjEfHcnci8N3aIiO677z5avnw5+b5Pa9eupZdeeqnXQ5rXPPvsswTgpJ9rr72WiGz6+U9+8hNasmQJBUFA69evp3379nXt49ixY3TNNddQpVKharVK1113HdXr9R4czfzgVPMFgH7zm9/k27RaLfrOd75DCxYsoFKpRF/+8pfp8OHDXfvZv38/feELX6BisUiLFy+m733ve5QkyRk+mvnD9ddfT+eddx75vk+Dg4O0fv363NAh4jmbTZxo7PDcdSOIiHrjU2IYhmEYhjn9zGvNDsMwDMMwcx82dhiGYRiGmdOwscMwDMMwzJyGjR2GYRiGYeY0bOwwDMMwDDOnYWOHYRiGYZg5DRs7DMMwDMPMadjYYRiGYRhmTsPGDsMw84L9+/dDCAEhBFatWpUv/+lPf5ov37ZtW8/GxzDM6YONHYZh5hV/+9vfuhokfv/738fhw4e7urQzDDO3cHs9AIZhmDPJokWLsGjRovz3SqWCSqUCx3F6OCqGYU4n7NlhGGbWceTIEQwPD+POO+/Ml7344ovwfb/La8MwDAOwZ4dhmFnI4OAgHnroIVx11VW4/PLLsWLFCnz961/Hli1bsH79+l4Pj2GYsww2dhiGmZV88YtfxA033IBNmzZhzZo1KJfL2Lp1a6+HxTDMWQiHsRiGmbX84he/gFIKjz/+OH73u98hCIJeD4lhmLMQNnYYhpm1/Pvf/8ahQ4dgjMH+/ft7PRyGYc5SOIzFMMysJI5jfO1rX8PVV1+NFStW4Jvf/Cb27t2LoaGhXg+NYZizDPbsMAwzK/nxj3+M6elp3HvvvfjRj36Ej33sY7j++ut7PSyGYc5C2NhhGGbW8dxzz2Hbtm145JFHUK1WIaXEI488gr///e944IEHej08hmHOMjiMxTDMrOOzn/0skiTpWnb++edjenq6RyNiGOZshj07DMPMKy677DJcdtll+e933nknKpUKDhw40MNRMQxzOhFERL0eBMMwzOlGKZVnbAVBgHPPPRcAMDk5icnJSQC2WGF/f3+vhsgwzGmCjR2GYRiGYeY0HMZiGIZhGGZOw8YOwzAMwzBzGjZ2GIZhGIaZ07CxwzAMwzDMnIaNHYZhGIZh5jRs7DAMwzAMM6dhY4dhGIZhmDkNGzsMwzAMw8xp/i8jUn7uIf1yUAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/deSJUuypol9Rtx9saCZkXSzqtOH9JmeM5h5ATwInmGeAHe4xXPhBiIQGUDQPdN96hTZJGnwxZwYmQs1M/cVmbuqekQgDSlZuiVkZ0R4+HI3NzdT/fXXX1WMMXK0ox3taEc72tGO9jdq+r/1BRztaEc72tGOdrSj/f/Sjs7O0Y52tKMd7WhH+5u2o7NztKMd7WhHO9rR/qbt6Owc7WhHO9rRjna0v2k7OjtHO9rRjna0ox3tb9qOzs7Rjna0ox3taEf7m7ajs3O0ox3taEc72tH+ps3+t76A/3+wEALv3r3j5OQEpdR/68s52tGOdrSjHe1of4XFGFmv17x58watfx2/OTo7wLt37/j222//W1/G0Y52tKMd7WhH+z9gP/30E998882v/v7o7AAnJycA/F//L/9nTPBsNhucCwA456hsg9aa4DustVSVoWkaqqbGGAMIGhRCJARHFqXWWmMrjTYagyWEgDYGAGMqhgjPnl0BgYe7eyKe6Dwej4oRkGtQgNIarSzGGJQyRGUwRqOMRWuNThlJo2uiUWglxyml0Fr+r5RCIZ+P0SilMVYTg6Kqa2azOV3XEkKAoEaUS8f0b41Sihi9XEOMgCbGoRyropaxwhNjRGuZYsoaQghE58v4xBjLdQEH/5bxDOXfMeZjvIwjhuA96AhBkX5NM5szaywPDw94F+Sc0cuzjPl8cfJ5yD2ka0cFVIh4BcRICOnYEAkqEGPEIM///PKC29tbdvu9/NzIRdTG4pwjeI9XcolKGVQEr+W+dNIt11qjK2jbFh01VVXRdR0heKyxuGGQz9fpqn0ANLqScb28fM7t7S1u2E+egYxtHpMY48GcJERs+ntTV7Rti1GGECIxyvxVURFCIDA+A/l7g0bmQlQyhlGlY4IqkZVzXfoLlT5/fK5KKUJwAHjvy3XHNL+UkrlClN8N6V2MMZRnJ+eRuVxVTZkv+bwxPTvvPTHKPIj5M0PA2ppAHq8IRKpKY21DjBEf5VkTwBiLj/K32hgqbbDWMgR5NjrNeY98b9I7FmMkpgdt0j0GFdO1cPBMlFLyjGNEx/xu6PKOlHdGp7H2+bno9FnyXqk0vgDO+zSOkRghxPweqzSvh3Le8gzSuxLSs7C6IoSBvtsT01zwIaCsxdo5VTNDpzUo37PWci5jDNZUWGvQxmCMwegq/V+ntUmXcUUrgvfEqLBVhbUyNiHIs83XKH9v01yR42UMDRDKvEgDVuapUuO6k9cu7z2E8eeBWJ6HfHZI62E8QA2UUoQ0t4fg0/XpdP+aaWOCEAJRQQwh7RGBEGTuh+Bw6Vm6YWDoA53rcG6g7wf6vqfrWlz6t3cyD4e+JTiHd4EQPE45gpd5ptAENV5rmY/5vjCYylDNGmazOYv5AoBFM6deNlRVzaxuqKqKqqqpKou1NVrrssYprVHpfZc1QnagGBVBuTSPdbl/kHlI1BAjPq0zeZx8XkN8RF7zSFQyp2N6/nmOH5gK7NuO//n/9n8v+/iv2dHZYXzRP3z4yG++/54z23B3dweAHjzBt1hVYUzEmkhtNZVRNEaLw5FGMQaNiuJkBCMLi7Uaa2tM2iCyAxNCYFHVDO0j88WK3/zmO25u7mjbnSzK3hGRhYcQ0dagMMm5sqA1xlRpAtpyD9pYlLbJmZHjK23LC0yagFHLpoKOWFPjnIMQOD89wRjDft/JQgBoE1CYcSNSsqCokJ2d8fPzQlMW3+QUKSs/V2Gc4LIhhdERm3zl30+PTYMh14RhGAaUlhfIhXStSqGIfPP2DeuHDV3XoXTEOcfcmLT5pWO1Ls8lKCBqNLLJ+bI4yecZFKG8kACRfbvhm29fc/P5mrZti3NRGUsV6uS4RlRITl2kOAYH92VgeXHOfrNHa83i7JR2vyd4mM1tumtPCB5dVQD0PjCfLwlu4MXzZzw+3OF9coxiXox/ZZzjOOebZo5Bpw0xEjDEtPhGH4hqXFxieu5GmfTcY3F2lFJEH0ZnR1fps/MUPnR2SPOk7/txgwgqOY0GMLJ4G4M1aUH0HqWmjpstzryc1xLCuOl6L889BIdSCu8GuT5tMdrgfb43Q/AdtamoKpv+NjkKRKxRDMkxslZT6RR0pLlh0wIQk7OSN5d06jRfyyjKtUzW7Dxmk/0pnUcnh2mcL+OGnd639D4FVaV/e/JIaysOvDhtEZd+o6OMZcQcvFdj8BKJSmOMoTYVXe/AmuwTYI0mak3TVFRNjVK6bPAyz8bjrM1roC1OSv73gbOjtTg7wWBMRVVVaJ3XyjSUJVAcA7ns7Mi5LCVAnDg8MY2+ms7l5IDLJjrdQPMcHjfqLx3CmBx2+XcVwsHv5XfZGVXFicrjM3V2vB9k7QWctfSmx/hI34PRGqMVxkQGDUZHXJ/nU4UjSgAVA2hNiFNnh3IPOsbkvILWMuaVtdRVxXzWMJ/NAFgtFjTLGXVdU1fi7DRWnoWy4qTmKE2CJnXgAOZ579SADLUuczQHikouDJ+C4fK9kjHAB2KQAH/Ay9/6KIFnDrzC+Lw0gdq0B+P/a3YkKB/taEc72tGOdrS/aTsiOxP75eNnHjd7vnnzlmdXLwB4vLulb7c416O1eLTOuQQ7R2y0mJh9RkFOjMmRhCpRYtQWrQQ5ALDW4qNEJbvdhmHwXJxfstvNeHj4DAluzqdVSqHVeF6jNUZpSCmqjNgUZESZEkmhBQlSCNQKguxIeisSvKeqKrwPbLdbmqZhPp+XiKPtNmgNAYPO6AaBoBQQUNPAaGL5WmKUCNvaCcJEii6fIDfT6OipTZEi771EGirgXSxRXwiR/X5P3/dcnF1SVRWb7T3WanxCHjJiFWOEX4kGQnQHKYEYIj74BAPLGO52GyBwdfWC6+trdu2+3JcxFS46mRI5cowQiQf3FkIgpDRLXdcMg0R6TdPQtcOYlknpj5BQF2Mk1bPf75nNZjRNQ9vKffnBScSVPltF0CjC9Dom426MwQ0ppaEQ2D9C/MrQ5GO+9oxy5Cq/y1D+09SBWEEzMJBSkzGlTj0xpTvDwXhrYxPCFcocqKpqRN9MTrHJpwoSFwrq4L2X1LK1KDRDShHm32cEhAmyk+f29F4L8pPSojlqzagCX5tSGWFRY8Q/njN9fhgRR3mnx88bxy4WREQQnVgSeyE/t+nziDHhyeOzcFG+10gK5OD5lTkzRu2CQPiSxlJP0jT5+rx3kqKd/F2+1vzOKcwByngwRAlx1DojRRld0wfrxq+tEbI+jP8u9uRn+XqfIjtyvljGUp5JOECgpudxT1Chp+kr+aGsHWP2Nb//nj9nU5Rb0JhxXACUjoJUKXmuGS2S240J2Un3EhKyYwTxqccP+WL8Ykoda6PKmCulMChhDEzHOqeoVVpfSspepbUzjVkMXzwznVN+eZ1I6GxAo5UgjFYp8AGdKAUFZQ6T61UR5Q5T7b9mR2dnYlp5+u6RP/5px/rhEoC3r99wcrJg+/BICA6Tc5Pe43tZlKlHKFZrjYqR6CAqTTCKwFCcEqNGZydlUzDG0ncdt92Ws4vnPHv1muvrW1RZjMFogRMHgizWEYwVeJGY89VyLm0tShm0FYcnv4RK1ZMUQIJpIxibUk0qCrzvHF1oqVLKZLE6Z7/fy4IdFBGPUmC+uviFAvOCTgubwSJ8nV5BXdfpGiyecYM0TDbn9GKO0LEqL6PcT17MFcoo8mBqJWkhHwZubj9ycnLCs+cvuL29BeWFmzNNkxEJYeQcOaXTc6rSAp/uy2hISGtZEDB0+57Pn294/vyK4fojAH4Y5K+MJvoOorz43kdMpb9YIEOEYfDM5zWaSDf0zGxDMJ6824YQiwMiG3qAOKAVrB9vOb+8oOsF4w5WFlgTIzrAkHgMMQzA4cLdDy2L2ZzgB4ILhLwYR0lHhAlkTFSMm8m4WFtjy6YRnkD6PqbNT0lKKO+t03nonHAZtImy+Tpx1oKL+BAwE/xZpdRLZarirCgVhSuGIqaDg/fyvQ9oA8ZoHAY/BKwVfoxKF1NXlr1X+BDKBu29xzlHbeUdyBwrw8SBH+T6By3nsckpc4nfY4wpDmZIGwBp08gLuAyrQ2mFUvqApyaOTHyygWp0lHNFLw6WOClpfCeRh1FRHOkIRskmmB4jEFIaJr0LPvEsTH43BkzUkkqPGq/0uJkGRVU1aGVRAZSxuMERvQSBQWfHBkKQICNEJwGYVsSoGNKxeVytshDFEQWH92NaTT3h3AgvJ5J5TeOeHYrDNG7LlHcoO5xjKimlxDOvUCmUssQo6RHnXEmVTi2gJehQAa1yClUzejRjatXHFGCGIE4PSpz4CARPQBPLOSTwUL5CK4XWA8ZIoIgOaO3Khj91TKMCkwOLKOlGH+Vz5AZVet4K4yNKeVQ0NATwjvGlDOU9VkG4Y0FHHB5d0qEpPajUGEyh0jrpJQCWhXtcIzSYmH6mczCSuWgS1Ks0x42RQDzGiAmKqHVxyrKzPc7RiFMR7SZp4z9jR2dnYpXRNMk52D4+AvDTMPD8+RXPX75mu31kv98TceAcQSlmusYPaYG3Gh8HiW4qCxHCkPgI2ftMI+6dK5GsUrIJDaFn96nj9OyCb9++5vazXIP3Hm1kOs3tTPLVJhGWtUZpWxZ5pQTxscoSreRos4et0Hzp7DhBMZRi+k5PUZfgI8vlir7vGXqPSSiT90NCVMYXPb9g8rc+vfSR6XqdESOTSItKKflZynUXVGByPfnFyRtNiRTgYDNQSkHQGG1wQ8fj4yN1M/D8+XMeHh5o2/bA2XEpQSz5bE1IqB1aohvvR1Jmua8cCWpV0JXPnz9z9eIKgJvPnxl6n9CWgeBlE7WmwjkZsy+5SNC2OxaLBYPvadsd8/mS/WY73nfhQ6TI0g1UlaBBu92O8/NzAHHstJDljVVol5wXnaP7wyhVyLhCuGSy2Y7chEMHpiyIT7hVUwRClWepDpwgIceOkV4+Vo735Rwyr9JCb0bCrzYGawWrUHokuLt+QCnhtkEmtuYFNRRUx3vPMAzUdS1cB5IDmX4XjCsRq/ceVdWEEPAH808dkFZ9up/8zsj1URBgKW7IROxALI5Psifk16c8tuk8iVH4ZBaZo8IRJPH75J0r46qtOOY6c3XSu58cpOkzxFiZX/l5Qtokwfken8jY8uPMqdGp6MIT8bgYBH0O4xoTkgOpJ/PEOUfMnEZGlFfrPFfy/YpTo3X1BRIkm+TXuTRP14Ppz/P1TO8/O1FCrM5z3D85hx8dw+RUoSicQaXKsgATBzXf06+A3wc2IjnJgU9fVkPQ4L+CxIzXN3W2IOoRdfJ57oSAVjK+eFm/Q6gLeuycwwSLcz1OJ35oRlszymbGtUApMyJNB+Me4HCGJ6SJ4rioUnCSA/GRa5f/VmtbHF45OL2DE8TTaIUz49z8c3Z0diZmqbBaYbUm+jQB2j2fPr1nvX7kzbffcHV6xv39NaEfZLKoMBKUvWyAMXopu1GJnBq1kK6UKtGVVABFQhDYXmuNtharYLt5ZBgiVy9eA9B3jn27pbYVQRsMhsqkiaC1LJ46E3czOU8LImRGr/cgUk8Ik9Hm8KXJ16liIUiroOh2W6qqYb5q2O/3JVWTrThPeVPLL7saX/aMeuXF0COE0UorjDV0XSdpieglMtf2YBP42gYr4eMktZLP7X1Bu/q+5/r6mufPnjFrGh7W9+kcQaL/DEvn9KRSxBDRRjOyRmMh/KZRJqS0VoxSTXX96QMAV1cvebi7Z7drUUbLux8jbrLhmskGbpCNUmmL6wKL2ZLdekPf7ljMpdJou9+itVTRaKXxIZ/LAZHtdst8PgdgPp+z28rxMg4pjZArgSbrkEpjZaxlcG7iPMYEM4+reIlbv5IWmCISB89rMr5KyeyfHj+mLNIijORi8nUDBcHJKStjTHGYQ3Alndl2O+ZmdfD5xhh8iuKn6VMYF01CpKoqnHPl2RgNlZXAIThfyOnZCRpToaqkN0N2ftLvvPdYWxeHS65hTENNof1pEPJFKmQ6pvmZpQxG2UTShqunf6qQ9HU6v0+fLeiyPkQ5gxJUVIVM2cdam+Z4xFpTNvNMOJZnZ3BByPOyaWqYODAyWZSgnMmxxqe5NakizZZJ43kNeuoE5t+N/88bqz743dQk0xNLJdTU0fnyOaTnjE+v/nh8cYCCEIGjHtc9yf0GYgjpWSSnqTzLmMCQQ+dVm/G9ihGMUeggSIgPYD0ErWRUY0Z1wRDRMaXA48SxERgZcRTLR6e1MlVF5c8PAR8G/JAJ0j21N4TB4FWPU7ogMSo/EzIKpVBK0KKRLK7Kc5s6p09TwH/JyhqcHJ9STVbyuuM1BUVJgf0lOxKUj3a0ox3taEc72t+0HZGdifmAQPlRyFwAVmssntju+PkPv+P58xdcvX7D0PWsN3dC7PS5RFK85KZpDnRqnHOlTLyoY2iBHoMKqGleMgphuN1t+fj+HQBn58+5ePaSx/WGGDxRBaJzI2oTY4nolBZ420fJ4x5CnROYM/88FV/LDyectSdpBolWhTybEYT9Pmu7TH3mrFHxZVrji6grBLmflM5qmuaANCow69PoN8HST1IxBdImw5sSYeso0Y5zjpvrO1arFc8uJd10e3uL832JlqdRebZK57QIuFQarfRhKs0g0f5uJ9oyHz9+5PXLV2i9Zt9tCE7GzUxKfUcALN+fwYcOHQLRW2bzmv2uwyVEobKzpLnj8KmUWnL/GmssvQ/c3T4AcHV1Rd91eN+X8ZF0S+JlTEtwQ2DoPfP5XMrnYyROCIV/NhLTXx7ztbRL5mFJBk7QoinRMaMpWqny/EOIiPSKKokZ7z2m0rihEyTFeZSB4AWFcP1At5cy1NlsNuqKaH2AJMXMNUjX2vc9thaeRHC+oH1KKXyQZ5fTY8JDcSktKFwlfAClilZIGCbRswoJTdUoFE4l8ng4RF2/lno5SDNNTSlBCJQqz3J8n6fv7RMk9Ak5XmSlEloSxs+UdKFogXm/xxidUB1VxlbQtJR+9GN5f0bv5BkG5DAlBNYQ8IMr80FbdYCYpUlFjA6RzchpVPcFyqPyM9Rj2kOKFw7RnwP0MSEheY3Kc+MpenyQ6o9j+mtcyxIaqb+eNstr1NNnG2PEJYRYaSkR1wgyL88jFoK3UkrGXSu0kXSZUaroNWmlRGajPE+d0JdYZkFGRi0BMKL5pQXxV1r4j9GHkqIMTnhwClNKxysF0XlClgpgwm8q4zima5/+/3Bc5JxpVA7m+TQFNyJCiQtbtKQyX6gcKnPYHDk7/9XWOk/UHlWlSicy5B4xxlFRs775TLff8ezZM15dvWC9XrPZCLcmuIFKW/p2QGuB0KsqbZbGYKwtI64wyeEBleD2GGHoPU5FrDH4JMz2+HBDO/RcXD5nv93TdR3RKpx3kDhBdZoIQXmCFtG0ERKWvP5UoyTr5kCGYg8FzA54MUoWZo84Efu+Q2vN4mRF27Z4Ny5EVttUqRLLwieLxmF+PY9C3uxCCImcSEknPIU/p/l3Jcp5khrQh5ygfPz075RSDK7j/qFnuZJUx4sXL7i7u2O/35cqn5x2UyEKYa8spJJL9z7gUwpSJyewbDAphTZ0LR/fvefVq1dCPo1ZvAyGBIVXk7ENaXHX0eC6iHIDi8WCpvZCDAfmyzk+RGRdUoyIriOiipYQwG675fz8nJubT8lpjZPxyxAx5ZoDQsatqoah36Xfjakr9WTRKvMjQ/KKSYrv8Hnl1OB0UdNaEcOXfJ88F6MPeCciadbaUsGoIvghiK5UlM/0Q0BXFdFLeqtPzlJd17h+SM9TtoKYxByjEuKyTe943/fF8dAx6dCESPRBeG5OxCGBgxSWxhFinKQqxEnLv7fWIsR64ZwppcZqJz06lHnOyd+Hg3mex3yaFokxMsrIHB6bBf0gVRQlMntMaa9pukH4dOnZanmQyo98Oq0l/aSsQXspfgCoq5n8gdLJ4ZbKLhQoAj7n1pSkZSotjpHwZXrZcHNqzed5BTFKGkyc8zGN9TRFOr2HkHhGqszzQz5YnmMikJnWC0Yn52vOpIynkWef0tXyuVmcT4GyqFxZF59u6ofOjpwzfZHXI9Exigf3Nur7lPPk6zRaIq6sS2REqFGpXC2WUsSJk6cxxVmIyqIweC3vSGVM0jqqhPeV00TpfdXJeVFuwCmftNokWCfND601NhVz6JTGCjmwSP+PEz7P+JXnZnZy8/yd7g/T1N9h0D2Ok5iNofC+/pIdnZ2JBTwwKgOD5LKjlYnnvaeyGrd/4Prjnu36juev3jJfvgXg4eEB126JwWGNlWgvpk08VRfp/MAmC5lJlVo6KpRVqBiEYJoeug+OoV1z/b7l4uoVzXzGev1I4VQAzskLKXxhg3M9xlTJyRnLb6cLaFYdzYTZjAA8dXailjJNFaOQqo0sCPv9nqZpMLOK3W4n10pMaskRpTUmHi5W00goT9EQxwqJuhaOQxabmx473XQPqAlfia5iyGXHCjfdSKPwWwC6ruPy8pL5fM7d/U2qvjq0srFNuCU+jBuTRO+HG45zjjAEPnz4wIu3L3kI9wxDhet6ed6MpF8RQcxzLoCKRBTb3ZqT5WlxWHftwKyaEcKO6EcOivegiNiqpuvEOV6vH3j16hWL1YrHx0eI4qQdVDXlzTNIZV3X71kuTnDD/ouodIzQRudG/KFD5IDJ88qk3+kznM4750fCb0YOtVLFSZGSfIcPkTpVBQ7DAGlBroyV6kTvGIYBjZLvezlv33blb4yKIlaWEFiFRKuZ/5AVp4dhGBFSAB+EP+Y8JiE7MZ1nqq475dl459CJxKcnSN4wDOL8kFCgg4mWlQe/juZMv/8a70DWDvl30BNuC4eO7Vf5LAXlE4JrSCXOylRF7sAYQ2VnWJurKM3InfK9IAQTVfXx80xxKEJMBHSfryOLOo7zQIoVfLqWkV8ycgMPS/MFaZAHKE7Ol0hL5gkdrCU6HpDbp8dOxykHumWMc3n0dD9+8hyeOu8RcYAP0KL0ixhjUXeW834prqqUIiqDVhZtPXoYK3+lwCNXQfqUjZAvqVIbHXi0BRNBa6pU2autxuiqILRKSX2tJ2KCVKOptO9FnfaGTHbXmj5dn2V8zlMncioYOe43ITlGo7MznYeHDqi8W47k0JXn+vVsxV+yo7MzscqODypmkp0WsDEk+C8oMIn4ue87Pn14zzJVwTx79ozoV2y3W9wg6Edt00OO0kYgS8rHkDQwdHKKvAc/ev1T7ZoQAkO/w+iG20/vWZ1c8Pz5czabLX3bSXokrXY+RkxyfDyHkcvTlztbdu7kV/HgRZPz+PH7OCIFeYPoY898ISqc3nu6risT3cUgpe0unSOSSjDzRFei3aNEB6ZtW+q6pmkakUefOBshiBNIRFo7TK6/3FeGtmNKeQUhBsoGYBJpVKZ933V8+vyBs7Mzrq6uuLm5Yej6ySLERJZ/dHjUROpca13uZzq2uUrr06dPvHz5khgVj96j/ID3rkRTct8J/QgZ6ZN73WweWSUUqnt8IERH08zYb3dlwxG0yaOMo0kl/X3fcnNzw+WLK9q2Lc9DWkEcpkx00ulwqdTX1uJAEKfR8ujAwJgqOXCInzo7UaLikhrMlVE6pRltdrbCpCpxdAKrqqJ3g5SAp8+z1uKCQO9DGKgTST+jPGFwNDPZGPf7PZU2Qt6cRNoxxqJVlJ23KXoQQhDHpKmJWiV1WlUcGKJODmpqP5Hnlw8lPaZLdjlOiNS5Ckgc6mDGKJ70fmn1ZeVbRhlLkPK1OT85Xk03z7LhChKZk4c65mc4RU9TQKMiRmm0yYRrg9aRyjbF2YkZiUYUgDMCI+iMBG/yvKpCZB58bmehy7W5YSj3YxJKIfc/4L2AGBJQyLjYKo+JXNNYiDF6H6VFyqR6chq8HXxpSTOWdhFJ0yefLUYp0dBGp3Yt4zOYOpBPt9uoptdx+Nl52QqpsEACnCzhERN4ow++rDIEY7HaEbKemDFU1hJs9nLl+ck8lUrdaaWUMYaQtHNqkxSskzRJfq5olQpewKMkVRtAxdGpV6VMfgyaB3Xo7FT6UB370AnKDuOh9k4uJw9BF4d3zESkdOYTQTetZF5/GaJ+3Y4E5aMd7WhHO9rRjvY3bUdkZ2JnyxV1lfrtTLgaRkdsQnZqW03E+iQiiYPwKjbra2aLFZdXL2jbHa7d470jxkAMA26IpaFgCEi/qKBoE0HMpkhFODcW7zKqEVN+NhLDwHZzj3OO88srmvkJu80juETsReEJVLbBZ07LJM1SuAE4CDbBh1ZIaweR4kgay/ljue4xgq+0wfciyJf1YOq65nS5onMdbdvK/Uy4MDEcpjWASWQv0cMwSEn6lLBcGmIi0V5+PqTIqsSnWj2J5HKqRqGCxxBxqcGM6OoE7m/vaOYzXr16xd3dHZvNRtIVMaIm1zkEQYV0fFJenAiLmehnlHAdvPes12tijLy8ekUIgcfHe7Qxh5yVMN5D5iDIuSNtK9d6dnbB/f09i5mhamqGri/8Fshl2yMKtt/veXhY8/zZC95/+CWhSWmMImQipzwX4Vvs2y2z2Uw4YZmLMolcp2MhSI6gN6S5k3WHxs+IieQqwo0ZBcsIUr7Woffl80IIhS+nVMS5gZDm9mw2w9qKPjWTbdt2FCBD4UwsqJ0KYy+djC4po4ULlKLUrJ0Ewtup6xrnknJyer7DMBS16nzf+T1yfmz6m+esPIVRobugPSXtlZ5RjCN6nBCwklBKKYp8vsPXZUTEtNYlfVWasv4KrD+NkL9mXyIUE15E4ndkAb3cC21IvdhQUUQaSUhtQu2kp5LBh4SQRen1lJtiZj5XugBMlNRW7vEmVD8FuIRMyrGZuGwmCFpBTuL4s+n/8z1+kSKK8QAFymkWl5BNnXhH8vtJ6kVlnokgRDE1I86ra0Fr0ho0SZaVnwOFaJ4tC6lOv4wxWG3wVpVrMVoTlMXazNGRXl0+7SHW1OUzjBKpgGCUNLLWVaJWgE593gCUthirU7NqVVLVwKgW/iTVp7XGqENtKK8nmQCmlImxjDwUrpE+QHZUyUbognKVdFzZo9I1pF5wuD+vRp3t6OxM7GwpsvtP841Z7yVDspVJucqU99VmfKH6do0fWmbNCbOTZ3SdpJq08aIkOtZjEfpAVA6nRFHTq0BtLDoYYu8wdcr9KwVaVEexikoLjH93d8NyecL56QW7tZCk+74nInwHjSF6J45SlJchT0Crhc8zBI9RYEPKrav8kk/0J7xkckFjtUrMJlU2Jj8RsOr7VsQG64rlcsnQdjjnSipCESdvfm4HIAtJ/nHeGPq+LyrOWmv6vhcvMURUguBdUpPNC4ZA/qaoOj8lLArHJn16CKKIC+y3O963HS9fv2KxWHBzcyP6Exle9QFiJESHacYWBVZpaW8QR+GwrDZqdYWPPfvHHbfmlouLZwzeJX5T5mMFTOZ85I2UnNaK7FpxIudGc3Z2xv39LavFAu8i3jmURjpFh74oUwcn83O9fmC5nHN6fs7dzQ3Bq6SbEwrXy+exCxE/OHwTqZqGvpWqJjNNrSBzIyR15UgQjRlfQ9SEqChNF3WC6ZUV5y56nBdnxA15PsmGaK1JXeI7rB0bdIrTYxmSs9NteuqF8BcIji5VOYqWj3Q/rhYyBsoqQup6712PNVo4TTFrxvhC5tVaY4IicwRijIRB/m11hXceT1euVwWZO7ZWuCEwtHtCAD1vhAOR0yIe+iBzOJNkPTLngs8ukXCGdNNIw0PEEZLH5IlaTdSXgVQkoDHEEHG5caUsEQTvitZUFKkviKKmnR1DndK8Pn84idhqIToFJgc7rqQfKjtR5M3vFfKlVWoSaiTP3xhJade2xqPpnZNrMHKu4KGPPSEEmqRQrST/VlTAhcQciXEY08WTLtojzzALk0rqpGhITVv4ZMcjqWxrIlqNit9jSJOqzqRMLW3YaeOPo26XEG404GSzRY/psBhFzD0LEEaH0bpcjyWlUvUYtOVqLGkHFAjZMdCVHKcjysj+4yrZE0yscXTSxFcrPBodFHUqQMCY4sTkTvOq1lRVU+4rO9VqsteZ1CR34oMKpxDwkwrjHMwoRdGZys8xS5NNq7Gefl9SWzkF5iZ/n56lMfnzJJDIDtHo4BuCkqbIf40dnZ2JVc2c+byRSCZNKpkQVfKus6ecc9RJbCqhNd57VIz0bc/Q3aJ0zcn5GeerczabHd1+O+bRvZfeHzGgk2KorZLDoQ+Z6yBxllxHhVVNIh8ruq5jGAZWqwUA89WczS6RTGNanJUoASsz9pAq12umypUT3l0qp82/mzoMOaLMnzHyfZBqDO9xHVgbsaairmds9rsD1GJqX1YujNHzkBY/Yy3z+ZyuFSK0VLVIh5+pIrHwesZonxSVe+8n3Icx6otQeDzBed7/8o6zszPevn3Lp0+faHep3xVSuuu8w3QiQje0Xflb510h+o2cJCkx9T7w8PCAUoYXL14cnDfGiHe5U3WAEFJZqjgV2SnZbtecnJxwujwVAcFFzX7r8D6hBvFQ2E8JpMXN58+8fvuWvm3Zrjfif+gJh4VEQM7j3XXSFy3xpUIYcbPczmCKlBR+SMjXmiPBySaarqeqbFEyzlwWpRTG1lhrGUKf3qHMm6sSYpHer+Do+r0QMxMa4pw4ZQU5TJuMGwI285kQx1neAxFvBIXPquZGYmPfe1SEoe8xlVRShUz8j7Ie+H6gT6Xy0cl9eBeKQ9P3fUEdcxsCgOBEuVkZ4dVZMxXztDB4NKmizDlc2tB11KDHKiuNEEJCIt2W9kN4iQNSxZnMrZFfJU7ql4hqtrwRGaMwxqZzSVStVYVUzeTj5TmLEKH0K9NaNu2qrqnsJEBxAzGGgoTLcxwIuSprstF2ztMPDp2OV1rIxSG4JHCYNnpjiEonLonEP1qnNjJlQMZ5p7PIXSpTF95W0focnTgCUqUqLUaE4C2E66f8qJGzY0aUM7rCMSrjapPgXsjd5CfCrpPzyTNMSEa6/5idOm8EgdEVNikYO+uxPqE6zgs3LYggrlamEIkBqspQ1zW6rooECuTydlPWeXEakwOk8vqVHTvK2E2vu2QOJmh7aWH1a0KjauTwaDWW2udzZoQ/B+fla+IQyf9F+HFIVct/yY7OzsSsNdSzhrquDxCF7AHHIJGOSuq1ssDE0qYeKDB4dJ6Ao+9b6tmKZ89fsjo55X59C4AfepTvpSpEy0sjkaxOzfzGeEO8cIvCYnSDtQ2GirqaEbVA+vtOFv2qarh8/pztdg9ZVyXD5E88jRxNZakKBZiCdYzwuUdefDP5m4xCTBcVQBa/EPCJ6BmTeu/JYknf9ym1lT+fUoWTnZupOm4htyJprBgC9awRyf/OFQdrCoerybWM5ECDMZqgpFQ43598tj5IneEjj3f37LuWq6srHtaCrNzd3QlcGgPD4FFBSbPOrktIhC4pCpNg2BiCSLUbTRgc28c1LgxS8n4j8+Dh4QFjrbQPyWTKEEsbjVLFESO7xzXn55fMZzM61zFbzNlvdwLDh4jrs9JwXe6/73uuE0n6x30rpdMTwqudjLFSonMzm82ojDh/02qsp6nQ0hbAyjzwE/mAPBbZuckba94o8jncQdsUI+m2jMalqC+kSij6QO8GqhghfU7WHCKKmm9Oe/pe9Juk/W0qF0+VQFkxNkPqwzAIeTOnFDx4XLmXqQyCpD59IYQGF8ocE4dzlL53zuHpBfDI4rsuE2lVHj60FSKzjqTqT502RJ/GchKkpHOP5e+qoG0kheBRlkCVUnXi2KesYJBqRGTzvpQdtGlqaEo0TXchz1eJ7INWWXkdaqtRKY3loygKW20kzaUk9dUPDkWkqkYSrXOOzg3l+dlosUpQoFhFAqLdBWBiGKv9ckPJRDOgrEOZ9CvrtDyTMdALAQKJHJ/2cqUkyNBapyROQEXR7omTef+1VGCpwIo58FNPjv3rSLTTMS/EbyNooo4enWUNQg02IR/alD5vVklaKkw+u67r5Ow0JW2V0RN55pPnmxvAPq3cTAF5LL7kVyrfytgmh2aSUpwGo0oplAlpXyW97yPxWT4+orJjxJfpx3xerTVu+OvSWEeC8tGOdrSjHe1oR/ubtiOyM7Fph/BpV2dFkFx4ys/6EPBBGjEKVDd6miFKlKksqEGUVn2/4frjwPLkgufPXgAwDI79bs2w3zEMHaLAIVo2o97PpA8JuqSxtLLoykoZfI56UzrKx8h2u2e5PAHvhMOToUamCEyC/bU+EBvjK1HLSFYedTRG1EnSbcWLZ0SSQCIo6SC9pWkazs7OilCeiLlVhOCShpE9QHWepreGYcB5TV3XLBY1bduWflOlc7rWuEze1BlmzWcQEbTc+E5rnaDsICKO3gt/JgR2my2/tB2XL14C8PbtWz6+e8+Q0iEhBJwL1PWslMhPESWlDmHezDnSneb602eurq7KNdze3qKNwbvM2ZGUR1VVB6hLCIH7+xsuLy8Zdo4QIs18xm6zRaVnCkwUiQVl26x3LBd7Xr5+xfv37w/K6XNTxIKMRWh3e0kZlpL1wkaaRHMylvJv0USR/kjjvHBOeGPE3Osqp7vGTtIhBHwvMLQ28vlZv0aZlN6LOdVhUSGrUUfpCxYNw+CYzywxBuqkydJG6eKuMHglz6Yf+qLUPO1o75wj+qzx02Irwz6RtE1KB/YpnWqtJWa00SU0UgkKFqKgHLmDs3cD0aReWglNCnEsxy/zxY+yDzKvEqpSNwlVmCAwpDLi6FOqVt7JgC/ITubsqGhKWisqVXS7lMoIkB91v4q8hKx9JQLXsRyfD40M5Maj8jMhtVptsLrClTL+kQeidMQ7QbBCCDS1TX3w5Jq6rmM/bIlpfOKgiEp4PiBcJFtlhNGD8sIVMgYfamxKO2mT+G6lTHlMn2WEIadmQ5TUrDogE8ckUvpEbTqO6dzpz/I7EBNfTRkFTCU+0nNTMaFs/KodpnJG5e9Stm2qREhOyGmIwhVSYz8ukzRvotEFmaxTmphENBfu6fgOHiC3WRVZH9ILclbATxS7sz5VXpvKzydpufz/mMdLhiel+gW9fJrGGscjnUuY6nKrT5AdHwMured/yY7OzsRC9HjXp673MjTCXs+6DNL4LMP7U95B/r+IaypUUJj5jKAdSmlMDAz7Rz73awAWyzNOT0/xyxPu76+FbIohhpzWghF2lbSI1iLq5JE0SlZoFUZ8YqwrSwyRdrujri2z2axoh6APmkOIdJfOcKNmWtb0NEcNjPB4/DKPnS0rxebfy4SVbFfmFzWNNLes6zo5PnJvzv95vRGtNY7Ivu+ojWU2nwv8PelkHhLnZXqNkVgUnYXvMW5yyspm4RI0rtKCqIHoPB9/+RmA8/NzvvvuOz5//szD/T0uBNzQM7dzmqaZtM7IHABJQ0rnYOEWxBBoW7mXDx9y09Ar0Ir72zt0rHB+EH6kSmrHMTuxogESY+D6+oaLq+fs9x2aQF039H03gdkznyoWzZBPnz7x/Q/fcnFxIeRrP6bcps4iiJPiY2C+XLDdbscqIzfm1yUFmDb13BRTxVKho1OFiEttTbTWdLmCDI8bunStsiEHD3EQ/lM+P34Q9d20eRulUMZKetSDtGTRhODYbdsk2idmK83QDkQVcWnjttbSti3zSq6hL9egGJzHVjInsoJ3CIEmNR/NO2bf98TiYGcFb53SL6o4eWVcAkL+dilFaRSW0SEF0N4QjZbO1tm5TQ6Rcw4qVdIXRol4/uCFuDs6TSmdNuWDRGllEdI7ldTlCBG8l7GZVnwZU6GCS++hEaKq1oTomAxBcrRCCoKEHG20SVwdSWnld1acS500eWTdrKqKOlXjZSeybVsGHEQtZGolzVdNVKVazavMnzKi32UC1kvna3EK5P7FwcqpmezckcZIpUA2gjrkRX7N8uadW1GCNGGNhCf8nGlT0adO0mSTfuLtTDdvld7DQiw2Y2VpCKL9lquxrLXlvZDmrWMaS2uNqqpCxbCJoGyqxPuxVtJG5su2DvnZZWencPsyH2yq0P2VCkUYA9WpdpV6sqaXlH35jC9ThE8r6mLIqdXcRBnAM+1Q/+fs6OxMLAw9fZ7QacJ5awmVyGvrQkhOZdDZCUrZQJOY/0YpvFUiRkWN0RrlFYrAkLzQdn1Dt32kmZ9wdfUS5yOb9Zq+3eMYUD7m4j+s0aWsUREwtgINAY/VdeJ5pI02qR3HGCUHHjzzupHeR0NfNoNKV4VPAcgiqShdlH+t20gm9ZZ3NhH88nQTHdbphB7/Ln9WVlu2Tc3q7JS+79ntdqiQxjykqHXyEuZrzYuD99JKYT6fY5ZL9umcUSdybIwEZH0PTEtTR6l9q3RSV52iJ+lOSkWVXMP6/oH9fs/r169ZLhZ8/vyZru/LNdR1Td8LH0mqZ6QPj/ceoRJojLU41+NUJFbi8P3yyy+8fvsGgM8fP2HnFf0+SpSupoTuvHDIHLy/veHZs2ds9y3NfFbE9kCcqhwNep87yGt+fveO77//nu12W9C1zGvS2qTNU5yT/X7PyckJbduOjpAKQtOOpHLbSZSn1MgZgRJZxxjo+yEtsMIrqqpxAfO+R0eN1ZrOOZyTVicxRoahJ+pRUt8qS9AK72Mip0ZMJTl+14tjUNOkeahwrpeNyQjCpawlKlHnlgV5LJOHHKV72rbF1jPhhqV5USVUoW17Ioo+OURaazmv80QE7RsXfYsPicMXBFkxZhRGzJtaCCHtj1JerYK0IAmDYwge5cfxstoQnJMKJ8BmsnkGeCeoQghexDy1oK3qSZ+q1KCqvLkhRoLOrUMKm1jmhzIFscKHNKdTJ3Qt7XWy45rNpLYEwY8tYKw2NI301mrbtnD4nHPkF9OHCMal8/dETCr/T2NgRVQvmAg6EHTupzaiqLFwnIQ4rfGYqFBKhB21/rrA6sF85nAjnwZU4yY9oiNKCzJysO6RLyPvFYeIydTKMVFCUq3Te2xABwhhdEyMMcREVk5MXggiUttUFaqqJsdarE1fpi6cnYIYTQPb3DnA5FPnNWW872z5+y8KI9Lv/AQEmCJAU8foa7whcaK/UmGlD2VGJJA9dC7/nB2dnYnlhyDVO3mxHqs8VIIss0Kq1ippEogFJYRPbUwh+gajMErjgscwqovGIJNzu17Ttj3L1Qln5xfABfd3t7jBl8qCoHQpZy69RAL4Qfouaa3BhMn1pggmjBBxVVXMZosxCncSWZZePWVijuWl2fRErXhqmfg4rT4IibzN5OU+gB0nDtYwDAXpubi4oOs6drsd0Yk0eyFXkvsMZdh8/PzNfsesqlksl4CoIvfDUFIKaCWaKQLzyPPNjESjUT5IKbLzSVk3IReTckq5r0Db9vzpTz9xdXXFN998w4ePH9nvdkLqreoCszsXJJIHUEk1NgaiV2XzayZE0J9//Im3b9/y8vULPr7/hG0sDBE37AsUbVIFU1bXdv3A7fUN58+f07cti8WC/TZVqhEZvKMydapiCWUefPjwgVdv3vDjH/8o1xpFBbg0JwwJVYmBtt2zXC6l5QSTtFxM5PE43dj1wWIYEqLjnDtYIPMcyAijlHWPC18+PgRBJfxEl0mpSPC5CkelQgBHVZmUCg1jX6qqpuukjYRuZH73g8NYKW+u65qQnm/f91R1TYjgApD6u+XfWWtRPqFbIWCUoEvd0LKYzxnCgHM9w5A39FRObSV9oTCInL+d9KvTJeUXfCyVmbH0lROUVANu0lvCx0S2Tn/cJ9kDXWkMiiGOhQ05tQWpiitJZZhcNagoqrRFHdknorPv8fiSZrK2Gt+HklZT5X0p84GY1Rom/a8Cg3MoY6gqQRkG39MNLT6j4+Q9OyMvk7UImxyU3IRSkIAYA9FEWZ8mui2yVlZlvoVgMAZC6kemTdLTSW0pphtvDCmVr4ubkhzDQMgN0kKQwdOUz1S5/Jz0uwkJHDiofJvaFFlRBbnITukhqfawek0apQKJhC0ZBasqTFWhrZ0gRFVxPK2VtOLXHJ1SPRhH0rY3vqzvwUciI5oTy5506LgEn9b5LBWgpC/ZAVI03V8yuZw09E+uK597/Nkk3Rct6muO0Vfs6OxMTDxfg3NhhKJdTAupRJMAVX0omJRLjo3WoKUsUicPP/gh6ShohgmnQXLtUJFg+MdHdvsti/kJz168ZRh86XXknMMFqWAgBLq2xyhFXc3og7RXiC5DhEaiNTVyOKJWuBhwXVf6DJmmlgaHvwIBTt/NkVWfodhyVPr5tH/S+IoKLyDLuY8Cb9nUZLPp+57ZbMbl5SX7/V7SJ5NjpNpDY9LiVIClGNl1LdUgL/ZsNsM0Ne12JymUKUSbnLpR3yQ5eQkR0Urhc7SixJnNjTuVVphUivzhwweWyyWv3r5hff/A9efP7Pd7Fsu63LdH0ClUQqWkkLXonrSphH4+n+MHx7uff+SbH37DmzeWd+9+xhpFrerROc3l8kgVmglSIn17/ZnLq+eEwZcFZLdt0+aReBcxlI3o4eGBpml4+VK4SO/evUNpdZBCTB9Et2+ZXcxoGrmv/V4kDRSCGEWfdGwGh7JWtJz8OCecc8LB8YHODcxmc4nUoy4ikRnBAdCVLmkkAOcdKowCnyHCQJsgfOHLRbQEFjn1lTgetq7S+AuCkEvDZd4ZYlRjH63O0Tk4URXKaPpdXzblai7csBzqeu+FLxdC4Z907Y6+bbGNoA9usqAHI3opPgYqpejTODdVNXJoYuIGoWQjtUoq+FKLFTf044aYpBTMWN+b0ErRmMmiiQA+uoS4xFJNpJQi+En6So1zPwZHQDhtEUUIuZ+eKSnL9KGpJDnrsaTzJk5jKb1Xis4NwqszispaKmvwTvqZ5fk5vqBj1VQ44L3ldzfzVQSBk81cEMkh85QqKYe3qSLMoKjL+58ci9yqQEvaTE/0e4qiUZ4r5I157JOVHT3ZlEc0Iu/f0405TLifTx2D7NhkK93UfW4ppCBqUje9FEDmdTSkRpuSJjepx6HVBmMkq1ACJSOVijY5QFqNopXT9VjG87DyTk/Xcx9LWeE0BVXuVeU5H9D+MJ35tD/ZUzRoivCMY6O+eszTa1S/loZ4YsdqrKMd7WhHO9rRjvY3bUdkZ2LaaFEPnaSbvPcol7poR2l6p6LCGE2MpvAdAIwy+CiqNN71kFAbiaZSJ+csPR4EcvTKQlWhdcD0A3vvcP3AYnXC2eqkXNu23TIMPomkaZTVeDxWC0lZTbxdITHGlPuV1ISIfjr6fkwLNfUcHXv63iXkVWPVmC4r0V9qXpojKyUiDmTyr44UdCSnAjOSQcm/jiqmxZToK6ikWdK2O/q+Z9HMmF88Z717KDl9lVQ9MwEx81BUCIQYS6uGzbanaRpWJwv6titoxNRsiboSwdJoAoNEZimKNDkHPkE6ggrScDUq1us13b+tefXmG77/4Qc+fPjEthUezLJZgd/TDx0qQ70gKE+qkFIJ2eiVYrGYs9vt+cO//Y7vv/8Nb9684d27dxhtsJXMrb5thSfjBX3SWgvxtXPcfrzm+YsrTELtQgi0+54+eBrbiHBk71HaQ/Bcf/rIN998C8DZs0tur+8wRtJjPilZhyBjsFk/cHpynq7B0fUd0aboTgu3yCcisTRAzHMmzdWYImYTGfqOqra4ti+IWQ7wnAvgpFoqo1I4L4iTHosFhs6XKh/vMylVYaoa7RUhZs5BTZU4R0rNGby8y7WpMSqI3k0mW2qpoBKl2Rl+bvChk3upZim1F8t1GiPpsqA0Q0QalipJA7jgsAkFEoE8g9IuIVgd2lghruuqwO8+OkgprmAixgI4fOhREUyMJe2nQpRUk82pRJnHITqiS4TZ0tjSJf6YIRM5peO3QdWV8PvSNfTDgPaSPrRKE60RQU4dsDZKujNOeBWhkhVHgQqO3nUY02B0TSaQZp4ORKy2NHVNiIre7aU6LUTQCTkFKqXwPim/xyid12NMjUspbSRi9NQ2zX94gjDI9aq0zikbGVTump7aq+RsXBTFZJ/QF0E28thlbkn4Cs8kVTwlqoIiod0ZOYsjaqHTHiE8RilUCen7rHlU0A4ohRT5/Too1FBxJIkHUEYKYjCaKo4VXLkJaGmdokRUUGEw2pZOANOu9PkzpkgPjFpUnqS87cbKrWxfcJlUPLj2GCN+qlg9TWfloZqIZkoqkrJXZp0dMhF9ksaSvebrHKindnR2Jma0oa5tqpxJnALvS6lp9CSYNUGWwoMlEx1D8ESVyHZeNo2YVGFJhRk+kyLRDLrDGItyFVZrWaArRdR72k2gbTcAzGYLlosVam5o+4GuG0TiW5tUrzvieHlCZVEq2XYkPSEpnVjua99usVYzm9UldZcFoYxRODf2qJn2PnlK2PtamfiXx6fre5K6HstkKSrAu90OrS3zxZzFQpShd+tdIpaK46kyh8XKNpCFpYzW9G1H33YsVktOmzN2m21JCU4rj/J15QU1RohPuCflOpUaj0nPftf2/OlPf+Lq8hlv37zi7v4egPv7R2azioin6/s0FgbvPNZKxVK+BuccXdczn8/ZrHf88d9+z/e//Z43b97w+cPn0h9ttpjT7vYEkVcrVTghBJTzfPr0kZcvXwGwOj1l8A/4vhdZA6OwlaFL7RPcMPDxo1SDvX77DfutpGF8DKWcVKtAJND3nt1e5uFiuaTre4ahTcquI7Vr1+/RxlKcWiLBO3RQGKXoh8CQxCWHySSI0WNThZVP1TLSeyyitKa2lmEiGlbXktrzPlLXMzq3x9SjGqwnFQB0G2bzmmZW0XV79tudqFkHcX6rqsInh7NpGjb7HZ3ruDw7x9HjQl0W/vl8Tj8kp9tKJRBaUdlaSJPK4GOgxuCGnqDHTufz+ZwhVZl5H7AGSWsrR85h1NUMRYVhQCEquL73UqEWAqYaRd7c0Kd5m1s/5HcvpxUoPJgsLKeSqGEuvTe1bPrOq5IOC8HRDz0aj64bCBrvtfCMgocwlnALEc9JAYAB75VU/OgqzclcjTakdJNUX4nD5xIvy6NURMfJ2pWUc6eLxNN0hsyZVN2mIxhfqqKMMdALGTxfrDHjRhxCJ5Weg0oqzEk1eJIG0dM1Lc3PvNaNToikGYuSIqMa9q+Rj7PTNE11laHM5/3ib8ZzxrLw5L/P63tyDHN7C0z5/XQMZSxG5yan3kS4cCJx8pX0UboauQ49XoOe3MtTDs/TlFV2SJ7+Lq//YeLAZMc+p8VsDqC0GhWyk4mUxV+XoDo6OxOz1jKrakAz+NEpIKEz0Y+DqrXG2OxNjy+IDwMx8RlEaVW0bnLUnMmYEfGsranQdpDqr0rKeZVNypHpLdxtpUKkqhcsTs85Ob2k7XYiee4TH30yCQMOHyJD0EVaXzbXMUer1MirkOqLhtlshveiYzIEX7zt3F9qnKiHDs/XXvBf+/nXTHgg6ZxuICiDio7tY1vKJ09OTvDes9k8ijIxaaH3otJaFeXeUBp17h5E22exWsqGttmgI/isM5McwEgkTO5vel2/dr2ZQxD9wKeP79isH3j97TcArE4WfPrwETtr6INE1IaQHMiEXqRT+yHQxw6rDbPZjO12yx9//298//0PvHr7ivc/vweg7wfm8wX7fUfnOlSuMNOiIoyLfHwvx16+eMHz58/5+ecfU2+rcc6CVPQMnfBk7m9vePH8GT/98k7uDdFeGQaXnALD5lHkEi6ez5kvGrZrUf4GjYkwJKVuW1UM/egg18bSdnuU0lTW0vmOzWbHarUiDhlRkHuxVk/+VjObzdj3e0KExeq0PNsQHWEQEmjve05WQmw3xmDmhi47vUY4bZvNhnmzoKlqdjtRkB6GgRgiTSOkdu89y8UZ2+2es2dn1PMZNoRSGeacYz6TY51zuM7jXGB+Ij+ztcKFSO882lZFU0drk8jeMlfl52FU2C4c2DA6XnZBO+zZtx0GxWp1wpA2aQBVq9QENhU6pHVGJfV1cRTkOde1KEgPg2foBiEPG9kQtbJY5XEuB3LS0FcZi0cQQ2lXkbiKQQjGANFkZCCjyjXGNGljHKtVQxRV8ipVBjmXJAeSPMVTFCHzYEjk8zB1MCbv5lQXJqRy9qLpk5pdTjds5xxDjJAq4DRgYoVVHhtrJkunOHBPAiKZUEUPZHwWxUnxidzz5ab7xeY+CRafri9PfzYlhKMCf860yijOVIH5CQ9Gx4N94qlz8zWOzNeue/o9MLYOenIPU2THpp+HckuH95qdnYJggrRNyqRt+dDDvwkBr/VBC6Q/Z0dnZ2LCB0vaF3GcKCbBgllDhqzlYL/c0PUATimC6vDR4WOfIGBLGEiksjHiUkSUlsg/KmmmKEjAoQcdoxcipPPU9ZbT8zPszEIUsbpM6gSByGMIqattJhkKMlHmepp8Omk5ZJJwXVvqWipZMjmW4uwcIjkZQXr6gj5FfjKhL52sHCsQrmyaMXqBLlMaLp8zy8c/3j9gKsvJ+RnOOXbrDcV1nLwE+bOUkqam+/2+lFFfXj5nvV4Tkr6K6/qDvlrTe/nzkVqGVynwdNu2/PH3/wbAixcv+e6H7/nw/hPR1PiHe0LfSdoiGlzvS8SpCbjes48t8xNxJvbbLX/84x/59vvvef3NWwDe//ITXTcwXyzESe07KSvODRpDcnpASMuXzwQd+vgxtWCg9P9SRtKAIO0qFosFz5494/PHD0hvsyCpr+QM583l9u4jlxcvGLqOoRuwWtKzVWVGp7mW0u+h3wtBvJIqutZ1KKPp9lJhZhpZeprZjL7taWYNQxTiqo5CNF+uzqWzeaKUzxc1UNF1splJRdSGxWpG1/ecnJyiOxlX50Lp++bCwKyeM4SIb3uMsigUfVqMZ80ckPHZ7/esVitcDFQzgwpSoWNrOe9ivmLjd+hAKZHvg5efbzYHG4IxpgQ6uZow+kDMQoDp9dJVoK6kJNj3XlC2fmB5eiobVTTF0fB9i7YioGiMSUTiiSie1tikY1U1OrUQ8anXVJ7jo6OQLyKLzOWNwzMgLWxI2lOBrN2mAaPnYCxKV9iqQZpF+qQN1KfrAZ16YsnPR0RTq6dd1iH3tFOpCbGk6L98D3ORhPceNzmJMYbGNlS6Kj8bhgHXizNuEEcIFalCIKQ0mZqkamwOomLu3zSmVUrBR9LYOSzKYHRI4uF6lNP6UQb6LwZVv7b2fJ3gO66xU2dF52IIQCOpnkPnaXLdTM81OmzTeZWdkGi+RIymzs70uqdO6RfOUGkenYRKEzqjI8W58Wp0foixrPPTMbCAswN/jR0Jykc72tGOdrSjHe1v2o7IzsScz7LoqrSTN8aMuc4EqfnQFWhQ9EBG7zpHRkNCZyIRYy3iV46dsU1qyGZMhapSSWBVgzFgG/qgil6FMUKQNEZJ5/Xg2Nzf0jQzmvmc+ayBVGDpnCuS9MrmZm8aOOwKLaJa0uSORGKWlgYOpTzNbFbKttt2l8TFeILWfPn9+O9D2DUe8DTysUF4BTml48aO2LmscxrBDF1PO7TM53POLi9wXc/68VF0Z0YecSob1wTn0Ci8hrtHKblerVaEIJHv4+NjEjMTgcGDCPlXoOZMgiRFd2PX35i5lnx4956H9ZZvvv2efS9tHx4/f6TvOhnTOJaxojRKeYahI6w9p6enDHVP3w/8/PPPvHkjqbFvvvmGn3/+mf1ux2w2Y9CRthWdEuEXjNdvQ+T60yfOLy+5evmS64/X0vohuANBLhkwxefP17x585qL81Ourz/hB0Fkshx9FpPTSrHdPHJ6suSuu2MY+tRROpXzkrVLRk2QdrujqiqaxhACBGe4v7/l8uVzuVZtiZVopdS1ICWL2RznemazOScnJ9zf3ZTxD9FTVTKv69rSDxLhr04WbLcblssVAHWtmM0avJvxcHdLVVWcnJxh64HtfkdwHl2ld8EobKUxqmK73xCDtHmxVdKtqUZksmnm9L2TMTKjiN7JyQm7bpt0o+Rd7IeB3nWiwu6MiOUNiqGPVE1dFJxNvYRK3oeu36Z7nzGbzRLHalRb7l2gsRXNvCJG0QOztipqyCpSjo1xKO9S1TS4mNONDehIdKMabQqpix5Kbj6sdeYjwkiNSNo6Rgiv2hhi9PjBS0fzPA9tTWUUhFCKKxKTt6BLOR1X3l6lQE05M+N8jXqMzbPCtUvvUdNIGr6ZzQTNafs0BhGnRMwwp6fkFY6J5BvLJhgjOHLaJ1+XoO4hTBCNIsGR0jQTVeF8nj+XAn9qU17M9LinX55YiP0xE33Tf9Omm9O//5p9jQf1567za2Xf0+sNQjw64PA8PccUjRHuj6A3mQBd0ltKocMhPSTTMJ5SI8o8q0Yk78/Z0dmZWAiRwUm3Y5ueqdbjw/NEYtrgYlLGzeKA6Wi0kVSM0pq6aTAhdXwOEGzxi5LmgeSytVVpYZH+VzFVe5X9MC0Ksqk6ZDWQhbZvW8IQMDNZYOtZgpRjxMVxouaFMFtMwlcxjnCs976w6Nv9KGg3my0kvZA6uo8EaHUgEijnPdSVgDx+6cbDRPRM5WPTcToSg0NpA8ER9aTHlk+LcIjsN1varWz6ly+u6HZ7NmvhlWg1gYmtKbo5BkW/33HX7pkthfR8eXlJ13Ws12sGP+riCKHu0L4K0yoLKhDDICS59HL6AJv7B/518594/e13vH5xhUFx++kjXbsTsl4WjAypUk2JUOBms2F5siTGDd1+z88//hGAN9++5ZvvvuPdjz/R7Vt0rannM/bbHc5LpUSG2Z3r0dpye3vDchh49fYNnz59Yr99TBVmMXFuQFU1wTk+vf/Aq1ev2GweacMe77pS+aNTF/VAxHsFdcXJyZyHByFfh3agrmuGoYNEEDbG4L1wfoahE56HstS1xnvD3e01AM+fvyA4SYXVesbQ7um7LYvFgmFYo7Xj6uoZAJvNTjqIh8Aw9CwWC5pGUl3dbmAxn7Pbr8vn17WVPmJDx6dP11y9fiM9v4aeejYnxKTvEyVI0HXNyfKUbt9jKktQoqDdDy3VUioj/eBomoro6xLczOY1dWM5OTnh06dPzFIqz8fA4CMOz7DbUNmGwTtmzYKh9zw+CPH75PyEGD37vTz/k/MFTT1DqSicmjC2plk0C2azmqo27HZb0e+pKrlWNbawAOidVFmqlLrKfZOqqsKHAduY8b1kTDmACKeKnlF6xniMkvtSVqFSEGiNVJzK5utSVVsiB6d30XtH9C45zTmdkpzkSRD0lAsTkraNzjpK6VBxdFIFn5aeZsvlktlshnM9u92GoR3Gc1WKoJLDqIO8pqmlj4+mOHRpAJKjHhBZ6q9XH8mXXFcOgktAF2NR/Z78lVyLGlNOf4kT+LWfj4rGY1VTjFE0DpVGP3GQpuf74pxFEX3q+Ph0rV8nLR+cIf+dGnk1f87BgpEqELPAZZb+VuP/VKnGGueECdLhnjg6doWDaP86N+bo7EysH7zwEAJkLrJzAa0TQTk1yItp01dPnqs2YN04OaytqFWdHIRE0DKZgGVSGbYmJJl4QkAph7VadswcMUTpLROjAmVk0wme6BwmRgYf0Smh7pzD1rNUWt4UT1ok68e8bW6wp1TuXySVFBrpLeUZ+/Ts93vqusYuhKzZ970oycavV2LB15yDXGJ66EaU6p8ILvoypuLNj0J5JjWUFKn7SNDSdmK73bJcLrl6IQ1Wt9st282G4H0hteXaVRWlKm2dHKPMz3j+/Dnb7ZbNZnNAqvvaPU0XkOz4idajL/01jRIhPDd0/Pj7f+P82SXffvs9s6bi3c9/lD5ak8+JwSUOmKXvWqKKQuL160La/emnP/Htm295++1bPrz7wOPmEWstq9NTHh8fiRO120pLVZSKiu3DA1Zr3rx6wc295eH2TiL+mJRrU6VQ1zk+f/7Iq1ev+OXnH/E7J81vQ8T1Y2mu9571w8DZ2Rl1YwgO2nag3+6ZL+oiEKi0pTGKet7w0LcMraeulIhaNoo4SJn+5uGW8/NL+rbDB89yOccNsumfnp2Bd/hUCXVxtqIdpEUHUdHuO1YnmstnZ/S94+HhgXkzK8/286f3vH37LVcvr1iuTnn3yy+8fPGaN1eX3N3dsUookGzIkf1+T9VUVLVmcIK6rE7OBAFNK6y2ClsbFmZO2w3SWLE2BDyzmbx3Q5o6fYh0iUAffaC24pj4uGexWJa5ZlD0fcvj/ZrT01NsbQsptWs3LBerwl0ztUFXlsE70IaqksXeRV94LJmRrpSimc0SojaSgr1PqIbWpZFwCEmMMERscmQg4LJooVaF3CqojgQ2UoORSsIVKGWKtIMG3CCCrJl3JXycsaxr+j5l5yF/r58EaRnFyaKCWkM1m7FarVg0M5yTOSAtTuRvhHOpCQkd0Bai11Q6CS0Gabya74uoE78pEqJJBR4Gjz0UWs18nrQBS/n5hPNXjnxC/i3+0JcIjGA3oTz7/DtR9B97iwG4XBKfq1lzLMlhA9FxvL7kWI6f+3X0WvaxJ+u1Ho8Z18hRLX963q+hR8WRzcKOmauTxzUH5xlMTY6h1sLBJCJSKulcQVEq7/6SHZ2diQ2Do1eJ3BhHxd/KxEJkzWWOzolOhDgIYzSLVSU9BVHSUkahp/otCC8wuNTELMHyXkeqKP2DGtsUxygMEnXGqAg6Yo1MwpA0Howy5YG7EIjDUMpzq6pKFWYU1VIYS8ND8Ack3Vx5lbt/A3gUXdfRdV2JooZhoN+3aeR+vVIgO37S6kCNuDSUKEdgX3nZpaJBFlHM5OUozkF64Z04Li4GNus1m70oEq9WK56/esl+sxUysnMoP6abfBhVW733PDw8sNlsODs749WrV9zf3LLf7w9aVcjnfhkdeTzKSClrjGB0Xox9uc2A5/PH96zvH/juNz/wd//4T/z44x/Z3T+keTAQ0wI0pJTD0HZsI5ycnfLwIMe5vuXnn/7Eq9dvef76BXyEu7t7TBU5Oztjvb5nwh2UhVHJ+N3f3hJjYHV2ymxWc/PxA8TcNsThB4/CsH30ROW4vLzg826LTwCU932aW4Lm9X3EDR2r0xPub++Y1ZZ2t2e/ddR1VpGW3kaLZoY5PePh8RHXdigfaJo5QY2R9363EQJv8NRNxaxp6LoONww0tS3OadcNNE3F2WpJN6t5eHjg/mELXFJVDWdnZ6W1RdPMaZo5Hz994uLZJdpEvvn2JXc316zvB549u6Lz4nDV1RxTGzw17dAxn8+posYNoo6slWVIpNvgHD549rsddTOn71u5nxBEor+qirxEANBa+r4pw+A9CyXp6c32oTyvjC7OZjPOLs7p3B4dNUPvqaqGEMeO3/N5Q9v2GKNomoYwiGRElMFEPjJHvKJ8HIKTSkA/EINos1hr8WHApao473qUimg8ISYZfpXLmk1qSZDTY1JYEHOjUnLQI2rRKkXa0QcGNwCamDrPkzaskdQ7dQYK5ivZrITsRj9u2HktsMbQNA3L5QlVVdH3LTc3N2y6LaIwbdN7AFARtShtexVLs998Lj9MlOAxRGsJxmOx6GgxMZS+iHKtZhyDGJGO47IijPfCF/+WtNOXa8mvrTMSwIgTmgsApsHYNI2uk9PjABU1aoK4i0zB2AppWrQy/fziPCjRIlNPvsiPbnJv03vwCaFW8dB5EjskNpcKsEwNmfhFcs4vHSWTSd6TORM5JGb/OTsSlI92tKMd7WhHO9rftB2RnYl57xn6hMCkKL22lpDSEhEvkLSLqCAQby4hhyQmSI0P0Ggp/4vOF0VagJDynLnUG0C1mQNjiMZgKsu261EpSq6s5O/rymIScdDapihh5o62kCOJpKeTCNTtIL1+6vls9MRdFB7OpBReLMPakL1rEQ4bpIHf0NG2LbPZrHQs7/v+wMMXrmOQtFNIHIBJGWmxDMEGiXjMpNmpUkr0isqhORoYCcvCrUmqsb1EmNvbR7YPj5ydnfHy5Wu22y0Pjzepr4uUOBpG0TeNIQ6Ou+sbqlnD6bNnzL3n9vM1vuspHKQYkzYBaBVTw0fpBWW0aPek9mTCMzDy7LMK83634Xf/2//Ks5ev+He//Xs+fRLOyqf37+j6PQSPDkKW7HygCx1RwempcEU260DXdfzyyy+88q94dvUC5zzbhzVt7zg5u2SzEQ5I9ANWaQZCEh+MPD7c4J3oFr159Zbbz58AeLy9kWvVAy7A+nZLdXbOctVwf/OIDx21SZG6sXgnJOFuNxDdwOXqjM+f3wtiGWH3KGhJ0zTYqmG3f6SyDbWp6Z3DDZ3o1qxEo6brHboy7NuWVWrmqk3F86tz1rs1VdVQe+GKrNdbttstEDg9mXNxsmC7s3x895mLizPm8yXNTNJYXZIVuLx8xt39HefnF7g+8vLVt6wf7nlY71iuhLs19B1aB1ZNw0O3p9tuOD095exkyeN6TdcNdInjVBvDycmC4Dydd2hVYZRlv9nRLBtWixmbVlJgi2ZO33t0sGADXdeLQvByhW57qkTOXa/XVFXFcr4SgjEGHzyd88yaBU5Fzk8k5dbut1gNIXUZ71xHYyu00XjnMFVV0OPofZIjCISY9Z4UodaSLtGjvg9aYaLGeU9trXQ21warpcllUCP664eObb+XtLDWKKOkBFxbdKPpUwqQqPGJtC6XlEqYE6KslS3NWLNGTYwRZeyEZB0JuR9Uonc0pmLZiHaW0ZrdbsPNw70gaCFilMarsRxZE9GqJuqYeEYVUUkPxD64cqxB+mp57zEVOB+wNqEPWgnBHDBG+lJFbZOqek7jjIJ+JYXEhFirviQvqxAnciDyex8FVY9BibBkTuVEXXrPiVBtgOBRqDSOoi4cnCfUuvRekxSlSZQBiNGMiJDOzyZnHlLaUElRS7ZyzRM0SMrC1UQ7J/NxdNkH5E+eoFsxpsIM6eeGUth87OQzVUwwU0z6R2lPOkh1MilP/wt2dHYmJo0Mc247N1EzTyZrJrBpdIFWxzRO9A4wxKAlVYWXSRuk6qnvR26Nc316YDn1Jbno1g2yyOdzaoU1Cm11qmyZYWydqsRyVdeUUCZERM8IZWbp9jxRalMnEmh3ABF/FRH0QSaUcNdkI207XCdO1Gq1KgrFwzDIyxm0jJcKhzyYeMjWV0pJu4ZJ/nkKMY+WSNS5oWhZL8YGfPl77waur6/RxnB+fsmbN2/Ybrc8Pmxww4APmVNgcGEoi1S36/i0+ZHTszPefvNa0iS3kkaKzhPpU9PMKJtLUkKOSsiUmVugYiR0qaJMa4ZhQCktzsqPP7F9XPN3//D3AJyervjxD39kt10zDL0IsRmRzd9vfXrh4WR1RvAPDMPApw8f8YPjxfPnfCLy+PjIfvvIaXIg+tbSDy3KB7TyEAZigO3G0TQz9vstzy+vZH7XFTcf36NCj1WwH+D9+4+8eHHJfLbi4bGlS5tXPTPUVcXwuE8kUcuWjvPLC66vryUNkgoj+thJSxUf6fo9i9MF/d0DwyCp0C5xdhbLJd5LFZpHeDOny0rUsm1F2w1UqVrg+cvnmLpit93SPW4JvaeZzbk4szze3rCza85eSJXXarWkdwO9G7g4u8Doij4MwtM6PaEZGrapS7zWmkoZ9vuO5WLG58+fsVVk325YLM7Z7VoWqcKKGBm6nufPn/Ow3fH4uCGYSDSKbt9yslwVvsh234FSqMrwuF3LBjEoKlNhlKaZibMlZOoaU1m5Zj+AD9SmwiJVZ1kXieBwIVDPpBN4XUvTXz+IsKBiIMax4EApjTENno6+T+lCJy0FKqOT6jUMg+iCER3eQ7Ra0u/WJL5fmzR7EF5WjNTWyO+jwjaNtARphfQu91WljX9MX3mkQCEqJQUIk7UgRIWZCAIWzkriKjZpcuXKKxBH8eHhQdqphIjDyRoTc8dvg44VlWpEg8eII+f8UDgwhY+lRWgxhArLmJoT8To/ccDqQmKWY2SPyHwTGJWSUYdVnU+dnaep8SlPZ/rlvWfwnmHSJNd7P3L/tKYqjVlBeY1SiZenFDoG9CSV9V9TjZXPAdN1d+T6jMydnFr68lwlbaVGDbTpef9a+689fmpHZ2diVWWpTZaeT8QpJRySGBVCQzMSBamRCBb9lLTq0Ar8EIleF8J6/AKZEIKzd56oIRJEaEsZmrrC1rPS68ham5wbm/oPjdf8tIxw+n1R0ZQPEKJQ+p1LuWAp4a3R2hZBMImmxs/QUY8s+iibugJCDPR9zzAMhasxn8+TyqxUcUQUEQ3RC8ksUHrHPCW0Te/hy3x2rjp46giJMvRo6eIIBA83158wleb8/Lw4PfcPtwCiRKssxCidmZNz8vDwwGa95tnz57z9Xkq/7+7u2D48EgZHiEFKvlN0EhLZtyBVaUELE2QqxkCMUuX1eHfLf/r//n8A+O1v/h1//0//yLt37/jw8Rdc1xL9IJwDH2l3+zQmhotnz3i4u6Pr91xf/0I/7Dg9PZfWH7sNmwfhqyxWS7Sp6Tsv5X/ayALfO7phi24MP/4kAojPnj3jN//uB/70h98xDAPLeUXbttw/3DKrK2aLJS71/NpvH1gtTjg9WXJ7e89u20lJcYxcPT9jt3fFmR98y77ruTi7hGhxznF+fo6yl/R9X3qetbs9q5MLTN2wqAyLxYp+v0NrzelqRQxS7g6UeXa+PEOtzgkusN2v0Rouquc8PDwUzs75+Tln8yVaazabexSBy/Mzbm/vcW5guVyO5dx9j3eO1WpF3/ecn1+ya7ecrM54XN/z8uVLbm6k/P1ktcK5nu1WhCof11uMtbx885I//vGPghym80rAMeCiBAVDO+BC6vg9ryGVvpu6Yrvds1isMMoSQk8kUmlBSU5WJ4SEwOz3exazOSomZNbKe9skleK2HcjtGpSR4Cj4gbYV5zFO1gZRaE+VUwgC5KOiG3oae4Kt53TdFqPB9XuGvTi90QtiORiFrSuUNeBMEks0YFx6E40EPAGoUrc8pUrFZIns5WoxqTy8NHRXOnEIhXu4SCrWVVUxeCfv8vqRoR/LzDOfRqf1e1bVNE1DU82EmxgC/dBLiXwiVqs6Py9PMAZDJPQUaYHMwRwrodQY8GoNxqc9IwXC2FHGIqPUBy7Bl04OiCPomRQ+eCHjhihf4nilYwXUwQc3lmZr6RSv0/eh9J8zgswrnYRQg7Qls4fKw18ryggCxBUn6qlWsYAATxyQKGjModejDv+dHnIRJHwaAMvgHe5t4UtHR/a7L378VTs6OxObz+fMa1k0QnZKQiQySMs3JRt9xKeKLE+MAhGDEI4hYJS0zpSqhSqhK2lhMzlNFAgajNWp5NxQV7WokVYzjG1K1KVVaq4XJdJwQ4CkmZEukhAmi1j6yoTC7HHryawYS8hJ5eNBKrgaqeDq/Xh+BYVgrLUuzeq0GvtI5WqR2PdYa1kupdpkv98XVCtb8fLJL3BIcuf+4Jjpuzed59npGaHSVKmWxkIlvFZ6LUV8K2hIXd9xenrKN9+IA7Pb7bi7fWC/24kScfCS6goBFyPv37+nmYnDefn8Baenp3z+fIPbbhlSRVrud6OVLs1ICbHo9ngtZEvvpdLCJVn+/Ubu9Y+//1def/Oab9685PTsgt//7g/sNvcStWmH9rJxbLYdMTouLi54fDR07Y6Hu3uiCpyerCAO7LfiQOweHqQUd75ku95grEYRCH5LrS3KOeq0En386fdsTs74+3/8Z3766SeuP73n8vRExj9IiwuVFHmNUXTdgLaB51cvuHt8YGg72uvPtLMFV2++E8cWUDqyXW+4v7/H6IrFaomtxekyKlLPZW7W9Yz9ZoPa7Tm/umBeV0RviKFn/+hYLBa8eHYJiNrz/fVHVqsVxiZdKTp2/Y757ISL51f4hD64zrFppTLn5HTOdvNI1+1Zzufs+z2b9cB8LsrJwRuIXqoOq4a6MvSdxw+RpqrZbh6ZL2QMtrsdZyfnDP2W+5tbGSsrSuaL5QmfP9/w8krQpT5Ewn1IJdGB3u9FGymlQBcz+fzd+lF+3/e4IVAva4iRx4dH5s0M5UUKAsAaSZOHvufk5ITeid6P6zuGIaBMTZ0271xk0e5bYozM5qdUVpwpoyUQG/rsmESMMsTYE9MzikOLDtL6xncDWUJZI+mZAISgUFHjXE9lamnVRy679gntEERD1IgNWhtcXhMmzk4JzhTlvVJKMZ8tmM1mgsoAbdvyuFlLk99UZWa0RlmLV5oq9TgEaGrpNyhl/D1dOzCEtgQmRmm08WVdcSkooZCQxxY5JQALqmivSS+vlJKJuefWYcCZ1zNIfsDkvJ44EtqzoHUIhUQ9RXmythAwfi9QEVErKShIzo4Ok6ITH4g64BNJvFxbSO12zEhQ/rMI/1fsa0iOOCnFn5HrnTo3jATkrzlY+bzqyZrv1dgJIF+j4q+8UI7OzoHN53MWjTgnMeWJRd69El6JjuAD3vUMg8MnKDFDzN57jJKKKJ3z1CohD+IlHaZmlJR+Wm2oqgpra7SpyA3VMr9H9CY86IANAY90XE79oQlhrL7LaTcpjc9M+pTXnaSQtM7Ceb5M8r6Xiozs9Ezh5CFVeMndjNCsUiJLHiddz10/pNYTUrkVY2S/36YGgBMZ8eygpU7gOU2YoV+Rj09DlT4zpD40apLjz0eM3wunBpPbfMiC0XUdt7e33N1Jaur84oKXb69o9z13NzcMux5Ph9YKHz0hetqd3NeHn3+hXjS8fvGCcH7Ox48fE38EiJGQ0pEg+ip9Kps3WfdEoLByjTa9/P1+x49/+hPrhw0v3rzhX/6Hf+ann37h0/t30nyyCJY52m5DeBy4uLig2xvub+/YPq4xPrJYNuQKq/3eCa9queD0bMXm8QZrNRUK37WC5iXUsDaGx9sb/rXv+e2/+0fmy1N++v0fOFsaamNoqhk7l5pgmorKKtF2igMnJwvM6ZL1es1mveOXn3/k5StxJE9OL5nVZzxsd7hhYLvdcLI8YbY6YYFOmjzQ947z56eooNitN/i6JkYjPZQYeLzb4fbiaMzqGnPSsH28xeqKqqqojOdsOadrW4yeo9N99c7TDQN13aSoONJtN3x+/46z81MqW9Om53F2doGPMAye7X5HXc1YLudsHh4FUTg9RSdOXBs6uqFFW0Vt5+y3LZfP5zys77m4OOPxcVNS4KvFivPTEza7PbZqGNwGbQ29d9ze3xdn5Oz8BKssnz58ZNYs+Ob8LXfXN/S949WLC3wIuIQe26bGWItVsjGKNIZGa0OMUCXZCYB9u5GWKLbmYn4qVZ8hEoLFDfvURTylhRtDHDzKWGptqY1i6EW0UlLTAVNXaZ0bpKmtqUoqylrhDmp84bZY7dAm5TWVVKJKH2VBOLWGqEaeSyRR4xDdGKOl4kqQZ8VmJ1V5u500BQ7BjSKdUUrmZ9YyaxqqKjt84GLP0HW0/cDQe7zyWKVTN22yNBToKE1TA3iTnZIUkHlPSLBGtKogPuLs5F5hElxpNRV2PEQnojrc5AuKgyDeIQWxv5bOKuiSD3KhySkkKoKG6BVBh+LggJR5y9+69Ce6rPmyNo2Vx2OKy5UUXTalFH7i2vwlrsxhxiHf/5PfPRmfgxTmk/OZxN95Kl/y19qxGutoRzva0Y52tKP9TdsR2ZlY3VQ0s+StZ/TBB/GEQ6oKCAGnAioI3HlI7lWpkUBCJGKEwaNUGBWQJ7BdgW21AVXhfCS6AV1r1BCyqoD8TQziFmuBPo33qKrBRY21ukSTSllS4uordxgYyYtDIjKHhCS5ku8ehgGCP+Ae1HVN1svxXqrSpk1FyyekyMAozdBJpZYxhvl8jrWWtu3Z7XblvgoK9TU49IkJhJkipl85WiIDqboYimhbTLlh8P2AsvLzm+tP3N8Zzs7OePPNN/Rty+3tLbuHNcFFtDK4hMAM3uEeHT9tf2R1csK3P3zPZrPh47v3dF1H8B6fOzsW2F7j/IBNrStUFMg633Meg9B6bm8+0/Yd5+cXvP32DWdnZ/zhD//KfisVVip6IpGuC9zeRp4/e0HTzFnfXdPudpjYYm2KorXwEtjuOFnOOb9Ysd/vafScXT9QN1Vp1lgvLFE5lGt594d/5eLVN/wP/+P/iX/73X+iD4HKKhapaacISkrl0vX1Jy7PL1icXGCqhotLKxF5ktXfdTuWixPmi5r7+x26gkDP/e2O5XKJSmmGRVMz9JISPlllvRqDWZ2w3+7o9r1UqwGPDzfYSmHQ7Hdr9mjmyxOMlTYqzdyWWVHRsFRLNo8bNvuWVbPgofXM5ye4IaII9L2MbdcNvHjzBlPV6Kpms37AVobnVxf89NMvbNaPrM7PATi/fMZm27E8Oefu8U+YyjAMkVmzYDZb8f333/N4K/yextYM+x6FxakBbxRdF8F7ehtp0hxob+84nS14uH3kzYuXtOstu82Wl6/fMFvMud+sOX8uhPLgvPDjVODh4YHZbCZjZhZUjUIZ2G7X5djZYln4JlUtrVhCFwDhqmWuXaU1PT1RN6LvoiBq0bvSpsbWVWleG0NqQ5GUduuZINPaVkmINM/tIIroyiTOo0YHIdFGZI0Ye1CopFAfUUZJIUZVi2CiG9huW9pOUpS5+lPJi0FlNKoyWGuprRRr5CLKru/YD3v63iVds0C0UjgRES5MhmxikObmUSk8WcAv7QNP8jpZm0wKVUAZU1pNRB0LWqKS+vOIXoxoPSCVXuHw35FDojIhCp0ifw8HSI8sUVIxrKzwSafH4gNRebzKSP+AUpHcAiNmzSttIR4KO4oOjmQCeMLlzNo4X0slCVf0ix9/YU+Rr6np9GGlHcchiP+rKbBfs6OzMzGB+WSCF2GklD9VpBx4jEIES18wDnoMQvqKkzRPPo0xT45NvxcIOqd0RFFZkQh3iXlvrUdVA6GWFEnmlUn11uhoTf+fq8RCiMURStXoBybXkF9GVfLkMWq8y2z7QbogW5PaXKQuwUlULE7Y/WO6Sco1iSJ1v14LPLtYLLi6koW7bUUBedrn5a83odqpnG6M4/34rP6Z+20YcUwVGqN14gvI4uI93H684e7uhpOTM968es3w7AWfr695fHhAeUm3KB/xRuMHz831Jx5ub7i8esE//MM/cH19zYcPHxJnK/GbErQeY0zCahSOUQwBb/N4ybOXLvM36Bjouh2Xl1f8h//wH3j3888AfPjwnuB75vOavt9z/fk9V1dXnF08Y7tbo6IrnIrlYsb28QGCxztLXVecLi9o+44YFfvuXnoWAcZCM6vw+45hv+bx5if61Rl//4//xC+//MLm7j1VmufeeRpjcVpz8nLFbtvy8HBHvVjiXY+2hmUqHw8xstvcs1yewGJB2wX80GM0dO2GOkg1Tdv3zBcrIdI6L85o9MQgKrbz+Ryf0miL2Yz7+1vpc2SlfHjfOkxjqGcNe9eiSp862TBXizlRzwDNIqmbD0OHqQyztIjOZjO2+x2XF89pZsJN2m4ewVounj2nqiruH8WB+PTpE2+/+Y4Q4De//Xc8PKyl3YUxGKO4ODstVUvb7ZaoNFVT0z2uub6/p/OBpqppVOTzg5xzZg3RK07qBl1pdu2e0/MzFosFbgg01QybKpF67Qh4htZxsjoT9XNtmC9XaK3Z7R6pK6nyqldCXtbKUtWSGrSmIVak4CuM1VChx9Q1NgU0AY+qLLWppRxZxaLMbKyhqiLeBYzNwdavpCJSmpygUUJvQRuFFsXLkRuJpOFMZVNKX9asLGba9/2Y0lVCvjWVxqi6qI+LMKWk3XJ1aNd19K5LaXaNTnSCnP6JWhdZEK0tIZDa1uS1yOfLG/eEJHKYuZYSMBpMTOKu2o6VpZlnkgPbfNZcQh7DgQMTY8QnEVQXnVAWvpLGKj2mYpRCCa1RZhSWtYnTA9AjlW/GieOCVkQvsbPBoBllS6a8TqEbjOk2NWUqw9gmY7KnTLk2T0ULYazmytwl/WRDksD+sOhGP9kW/mudnGxHZ2di++0evMIqTS781xEIoikQdfqdD7KxJWn1rIcTfCRanTbaPCkPK3S8G0vPs1erbQVRpOeNTmWNyhJS1DMMHh00+E5Y9E09caY8IYzclqzw/NT5gexF58UlOVlxnMjTyRliGPU6Ull1GByD86VnlbWW+XxOdKOSqqA+E4VSJRufjhIN7Xa7guw0TcX5+Tl+ECLzvh21Mb608eUGCZymr0nOJYc4EoKttoXIJ7n17HBMCXleqsN2ivv2jru7O07Pz7h6dcWzF8+4/SyVW48PDwzdtuSYB+94/+EXPn3+wJvvvuWf/vt/zy8/iWNyd3ND17UScSVHeaxiE9Vnlwjd2iYkMSiGAdZ3G2KMfOx/Yb5Y8PqbNwBcXJzz7udf6Ls9JzNLO3TcXH/m/NkVZ+eXdLu7wptyzrFanNF1HY/bnsptWC6VRL5npyyGGd1eUI3d/p5ZVWMWS6LzbB/v2G3XhBB4+/Y1jycnvPvlTzJeumWz26Aj7NYblqcnzOZz+jBgKoWOjm7Xp+ll8T7yy+f3PL98zsm8oTeKwe2JUaGTE1kTuf34DqMrZssVTdOwebiVZ60UVdWUKozOR5anz6VVQhRlXodiVs/QSrrsFNVx54nBpRYXoCvL7GQmzXObBq0tfXoGXTegTeDnX35keXLGxcUFGGmr8PzlKXd3D7z+/lt5FzvHx48f+fbb77H1jNlswf3tHY+PjwwIyb+eCcfo0+0tvRvYbPdsNhu0rYVI7iN96NmlDfm0qWHwzC8rPn78SDe0/PDDD7R9jzGR1elJ2byNVgQnjUSVMugQmM/nmKZht9vhveL09ByQYMJaRdXMCUPAVlpIvlo4gJEh9dqDMERsraksxF6hTSNBTfS4fk/wfdl0KmPR2tKFpBUUBFXQWrRcupDmgIooXQEBbcRhGkm9ElxNtk6sqaiqBqul517vBlFqdwNRUcjnVhuMym0dxDnSyUnrWk/b9vRJ2iCkpq5aCcJLkHeemPlCY8VsCI6oTOIkSqCmokpr5KS4A8p6GWM84OdkxKesUzZCOFQshrEVT4xjH60QYyIh+yRrkUjM0aUGrWMBh7xjOumu6QOuZkwIso2yvVc5gFVGkHHvICkPy9fo0MSCaOWPOGS6HPoZ4/2YRDZXceTGjFiWmqqzyM+mhG0mTlCMJWD+mrP0FAV6Wo385+zo7Exsv9/hUvSXpdxtEoiy2qAJhNQfyPlIRGO0wugsuhZQRkjDEYmqgvLJYQI/BPohleYOfmxSOZOookLRmFoWBm1SjyNQRgvEqDVWV0LKM0AOJLQu8KL3rlxz1EbKPUOGVyEmGXURgUtaGpkEHIPAu9khyJNISzdkEf5S4uz5QJ9k1o2J1LVE6rnypB3aBMFmITFxEBXjhJWUVktTiebP8mRB27a0+32SRp+8WT6Qsa/sjCmlSrPTpDiVqhg8JkZC6AQCVgKpZ6JqQeSgMOaCceLQ9YH7Dx+5v/7E2dk5L55JE8rXV8/58PkTt7e3dF0ni2DweBf4w3/+L8wWc777zQ9y7JtXvP/TT9x8+owPo1MaAZ8r81LKywSVpPQNPmi64IjrNafLBb0f+NO9OFvPv3nL3/3TP3D98ROb9QNLHem6Pdv7T8TVKYvTMzb3dwDMK00/7NA2UBvNvm3ZDB1aeWb1nPlyBSnlZRfn9O0OW2t2fcv8ZEVlLPvbj3zcrlmcPeOH738LwM2Hn/G2xvUt++2Ou8+fubhwzBcLKlvjo2G/2aax3UOIVDrw7uc/Uc0aThZLQuxx/cAuPdrz80uurq4YfKTrHdt2TzVfQFDsdjtc1xFSRK+twdqKs8srVqsVbeskVRmUpEm1Yt+KI73bPRL8gE8y+w0wr+d0u5bgHcvVquj3zJoFEc1qfib91m63zFY1+9BRzWdcWMPjjYhAXp494/KHS25ublgsZpycnHB6foILnhBkDpmUoiMMsnG5Hq+EB7v3Aa0FOdWJnPvQSt+n3edrlkbxQ6N5tn3k1GgqY2h321JyXC+qFChJ6nm2WKayFIc2geXpvKAlxirms5VUF+qAJPk64tDJRm6DpJIAXTXUxhAtKN3jhj2VMigMlZ3TGzMWQVhF9AHrNdF7jDUopQne4X1AqTS3jEVHWaOMgqq2aKMJWktqL8gxgPTey+Ty3tENPc71EqggiEImn0uZd1UIwiEEut4lFGiPdy6Rr2XDlXQZkFJkUYmWTyYdjKIvqW1PiBit0satkA7pQ0llqSJPYnDeEaKVPlq6Sg5PNZb/E1PLC3PgIBWRWULpaSfIDQw+4mPqARgguJgq5FSpakKDzpmAEKUSNMiepCJEM5bwl0IVo/E+oLGSwtMB7yOaHJhronUYTAkwghKJDZPoAzmIF5Qn/8wTc18zpcmM70w+jzGmrKlkTWKUtNzXnJRMQygPD8mYKCVgw1NMR8enP/l1OxKUj3a0ox3taEc72t+0HZGdiTk/FLjSJm1yryPGBBweq0dSaebbKK3G5uSJQByDTekOgW4V0jRyiJ4+RfQDQbRikNYTRgmKVFuD0RrbTJREUSitMHVFXVuMkchGa2nWB1L+CGPXWNKnKmXlGlTGRSamcjO7USciZnKzjqP436T8cGoZXhQ16E36aUpv1QKDd25IZaJSkjnNO8v1SpPLh25PNJr5fM7p2RkhBDbbx8J/8DGm1huCPLlUhqhTqirnyI02wpUh4pUHowTtKWRlVTg7cm+68IVK+i1G3NBzff2Z22shm56fX3L54ooXL15wff2J2+trup0jOIdF06/3/Kf/5X8B4OLyOa9/+z0vfviOn37/R+4+X+O8RNExdBBHOfkhRLQKci8xyrzzjs32kfPzM2JKp75/9wdmd9d88833LJdzrj9/xBBRw45ufYvzPRcXgkI93H7A68QhiwprIhAZ+pY2evb9hrOTcwC6diuNZSM8O7/g9vqOtt+yWDRs7m/Z79aszkXn5tmLl9zd3rJd36O149nVOd472v2arq2IuuLk7ELO23Xs91vpBj63uHbPx9trTCUl4ypF6Te3Dzx/+4zFYgWbB4heWpl0PRcvXmKMod3J3Nrv96gY6XdbdhGq2ZKT8/Ok0YQIAzZy3pdv3rDfSnsJpTSESNe3aCPvx3a9pZnP0vwNzFZzhq6jaiwoET1cLlaEGFnMltiXmddgCNryzQ+/4f7+lpu7B1bnF1xePGPf7oQjkt7x56/f8of3H3jY77l93LDzDmU0zjusNaJYDGgd2A6O/aDYKmhu7lgtl7S7jouzc55dvZBO6EiHeeGziGCgc06I/9t9kq6whWu3WIlm1tA7IiJd0XUt3SB/Y6kKZ8JIzpUYBowGU1UMXSvl5CoyqyUdBZKC8f0g8gEx4hGUQ5ARqG1uRKohFU8oI2tViNL2QFWWRTXDJAqA1po+cW3atk/oVUClc8r/0ztuDNaOzY27rqPtuiKPkddmSJy4mEvCk6ihPkx9qNJBV49ii5qCaOc0NAVUiQcpLBVFpC8qUof7CYcyITtG57XcF8kNSBIXk27u3sfS4dx7ScFHbdK+Qsk4FPkP5xlCYPCOIXh00vqxyqJ9LimH6CLeOtE6SpIl5MzBlFcaFTZK41bh9RSxkcQ7+hIf+VpqabrXKFJ7kj/zN1+zPMZ/6di/lsNzdHYmVtUNlvRihXEjj9EnzYHE+SCpGht5GF6P+VcddHrh5JzSqTXDdtNcqPxWa41Rmiq9gCE4EXlIHbAhOTBGUWkjREhrE2lQJpVi3DxF90a6oWfCrxwX5PtSzQTEBA0myFYmdkgOVHaYytGTycfB94eTTaq5+r7FGENVNSyaGVSj/k5IqbzgvVS5Zf4Rke12y3azEX2T5YrmXPgP+92G9XrN4Hs0UgEhzk/iU5W8exCukwITcm48E5oklx0n72smR4ekaJ2dnUgsiyQIMfX69jPn5+dcXV3x8uqKT7d3fPr0ic36vswRgIfPn3n4+J7Ty2d890//zLe/+S0//pf/wt3nz6hU+RESYV1bDapGK4UfHLie5Uo0ju7u7jk7OwWgBobNPX/81x3PX7zm9XdveLy74+H6PWHYEbefuWnvATi/eM1e79k+fMLqyLIWVeQQA9vHGwyRbWoBMVucst3uCG5LGBasTubs1oGb28/U1hB9x6fHBwA+6B95/foNl+fP+fDzj2we3rFczbH1EqU1Pnjubj4CcHp6ymo253HncFHRLOfYuuLx4Z7gHCaTQo3i8eYDL6rXnJ0u2Dxs6MNAVVV0+7Wkd+dCej69eIXX0LeiD2MV+L7l9uEB7yOvXr9BpbTI7f0jjW24uHwpHLMIfbelbzvcpBBB3kXhe9i6xijFbDbj/v5RWlesTlAq0lSZUN1xumjQCi4uzriPsHtcc7o8YTFr6Ns9s7SJDL7j8WHH7c0DPgzMjcXryBCla3zdpNTvfEYYZJMcvOfn6zu2+5bfvLpiNq9pu5HQHULE2KY4cKInIwrDVVXjXGDRiFihiwNdN6SgRVKn1lbMzpepRxSEQfg1/X5H33eEsE3if1pahuu0GSdCLoB3gaHrMaoiuJ5haHEK7GwmVZt6sj7Iv0AbIhprK+pqgW1mVLZmSJtg27bsSvp6kupL7XCUMmM1WEoDiaOzF0VqL8UjpDWs7OBx5HVI9djYqsDktJIet8HMgdFqsoamNWFcM6J0gY8qOSNR1qRU8pnTLgAq6SCFSaA8ihCm9HoKvlwRCgwphZXGIknWa6uLgrzrI9473NAzBI8nO3qi7yZpzpyecrLOe0XUgaByAYeQxwOTthJeEZRDRUtQqe0PEJX+6lo/3ROyxtnXfZOR7PznyMdPOaZP7WlF83+NHZ2diTVVQ1NLFY9PG3IMUiSYWeZZlhs83idUIw1+LtWTckCdlJhjKl+Xjd0mB8IgTo41FmkjJY5ONxgMPTqoUpFgrUHZsfRQhQBhgJCavVmd4g+K5x1BhAixDFCiX5NeFg8YNUE4lEl/NYl4Js7ZIeE5e9vqS0Z9zMQzEeJqh33i1IhY4aKZoedyjZ0b6PetkJsTeVsW2UA3ONquK+S/+XzO1YtX9N6xW28kytfJiQuh8IvkpXPl39pA9Jqi4pxIyfl5CWExRbVATGKAIXgUhiy5TpBipw/v3nHz6RMnp6e8/PYb/v2//0fu7u74+P4DD3fC64hG1tqb609c/z/ec/XyDb/5x3/izQ8/8OPvfs/dzXURGHTOYSoFaUH3MdL2juVySaNqNo/CQZnNFY3RRD9w9/5n1usV55fPqF5+x/3NB/rNJ0Iqpf60/x3nFy94+fo7Pr7/QNvfUWsFRtFoi+9a7q4/y3lP9xhb4x083j9weuKIvuV0sSLGSNvvCYn/EIaOf/tf/zeevXjFxdVLrt+39OuOWCuaxkuZvZGI+8OPwh+qlxVWa7pWVK4vL56hdV02GFPNGUzgYbvjtFmwOH/BzLWptPmcYRjYb6Rqaf+44eT8gvPlKaquqWyNri2nZ5d07Z6H29uinHu6WNC5vZQbK81mv8eoVLX1KP3bMgFfaZ0a2jpOl6ecnJzSLJY8Pj6ya7esVqdCbgXOlise7m+Zr5bUizmLsxPUZsu63bI8nXP67Izr9zK29/f3bPtWGHxKYRXUtSFoRdc56sRtqZyUZZtK441mFzWfty3u548Er/mXqqKphHA7W57Se0dtA0rbolxujGG/37NcnkzIr57GVsSE+tbNQjgpLkp5ue9xvk/rwUBkkKo+B1ELsuyHgX5oS5k5CJFWRY0BXD/g+k74g9YQrEVlvooyaFsTVUVtl1T1nKqZY21N8NIHrU2f33UdLr1ruXJpys0BXXgwzjmGwRckJ69VSkWMQsT1Cg9nirJI8ULmDercsHPSRFmI1hoVJUjyQR0g0TLYWXyPVPSQke8UHOlRVLDy0iw4Ax0ZdfKkoHiC9Ih4bMAHkZnQWlPbhPggVZ25NUbvhPvmfUjl6gHrpbLWBlDeEbPXqTUhGMgtcXKg7GVUdNk7hL8k6u267Hnyy0lD0/wjBdPgN5uo2ccvxP+mhOOnTs74t08Da3FOc4HH0/McqBf8BTs6OxOb1ZYmIRAoeYnmjZHmdbJflwob7xxu8KlzboYhQcUhvTRpYSApFPuQohb5rPygQpBpERGnJiMqRX8H8R88isEH9CDdqbU3VICpZlJRVN5HPdY45FkQtaTLDhyZ9BmTiSoTKzkwcVoqOZLSppN9WkZfzpG+F2REXsIYBUYN3tN3XTmvaWoWJyt0FDi6bVtp1KlknKcpLylfXzNrGlarFZeXl3Rdx/3DLUPqwwVI1+OYScyqVDTk65IXJj8EcQjl5fQjqhOjkLXjqIERfD5PYGi3XO/W3Ny84/TknLfffse//PN/x81Dcjbef+D65hdC1xKc5+bje27eveP527f83X/4J9rut/zhP/9nANZ3dwTn0UQqbVFK42Jkvd6yXDXYOunWtDucNdTaiDpq9Ny1LScXz7l6/pqNnXF7/YvcVtjw6cPvMPWKb779gZvPhk8f3rOsFERP74dC7Ns9rjG6kY3KeT68+4nT1QnYGZvNhtpo5kk5V0UYdj3XH39hMT/h7PyKu5tbGDzGOKyRBp5ysFQbDvuBxckpzWqJ84F2t+fs/ISzZy8BeNzsiN2e0G3YXA/4ALPZgtXqFJKC7unZmcwXU4kqdhSdqH63IXQyJ+u65uzyrGz+u92Ood+xHjzNbEY9X9F2PaA5vTglppLsPGf70HB+3tBud9zd3bE4WbBYLLjrOtbrdalw8t4zWy549/49i9mSy8tLVqfnhMdHNpsNjW1KWuTm4ZHH9ZbeOarastBwajR1PWNdBe7WQuY2ylApaIbIarmkI7DeK9at4z/+9I51+8g//93fAXDW9jx7doVp5qV9QPBgGktTVUQ/lpPnzSi3MaiMbLAKCS76vqVPPcqMkTR52BtBGxLC0rWPuF6at+bUvqoqtBKF5qHrhBytaklraYOhyQsE1ayhmZ+gqwplquKoxFR5lJvMSjsaU1rraK1TlVXu2TcwJMcop3uemlKi0KyVkoKO9M6HhKxHlZp1JuRKK1E+zj2ipn25cjosJLrBAQUgb8ghVzRFYhAETBw0ikaaS4GV8mMllVKGoJB0owrF2fExtZ5Js9IrRYiR4CKuc3S9Z0hFIX1ar3yUQDkGJem3VD0WgyYBOwQv6soqBcs5aJYqujAiXQRZe5Wk16Qab0ztx4lQQM4WjOXpU5Rn0jUASgA8fU5TpOwv2VMk5/8osnMkKB/taEc72tGOdrS/aTsiOxPrveShXYjF2zdaY8MwSSFJ3tw7ITYOCd2BFHFol2BBfwDVuSglsH3ySg0KqxR1jIlUpoRgaCuoDKhD+NQPnXjl3qNtoKJGmYpoJXIbvecRptTaprL51J075ZYhe9eqiIGp7JnnVFZkPGchYOec7dPmeBNkJ/Ncilef/Wkh3U11EYbtjna7o64MdV2zOFmgATdI48N+GA4jAB/Y77fs91vQiuVyybNnz7DWsnmUKHm9XuO6PvFtEgFUjeXffjKmksaS1FVQrujU6Cgll8qrUhaqoiJ6n0ovAwqP6wc+f9pw+/ma5ekZ3/8gJdr/+E+/5c3DFe/fv+Pz9Ufa3ZZKG97/9DO//PQnvvnuB/7lX/4FgLYf+OMffsft508o5TFIlFjbCt/3hZjaNBUxOHyMaAN9t6HdPzK4HU2zYLY64dmLVzIGNz8T2x39/gP/8cNP/Pbf/0/89//yP/Ljv/0ru7ZnZmq6lPKKwWOaiGqV8MqC4fbmgdWJ42Te0O32bFI5eTWrWa1mPD5uGLqWjQosL85Yr9d0+4GzZyueX72Q+xoEbRtcwNQzlosltpqhqhl937NJOj9GBeyJxfceTaBSin6/Yagtaj7H1s3YSy1GQuzxSGGAmdVE3xL6gXa3Z1bPSgf6atZQr05E7qHb0e32mLqmri3z1YxKV6VDOgHm6XNm5+eSvvMdCsOLqzfECPeprN8YQzOv+e1v/4HPHz/x8eM1l5eXLOoZ7W7Hh+tPDEnp9/7+nj6lZm0IzLRhQWShoZmLzAHAtnfouuJ8OWNZR3Q947ypud12rLc7Pt3co+MfAPjNt2+YzWsCHm1rTk9P0Y0ll/WGEIo6tqQeIlXVYGwkuJ7tZk3ft+mNVFRGuEBVrfB9h1cVRge6dsfQtgxuwHU93b5lsRCxwgbYtruyJg0+0mDpuoFqgIvnwrFaLJZoK6k2FTzaCIk2N/4dCymyIrFKHcZt0eNxbqDvUw9CchfvTDoel4aiB6MS8plec0UUUVgtaRqdSrCNMZhcgj5t1hnHZptKJVmOL0goI4dHTbgsJl2zUqqk17xL/BhG4dVRYVqJ2nJaI3OJfU5nZY5jl/sShlCUl8v1aXlvo02c0jSecSJ6q5UIFKpQJZ6QKmv3Ux5O3ue0zv9PpfK5WGXC15QS88wX9YA5SG2FybFqsu4qpYr68lOLMXEwJ8Tk0oMrZVWKojJIY4HwlRN9xY7OzsSGoccohU0iTTCy3n3w+KEX3YOsXqkAPRKPtQaSVLlMIENQWeQJSKJbcqxBGYMyGo3FmloqFpKKZ8AXgpkQ9ORqgqmojPyt6ExIZUZxKqJG2SRMaCJaWSHioQ8J0pBzckLIxpCFvkhQZOG+MOG1TJybX0MTMzExp41ijEQt3AgSfJ0ORCvFMMiCGnZJ+M5WomFiT0tapGvbtGiqlEYc2N4/sr1/lOqvlSywr169IETF48MDj4/3+F4c1bG6QxY0yORkRYgBH4aUHpJ8smPAKlMWvugpnIGYGsBK5ZAj6B23n9fc3XwA4PTigm9/+A0//P3f8eq77/nll1/49O4XrI2Efs+f/svv+OkPfwTg7Tff8U//3T8T/uEf+NPv/4314z0mDOIMa8PQJiLxrAat6LtdUtzu6fuO/e6epmlY7pclR14vT1Da4G89Cxv5/f/7/8nq4iU//PP/RNcO/Ot//H9R1WnjGvbsHx7AahSGxeqCqnLc399xcnICPlClruez+RIXA8+/ec12u6fv+/+dvf+IuW1b77rB30hzzhXftOMJNzhcbD4DXxUgJAuRy4BElQRIpusSUlXDWEK2O0CHDrJAQvSgaYJIHaKgg4QMQggJ+asq4v3s63DvPWGnN600w0jVeMaca737nHuvjYRsrD2O9nnTCnPNMOYz/s8/YKvFZLi33+1IpdXx9IMP0aYm+sh+v6frNswrx6wxzObnuLmYJaaUOHTiyWSV3LSXuZzzlaZpGgxjWKQixiTBlFFu5LaeQ0lQ18qiC+8jenHStcZgZjPhSaRE17Xc7e+4WF+wXgv52yhD23cFrk+ApJ17H6msRhnH0w+kkDwcDiQfiH7g6ukT2v1eztGUcXVN2/e8fCkk7UREEZk7Q50jTUoskmKlwZuEWcl+fbnpUSmy0JkVmQoYjGJ53nCtIy2Z6xJeWxtN7Rqevae5uJgRS3TDbDbDGI0ydioKchZPHOcMIQTuNzeEEGiaBqUUi7o+tqJDJBvIpqdtd7SHPba07lPIDF07JiDQ7VuGocfWQh52lQNlaeoZdT2b2oN9L9e1tRXaybENUTylTF1hbY0pvCUw6GoscuS66/uuBC4Lf+7osD66Ep/epPX0OkmrowOykpu9cHTEC8a6orriRKzBSB7OE5VWulefbX5MrZziwZOLWSJahBIheU5NA4XrFDhGRxy/SuF3fI8YY/EYCoQghOWQivGpPilMCgnaGI3SiYyBFESsgpJCZ3KXL20lTosZKY7GwgrAq8io3I3ZA65wCwvpmdOF7UnBRERiJpLsf1WKonxyvN7ah6eUiLe/j6XQGZlQbyuypniNz2dCf8vxrth5MJxIrkmFxyGKHu+lyk4FwclqPMEpVumjqkPsmVJC8khK5Z5zxpYCyZXjX1mHzmJWGAoZzZMgeLI6dRkVsq/Rlro4tjpXY6pKvhrz4KCfVuk6i2QQpaTfmmXSAKAUQClFtD5RH6kkxN90ZM8fi5u3+Tqffd9R4s2IppTVynhx5sJhgpKtUiYYhSgX/NCR9EALKOtwRZo6Wy1ZaE3oA23b4oeCfCXJTvJ3UhRs7m5QznJ2dsYHX/oi0Xvu7m7Y32/wbY9KiTiZaAViHPvYhbMTEyFnssmSLzVK2jGE6EsBJ6TzGBNE6HMrBS2yYr5+2bF7c8tidcGT95/zXR+8zxfee86LFy+4ub/FdS3ba5G0f/zRL/Pxi4/5whe/my9/9/ehlOHly4/Z3L6B0E9Jy33oqQsCFoZeSN0poOJAu23p24712TkAg++xxjE/f0Lb9iwXA33f81//v/+B5x9+id/2u/8Qr19+CsCLX/oqVbVAZckcuuu2XFxc8MGT7+Lm9RvaQy8uuYCPifNHV9TLOfPlGg107UBOEVs5Lh5f0ZTjlYcerQO2clTrmm01Z+g62n1gNV+h+zCdo2sNylXiJm2cZL8VQqxBT5NxzImhF/1OXc3Q2hKV4KhaawyKuiBhqXIMQymCrKHve4wSDlBj5uw2O/pWEJiz1RqMEOhdPRMe3jCQw8BhuMVaeR8AawwxJ7quw4RQoiXu8N5jMJic6AdBwq7fvKQKnmVlaNCc145VpahyZK4NVTm29VyzPRwwgxdhgeqYVxUNmWrZsPGBvjz45fUN2VhC8jirqb1wi5SWgl6MOws5tkQvpBSICZarNc5JgdV1HTmnaVE38mR8OBCdxlhFKg7GXTdgcBz2hRzbeZr5jGY+w9VNuTkZautEIXUrKFgzm2GqSkwV90Guf6txVY2OioDGFXNL5xyxKJRG4rH3g3BYtPBPppogjWKR0QH4hOdYHq/tw7lJjGKLwd+oRuKIbkxz2FgIALwlUR+H5uEN2mhT9qMoKo/J4XLOSnkkqehGO8b5VPKmmHhmwmcK4hCOIDApJVQQCwlBTgoXVAsZmShzrlMwxixoJRYiuhSAWSs4iauQRa9sk6jBxtj3JNYdKQqRWwWmCUgXPtE4vSt1LKbIJzyxglY9QKAKKVnrB/eQt4uc6RicjM+7z/xqi5xxvCt2TsZicU4qyoORoOxL/tMQwlSoaiWrjFx8EtRI3DMKm6P8zhghnuWIMRpdidpppKlpbcmmIkWFNRptHKrILCWOwU7Fzii/dK7GOIt1jsq6iTCYUijKJEjZFAWBIZkiI4+gMFjN5HcwhsJprBB1VSiwbSKnLDeR0RsijmuZt0/U8WQ8KYJOzsMM5YLQI4WNo+pLEjmk5VWeF0tI5tgK6ztiLwXEsN+hjaGezzg7X2D0OV3X0R52+K6fWomkTBw6rnct1/o1VVWxujjnyXc/5TB4bq9fs9ncyT7o5KLXscC0wRMRy/SU8oT0gMDRqFSKIZnQQjlHcojE4RiSl8ns6ei7PTd3n/LzX/tvfPDhd/HhF77M0/ffY3u/4e5CFDsvP/mY2Hd88vWvcfPqUx6/9x7vf/mLvP/h+9zeveb6paBFqd+Shg6lI9plKu1IxVZfo4hpYLMRNZjTjqZp8DlR1RXN4jl1PSvBmi3f/Pn/HxeX0m76bT/4f+P61Wu21x8zt5ndbsfN69d0mx3LxYLLR1fksiq8u7lls9szs4bzs0uapmF5piey6H53O+2TZAzdkLlYPCZnONMrvBWH28P2DXEu8mhXVdi6YQgdLq7xfcCoiE+RoDxaa+pGUChtLM1SEZLGOCOtkEK0HIaWQ9sxZhlpbZgvhLAc2pbGObyKRCXFysXVpUQnIEqgjGa/35DSnaBJrqaaz4jB4Yc4aWTDECApqmbOEDzbzbYE3HYcij1CTuV1W8+6Mixc4qxyzFSmVoFKW9QQWZuCmC0yVZQwWZccLiZM73EV1M5SacOu4P57V/PRy9fUBh5fXjBvZqiUaXdbrK0wrmaMhEkx4HMEa9DOijdNEmTMjC7rBT0ePWiaegEJzNLS7zccDoHZfAk5si/5YMlqQWbcnJhht99T1zXKQNe2NIVUb5KFkBhiIuSEchWOCpQhYXH66MqcsyeVhUfMYgWA0hOak1U6mVyOCPN481fT5ykPOVU/laJOI3lrElAaybm4LI8kYigoNzAVgSctsrdGIp8sNtVxvsiaOG6IOrrba63AgtKZFDPDsC+FXZljYiRFKUNOW0y5FAmqtJUAnNJyqlskhLTMn+O+EJVSmWeVnmT28llENp+jUBHS2AHEkIKkAMQyTStpX0DW5KQm6Xs5CsQYMbiTz1jELSf7SatRqp+n7sGxqJH7yOTiP1qelPahQpVmw2fRHLEZmdLLvuN4R1B+N96Nd+PdeDfejXfjN/R4h+ycjOXFivnyKXHwDHuBone39wx04g1R2h4GQywGdSqpKdFcxUwAVNaEJKsnW4mfQzYWpRx2zCSybiLpjX4S1lYobaR61seVxRjsaa2dCHCnqbfSfpHHTgQxDNqMDqRKqmtzhGVPX+d0hTfxek68a76V1G/89cP21sPqu+BNpWubpJ01/VH4EWrkWaTP1ugTshKFXNzdd9xvNzhjmc0WnJ1doC80fQkRFXOyjazoh47h0LM/3PECWMxXXF1e8fyp8C/6Q8v1m5fstvfsDy1RZ1JUEDUxlRZWOspddbEQSClAkhR17z2kQEyRIY0rRVk9EcGGTO5avrH/77z85V/i8Rfe59l77/OlL38BgMuLM16++oTdZosisbu75hf/847zq0dcPX/K498s23p394b7m9fs799QWU9ot0DGrdd07Z7o+ylx3Nq5+BCpwNAeaDdvWCzPOHv8PvN5w26/YbeVVsOh23N+9YxHz/93bq9vOFvdsrg8RxPFe6bfTy3di+fv0+4O3L56zXC/wZJYr9csLs6ZLVc4vWZfrhtrMlZnXn/0S6yXK+q6Jg8dOg3E6NnfC2I3m5+RgkbrGX08iCtwGui7IsvWGr8XvkpWBl01aN1gXGbX9oSwldWqctK+MeO5ZOh6QzNfkrxis9szHPbknGlmM3wOtAUNlHZwhTUVtq64v71jt3/B5fkF9aJCq0hX2m7GOKxzQsY1louzSz755BPmszXdbuDNyzdThhJdy0XlWDnNylkcUUQDKYOGVGTX1hgWzjLkQAw9VluU1ROpc25rKK7Ej63lk9d7Nu2W6/sbqtpRHQ4s12c4NyOkOCGx1ml0DpMBakxBWkNRWnYhRUKIZRt04Q8a5osF0Vpi9CyzpNUP7Q5bS4uydhZjFW17YJR7u0qclrUBVcQdSUHftvS9R1WWShl0rbDGSJgoakoSzzGKC3E+5kbBW3PJW9+P3lkyl5mCHBRkj1NkpiDRhRyd8sBor3E6Rhl56YY9eM9TdGecs5XREwdmlLjn8ndbem5Jg9NHqkPOWQjfQbhWMeTJNiRmkaFPXmnKgKJkWx1FJLIRxdE6i7mkMQXRUcU3RzP554wilfH9xzab2HIUbg7StlJ5tB5B+EhR3KGVlmT1cZed+uCcfh1bzqcp75/bmtLls2T1re8vp67L6uRrPrbMlM7/a/js/NRP/RT/6B/9I7761a8ym834wR/8Qf7yX/7L/Kbf9Jumx/zIj/wIf+tv/a0Hz/tdv+t38R/+w3+Yfu77np/8yZ/k7//9v0/btvzBP/gH+et//a/zwQcf/Kq25+u/8DUuzlacrS9plkJeXF88IYTE7vae/f0Nh/0WnwZSGMh4ok/ENDodW4zN0sJCo7XDOivW7NaS0KK2QvxxUiEdG2OwWizQheeixRBqbCMVlYL0neX5+sRHIuejyioTxVNciVOm1lr8gXSefCA+fxRfGTX2rz9/kpGfhbQmcLJ6AFmqCYI8/k6Kr5HDczLGdtXbXKACw5dPP21PTklqwCQKuE3Xs70TTkWzWAKwWM5YX8zo+57Dbk93OND3Qiq9v7vh/vrNFAA5X59x+fQJz7/rS2y3G15/+gn721v6zQabpWUxqnsAfCqKuNGIMAWBbBOkIRfIV7Y5IDd1p2cy+UWD6hNvPv2Y+9fXPH4sPjNXV1d8+Ytfptvvubm5IQyerAa2m1fE1LFYrgBoliu+8OWvsL9/wt2bV7RuTuh3BH9gNl+ydlcMRQVk6iXny0vha6VMPwiJ9uNPXnB2dsbF+ozXr6Q9luPA/vZT+t0dV4/fIz0+Y7/b8OabP4/T8Oz9L083xKFrCV3Lo8eXzOuGMHg2ux2DP3DzMnP2+CmzpbSckk+STr023N/e0g9bzs/PqeeLySsHRAHZHwJNM7BYnWFUICmw85pcFHw5FP5DyBCDkIZ1ZHW2phsW9EOgDQM5BlwxNfRtj0meyICzsFqtWLz/AVq58tgjVyIOkqxdiGM8fe8Rq+GMzd09/uCZ13OayTpGUVUS1XLY7VFKsV4sub6+pu32pBzoD1LINRrW1jJTiQbEZVclIZWmPLnqphSlULBC1s8hE1NCOY2zhsRAXdo1l82MjTO0bc9Hn7wk+8SXvvAh7WGL9z2mblg00iLUSEGeY08ImiEOci5WtRRAOdI0osaKIxHYVmiEGFs1M2IOVJXFOkU1PraY04038FpntBbyt9z4S9RO4bhZa5k1yxL2WVNrKy2KfLwRju3sI/l4vDm/RSAe55MTjsjpP01Tnn98TsqenIVjl1KSIiAz8QcnIZcaVVlm4vWMpObxvaDww4yZlFFTpAVa3I453uirkoIuKjnh43jvJ6doX1pJQAlbNiQlvKtpcZpHXyBOtqVwp1WAlGU7c2nLI0Tpo1ngsagQ4rT+zD6a9tV0j4jH58JRTTb5Gyk5VlpNfMc8Gumm9Ln3GeH5PCxsNONxPymM3nrMaUF1uk05Z3RSI+PkO45f02Ln3/ybf8OP/uiP8jt/5+8khMBf+At/gR/6oR/iv/23/zatUgH+yB/5I/z0T//09HNVSJDj+LN/9s/yz//5P+cf/IN/wNXVFT/xEz/BH/tjf4yf/dmfPSHgfedRG8h+YHf/hm4rq8kUwc5qlqtzzq++iB9EXXLz+hWb7R1D2mPK3m5qjUZjFFSNZAAZJwWOcZbep4nfo7UqnBVJvfUx4nMiocTsSZkTsysrnBtjUdahjZGCxpS82hOi11hRj3ksY7UvJ8jDouKhM+gpcx9OO5xvn2jyXpFTC/C3H3t0KX6rUHobvTlFpxiLt1LsjCnrHC/IVKS8qlxsqRiT9SXteqMUxhlmsxnL5ZKrqyu892w2G3b3O/zQ0Q4lGfvVJ1y//gStNRePrvjSFz7AfNdX2G63fPrNb3L35iVxXxRpUXKwJH24OGen4z5URhVmkiTaExPOzalMhVZW0uTLZJVI3GxvANgPB5ytWa1WPH78mBgjh2FH3/dstq/oWzkPz4Yzhu2MZnHOh9/1FfaHe968fkFoN+g0cGi32JIL5RQ4I2aYbewJObFYLjm7UKSQuL+/5fziAoAudrTdDusHXr/wVMsly/UF3/t9/1def/opN28+5rwo3ZyKnK+XHPoDIQX8MFDXjvm6xjnD/fUnVFaqgvXlFcEbvA8sFktmteHTjz/G2ZqLiwvsrC7HM2GsIfSB3dDKTVhZ9vstfhCl3ZjhY92coVO0febq6n1y0mibqLVhbpayUi4FzPpiga4W5ATRS9L5m1evmc3m1LOGlGE5k8LMW8+hP0BMmKw5bA5gNJeXl6KMjKPhZxEflCJS0qwj0Qc2d/e8ev0K7z37vXBbjFUk5bF1zZAHauPQSmOVZAWNxO9IEn6EUqioCNHLdZsyBI9WBlduAMkfeHa+4utvNqTiDH79+g2rMzFi1M4SfD9ebSRtSTGgrcNVNbPZTDghMcp7jECuUjjnyCjCUNRxVcXCnRH6jqxBGzdexDRNQ2UNXdcx9K0UR1VF0zSTXYLWhiqBVjJfW+uOHBc1Ou8e5x2tLCkXZ2slt20pnh5OGQ/RFj0hO/K3I48HxMYih1DiFwRJHm/Gowr1OOedFE3KPng/Y8x0LxlfP8ZQnlNyo8xJsTTOVyUCYixwfBQLElFzjuT7ca79HIgia+F8KoM5KXaSSrKIVbVYRqg4oWRj9M9pzSC5f+P8XCIsUn6AWD1E1cbPIvszo0knaJgUJeL0TDZln47zuCrH7Jh6fhpnBIWjI22Azzm2aip63i5wpvf+Hxgq/48+83/CeP36NU+ePOHf/Jt/w+/5Pb8HEGTn7u6Of/JP/snnPuf+/p7Hjx/zd/7O3+FP/ak/BcAnn3zChx9+yL/8l/+SP/yH//B3fN/NZsPZ2Rl/7k/+DhYzKzr/wlBPKZHREsqWDa6aUy8WLFZrdFXTtx3be2kJ+O6ATT1aJaxzMhkaaSmplBmGOMXegyZMB7XAsBF5r5wxzmGLc21dz6jrmrqaSaaMcwWaPoFq8/FkGmHbhxd+CSWdTpo0oUNjyJ78bSTlaj6vOh+fC8dCRp3CjRPOOSIi+giLwrQKmB7+VrEzQsLlj59555zDWxdEWVXE4+tR1HRaa6xxuFnFarXC1Q3ee3Y78XjZb7dst3eEviN0B0iBalZx+egxTz/4Eq6esSuuyN/85V/i7s1L2s0doWshBnyRmKaiphvDCcdwUYVB147zq0tM5fAhoWtHUzXUhZxqrSUXoqarDOvFAl2JMiokT98KShD2Oy7Oz5mtVsQE8+U5q/UF+/bA/d0t7eEO30rrRychLSsDdV3T7jvabo+xgRzkpjTur/lyJfLvnRBt1+tzttsdKMXT994nZHj96hMA2puXxL6lsjV934KJoka0lfgjDf1EksQ5FvMVfRRE47DdMRwO5UacWJ6fAdDMF2g3J4RE8C3z+ZJmtsD7nhhbDofd9JpGN9TzK6yr2fdbqvmC2fqS2fycmCw5ZIZeYhV0Bu2EwD3kRGVskTP3VM0cZewUMmtdzXy5ZDhxOE9B5L/aGWJIR25sEsktMdENIg/uDy1d1/ONX/46L1684NVrUbrFds/lXLG0mkorLJraWMlLMg+J/3JDDOSsaLsOpQy2cuUmmyUMEvAqE6sFHx06BiRO4IP3n/H08SNSSqwX56xXsm9nywXKWKJRuHomAZ0pkwk4bbD2GDcxqg47v0e66Lk4ycs540N70h4rSEMW1dp4jlZNXSJuyuNsRUQJuXUkoBpxLsZK2360Ksi5uChjyGWBFosaKb01DTxEc95Wo6riSXOMlsjJI0Kr0VriiB7L650iNKpQAAqCo12x+DhtyxzJsVK4PWyl5Thm8kEf+6Ky8lPApyyUxu1RxzlTK5Sy5PK5Rp+08f1N1iem+HlycCZlgoqFaC0FbCIcF5CF+D3WUroceyGp2ymWSCsrAgh9zCST0GkzxXaMBd2I7I2F4VQkniy29Unm2OnjH4z8WcXbMSf1LRQoPXxczplsYH9o+X/8P//f3N/fT3YSnzd+XXF27u9lFXt5efng9z/zMz/DkydPOD8/5/f+3t/LX/pLf4knT0RN8rM/+7N47/mhH/qh6fHvvfceP/ADP8C///f//nOLnb7v6ft++nk0F9Nl0okcif/WOiwKRSB0Lft2w/V1IEW5uK8eP+dxMVKbLb5ECgN919Id9vh2Rw4DwUvuTopa5MzIRZmUVP1oOQF9ToAFa3Chpgp12S4jSdFTSJ19sNIAJsvxfPL/I6LzWX7N2+fc+NhpUhrRxbIvHsDNPER/TptTaipQxsePhdH4/urk+xH+fGhs9XYf+MF2lxdL+fj6KR7/rhEFh86Z1Ee61NMdIvevX6IrzWy+ZHkuqMb6/AOepvdo9x13dzdsb25ot9d89LVf4Bs/93/i6oYn7wu35ru+93toftv/hfv7ez795jd59fE3GK5fQurJyRODwpcMqbpaUDc12sqx7H1iPZtxsVpIMrHWmGaUB1ciuw2ZMLTc3d2xOJ/jrEX7RDOX9pyez2kPe/yb18xmM9rUs9vcsDy/4snTp3TtnNsbUWOltseQCcOW0O6pK4PC0ZeEbKeYIPjusKeq5zx+/iH39/fcb29w1mK042s/99+xTc2zZ88BWC7OuXn5CYf7V9QOnK7YbvfMVjXNfIWnm87JPgX2XU+zmLO5u2e2aDA6c/dGUKujwiqg4h5hX2Tu7284bDfMZg3ZZJJPHIqpYd2AWQRUNefy6nvQqiITOdxv6WJPXc+oZtL2815WzvNFjRsO7HZbtLU09ZwhRUxWU3E6HFpub29ZLBYsVku01nRRYU2FM44QI5uCsOmyGm+qGdrAYbuhb3s+/fRTttsNm809wY9qqEylakwSVsSonsQZ8YGZ+BcRnTWVNaSYYV4LBy1FUURmoMiRK2voo2fdVHx6t4Wm5vpuy3a3Y1bV1B/W+BIwGveJZjZHK4cmYbXDWUNOplgnHFHWfpAWVD2TWAgf5FgmifAWlehkAHi8Puu6nhZeztXSnimFhLGVcHGSwpc4CKMV2hqM1WhjpvkixoJKo8WPrOTSaW2mYM1jUfJQWQRj4RCJhT83FZJlvpKaRL4aFSe/tFMUCBK5xB9kJUW8M26ah0bU44j0HFt5crwhlVigqUVKII1codOFHCMCdGz5ZI7Sca30JBc/LXb0GIZaVo8GUxZWnpwtlPdR+ZglNs6vp1L7nLMEfZ7O7XyWUjAWdiMaNHmU5ZHK8Pmoi+yvYi+hNUmNkUWU7X74nFOjwOl1xnvRt+DkKKV4ixjxbcevGzVWzpkf//Ef53f/7t/ND/zAD0y//6N/9I/yd//u3+Vf/+t/zV/9q3+V//gf/yN/4A/8galYefHiBVVVcVFg+XE8ffqUFy9efO57/dRP/RRnZ2fTvw8//PB/3gd7N96Nd+PdeDfejXfj13T8ukF2/syf+TP8p//0n/h3/+7fPfj92JoC+IEf+AF+x+/4HXzxi1/kX/yLf8Gf+BN/4lu+3rczH/pzf+7P8eM//uPTz5vNhg8//FBIX1nY7GMistaGmAOeQBTEUHruCvzQcfP6Y7rtK0BaEovVGcvVOY8ePUXrL3HoWm7eXLO9eUXf7QiDwOw5JlFDJEhGoU0lfhg6U2VFVhGqsWp9GHEgq4QjavMAkVFqcrB8u5KNnPZAhaAngZ/FALEQiUcezfSeZUUzol3Hv408oRMy8+ShoB+sIiaC8mf4Ofmt1zwdaXqPPAZzqofP0yqhOPb1ExGVovhcZAUqkmIgxkDoI912N3nXKGtYzFecnV3whfefwXvvs+t67q5vuL55ze7+lq999b8D8LX//l+o6ppnH3yRD7743fzm3/q/s91u+eQb3+TTb3yNdntPDMIFMiphXaJuKsxshq1mGGPJxrJarsha0RUy8aEdOKsaVuuawVf0XUsYIiomlI74Qg7WMbOcLwk50rZ7wn6DVhnf3rBtFtSrK55+8GUA2u2G7e0NRiuGbkv0PY3LRH/g/uYag+Li4goAZ5fs99cM7R3nF2fc+oHd5h5rK84XDfv9jl/4r/8JQEwSnz6jXy94/ekn9G1LDJlPvvF1Lq4e8/4HXxQuGWC7jpvbN+y7jvViwacff4xGUdWaFOHli48A+OCDD1hUouIahsjQt3TZ02lDyDBfrKaYgt2+pXv5gufPKnbdJ5ydX6FnK6qzC5qQCd6zv5FjW7kG5iv6mEjaYmZLiQqpqikaYlxn1usVKyg+RL5wT5b4ENj2HY2rWLtzALp9x91mR+87XC3Bml17jyGy2b1B6YxnjCmBEDMhJ3LTFIsRQSgiCTeakaqyoNYw5IBFQ2WJgyeliKl0MacDnQ1GZZa64cliwev9np1xrNdztHFst/dTW3l1cc7QQ6VqklL4nAiYIpioUSowevIsV2ei0IodvrhJpxTwoZdwXaunWIWUJQrE6JJK3lSQNUpZVFZo/HQFGyNGmLa0swRI0VO7aJqiTcZoK2iHgpy07MWsRiHaA95HzmPAckEpxjgFld56rOAJI/KtlJHzQDPxJ0/xBqvFj2iMrMhK3OCV1pjymiPvaJyDQgqFmyNoWSrmrABEcZEv5vGIoMOUORdUCf+V86AosbSV9yvI0Yjiiy/RaBQoJ4wuPByNLoRwLT5hWfhEjJ+wtLt0+SrIlyjpprn3ZG49/nv4u2P3r3Bq9GdR+NPvQZ5v8hGVV4WTJQ8eY4p48PjxbyAdxwfk5gdmburhz99m/Loodn7sx36Mf/bP/hn/9t/+2++ooHr+/Dlf/OIX+fmf/3kAnj17xjAM3N7ePkB3Xr16xQ/+4A9+7mvUdU1dLPBPR1QRY7O0jMabbBxIPpAPPaH3ItfTBjTUyqIT+K7IXXUm9m+4f31NyL+IcTPqxZzl2TlffvLdhJi5Lhk7129uuX/zhpgCDkX0HpcU2iYwJYOnKLeq0lP13gvcV07o8aIT+PeY3DueUCEfrchHLtjbhco4pn62+tZFospjMfXZk3mCYgvq/vYrfF676vRvIGr7B4/5nPon5TAlzxMDmYTilBNUTMNKrZOKw2jRE5Q0Y9m60HV09xvefPIRCZgt5pxdXvLo0RPe+8JT4hC5Lk7Ht29ec/PqU37xq1/la//5Z6lmDU8/fJ8vfPf38f3/2x/l0EVevZKi983LV3SbDeRE5Qym9Mhj9OwHSeieLUcSZ0Xft6TsmdmK88UKn4bikCykUQA7M+QUpFC5OmfoW/b3t/T3b0j7O7o3n7CppYVz9vhDnr33RXa7HZubVxx2nxazt3OevHfJfnPPri2cqrBhXjf4/ZZP7l6xWlSk0LE/DAymptt76pKfdP/R1/j05/8773/3V3jy5Bnf+MWfY+h2WJW4fvExQ/B81/eIktI2c1bLc16/+Dr3b16zXJyz2x0Y+sRhH+g7mTV/8ec/4vn7z3ny/nN2+z1utiDnzObunjD03N29whpRF81mCxSZFy8+4YMPv5tvfuPr+H7L+eUTLi6eUzVLzPkjOVcrK5JZI+222XyOKaTTNgxYpY9cBRQhJcx8Li2srmN3L+aCZ7W0ZsLo7WCgWS3wQ6TvOwyKmze33F3fYbAc2i27gyxoZsYQNYSU2foDy6YmpYzJQk5WpYBJYSixA0n4dloJ70slNIjZYNlWZZREYqielanIZ2fsvbT7hi6QlwY/yMVwe3vLbDZjFRakJhKSp2oWKFuRVC7cjVHdKVEOPkax1Cjtk5g0MfaopCcVo0mKkDIxjHJ8jTYaa8SxeRjnwxDJ5YZdW9GjKXPk+kl7beTsSF6SxHpIm1WPFg4Tf3BsiefShjq2q6absR4jDMYWoUJlB+pIktUlluSYxSXbIO04OzkojxyTsbV0Oi9KTlWa2lPC7ZRk8Ew63qjH56PIFKWVQgo/JIH9VGouRY60BbU1U4aXc+5BsZPKXK5SLgVW6Yoq/1kuU5nTUzq2oI6WIw8XnGMW1mmxM463W3mT6iqmqRBG8fk865NC6PN+nrhIOTMWZ2Pu2Nv3ktPSSAPmV1br/NoWOzlnfuzHfox//I//MT/zMz/Dl7/85e/4nOvra775zW/y/LnwCH77b//tOOf4V//qX/HDP/zDAHz66af8l//yX/grf+Wv/Kq2p9LieaHzqLqA4KEfAgcf2SchEOosPceIxD9MEQlZ45OcJN5H+rtbhk88IWWUcSzOzjm/kMn4uz/4At//ld9M33turu+4ubmh63egNNrWVG6GKjeZmA0uy+06Bw/akJJc/No4Ob/0CUKSFBmJopCYhlwq+JOTCy3FuX5Ykacs6IzmeEKOEvixsFbKPNAPxFOy34TGjB46qeimYunZ6gcX1+nJHFKaXjfH9LDaH3vw+vR5WiIn4jHeI8dELiF2o7Q1kYors/xLWXhTRmVCboneEwfPzd1rrj/6ZX4+GxbrFZePnvDoufjcPPn+rxC/73vY7Dpev37Nm09f8o1vvOYXf+4j6rrmC1/67ikj6v3f/lvRxnJ7e8/29ob9/ZYQgkixtRFiYPlwBsVyvhTybPCEnKgqy/lyTo5hQgJ98jhnyEHOLaMdV4+f0Q8Hbt+8pnY1ujjCbj7+Gm+++TUuPvwyV8+fszosuXv9kv3mU1TqqWtLKN5QYfC0fYs1FUN74OXumtVyjvGRft+xWM25vZYirt33pAF+7v/zs5xdPOLi2XuEWPHmm7+EDp7N9S9wuBFuywdf+Qqmqnn/S/8bm5trrm9e0A17cu+ZVw2xkIOjgv2h5/rmnvlqSYiREHoev/8+Pks22NALYlZVFc1sSTVfsfeRq+dfBOsISRFnc0zVEIPsL+PB2Qp8xseePoplRF3PaGZL8dQpqk7FMbrh0PVUc0PVNOLQ3R8IPqGrUXtu6TfXHHZ7XKM57PfCt0qazeDZDp5YiJlBK7beEzXkoNhveol4UGDoWLuiUtLl/mA0pAAhoBNY5YRYqtLEpchDwmiNIaKtJ6uAcZbtYaDvOpwBfSGPdbEmm0SrWkRyblAxwtChjUUXAjRA8B5IOGPIUQQZtqpByRxD8qQgx8z3URRjVuHKDTOW4lwb8EUN1vc9pnLklLBNoq6WkCu0rlDmcxAAjvNMzrGoSRU+eOJpNl2Z4+TBoz8YgkhTCsbTOeZEgp1zxphK9kexBHmAGJWv02K3LJziyS1XjTf5LN7iKedSzCB37RO0RBv5uyxKM0YZ2R9aEJ5EnoodZVzxW7MTcVgrI27hWov/0jR/F5+1KFwclYLwFK3DKhHEhDDuL/tALSVcIWTxlxNqioQQB/5xdh8DOeU1xFV+tE5JxSMppYQ2ZpK6KyVxEVqVe0w5nrEcBV0UYA/5pA+9lUyxBkhvrXbT6Bs0HodyDP6XCAL90R/9Uf7e3/t7/NN/+k9ZrVYTx+bs7IzZbMZut+Mv/sW/yJ/8k3+S58+f88u//Mv8+T//53n06BF//I//8emxf/pP/2l+4id+gqurKy4vL/nJn/xJfstv+S38oT/0h35V25OzFAkZTRxlxDniSyCbBnIU8qtWTCEIafSmUbnIkpOEucXMkBQhZEIY2L96w8vXQiLVP/8LNLMFjx8/5dGTp3zw/veDVoSQuNttGYZQpNegnJMlamHo56ywKIwSYy7JRxlt8iX8U5MnaeEpC/5tCfnxpCtV9Fi4nKxijhfY+AvKxBI54ZGd7EfZL2MhIxPOsQA5fZy858ljGSeqsuIYLzZEapnTCKeWv6fjRT++5rjSmkJIcyKnJOnHOYOXT5JyIsdig54TOXmSDyQfeL255vVH3+Br/1UukdnijPPHT3j2/AO+/OEHfP/3/CZ2eyEUv7z+hBd3r3l1La2Zpqq5unrMk/c+4Atf/hDbzNlsW+5ubgn7PSkOxDF7TcnqralrUtCCIgwHtkOLdYrlXApeHYUMq5V4oiidYTYj+YGzszPabo8tN8+goA6RT7/6syzWV5w9/5DnX/oKu/0z7l9+wrD5hN2dkPKxssIbup7F4oy7u8x+Z9CuJtHz8ddfTb4tRjuG3LOay/u++fhjbDPn4vn7XL96TcLw0TclBuPF62s++OAD4dOdnXM+X/PpzZbdvsd6mBUfq5Rl0ZCTtBqGLqJT5jBsqNYLrp49Rhc5uw8wpISxjkpZrFFYq1DWUVUKYwK2REAMfWDwe+r5nEUl7xVCoN0fuL9+jTGW9cU5AM7OiD6x37VQ8ot677GmIlpN9Hs21xLuKVJzz3Zzwydf/YQYZErvh4Fd19GlwFDMCg2KPln6GNn0gSFIdIyLnnNn+MKltOdWBGz26JRRJLTRZYWdUCFLLtIYLElA60SOBh0jcyPbm8yMkGHoeg7bQ7luW+6ub1idr3j0BLJWpBCpfCN5WobJCFPCViU2xRhD5TSKRBoSh909KXpSIeATA/v9nmruZKbUJWCzSNN9GEUYYwCvJxuLswHtSmWnivJoWt3IIiAnRVCRkAVpkuwmWczEePS8mrxiptlnRGDcNN/IPgDU2CKSm7oxgrQ6Vx4bR7+jhCpE5yEFQExj4fNNBd/+fvxZY6bOSiJitIUsAajkJGovSjvL6KnYMUaMZrWzkxrqgQXJCVNXocQAsMQzZHVcNOYT9GXcCcfC8mjimnNRj40RLxlUtkJcTppYEKkRXRupDt9p5DFi4tsgLm8jO99pSGHz2d8nLYqsX8n4NS12/sbf+BsA/L7f9/se/P6nf/qn+ZEf+RGMMfzn//yf+dt/+29zd3fH8+fP+f2///fzD//hP5RE5jL+2l/7a1hr+eEf/uHJVPBv/s2/+avy2Hk33o134914N96Nd+M35vh15bPzazVGn52/8MO/nXldYRC+CwgUO7Q93ntSkjaJysVOr1hej+FoWmtIwgmJKROjoguRoQ8kM/Y4jz4FxkpyudIa52qW6zPOL6+4evyY2WI5GVv1fU/wfpK0WuvQRt7bqtGL4bgC0ZQ+tC2+EWU79Ukba4JZ9dEjQVCQoxz1+JiyohihxhE6LuhKPCnOJ3h1JDyn0Tl5TAw/kWoSj0hPyiQtZD5UKrEMR6mmGknS+q3XzUJMnBCgnInZCwciIy0uhEAoctvjSi7GSPQ9PrTi6xK8hIEWN1nv/bSyy0qTrMXUc1brC86uHvH4/eecX14wbxbEGNm2sqK+v78Xi/wUMWRWqxWPnj2hWa7IBUI+bMW/p90fSLHFKEg54oxG5cjQ7yGWr4gHT10ZcvD03YEYRUZelZRw5ewxqkFnnLWEfqDrBhQa26xYXz6nni3xfct1IQjfvPglYnuHLqvw2WqB0RUhBPp2oDv0tG077a+qkutjiIKwPHr2nNXjR7x+/ZpX33wxpY7XtcN3PQqRXJtKbAbCIJnm1glatL58RDOfs90fSNljjGGxFPm3qRyz2ZzZrISGuiXZNmjboLVhGAai74gx4kyFqyuR+wP1rCGEyN3dHc3MsVqega7x3gvBOw4MJZJiPltSz+fEoLi5v8PaGucc+11LTh5jjqnnu/sdmzevuLu55+bunt32wL5r6YfAi5tbeh/RpvBIYsAZTUiZV4cDppqRbUINPesI3/tYbAUeucgiR5zSgm6gyJGSYq6mNgiA0hJKmgrrNWnFkBS9rYhuxkEZ/NjSTZHZbMbl2TlXVxfM1nOWyzmLxYKqqqiamRC5QZDFJAndKXuGrqVvt3TtDkuEHOnL+X17fcPd3R3L9YyzszN0JXObsxWjAR2UxBltqOcL1mePUMaVdpDIqq2tpzlOKUMqvjohlKiSKNdhDOO8c2pIOvrspBOURRCVEY+YHll4jZOEe3I1lvc5tnty4fRl1BgSOsncH7a7Rp7kKTIRCqqc0xhlIXOczEkFZU7y+ROC6IhvzZH4rJUFI3OyGdtWBTkz6ojQJ2KZ44QzM+RBSNoxk3xgSP1kLZCjL2nsXmJuxv3lXHHvH3lbGjV6+xRO27i/7OiY7Y73BKvdg+doZL8kI3EZE0cKRSrAg0E92I/T5zk5YKMsfQoXLYd/amOddgeKz87//Uf+X/9r+ez8Wo9UzK8CeTpRxpPWGDNevaQCraaR5X7CzTJWWk02CUzoYmSwgVhM7mJ5rHMObSxH1VKi3WwIXc/Nq5fUswWLAvWfnZ2xODvn7HxelArgQ3fk5yh1hIOL26b0UctFWc6O0wlgbG/F+JCQ/Hmw4mds3UuLaToJR9IwgjTqzDG5dyxY1NjGeqgsK32r4qgpTrLkEU5OU5GTRu5POj5XJpFwvOgBlQT6JolBXAqRjBQ/MUbi4KdjKxOpTHY+9NLCSonoxwydYxSGImNUxqVAaO/Zvh5ot7e8XCxx8xmr9Tln5+IP9d7T93DG0vcDbbcjxsiLT1+h9Rus09R1zbwc28dPLqnrmmEYOBwOHA47MQdzGe/vJ+g9+sRmu0PRUVcaYyJduyUohdIVdIrz8pqHXct+t8MUx9q+2+H7Df3+FRmLq9asV0Lmrz78Hl589A12uzfMFzVRwTC05CERhkQ79PgxQ8o6iDCozOr8jMVqzZATN29e8/7z91jP19y8kVZ0oOXifEEIgcO2p25m5KwwNjKEyOpCtjVriYxYna1ZrK+omjmdl4wsY51kNhXYfej3pP19uUENJDSLiwvOLx6hVUOMmVD4WH4AWznW6xX3+z3t9TV1XbOaL5g3Fd4raqen86DvO0Axryv2+wO+F8fyIRn6IU08FN8PXN/d0rUHcgzS6vGBYfA0TcO+30yO+kZZfAwMMTFkg0lgoqZWDms8VWm5GaQlrpXDaDHViylgTCzXWsKY8YaELDpMcd6NoHPGDANDSuJnUs4Zb2p8iAxdz3BosVYzaIXRCms05EAu2W/ej+2HRIyBmDzGKqzTdNs9h/12uglpbTDG0reR1np0L/NJtgGl8jHxG4VraqwqEQIpEAiywMqWjCG7sUWuyCRC9PQh4qOkgYvQoPjhnGYilUJjNP8bf1a2tLlHuqHWQgZXR+Kt7w947ydX48hD4i6AVSNB+UgKHsd0k54EG/IJdBYj0aSPnCJ5X/nbWOhQgjyk6MtMfjUY+ZxKWJNZSbGIUvI787CAGOe9TMRkg1aKiMyxJppp4Zo+x4yvfMPbY/S7Gb3V3sZC3qZBjFQDIYd/losDZYofDRB/hWTibzce3K8S6P8VODu/3oZWGrJYwKci+c1BEIGcksg/s/S1KX1hBZiy6rPWUhUymUQ8yKrOD5k+eBQGd6ICGxVU3ksuj9ZGCpOcCUPHdiMrjn5oqXdb6mbObLFkMV8yX5SsGW1LoJxMxrlccPL65QIuWTZZH8nBFFfNUZFyRHfGEzUeT6pyUassnfCYR1TlaNw1XhI6CyGP8SIYOTUqCXqTH6Iw8hzRuqScJvRJ9muepKSy3/O0UqIgO4lyfMbFX06EHKToiRBDIKVBuBbF2j8W7kEIgZjEvt0PEgcRQ0F+ipvp6AMnbtgaZQ2urlBW+v6kROwG7vtrdrcSE1BVFW42Z7maUy8alvMFOmt8P8iK9dAxHOQms7OirJvN5yxXF5w9/1BIu9t7WjtnaIVb0+/viEphk+Lu7o6YOmazGm0qvG/J2Ek5dnZ2gVKZtj+ASlRVxd3NLd5vOZsv6dt7funj/xMA16xFneg+YL/f4/s9KWW8T1jjuHrylNDKuXV985KqmeEqy+3tNdvNHVePnrJ6dMnN9WuUUjx+LJJ20zhAkXPF+syz3b/BH1qctTgnUmWAs/Mrzh49xdQzDt2ObXtHozWVUuTgycliGmlZz5YXJK1ofE9/OOD7lsPmnn5/4Gy1RpuKXAoITKLvWxaLFY+uroQ7EkushrXMZnM6Lwd3u78jpn7KpkMrNps7rKkkmiZnOi8uwbvDlspU3Pf3DNmzjx2vd1v2fU839EStORTytTYONLQh4o0lAlWE7ANnc81sDK1MXm4UVgmKlBWVUUSf0SZgHyAIYsgXYi/7V2eq4pqbvUcbQ23lsa0J+JS422eygqbbszrMecRjsc/IkWFccbuKWTOXc1ppUtIMQ5yuk/liJbJlZBEX05bttgNq6sYJV1D31HU9BYHGGNEFidRajCqjiiQlBR1VwuYyH5qKIUpWlI9JCkYlBn8j+nyKCBhTUIVJPapLAeDhhEeoMhOHrw9jgTPIgmcKUz4xyis8x3giYX9bSTrOf1qPNh+6kJu1cGjQU9GU1TFLLymJwJC1nxRyUsSNcvJS1HBEj2SxWiTo+tTEUGTj8jaKmKKoZBNErVBvWZNIPIRizMg6zvUPuUiiJDtyOLNi1JeVs+9UmvJwnBZGby+axRAyw2iC+BY5nZNt/XY+gZ/5u4pTp+E7jXfFzslIORHiIKt/f7QbDyGQyFMWUjpRDdniIwECBU823M4CihgGtAJnhIA5rjjGdoD3njiiLFr8NIxzYI34VwC2qtBWiqgUPIf9Dt8fqFwjN1ZXURfXVOccaHXStonE9FlCmLKfDbgbx2cq+vHb0fGY/JnHHJEfPjM5yM4tE0s62pinJMVNLGF2WWWxSi8FT1ZHOHhc4eY0ui6PUR4BYprUczkmEv5Y6KWB6HtC8ALzFvQGIPTDdHxDSoICJZGZWm0eyFJdVZGteOVoV2OrWpQPzmG0K+3CgkAMHW3o2B+2GAdNNWO9XmO1Q+nIfNHASZZPioH+sMV394RBEqIvLq549OQSpUS913Udh+097f1roqrouw2bzY4cB3Fb1h22tATuvJwHqUv44QDKM680u6S43m45X1/w+NljAO43N8h6MHBxuSAxw3uPtZb9dk+/2U1NgcvzK4bQk1JgdSEF3Ga/JRjF5dVTDoeO7V4Ko3R9jbOQ8VT1jPOLFdWzJygqFPbYOoiRl598FZWhcRVOW9xyhcVApVAqQtyWx3qsWaCsJcwaqsWKWQ4iA09J7OS1FBq5awm+p928wTVLlos1SQuqplxFO3hymf6uHr9PjMdVvj70LFLi5vUNN4ctXTdQzeT66lvP7etX3N/ek5zmbrenTZG992glN85TmD2g6FMiZXFNbuPAutI8Wc+ZlYT22mg04s8SU8JWDURQlcMmO62cTy9FVQijRFECVUbUS4M6utzWfsAaSzKGfr9BxYZ5VbPbbNAqEbzj7EwKSVNrlBJFFjlhyFTWonBcProihTi1Mze7Hbf3W5KPxJhYrmZcXp5jqoqQE74EocYYWZqG4DXBW0zdFFR6KG1BTRrRGi1+RCmBihk9Zs6VG68xR4QaMjpHQX9PbnQJTuaL8siC1oxRDTIvjoXO0dl4HDLvQBIJSGmNCVqWJz+c0oIqrRqpy/SkNB2jakAI+JlRLXqUcyek2FCRhwUMpbgpEQ26fC9trc/GLejyufUkMDkWSZMnz9SK06R4/KyfO09/m3FaoMjXk0Lt5L5AUXFNxSmfvc8cW1Sf9eiZXv+tjsPDyOny+6wfUCO+3fh146D8brwb78a78W68G+/Gu/E/Y7xDdk5GjJ4h5ge8jlTaVz5FQmn95JwxSuOyELGsOUoajdIFWRFSWgyK4DMxymrM1oLWaG0JcQCjcJWTClllGjsDa6iq2US2bJo58+UCo50YzdlK/DSA6D05JHzoyutqdPFqqF1FXdcYMy+fLx5JaydV/dg1flDpn/gepNLTnkjCbyE7+QRXHP10pv9GOJd45O+Mq4sUyjMlsTepIz/IKEXSR2RHvSV7VKkYapGklTRKz2OQ7c2FwBcjKcXS6hNZ+YgqhMFPCcQxS/tKQgAlVd5UbkLtlHUoZzG2wVgHxuKcFcg+K6xzx1WJzlgjxmWVtpAy2620T8b2YF1e16AwVlqhAnVH+t2Wu+tPsCSaIvtumjPmywvW73030X+J3f6W/d0rdrefQPQMwaOcnC8xdPhwQCmDaRr2Gy8hnSpQZ839y09xj0ve1eqcVy/fYI0iDgOZKOikq3nv/Q9RX7AMg7Tc9vs9+9tb0nAQHkZWNJVFG0fXDZw/eyqZVIArQZfJR9rDnv1uy357wGQDRnyMAM4eXxHjnDgFKxo22wN2CDitMVZN5PsUBnTf4VzDuqrQRhPUDLeckXNm6Hvi6KG0WOPqOQlD3x/ohgGVJGfLOE3TzLGNm/ZX1/fc3t4Shp7ZbIEhs14veT0MDLHj469+Va4vjJjepcT19S3GNuRhkLyxbIkp0ZVzcfAejCVTM0TPzFhWRvHBesFlU1EVx22nBM1QKok3SRpIUfxQxrnleK3J3OR0JgcxtitXZDEjjFSF39ORhfcSNmhXk71id/2Gwy1sGsfl0wt0kZ4v4owcWlzVCBcuDCilCP2hCAASsfB75gvH8/euuHm1kRW8EyQ7RbHOmNzBD8KNOTsTO4+cIWmFD0yuW6pc3yNROcYorX/vSyaWyLTFf+bYQhGQR08ZUaOJXtTh4Vz1AIl4iBQkDGjN5IdXUB2UoirkW62Pxq0jynsadjl6vYy0hjHFfJy3YpHNh5wga/GOKSiF0loEFxP5XFAcCRW2aG2OrSxVrEZGxGjiGQnlQGtTrEYyOh2pFPJYMTlUKkirbLLpiOSsGdPJZY+WffFwdx3HiKJkDUZNBsaGU55PFHLZ9Hz14D1Ox+d3FY7ffztpuiBC37br9WC8K3ZORs5y80zqSNRKGUKWcLchyY1aoyajpwfQXEp0MWKtK31dI+GfvUwSVWVL2CeE2JegO7nYrHFU2uJsQ93MsbbCNqMKxYEuKbhWg1KEHMVYDIs6Oa9G34iYA32IxYnTTkqEphE4frxwR4g3je26ECcvm2mokUz8sLiZ2lEnpGOVxz54mp4j7auickjH1HM1qq/kDSRpvnCDpCGtp6Irl/dLyGum0aQqI4ZUabpCJHivGKCpkwIuJSlap0T7PKq0xhaZTEDaVZi6QtUVqilhrFpjXY21FRpxNs7aisurdSSlJxWOUgpCxGhNCgPKGOpaOFa6mKkVzi0xJbbbFnJE50ylFUY7ajJdt6fdiC/TkL6O1QpnHLNmxWy+4vzyEeuLx7RtS3e4ZXsrnJ1ud0OOA9qVAiFmGudo954uJKrFmkPZX9YHzq4e4dsDOSWqmSXHzPWr13zy9W+iazu5jS/OVqyv1pAX5cZg8SmL+ss5XGq5OJPCumv33G+upaWRMzNXs7x4jHEN6IqhHJ/t3RanM6YUuKaqePL4jBAVYfDkGOk6KQr80KKNHCejNSiLdTWzxRm2mZNiPpKDtSL1Ulguq4roGkkAn8+n4NhRXaSUwVnF+fqM/b5l6APGZg6HHV27Fe6Qln1wu9nRhUg39NxuDoS0lXZEFoJv7xP96PTrJNw3x4BTiaUKfN/5jC+tHFU8YMd08JTRqVj3ezFvG9seqjIwa6ZrL/UZqzIhFh8Yq4hZlIzo0gIqbaymCBd8VsJN6+5Qria7hv1+wH/UostNs66fYE0iKJkzchg4tC3WaJq6Yhi6qShYrWf0fc9s7ogxY10G5YlJEWOazu39rmW/a+m7xMWjyH7X0YZAiIB1VPWAqUpxampJQM+j+28lidvakLUlaV28b2Q2kBonklXhFhaVkUnmAUlWa/FxGgsSpcRU8JSK8IC3kimhpzI3S2J7lkKlfK6cJLYmFSXYsaAKhedyojgtba1xglalfTcmmyutThRp6oEr/vhvbJM/bGM9pA1obdApkTQoVTx9SmzJqMjNQXgzY5zQ2yPnPPGyThVusr1Cqh5LlgdE5WnnpfI5v33DSKmHCsNfyRgX5W/7Gv1qxrti52RYY9Bj/nKpYH3OeOVIGVJMZWfLgU887GPGGOWi7AZZkShN13fSi8+KHHoqLSv6FEYXToUyjmwqTF1TzVdU9Qzn6qOd/QnLXTFW+g8viqkvyrE/m7UmF5llCAGl1JTGq8ZsGa0maeFiMZtsyGM4OnD60KKTrBJJGTNydwrxbpwwoZyUKYmV+1TsRETSGk5S0cfrYjThkrzy5DPa2ILkHInHOstqKKbjewnhj4lEJ8cgS+pxku+JcgEa5YSPkRXhhDOU8SgLOSRU7bBlfzjnaKrZZNSnjUG5kTsl6MRxpSUcH61OIjuqst1aEB7ft5ACs8ZJ8WDGfVAxm9diTxB6UAnfd/gY0JWmMnKTVSERupbW7/DtnutX3yTFSF2JI3C9WLNYngEwX5xjraXv9+hCdu7aA3o142K2FCuDorBaNSvOz8/JOXI4dGQjRfXjD78XPwxsN3vmhTsWw0DOgboxxCiF4tIYhqEj+UDbbtlcixqrXjesH50ztBmNZRgCrz+9IRI4v1izKhLRWJfC1BqckRy63d09KCOoWfTYIgPudnuwjnq+gGpOSoIQ9PsN3W4riNlMtrWeXaBnK3IyDP7ArJqREPRUVUpk62N9nAJag7EwmzkOhx23NxsqUxH6wOZux1CCh3ebLW3fkbShR7HtiyljyEQV6PIxSTunjInQ5MQXzmu+uJpxaQKz3GGMZOwBDCFTO4vWwhTxUYzeMgND8rgwMBnP6URIGZyTGJuksIjhotaakHqUOyWdWhwZpwxaR1IK6OjLithy9/pW9pfJXD06w9SVIBEJ6rrB1BayLAxscd1WlWWxdCQ/Z+g8ja2xylI3ll3uJtNOW8+433dsrndscVSNYlbVVFWNdgpXzzhfyTlb14JkjypXUVqq8rNEHUx8JaUmxZdVBXkdkRddCLmjwkmJ8aBSuthVKJIaF14yX4X8EO2OaSBlyCeSdHOS/zcpoqZ5Wb6OgPWYNVh+QBZzheejC5laFVm5Oboik0Verm1BlZQVfpDRE4oxPtYUd+2sJKpB0JyM1sNEUB6RnWiKhYZWqKQxShSrJltM0uRSBWQ0iTKnKf2ANCy8paMB4khuliSeTNIKg5E1Z1YirR9tO7QuhebR4kTLi0zmi3q6fz0cgnaXzwyIKOb4qKgy6VdIxnlX7JwMpzWGiqyO0vOoKfCppq4LiTXLatYaUQvEE/RB2iuSiROTOIHKoRVCWiwKB6UU0UBOclJXbiEqq/kS4+oJiRkfO463IVVpjRzJYA+IYcLinU6wyLHmTjmiUXhO8k2UqAveDp1bLFbTNggSJO2f0AeRbvsgeT3l7+JFlI6ojhIvoliUA+OJrXMS6bxW2CK79ckDWoou0VrJcUBWTUnLPs5Fxi4qK0/0Rzl5yEeCcgyeFHvZfpWx1jB0ZdJOUjTmnKmcwdkaYyxV3ZBrR3YGPVr6G1d8MCpZbRaJabYGhSEqofmO+93a4k/hxLPFDwf6YSB2gS74k30r8mxjBS00WBaLGsKc3W5LKu1JlcA6RQgaYiQbiS5JoWO/6dnvbxmtRGezGW65ZjWvsFXDan0hqJ1JGA1x8HSteMxs719ze/0py+Wa5fqSejkXWfGuwx86lvNmQgObxSXeD2x3tyxX58yaNaHrGIYtRila39PuSxhqHti9uSWlSFXVZGVZXczJaEIYpjDW+XwuE6wxqOWKWV2Ts4cs9vZe9ex393JuDQM6NgQPwbQ0swXzi0uMq8kxstvc8/r118u5BZfnF8zma1I1Y9AiJBhCpB8Sy7NHpNKeC0lhXY0fOl68+JTbN9d8/M2PCCFjzYxXr6+538r+GlJgILPZ77hvO3zWVFpEAb7Ia+tyLcyM5mJueDKf8XxtWOSIDZFGi0PySCSurNj9Oyw5RiojLuxkjTOO2IepgLJWMr+SUhLOmUVEoUjS7tN2KgQ0GbQsGHRJYoxKrp3aSmRIW1Dnl6/vSCnTzAxNU7FYn2GckputVsxsg4/y2EPX4lzN6kJanK6Z4YyQzmezGlfbaVtdafOuzxvWK1H+pZRJJtE0hmZWPpfRRCVFiS5FjqIgHRmsOWlpn9yERyREUbzLSmGgT8Ih0+jQXtqPWWlSyQCLUWTu49yVQuRt25FxTh3f19qjOky2wTKqsUZC9dTuKT+PBRHjInX8+eR1lT76AOlCeD5tmY1xDON4e84//ZdPt1fZ4u4fS6spfW7vR/abtNa/FYIyRkCQT9tMUtgkEkZpQW1S5kHMkDaMxOXTbf9OKM0DEc1Y7J0cW4vG/K8UBPrrZWRSubiPpaK1mUYjfhBpIBgE3ShKHaUUlLwQpUwJRbMi1yuFTlbSxkkp409W/zkZbG2pZ/OS7rygrmelj/xZ5v34vOkCVyXDihPgUB0T21PODy5YaQOVh+XxnElFSSD/CSoTGPJRNaVaUcNIQrrCWk3jHHa5QOsVycQJBRqGIB4WfUcYBjGRSwEtgkx0PqoEorhCQFYEJUaMIxISQ5Be9Li9gA8B4lH2npOorbIP0ypMFX5BygLbppSK+ZwUGJV1zObCF2n3h6klYpzFmmoqULKxaLHAkte1BmWrYtRop4RiVbZfcVxJAcSYCMETBpH3VpVlsVhIXIAz03Hpug5XSUCpQdo4oXDGzs7OJ/Xe4Ft8e2AYOnLo6boDKXoqawkhkrWiaZbT5/rooxfoynF+fsH51VPOH13Re+FQVI2hnsljV+ePIAW6Q8swdIS7A/PFisV6zepyLUXErhgg9lKcXFXPuH1zzWbzgkeXFzT1mt32HlfXrNfyuje3r7BWs5ydkVAS8+AkVPP++gafBCmJ97vp5uI2r6nmFmM0OXr6tqPdtYRSyF5cPJa4FpVZzBvq2uJ3t2wHT0CzXF3wxe/+rXK8tKMLkf0QiH2P1pmDz8wWK+qqZrNryXE8Zwe8UoJ4DTtcZZgvl9zfHPj05UvathfFIKBVhm7PlbU8Ws+pjCSFG6UISQI751YKZKdgbi2NUTRJ2k/KSkvBaKbzJceIUWaC9qMKuJkUBSFlTGWJoxGmljwxp51cZ7ErbRdFSF64ZeM1P/rL6IyPnqAyylSCpqqq3JBk7trsIKYNz5/U1C4QB01lM8YKn6ZNAV/2V05GDO9cRFGym4Cq1hhlhauEFAvBl/Z7GojDlpgHlNHM3JzGVkffrZwx2qGdQ1GymxRTG2ni07w11BjVU1owozfX2GpPKck8IzAgMUaG7AlhLGzSVOyI75YUQJQ2/Pj6p4vPGG3h1VSlJcODOVmNaA7CUVJotCocmpKJNSI6+sTHZ/TRGXlCihGtOhY7x899LBzEv8ygFRiVpLjT8ajyGu8nRqOicCGPjh4Pgzan+8pUyJkH8vfTxxWC0+S/pLIgQjoXpdmo1Cp9h1MOzqjG+lVlHIy2KG/9Lv8Ki513aqx34914N96Nd+PdeDd+Q493yM7JEM5N4eWU+tFZgy1ul96nqcKWNlLxihjhOmVIFOJg4bcoju0wNEcCmDVY45jP56wWS2Z1g6kcFCa+vN5nmepv/zxycca/WTsm3KqiSjqS2OAEMi3V+NgOy2l0hS5GZ0odicjFGyeMhlTDaOw3GlQdLcitFQXTfLHArNfFnE/jYyaERBz6oxoq9rLyCgMhRrQu0HEYP1uclFtKGXJQpNEbo3BGUhzEOyceFWNZ+WIgKKjOMPSkEFAx09NjFtKWqZdLyBHf9WSjMI0tXCnxOdLajEhsWS1GdNJgBBmzzk5wsxDojiiaLZB0LpC8uP5qlE4sFgtmJUW7tjUpD1RVRc4CoY827e3QH9td8yXNbEGK8tnmg8QkEBPtYUuKW1IWH5RqueS73v8SzeJcwi/7O97cfMps3lA5R1PPUSMK1A903YHZ2kAMaANhGGh3N9T1jJQVrqihKpNJ/RaVE5fnNd0hcXf9gpQHZs0CZWsOnaySL86eFbPGlpwGTAp09zeorKm1J45+OEqzWM1ZLFayOk4ZZ8F3PY1bouINrSoEZd9y9vR95os1PgV6bWgWZ9RDJO3v2ew35BJXsVxeMrcNZ8uGrARBQ4vQoOs3VM7hy7kehj13d/f0h1ZcbodI3Ldsb9+g8HR+z1AiC0LX8t7lGZeLhhw9TiVCqEnRY+0MlaEuvLzKWkIO5BBpmgatMkYlxK/KT0pF45xE0CghZSttUcaIvb/WhAiuxGvknFFG0aUARqFsLVwXxKU3BiEtlwtXDD4Lp0ORIFs0FcEDpiIXZGdIPWHfs9rDzCmM66QtFpIoS9PIl4CqLoHEwRJ6T+iCRFBYTdu2U8ttNpuNnTq0VeSY6NK+JM5b4fCl0WQ1o0xE61qQvaTEJC9nUlST8GLcB2kiAx8VsgLCFOLxifN6Vqm034We4HOQ7718HdtzYjxZ5sp0JPdqrYUSUK7FwFvuyqo43dgCl2c1cVvUFAthBR2ZuDrmc5GdU1RFlflaKz2FgL59T9CFuDx+1qmVdYKg5xPE6fjv5LXKvtLm4Wufojy8hcgoJaavR+L1t0ZXTsUt42umEZUq8T+Gzz5fXPXzFBE0sjUftPJ+pVIs3hU7D4YPGUzGqdGqSSzf0aVfWI3tKoEX5aatp0lLqdHhVxJ6QwByQmNxVvKvTIG4q6oS19L5kqqpMU6gQmUgn8gK5XVHaDQ/sP4e21in8OIDqeXn4HanxY5SQvwDps8wnnOjeglgzLrJUbZNJUpbTkz+iAOxSFhzyZZBjTCwvI8r5ntVU1PVotiZz2dYNyup1po+DpASfoj4oSMMHUNXDMpCQPnAMOzJYTQFExOykDmJkYCoFCFmoo+EPpBCKrB1JqWAGUna80izWrA8W+NzKqo1aVVZV6OtORpWFX5QBoIJWFuVQlKcYZWWzziOKX8nClSbssjsjdH4EIlRChOnDYtlIze7orqI0RcieWYYpN0ztO1bKhFDTBlX1ZzNV2LWVj6XDwM5K4bDHkVmriqUsygqiLDbbrFGzsPZasH5xQXB9/Rtx9DtcI1iyAOHwTOr6skhfH8riq8cW7RRrM7OOVuuOAyZrj9gfJpaqC8+/qViVliYYtoxtIHbmy3doSObMnlrWMx2vFEvWZ9dsDo/o+8VQ9fT7bbUVYVy0nbc7wd4cY154jh//gRrKkIcqEzFYnmByM+lMGrv3qCV5ZDBVI7l6ozDMBB8j3EGH3qOKdiVnNvJ8frVNR9/+ild79n3ks+0bQ9TMf14vWSxMGgGKqsgKWb1jJRqsAliwk5chUjjNKo2ZCWKtRQiGkdTLSaTvowuhX7ANkIO9lnJtaEt2RzbniEh5Pd+YDabkUzG2orUdbKfXTxG3IyLFBTaWQyZGCAoTyLhlRKyPdD7hA6Jwy5yrwO2gb4SCwGlLVaDH+RaTCGQ1UBWVbFeSLSdZ9DSxg5pXDBZnBVbAFdpUhzK+Suf1cdhuolrBSbNiNGTStRLTtLe9aWYOW3Jxzi22dM034zu6/qEGwKQSgsyhbKgy5EYoqgwYyYXA1liJIex3X9UjYr7cDpKz8v1jQ5C8tUJshJlpnoYMZHNQ+n6WMCMraXTYmdsV438npGzc0ppOM7f0s5J5bWFRC1F4lREqbGdaVEqPRC6aP1teDllHxp1fO9RCTX21VW5J4KIBCxqkp4rTqIkxvFt1FeyMB+/PxYw0/0jMvFJP/vkiPoV5kW8K3ZORogGnSM5RSH0AdpmNAZt9OSHkHPxicjiwjkFSyaPD0IcjaMa2hi0rnDOUVUN9SgnrxqJHqhEipu1kSo2ye3hbSLaA1+cJG7MpxEQ9oRAfHpSwxFNivnk5FZ5qpp1RqrnmCYPnbHHCoVIPJ68KaMmybYnJwmdGy3XtUZiIUpEg0Q5ZNrROwQmAWPSZUJ0M4yrqJs5pqqF1FtVNOtz9GW5IWl38vmT2L73A0O/p287ul5uHMkPtIcdoe/odEvIlpw1IfRklVEWUpYC4tDv8TpzfnnJcnEmk0eMuFLoWFNPq6aYICtRG+Qk/CWnbVl1ycU9FhvjcQAK6dlg9NjfF9fmoYS6DlozDD3z+Rxjyyqq3CwaVzOMfeoSgig8IkXEY3RCxY4QcslKKwiMrqm1RVcOrQ3ed2x3OyrtmdUVTWUIZX9tbg8sFhJk6lzFYr1iu91jTU3lZkQ/CNIFzC6fUK1W3N69IoeOth/w/g5d1TTVjGYxn/bB6sljut2Gzc01Q9uJci4q+iAE7ft7WU0vZ3NC71ktFty8ueaXfuEXef78fZ4+f0K1qIk5Ma/lmnnSzOUmOQxsb1/LOVpuEF030MwXLM8el/NwLQRfBYPfs737FKxDpYjftrS7A6GIBaKHm6//Mq+vN9xt9/hk2fU99/ueQxvwPnA2l/PwfD1jbip08NiSR6SxVJWC1AtXopzfxhoS4rlkbUVKAWWET3LwLdmMNzBx1A05kkNEW1FEeTRVLTL9UXQdlQSX9hx40w9cXl3RpUxvMkMfWJ+t6YqkPgQh9g6DR+UomIeBEKPgzzbTlmiLLoDF0kbFPGZSgspo6tqCMvRtd3Qa1mL3MPR7YlSgFffbO4L3wkuz421Fbqo5Q0hxIvM6U2FdRaWMVLtAioGsPaGstmLIxWU44+PoXB+ma2tEczSnC02Z61Ih2srv1YS4EpMgNFmK0hTDtACS1xXbihjziY+N8DNjVljGwiyRMWDE28hkK6h+KXRKYFd5/xPSsbJkrabgTKVEWj/NyW/56kx5X6dz+enCtsz1IPxMTpCdlI4uznl8zST5WkImzpLXdcLZGdExWXjpB/eRz3B2OEZ1CDf1KNJJZExG4pU4xilx8j6n/KNTLs+I4Ch1TBsYf8/nFEs5TdPldxzvip2TMTLLM0eoIHOU3Vl1vNDGf7HkuQB4H0vbIpb0XYPOGasTTiucVtgp+E5UEjEMqGCECBcTSespyuFUAaVKpghlq7Q+nvyn1uAPGPlvFTsqS7CgfM9RoZDF4yYVqfdI9hsDGGP0qEK4HuXastKKqBwLBFneK+tiF2Yk7woJTtXKEbMnxAwcCyNlNHHoiT7QtzuyErKj0ZasmcirdlSj1EIi1lWNqytmixnr8/Wx9ZcVygiMHLO0zrqhp2sH2sOBoR0YhnIz8F68XHLEO8185gp0L8Wc0gajR0K5pDlLZrdClwlOFRKz1ieTKkBRfvS+xxhDKnL9ysiqsC4FxHw+x83ke1NWX67IzcPQ4Zx8PwydpLAX+DknX1Z2gFLoejZNHykm2n6DjUX/riLr5YwhRdp9h3OO9UKk32I1oFBU+CHgqsTFxRrf74kxokx9Eu3gIWfW63Pub+/weLJSmNiRY89+f09VNdM5u9u1VPMli9U59/sDfZeJcc+r6zvuDkJ6fskd7z2+4vLJki988BznLPc3t9zfboQIX1m6ckOOhwOhoEd62YCSlX/CgCRIkaKopvouoFHo+Ro3b7Czmv39DZvr1wztPRrFy1d3AHzy6S27fWCzD+x6Sa/f+54hanoqUIp6IWikHyJ33YZaKcxc/G/mjZUFj9VSjE43L40mYCtNjj3aCPo3DAP5JDJDa03wARQY41DWEIPC2pqYNEM07EYUSCsOscUr2PqIq8Rr6M2upZotSFETtRyDmBO1tngtUntTErZ9CvQhsW0PtMWCwNYNy3lFHz2dz2zu7lFxYHd/h7YOVzXTuSi9XUVOhhgHbm5kP+YEofXohXz+EAaCTzhXk22iMtKeM85RuRnWNIzhczFpYoio5Kf2VeYky29EcGAqclI+pjaNbfnixsIIa8vNPArRmSPacJRBP3zdmBMhJjEBPL6zEKkLUmJL0ZKTgWxJSlLMpQtQJNpjRpseEXtX2lhmQnQEYTkaBU5E5BPfnbcRndMxIi6oowUJ+bNokBRbipgEQczF9Fb22dvxERGwn6FMvL09ss9HgYbIw23ZHlHNqslmJGsmZGcim09QjvxvLJZOix6Vj/cVYAoTHRW6IPeJEZ38TuMdQfndeDfejXfj3Xg33o3f0OMdsnMyXJWplC0EU/ndJIWOsRBIAxQiIAhUHIqrUQziHyFkDiAHhIQTyAQynr4fYVep9K2tiTmQ/IzBDjTNHBPG4Luj8FpN/dwjaWzs7zrnjiuW4ktROtfyu7EH+h0+v/R6i8dFOnoNSYxDSSxPgv6oBLqYdBWqs7xHaeXm4qsgiYZAMlinsebEcVQV4nEWCDlr8fRIWcvKQx3XHX3wpOBJu3tySgLFJyEN2spNrZaRhyTkw4RVGtfUzOdzZqs1l08WVM25HG9X46oGYxyxfO4UMj6Go6HZuAExyUo1DuTCF9AIr2AkhOd8XKmLCVoJ/ctxcnI++AEVjhBznwJNqGiaBqMVSmV8QYOcPa6wqmaOq4+tzNnyjBgjh16QjPoEDtclkd3Zmpw8/eGO4DsaawhEhv6Wm+EOgOXZpawuraVSib7r2d52zBciCzb0+OKd0/c9w75nf9iiUsb7SFVZqESuG/rExZUElypnsc2M/e0BFQNd13Jzc8/dvWd3iNy2Y9q2I7y45/Zmw7OPfoHv/a4PcbOGZiGRFShx8wXwQZDPgCGGmvPzK1b1nH5/QOeOHCL72810DCDS7+4Y/IHQD8SYCX0USXvv2e+Eg7LZ97y6i1zvPLsh0IWIz1l8YIzB6opNV6wChkj2ipnK7IeOy0WDOhT+jhXZrx6vO4xYCsRjmGTwHmMrIcWPEQkZ0BatK0KMdJ3HuRntgHx+V+GLUV8kM28WhG5gtZ6BcsyXK+ysZbM7YF01mVuG7Nj1CZ9g10W0U+Rs8CnTDQFtHKZ4KElYpbioHw4DVXLMXEU9q8gKQhemtl+1cKSs2LUttzdbNtsOlTXL2YJD35PC0UsseE+fO2ytcesVRlVo48hWE91osifzFYWIPPJeA8fgzFMOyNGsNCMh3SetnoJen851uSA4FBPBXOat0RYk5rHNL+avSXHiIi/XpLT1R/SoxF9oQx7R3Ymrc3SrB1BjmKc+ihn0Ca9nsi+RB09cStl/8piYiz3ICdo07t/x60QkPkF2TqXnp/eMkfpAMVs8RXem/cv41PI6Y9uNI/KCkr9HUjF2LduuhKQ9mgHq4gM4NboKYKNO2o1pQnBOkaz8oMU1vu/psfXZT6aQ32m8K3ZORmVqGjteWMcWUozD1Escemlx6CzxAMbYya9jPCZDTtIfLX3XnDQ+wnAYpnZLyoGsFK7O6JBpGsvciscEWnqro3uvXBDy2lYXNr+KaGWx5QJSJ0ie0qqcb6IiEJFCOTlP4F4N4m2jpO2TS8dVPCbSxFchBsm1in0hrwTxBMmxAKGf7ckqzHRea6WJ2gh5zkiBINvgi0eQFjh5VF8pQ84RdXIO5xBJMZKJeD8U1VbGDwfaEMhFUZFQ6NpR1TNM3RC1Yb/d8+r1p/gholOespZmTUM9q5jP59imxrmayi2kAGoqrHM0hXTsagdujlFrtDJUpiKXingsePypsWIY05a9tMtCR46REHpSUZ4BVFZyzMIgZF5rLUlJCyaSJ8JvNpngPcnLxR+K8WXVzFmvz6eePIhvTAqe6AMpDNTVjMpacmohC19stxXvpNv2I5bLJSFm4ZTVNdjMYXOHNaJAM2pUJibM0qHqFe3Bc7+55fDqnpQC7733AVHBz/4fkiFlc8ZguN93DH2UWAlr2bUH2q6nLratM2V5/uyK0O8RFcuMs/NHNM2cpBXDEFCFsTKfL+n6XiIKKoPRLVrDYqUIUdG3AQpnSCtLyoreD5Az1awhJuiGPW+ut3z0zVe0nRyvux5eDoFbn9n1ihgVjbEs6gXLmWVoO6qltLHu9x2Djmxj4n4bOCR4tprxqGmIweN7T23rch5oks50QdE0DSlGkq4JMZCMkZR2mMjPWSs8mW20xCFSuYYU4Xy9xpQb3aKpWK/XmO2Gy0dPxA08K64eXXBxdsbtzYabO2kRutWC2+0O7SoOSki/zlh84QXh8mgRxkwlzmtYL2fY5MlaImcwltpZmQMLJe1wtydEw+6u582rDbdty6yuxcxSl3Yn0MXEx69uyFpxdXZGTgZ9KWrT6IXknfRR9DE2oMZ2x7hcs6Rywy/T0bjwKplP0hgvXldjm+SE8DEWSvHIqWXMzlM5PfAlIwqfJ1Nu2qWw0Vq4S3KcDMo6iYkximQ0ubTo0JKWPraiUAZjTjk69gFJ+CH5uBQWyjwoZMYW/unvc2mLT6+lVDFv/Vap5warDUlZhEZw5CUVeiqS3BWnJPmR3oQS8rXOcj6XDQMlmV9alR07kX9Sec8CAihZdGapTMu9p+zLYmp76qc2vTkP22bjMCcFUc75V6zIelfsnIysIGkjMQOlWgwxEmMhJedSQBjk4BYH5fFctAb6KIWSVmrqv6vC5o8xy+QLWFOhqwoxp7KFwCxE5jGuYEQrxmJHnZxAJUZPTio9Firlc1BOmpxLUTIS0fJROsgxaoFcsqZyJo2kM5Um4nXKIu2OyReCX1FCjCZj+sgnGgsZ9NEETBw+y8/pqBIbV08xxokDJY8fykaeVDtptI4PxU4+knIgRg8pikydEu55v4d8i1KZuq6pVytWyxXNpbhTh3EijIkweA6txwUYdKR1AaX3EgRqqymIUStD0nFSZTjnqJwrHBvhEVEeq9RRyWCcZTmbY8zyxMgRUrkhhDBgrUwEgkZFfDT4LEjGiBKQQGeLrcQ1VymFqRuRqcc8FaAg3B/XGFSO7HcD/RCotJhYqiRqLF0KiJgHDvs7APr2nvsoPKr5ckHK0HWeUcl8f39P37b4DEM3YE2ibsBUC/bDgeVyydNnz+TBTmFtxRM3pz14Pvr0BS9evKaPGjufY4NwUC6uNPN55vz5U1aLCl0bDv1hIu+vVit8cfm9u7vD2IBzFaQGa2qR9BoHvma2OkcdBNnZb+7o2z1WK2Ly7A4t3aHncOjYtC2dtrzYy+u+2nq2UdOi6IaeWa344uNzLD3LCsxiwatbKQ4rW9MPCV3N2fcBgiHse/YxcNYoFpUllZuF90OZ2BW5FVVazAltDM7Vk+P2wQcylnaT0G7G/WHHajXDVBaTAiHtOb+YT3NB3265urogRU/bHlguzhjaA0o53KzhspZ5w1aWEFuUNaznM3b7e2azGVZpeh/YtZup4Fqu51ROk3wia+G6tW2LdmJFEGOchAXKKvphwIeOxcKQXMNue6BtW7wyVE3JR+sjrYeUPPOqZdZoQqjFxC9pcrKMt7mYRFWmtSLJCV4y695CdOAz35/+Lo3y6VP34/H+nIXUq5L8LoxFUHmtBCUT0RR6jhQe2hiUqaRABEHPTI3RDdZYjK7Q2qJwIi03duLsaK0Lr+Ro0neKxEzOypwWOyCoy0MuysMbv3r4+xN061T9JTvXYkwkZwu6hNOWfZEU07yhC1pzun/HHC0zImcnmzAKZ94uSI5cniNac3p/OpLGTx9zMsy4iJT98LYs/fTYfzvJ+9vjXbFzMoYEOgr0rMpBCCkX5nlJqDaQs7jx2tLyylrUPSmJKsAYg1VSwGClnROLffa46qtcg20a6nohsH29oK5mWOuwpQ1xaql9ekxzzgX+lQyWfEKekwfoh5NBHttRsvIBgWLJkPSxGJL2m/wT/5siJ0+RmHpycTWGUBAjeS1xdz16PYywrmy7kHfTSDDMmZTG58XSMhtzqkqIaJKKnxSnz5WTtMtU9qgg1WcKsTyntA6BnBOyqJJLLpEklyom0r7DuApXVunVbM58vUZVTqD10roSr42IIqFKi9JYkSgrW1CcPuLbUGDrILEdZYk0RmaklIilBQgZUwplY45p1kZpXKVYNDOcs1TG4sZV4UnyfAipnH+GnAJx6On6lpxEqmsrNc4O02NSChglCMvQB0iert1CatmXoiDkAYVlvnhMxmFngia8eXnDfnfPYmYw5W4R9z3d7sBmuyMpzXJxCTFz2PQs1zOyrrh4LP493WHHq09fMBwGajdjHiPvrc/o5okheFarp+UjeoaoqecLkk4c2h0q9eT2QFSQkmI2l9dcr8+ZzWr63sup4SM+7THGkVVF5+NUzK8vrkhnZ/SHA8nvRYVFgsGTu47UDYxQQVCW7TCgteaD84p1rahsi8ZwfbfHVZmuk+JwtV7QH3rqStoKtqmgnvO63bEfMhdzTVX2lwVM8eKKnZwjXTzQNDNiVFMba9MrUk74rLhYLMW2wla8udtwvlpztXpMVcmNtm93HIaWpTJcX7+SDKtqRgyB84szZrZiWc7v7d1LLAuaZs2u7dCpxTlRLM4WC2aVmRDG84WjMolGQxp60hAhWpJPJAdNPZ+2IRkF+4GqzYI++4F972ljwBo7LSba5BlSRsVilxAhHDoCBqutXFMjUqGyyM6RdpHWmjgmh2cekItHJdapf4vMNUJYPyXSZjimiktwk9zgx/tsyZGC0rKxCqLMrzkrsGKZgTMoV4jDTuwp0GpqGUvbWFBabaVAGq/vU6TlWOx8Vmml9ENERwqeI9n6YbvphMhbih0pPqyQkHOeju3opjwWQWl8T62OIgekRarLV1MEKXrav2laxI0jn2zraUF6+vP02DEMdWxhGabHvz0mK5dRpp8fvsdpgSOh3Z95ic8d7wjK78a78W68G+/Gu/Fu/IYe75Cdk+G9x2QlfhilQS0mWCUjJBfyaRakRSMOxgV1IyXpTSYrqI8xIr8eq13nLFVdnHPrGbaZ46yQZK21E+w4VrFjJStE4bE/O5If01T9i0z6BOItlbEeH1Mke6QjmKgKepNLMCBTpowvHJ9ELv4TMfVIL88XAmEocvUIuSSRFw6GrBIiOh29NsSLIRUfizT5IqR4IvtUUv2PfhEpR0jC0Tm+cAKL+JH4QOojKQTwEVM4OyolApL/oq0FY0jOgFWoWlZho+RXtb3I6geRshvrqKo5pnJiMKiK7TWQQpRtArSpMFaRsi+OrELQHfv0RimUNZhs0DkVmX8qixqNyvrEm0m4A9veg4qy8qs0dV3TuGo6J5r5bEKLjLKouSOngPcDpEBIxxRtyVQayGnPEDq8vycMB2LoGbqe/UaM/UCcvS/Or9juNxhd09iMNTXrszMWiwX39zf4TvZtVJCs45A0N7cb0stbYlAchoDRrzh7dMmTq0sAVus5j997n/7Q0+5b2N2hdc96blmvLzi7OgPg7OyM+VzI2TnH0i4FYyyrxYJDu5NWJbDZ3nB7N2C1EaJ4UlSLGVo56vmZIFqlTdyGQUIqjULpgZR7UrvBH1p2beTV7ZabMPo9VeQYWc0c710smRkxOfMx8vh8xd12N/G8rLXMF0Lc7WPLod3gzIL5fEYXAq8HfXSkzYqm1gwFNTJDJEbLVbPCh8C+a6dj0Mxm+IOnDRlsxf3hwJc/fI/lYs5mvyULDYfl8pz5mSMox9mjJ6jKcrZaE41ifbZAWUXo5cG1HnhysSCbGYPveP/5I7bbLUEpjIoYq4iF45R9pK6aYjERqZzDGYXR0v4ZfDchO6Nx3dl6KXNhlzn/8gfU1uH9sS20ix7faLSeyTGezQhVRe9mKD0jRjcB0jFksg4oFQtCro4I8NTiPqLHKYUHK3wzcVQElTk2UI4IyJiQncXI5WjG98A5WFr6KEdGpOTaiimnndpYjbSxbSWojpFwYCEhW4w5zuWmGNCOiM7bNiFwQjQ+4e+c/h7e/vpwnHJ33hawAOKzo4y0h6JF6Syh5pNBzUNT2tN/k/HOW2OUvb8tjT+Vl7+9jacjlXtSLsfq+PyTTztyqUpbb/zDrypP62S8K3ZORkyGwYfSapE964wkGis01spJm5IrXBNPyvp4EIyYZKniERBSIuZMVnKztc5NBGXnHK6qcFaIsBJDIVDrUFKxzQlnRemMVhathZFjKWx6LZRjlU5gxNFjYixtptbVySiqBXFDLi2pQvzTqNI+OppxMRLiciTF8JBnk9X02Fxg+1B+1sXIMBavPDnp9fTYzEiQHi9aIUnncNwmebAUVSZFGAKh6/G9tGpiFCNIKBNIIQ7r0QUnH5PWs0q4uhC/tdiga+UkvC5qfBeJWpFVj4LpeFVVRWVFSZJMeT1lIRa316IaGd8XmD7X1LqLCWuipKafJCvHlPApCcfLaNKQCV1L71rs6CHhMlZLS1DaYYYUIXpxh3aNxY9E19gLr4pI8D34jE7i3Ow7KT66Vgq+Qxv4+Bu/xMXjK4zSHNqf49mzZ1xcXVLPZ8wWDSnKNgy7zLbvIDb4vuN+26F0BXbGMEQOn7zBlWNrjGcASJpZU7M8e0ZI4hJNCPSbWwCu76/Z1BWurpmfLSYX6qpqaA/XkDOurCbmzYo+dASfmS0vIBuSKguQwj6tqhKr4BqybukPe7pdx+FuT4yG+7uW7eYgN7KCf3dty9lc84XHZzyuHUN3oNOKzWbD88eOhVMYJ62h/f0GP0RUljbzYr4iZsfN1lNXhjZFTLnSnHNgZuxiRBkJBrWq4nrXMauPhnrr1Yqqdjh9z7OnczabQHeQOIh61rDve4aS0L6+PKNpGrz39H3P6nKNNYZ0+4Z9t2e1rkEVknZlqdwMXdW8ufYsF0uWjSV4cehWBJwrnjy+I8cBYzJJJ3RKaCp0TtTWUS1mxadHCvfZ3NAdenzvuVjPqdyMPoJPPfutqPcOfScxOFZD9hgi88qwnDc0ywW2mhPH6zKpiet0vJ6Km3FRho5O7jHGoo4t3L2UJn8XyCWM+VhI5MktuLR4TSl+ovxTcfQTk/dKEUIWxVTSEsypS6sKwGqDMxarhfQ7trHGBas2ZnrsaetqjBo6bSk9KAxOWlrjtpfJ73MLiHFoferiP77uQyPC0wiJ0WRw9DFSJ0WURhyMVU4ohNukUp4qjAcFZnle/FwisSzExzFyf8a2WGHsHM0FR6XbCdE5nyzg325dTeNz2mDfarwrdk6GUsVBmDzRJVKhclotTPuErPpSDqVfmFCj9X2UyPkQEjFJcneQ1iiSZCvVv7xXOfHVKF0Okp2klAiSTvqjSimMVWJYlbMY3J30r4EHssSRzDwpEk6KnVMZuio3aCEdFxZ2SscTsUwYSSlykvdOMRJ9JKZQ0Al17G9DMSYsvfHRDRpN1AiBr+wHYOotq5FjpNNUNAiClqZzWRROEZ+jKMNyJiRPTJIxNMrkTcoQskwoNoHSmCxmhxqDzg7KzRstxENTz1C2yEWTQpFwqnymkonURQ9aEptNSSd2rkKXiW8y+OJk/ZUyPvZMl7dNDDkRusOEmikMKiisspAzPgWs0zTOYq3GD8UZOkRiipInFiLaWlbLM2ZNQ9SZvr0XRRPg+wO+29P1O1IvyE93aBlCT0qaYR8ZusKr6Hqev/8es6VjiIGrJ18ix8z2fkN7f09moCs3r6GL3Nxsud0PdL5HVZn53KB0pLGWD9//EDdKiVNkuVwQgaqpqRczWfHaRtRvpSDd7/dst1uM1jTzujgeH9hsNnTdgaaqubi4AoqSKNYYE4UzQ2RoW6qs6Not+0OPLcZ31jUs149o5ktMSgz7ljfXL0R9tzRcaE13I+iWqzNnZ46LuuXy3DF0hjYnYjBsD3uqaokOo+NzjaojdW2Z4Wi7RB8iKUJ76HFGcX55DkDfdaACdSM8wMV8TuxbVgtL5aDwiKmMpyLx7NkVQ7fj6eWKV6GnMXCxXrBcNlxfS3Ho44G5qVnPlxwOmsVsyccff4yzDcvzM1I8MF/L+7sM82bB/c0956s1l+sldzfXoqrTCpUs81kxCpw5ut2Wrt+TgyekTNvtwRQRRXBUJS5Ha0s/BLRGEJtaYU2iP3hqB6vCGep7T9cPohq1M6qqmrg/kwy6TFtZKTHe+xxUO2cpUkYgwihNLHEseUSoR9S1LJqmW6AqDvE5T/femJO40COqUeOOjtdCLXFSRCtbeCmabPRx3jp1Rda68DQVxii0LmjONHcLCdtoMxU5otJN0748LXZOxwODvW9R6JwiKTJfpwk1OZWea62xqZDnVSSrwt3Jx/f5vHyqCZHJsqjN+bOo1EO5/OlrnCJSY3SFVD1q1KIX40B1UrSM969xAS/v8VaR82AbP//3b493xc7JsMaIC2tKaI5eEYJyalIsBzgndPFLcK4+wm0GfE7FMyAWy+4xyK20k06UASMyIs7GBiEc66I0yhOBUeviwqkCJhfo/WS7H7S31LFOz1Mg3REhOiV55ZzJKjHepkcHUZV5QHg2xoijaCorMLKcpKO0UJZVsl1JSNOxTEQayraZaVKYLgzUyIeWC3TMwKFsU45TUSA5DZEYhqk9NxFxM9ij9Iss3Gu8UlTaEI3BFVl/zmrSWkaVcUmhoxJJvzZgpZDtiThjMGN+UtaQ1QRPRx8ZimpMjxe7Pl7w4yRiq7LaUzVj0GqMcWp1GCVKPaK0DUOIdL5lEzyz2k05S8YZyIrKzagXFUPoub27xvciM1f0qFTaTSXGozRF6X0iJkNIGt8NggCVY3B1dcHHH3/M9/6mr/Do6jEpK8lAUj0qZdpdz/VWkIJvfPSK1/ctmw7ud56LleYrjx7zhQ+fUmm4f/OSWFQo9aKiXs5xdUUsxau1Bk1PHDIzdwHA+eKCRd1I7MjQM/QdtW1oVjPOzp+SiXS9KKHafj85fw/5QNcNuKphfXmFqhfU60TKY7ACHMKWbn9ge3/Pm+tX+H3L/aZntwv4aJmXtoS2gfcvlzid6bc7+iFzf2hpqiV3hwOKlvVidMQ1HFrNYfDo2lDXsLYVQx8ISjGbzQglQ2o+bxiCJ4WMCp6Vs9jZGU4laqexpdrxDMxnNbO6ptvt2W93rFczXAX9sKFqap6/J+3BfdfSzDSkHmcVRou9wOpsLTl7bj0Vki9ffcrNbk+lM+tVje87lM40tsY6g9WKdifFtLhzOzQWZRJaRbROOCeohPeJsBUhhgQWK1COqq6pmhkxJLRNEMY8NKgqS4512W0iArDa4UxFJhNjT5rUpQoVHUpLxMbb7ZBRqj3NXalcN8TymM/JY3prJDUWPRohAmSRa0831SLaUBqlHVlbjHEl7uWkNWVcQXHcSQGjIbuCJRvIR0rCQ/XViPoe5/bTcVos5JPnf5bw+/n76PheTG3Aca70BdlRRqOTRnoJJ1DKtxjfShE3vpfJuRQjn08Blm1861gUb7Kysn9Adj5FvU5fY5xn04PXHlnP33m8Iyi/G+/Gu/FuvBvvxrvxG3q8Q3ZORmUk/yrGI99FqSCQWxKirlJKVIdaVgenEvGUQYWEUpB0RBHFCRmDKqS10wp5RHZsKlK/AsdOQXelZ6msFcsHJY6f6aQ/O0J+p6seNVXYpWJWuqzkT2riwskRJEXyY1L5u3juxJPeqaQjR23IOqOzJeYohOacJeCzIEtpNCcc209KfGlUzih15P7I/iroWcpiuJdCcTGOpOgFoSjk1OgTxEAMvSA52lAZK6Rrnafk2zxW/tpglEU7B9qSjSY7g3JGnHkprUULCU8go5OlUhZdAh5VMhMcrZUhWSWSUmXApAnN0oyBeGX/hSL7RjH4hNUGbQqB2IzrqbG1KGTBetZM51KmkN1P3FUTAZUhhECXMsrMWJxdFCgdDrstQyftJpuVmAoGj3Idrva4HFjpxOb+nqofpG0GvLq55tmzZ3z86Uua23uqZoYfAjdvbun6SFYVbSfHYIgr6lnNynacn9esZjVOBbZ3L7k6v+Ar3/99tAfZhu3NLTcvXnD55CnGKtp9S3CGWV1ze33Nx/3XAVgtz2gqy2G3JcUWq+CQFIfdjiEE5vNFceMWhFE7xXq9ptILdFXTDwfevHiBrWbMZ0tCWwztuo4UhLNkUuTJ5Tm3xkA1EGzLfu+5vDy6BxsdqCpHJFJZQ9YNt/stRmfqqiK0xam6mmOUZr/bcFVfsFhI0GuuLdv2wMq5Me4JpRJ20bBte9pOvG3msxqTMt63nD+5KuesvEZUsDy/4Pb+hnmzZLaYs28PzFdrMQ8Ezi8eYa1lu7ml3e3JemC1bliczQhDz2K5ptsJEtbg6dOO+XyBdZauz8Rk0QSCHySItCSCD/4gq2yxGRaxhq5JSWNMXa7ZOH4wnGto5jXGzYgpMXghYSs8jC2/xlEbS0LTrBp00xCNAVNhnEPhJr5IKtYcSil0EjQ8kGTeKR4/x+y5I1p9RDaOiLbhYUK2EI7H1onkNpGFRkA2IyCLwpXjYUnaSdp7aVUZbSZkZ/RCM65YhChb2loj9/KEw6JOUPMTWbw2b8vMPzvGTMPPw6rUMRpc0Ozx2J283ilnZ0R3ojWYZEr3QsucX3ZrUp9FPybulCpg/tvb8Tmo0+f9bnytcRSv6AetuuPXo22J/C49eM2pO6LUdF38Ssa7YudkrC+fEH3L0B6EeAzi3BsiKYnngNYKtIMM1gp/Y9zdWim0SVTKEJUUOckUmFNbtFbisgmkrNARhMKjydkQilpJI2qDPF6FWWDeGKVPbrUhJU1tHcbqQlg9YdTHVOC+/MBBOeej13EOvlDIhNA3pnkzTmo5Ty0BgyJSXGm1qHJQsRQjSdpCBTK1SihnwYxtMotSlmxUcbWNTCGrJX1YCMaJkAbCIDwcUoYUJuv5lD05xqm3G1VGVxK3IRfyyCfQ6NL7T2q8QUriuLIWXdWTWWNVNdMElrQUiZIab8v2Hb2EUMdJQ2uNNYYh+akw1VkxmiCmFGQX6oyJGZInR8OQI0odzROhTJxNNUVcUIoXAxiGo5pEJXKMtIcNXdvK1B8ilTPM53Oqupn4D344ULtM63eEbof3XSGl9lRVQ9cN3Fy/AWAIipcvX5Ft4vwCZmfnXDx+zJe/57vwfUt72E29/Nev7njz5gY/SOF8tl7y7NkTzi8v2N5vePXpp7iy7xazBVprut2WIfS4eUU1W5N1w/mjMy7r0gIdPPvtAeUalmdnWKWJPrC8eErWgd77icw9dD1D2/N695p60bJYLKgb4QANOXK3eYMvid/JB5yd07g53b7j5ctrukNLzGCzZ+YSw04KmNVqhUoBHcBWFTFpmplimTJLXXN3v2e5lrbbod3x9NkV65kheOHFLJua++2OxmoUgeVCiqj1akXb71g0C/qgSD5QaVgvVxidyF4+l6uFBLtYNVxfX/P0+RqjLNEP9N1ATgO2tAcNnjj0WAeriwWV0bhGQX+g1poUBqwdOSiJxaxBA+3mgJllLs4bVMj07cCQPbPC2Um5p9t1qJDwXSZGwyEmrO3w/YCuHM1cyN/aideu0RWDF08pjWXoPT4wtd+rak5UHg3U1uEUoBIxeUyq0JpJuYXKKB1BnUQtlBucVoVrUqrInFKhFuTj4i+VdoaKhJwwJ2Z1qbyWVsI5SaWtLq6+R2fkROHVIHEWWlu0kiJHWzfNFXbkMRnx1jlG9xz90d5WXJ1+L/NK4TYqpkXTKX+mTDnys5IF9Kl/2nTzzxryaGwrwpjTdhaU+dpobJaF60hQNjiEp3pCWVClwadTcVJWqHI8c4JcgqxjEZZksghCMhOhWdqQPODc5MIjGptOaVx/k0uBOBZvQsmQzzkqjsf4oPH1ynmQwSr1zkH5f2Qo9f9n709ibdvSu17wN6pZrGJXp7o3IhwmBA7gPfP0SGQhIQSWANN5QoiGG7SQaCABlhBGSMgdIyEQbgCSG7SQjUCGHgI6CGgADTcyFZlKBKTMs7GjuNWpdrGKWYwqG98Yc6197o0ClEr7oTMUO/Y9e6+91lxzzTHmN/7fvwhsr6/JVzeiYgH8ODLtd8TpCMrjjMU0GrIWW/9szi5ixKhJa7RKWCUTRGFLv9g8qtKzhWQy5JFpHssuxZCzFEr1Q9QZ6bEag0VhlMK4kzxayMjyWOGFSA8VlUo/+jRJ4jKxSjhEDlBJxZXwl8XQryIvIZ/ZkmuNiUZyT5QoN85NMHWWHYur/eSsS+EVgSj/qzf7oqSKJf4hJMkcSzEI2pNmFifUJDuQxawQgzUO17qlwAEWNY+ck/LZnKkhrGlQpkhosYTy+WkjNxyR51dnU7OQ32I2UB1dk8Q4WCSiQRQEeVEUKAXBCDKXY5RJWuXpqCJFLcoO64TIPAp/Iagit4+BlAPlvsUYByDRWMOqEF6T0eQM+8PAvN/jivV+igqfMz4gXz5x3I+gDLvdjsEHPvzhLwNgVOb27Wv6zrDdbulXDtdk4nyP04rVVS+GhMCLDy+5uVmRc+Bye4VK8NnrN3zy6Wuuri64WjfC9wF2D3vatmV1tUbHlhg94zgTvWIcIuiqgIlolXBaNHxt0+D6Bu89OWYapxkrAmgUurE4NDGM3H3nDeOwY9X1bK6uUMbQOPnA9skT08wQIlkZnGmILmByIKVM01jMhdzo/RwIRJSzmLZnd/fAMIy0rsW0ijlmbFsKowbG4jz85OqC4XAkz4pORazNNE2m6+Q6GMZ7UoqsVitW1hKCZr1qaayj73s+/fhjmTNdj9GZi1VLo2+Y4khrHUoZPjve41zGFR6OcYrgJdKiuq6HEDiME5fbS7QKzPO+zJmZ9bojzF6crq0hhcRxnCFqdseRrpFzoJKjtfBwvMMnT/QZaxXD6Lm6uoQcmAb5bLtuBd4yp5mcwBqNBTGszJbKJPbTQNN2hfMjthU+g9KOaBRaNcvaobUlh4zRwu17hHYosdaoNEIRNpyyoGTTVpPSlz9a1oETcmOEsKxALbE7p2IH7ZZiJxkx/jPaFqNAt6zzlb9z/lXzr86VV3Ksp8LtvPDJOZ54k0vB9xjh+LxT8LlxbFl3Ck6sFq6luO1rHRfRhmT1pUdr+CM1ljqVAfW4HnGH3i2wluM5+4gWHiZULOrRcxQDQ1uR6pSWzeNS9D163495PuddjC/iL/0g432xczbuP/uYoTFCpCvy5Kbf0L74kigFssfPE3EYIEzS6imBcgAojdERFTPRyEZEiFYRHSETidXuUSlSUkwhiWNnBqes+I04hXFiKQ+UyWaLM3PdaZSJlWtL7DGBLOcsBFWlxDOn+kfUFhIZlU7hnpTfZSI5JjKhwNrITmmZqJUMCGSDQp8QKCxBbSMAAQAASURBVDhBk8qga2WPTCKKM3Kt+GOSiIQQZ0iKGBI5ZikgUgnPXGRxUjglJZMkqUTIgcY46dKVTAPt9LJ46YKqoat6whYvDHlKTYZU0K4szs22kMlj3a3l0zvLSlxJlZL8mJyVtAKwRQ1SURghW0Mi6YwuUnXnLFanck0Unx0mCIXopyXENKRYgkeDuP4CcwgSQtvLDU4lyD6hlGHVtrQqMU9DOVcDOUwYSqtGrbm7a7l7eODZk2c4k5c8pmkMXF9tAWm9DeOB4Cca05Bi4FD8iwA22w1m07O7f8P93SdsNmt+6CuXBJWZhpGwH4nFk+diuyUmePvZLW3b0bQt0xR4vfsMBVzdXADQti0hJnRj2U0HPJ7GNsTZ03aWw25YVDhN2xSn6Iy/H2g7he7W+Mlze/uKy8tL2uK2fNnYYouQOOZIu5Lrv7Ur2q4jJ8fxKBuaMUZ0t+Gzuwf2hwe6rqMxlkVlozT+mMr5mulWFmehMQHVZYyZ0SqjbIcxDaEUh9EHTGdZ9y3ORkIA28kcuL+/58WHUnDuH96y7VZM48iw23Px5IKuacl4Lrctx4dbXrz4UK6DGHFWUBbvBXF+eNhzmGaurq7Y73fkslFrrIaUWPcNOTseHva0TccxeR72Ox72D9iLS3neYWDcHUg5oFSmafRSdMToaTu3oNJTmFDOooPBNQ5tLMdpxtgGY1rSLK1EP2f8OGO0JeSZvrM4A3FOxCYRmZe105hMNpasMrbu/8vkM4j/1iKzSLJO6bKmKUVBIU4y6nM5dS5OvNIKKy1/Zcuca4iqHkMj5F1loeRZ1WJHmZNqymj3TqFzKnLO4yDgHdXSO0VE/fm75N9HPjeck5FPf5+KcOPdv/2i1z758Bi0zmidJQmAIt8/Z/yiJfIni4XI9yokdKlR6p8v4hj1aO+Hqp46nyveTs/xA3KMv2Cc3PO/33hf7JyN4EuwZYqwewBAqTeSjt32dKuebnOJeXKBMY4QBfZNXnY8fhqJ84iAo0p2OTEj9UwmoVH2DMqcPXmaiVkY/skpnGro2o6m6RcTr8W/oXjxyO4ji+leKXbqxfK9ueknyDIXBn2FD2vsgsQMRM7TtpSGWIoVEAgz1spb1YlRhxyBpv6uoEWhcHVilvOLqIbkK0JSBdERU8cqha9FgajWqlxTn4q4KH39R3BxXVBySRimKg8qt6q+54BSRo4naIxRRRpZW1anRTPnYsBYc3sK1wYq/KwxS9FnUbEUdiXKIyeFNqdFOZ+tMNlkmrYVxQqy8zTG0dj2lBdWzqzRieQ9McwYMsO44+3b1wwPnyzxHquV+NUkEm+PtzhreXJ9w9XFJcMwEKNnmKTd03aGrrvguD9gbcNm1WBtw/EoaidlFev1Wg7UWCKZzfVz1ln4Dq5bkeNMbyOxm2kKX+OwvyMnaF2LDoYhHplnke43zizGjkZLyynNmkjEBEPSB0iROM44azFdQR+UYZ49rmnoPnxGjJF5OhBConE9m80FsZgK7u4e2O9GhmGkaRxts2HlNuwfDkQ/Ym2ktSWfrI3MzDTOsl4prNVYpwg+8vrjV6zXW54/vyjXbOS4P+Bci2kch8OBFktnJQcPIrHM8c12zTQcMTkQ58R2s8UnT7fqSdORqwspzEwOzOORMCvmeeL+fsfqwxU5w5Pnz4CMLwWMxAwYpvFI066ZfGK1vmb7pKPrVkyHicsbKWDub1/StYZpOJJzZn8/chcHIpHjeMAahSlct4tVRzruiMqR4kxKgdb1ZA2qoBptSUhvtw2Nc8zzzDjMDNGzP4zYpsMaQ98XI8xOs9sfUQqcdosXTSZKhEvWSw4S9CgyNVrYmKrQOd1OK38uaUG6k0ropfVcUZKqZS9zcykyhCVitJXXVK7QC9yCFmtrMdpRE8rrY7W2Yjmhz7MK1aLUOrWxPp93dc6lfDwqqnHmpXbGtfluxc67j102WAuF5wuKnkxpL50QJq01JjuR4OvTPaHCKV/0PPWecT6UOnmY6fNz/s5z5PJ9yWasz1uPO52/r3r+vhvv54tRpe833qux3o/34/14P96P9+P9+J96vEd2zoZXDp0Lga5U5M4YUUhNR+Y4wfEgQWm2wbQdzWqNXomJ1ubqWlotQUzcpsNe7PxVzTdO5BKjIIm7AYWR5zMa23T0qzVN29O27eKeezKvUktoZ8zCGxFezKntDCdXyloXCw7zeQ+KZfdQ2lcpSbJ5KtEGddgs1u2+9hPK7iBlhNxMWkisQlzUC3qSUiqmf9VLJi5oRXUwTRFyitIvRghy0n9WVPhEa3mfqSJRZQeAVouHBxQ7nrrTQP5eFGKqtNGEuAmIy2o+7WpyFiJcVQQo9JnRll6c0xdOgS47FF1bd+eO16aYj8nfZig8nSxhr8WgTUIGT6o+pRQhTkJWJmEKWjPNI8mPTOMBoifliePDPbd3rxj3e0KYF15H01iaxrBqLKt2I0Tj/Vu6pmXTKmJ2rFtRAh3GgeEwc3l9AyR8nOg6x5PtV1HKsdvdLtwt5+Q6dG0vSBaK4GeU8oTZo43DD4JAxGHi4faBeUr4WROyZneYuds/oIzh6lLIrlcXW7Z9j4qB7UXHHEZm72laizUQTETlsVx2ipgm7sdbnJEWmO1arMn4KfHq8Bpd24Mxsu4sre1QRnZ1x/sD07jDGS3+RU7e10274s0+Ew8HdIyoNtNtrnn58IaLiwuGw8TdbfGjmSPNqiVpw3G3J6fIdutodMMcE8fDgGtkjnfGsXp6yew9beuY/ZEQZq4vVqitxY+3APRdaS0ozWp9wUevX7MdtqxWHX23wnvPOMl5DSHQrxXGtrRtyzDtefLkKW/u9xjds764YC68qYTmcBwxWhO9p+0bLrsVCej6hv39HV0lPufExfaK+92OGDM6a2KMNF3PYX8k9o5QBAtucwNaonLmOTBNIyorCbE1hrmgdiGEwilKjGEWV/LGYpQjKXE/rs7n2WsUDYZYkJGEUGxOqp2lpV3n2BkyUP+dc+Xr1XlrRBhSBCMYI/O+GLwqLLhqFtgsbalKTK7tLKXtmSuyXVpW5yGfX4TsVJ7J+XhsEniONzzqJz1+n8i6U9dwXVygVVaP+DhfhOsvv9NGiMJIfEQNCK23hSQ5HY+OV/62ho1+EY/o7HHLuiuH8cgU8AvAl4rSfDfTxAXZKqfo3ZiI+n5/UEHW+2LnbCgtShyNWfJSJL1AkXTGJ8iFWDkOe9R4wB0fOEnlFF3XYJsO3W3YvniOMo6cNdM0kefEWDgNOUTpfStF07SsVhv6vqdxHU3TYI1dEoErJHgy6ZMLJOSMUXkhRddjILMUQY96ujkuPJycAzllUvalBy6ql7TAqu9e8MXQKaXFop+cSQlSTMuio8uilAqsnHIoSrBcHn+mRkqSLK7LRauVkO1SmRxJGbKpxY4chysXfjYyYZVVsig+ouQXqaLwF09KBYTRv9RsiKS+ftB1scq1TWbEZVQea+R1jKEpagxlCxnR1uyb0+Re8nAKR8dURUOQtl3lzEQ/EI8TUyEyxygcpugHuWmVG0zGQ0qS+g6Eksz8/MUPkZ4FrINpkBtyjhFN5HB8QBPQWuNnKWaV0ozH4yPDMWc6/CSPUykx7HYM5kAOiRD8Yqzoj5CwPPCW9eaCROawf4Awihx7nhgPcqM9HHaiOGwcISY+vb3l9mHiMGeUCuzKzXs/DvzI7/hhnn/4lBRn0JrL/opxGDgeHkSdFUu0xf5Aa+DpsyesL9bM84gfDoQQClk/EYvj9DzMWOtIWdG5DXd3D9zf7ri+vCLlQAgzTSvtufvdkcNhpuvkJjWnyJv7B2aliXPgyYunOFM/r8Bud2DT3bC9XHF3d8s4eS6eXmFGj0GjmjPYPyTyHDFdy3az4vb1S1QUp+EY5RwMfmS1WpFixDpNaw1kTddu2O/3pOAX/t4cPE472m5LTortxjJMb2ldyzjtGcYBe2YhEUMgW4VrHWudCGHG6o48B7rGQMkADLHkslnJZctlbocQWK06tIk0pY2ltaixlNGYxtDbC0JUxKwJU1iiLcZhpl9vhPdSZlHwGaMTWuXyczlXMcbCZyvZViovpOPlBrxISZFNUBa1qViDJJnspSWj64Oz5OSBFDnCx9EoCs8GA1XJqQzWNlIMOItS5mwenyxG9Jkb8ruZV/UGfLp5f/878edbUqebf84Zpev6+flGzLK+KzhPcD9vgyWlxb4hRd4tKoS8nJf/zsVGQ7Z6XxBfcfbv71akvPvY+rzvHnM5At4lX9fnrRET361JVRVb7zk7/wOjUbrEQrDkUolKSJRAspNNKGvI2aJUJM5hkUNrrQk+EeOBGF/LRdO0uK6jXa1p+i3bJ9fyWu1avCaUhhSXC6t+f5cNX5GShehVc2oEXkDlE5qRc17IwFVdVX19qropRSEipxxQJXAzx7i4Cyf1uI4uWIh8JfGy0RQpvVanYMtKrqshn8UjQQt29LgXTSzIh5B5g68E6uJEo5L42gCaBkMlJgJKAvq0MijlFqKjtQ0JtezGqv+FFD9KdmU148YI98Bai3Ea55yotazBOI0yZ3JT25zk/UnI3eQo1gTF+blSKHPOxCni0ygFZOEmkQLRi7T+hEDk4j+gFt4BKgkBOaull900fQn+RBRtOUESp9e2XZGjPwU1Eui7hmkaOD48gIKLTUtME+M40m03XBYp9TRN3N7eMty/om0b2lVL1oq2XZEc5HnmWCTa07Cjbzs2F5fkMOKnwOH2Fkis12tW/RWkqTwW7o577vf33B0m9qNi8Ip+veV63fKlp8JXud50zMc9D6/h+voCleDu5VvSPJHihDKaWArZzbbFNopkIj6OhDBzHGb2ux1aWfrWsbqU501aOCSgmYYjMXouby7JCXYP9wzTjGsLInv5hDHtuHvY07YNK90Q5szheMCHLFlc5bNvnOHmww+4u7tjeBhpNax6i2tgnEasOw+WDDSNws9HGtWig2dzcUFUmq51jMUXabvZYIzBdS2gcQrCccdOiSz+OJ7ChjtnyX6m7xrGyeOnkXkOtCtxSL6+esZ4lM8rBc8nL1/x9NkF6/Waw25mGmZCnLnarNgfZqZSmESfeHjYcyyKq5RgtVoJ9ytFuq5hvZbzNU8j0+SZ5kRICtc3hBgJ0QuyUpYO2xgSHmMdygt/JROYfcJE0E1PNic5eSyqSmMe37wiufBV6s91ERSksiadCgG1cGHKJkUXJCcXxMVYtHaivCoojip2CZWDo5C5/0hh9ajYeSwtf1dpdX7zfdfg9115+eNRCcGP0ZOcvxjxgTMyM5XUXP9aL8+Tz7zN6nOef50TmVMuyrelANGP/65uagt1pqIz9d+Kx9yj8789H8tjePxYpcTmBMXn7oML3+cRYvSD8XXgfbHzaCgN5T5YvBhk8qCipPLmREwRW4JAc84CbVbdvwKfZrE8TxBDIswHzHFGHwbaZsD1At+3bU9f0ZymoWm6ckMVA0H06cI6Z+fXYkY8dOT35vwDT7IIqJRJqhY74VHLCopEPUaBJlMqN+pYLlhDVqnWReKvkEUNpZUmFeNDjRHpdE6kUhyGMEtxGKV9pVTGFOphnXTnSoKcAipHcqpEthKIahXanJLEVYl70KYEZlqDti3GNth2tajn2rZD20b8a5yVwFXbFgl6SSCuJ25JpxYfnxQiMSZyCVmU9lo9CQLjqiQmijlnkpYidDH/Krvk+pxC6JP3bGp+VvSSNL34AimiTiVgVs5/ArQxGNNBastzi5oneI+fBsbxSEqBpnVcXV7jnON4FFRjnA7M64aLzYb+xXPx5xkGXLvCdo5x2POwewPAan3B8w8+lKR4nxiGA2kOHB5eock0TcOqtNxcWhNC4M2rlxKK27XcvHhCYwwhRIYpEYsSZ5omRh8YAhy9YkwiO969ecnK3Syoys2TNZuLDxiGgWEYsVqzvuro2y3OKg4Pu0U9t91sCPNEjpJ631mH3qzoWkfyUjDXpXm7XjONibs3twQ/0FjHYXeHQbFyis60TOXzP9zfEaaZdddz93AkK6koP7jecL878vblp4wlLuLFk2uSH1i5oszqOuaHmdvxFmUN8zyzKm3t9brFGtisGtZtg3UN+/FAnCaaztB0rswZ8Y1xjcTV3Gx7YvTs718Spge6bc9cjB1XnSWnA+Pxnjlk/BToux5nHWGcaZs1VUBnejD6E4yS9hK6oW0T8/HAcbcjpEzXSnF4N+84zoHjKEhk1zXLjdAZgzUd81jaUylyHEfQLeOccNFA2Qj6OZ4Z3mm0VVjTkFUqmworqHSYJPC4zC+jXYmsmETZJpO+tK8KYVfXAJRcdv2nFpcqGwVFJbhSHlvCmZV9hOzo0mrSyi7osbJG8vO0Bl2zr07mf+8WOOdf8N2LmLr2VtT9uxUBj2XXZ8+VT8VIHakgWTmLKhTF6TxltZgAyqiPe1wkLMd+9lpGm8+9r/Pje3RY7yA7lZj8Re+tbtI/t4n/ghbVu4/5XvWMUg6l/Hd/wNl4T1B+P96P9+P9eD/ej/fjf+rxHtk5G+fGURXa9NNc4gMSU0xoGvycUEl4JTkrXD2L1YI7SvsmZyGe2qbHNR1t3+NaQXZc2wiRN2QmHfFxQmupUBepeT0urcXrQUnbyBgJyzsPlquNpoVwnLOgKzmjcicuxZyMpprUSPuFShgu7s36tINYYimQXYNGC2KlKrIjv9VKL7BxlyIhBKIKAgfncpzVvycL+bEeqzGGbMR5NCtBQKxpMMbhnDu9v4rKOL3Ebpz3yuuxppQWNCUHT4ozfhiIvhgYxkgK4/LYFMJybnLO2JJSLJBpITVS5KbmRCKWViILl0BI47Lz1Rjh/aSCFhoru5MUiUSyzkR8eVuORhlImtlHIVMibQvxJpLPIqRI2zf0fcvuQRHyTAqZGD2fvfwOzuoFUXhyc0XOmeNxwKhE8jNhHhniLNeQtYvLrp9n4rzH5MQ8zyRjWW8uMA7u7u7QytGWwMrV5gJjDPvdrQSy5sx8OPIwjrz+7A27g2ee5HgHH9DK0GjFs4uGpuv44MPntE7jx2HhN33ynY9Yrxo++PA566crpuMgtPAAPniePXshEmDgzetX4AdijKwutiIOiBk1HpnHgdZY3rwUxGoeIrYRBBZteDgeGYdiIDh7+k1H0xcDyhzIccI4zbrTPBw8yrXc3h1pG02yGmuFr3J/8DgDVxcbGj+wWvUQxX5/nI/0q4brK0EZpzBi2w3rq+ckrzhOI/NhYr1qCcNeED7gOM6ozZaGxBQ92yetcGDu91hricPApny2KhvGKJ+7Mg1kR9NcELHcfPiMoAzJVul3x4sPnhLHBw63I2EeiN5jchIekE6Ewp1yBi4u1hLBkjXNuhV7AKdwfYu2Du/lM9sPnmHKuC5jnMVYQUjGyTPOE67pljnTtw3OKSyWtulp+o6UMruD8P+a4mauMEwpSLAtmRaDNQayFZRbGUxBTiuqnAvSqjIkVdx8sxizxjMUQ1MSy5WYA6qsscaJq7CxizOzVZasVWlhFSfkEgWxEJvhMSJSeIaCoJfXU+qME0d5f5XAW9GZinScWlQLsbkiQWWNpCL06YR65HT+XElQ6AUZKqnupe+Tssg6stJkBRLVqiTwVKklloiYl7bbCUUqlh0FKsrlXpe1HG9WqvCitFAplLS05PycvbdMeWL5Hsv9q57PVB4rViG1J5aLiUk6HQeceJZAxBM5hf9+r/G+2DkbzimcdXJTrIQpZcqHUb7nTAzyQRqthDy21Bu5tCEyWSusdZjG4ZpO2inO4tzZzVOdLuSsItU0Ksb4iNtyfjPnHQhVV8XCmVKh/l1QvkCLomzQJ6oPRrlH731JmS0X0nkhJSqA6ougl/aYKf8WU8FyIVZ1UykeUhTycJgnueLjKdsrxZrSHYu3ToI4kuaBECI+nwquE9muGp1VnowcdzwDUGthWP2qz8l+53C4tAUrz0ZmeUgFRtYaUCdvjwRJRYxisaJXqCXlXZ5EvhstOi50RBmzkJFJqfCnTsRoSWKHaZwkUkNbjLKSCaYysZwjpTLDcUfOiqZradobaQf4hMqStVRblMfjEa019w8PhDliHTijca4lpxk1DxDk9cOgCSFyf9zTNz3g2b8daJqGzl7w9vWOGMWRt20biAnbtxz3BzITT6+fstpecJXXrMfj8r6mYeT+7Y5hGOiajtVVw8Z5Lp484ebmqxxKhtZ+d880H6TYT5rLmyum4YCfJmKMfPzZx3S9tLyunt5wOBrG23s++uY3UTHRbTYlq8jhupbL50/l9Y8D+7t7/Dyy2mzlPKkDm21H41aMk2ee5UZ/HGac7Qlerq117xiD5/KyE0J/CqhKFPeBYZzpnGb2Hm0iOXmuri5oVIPWit2hEI+HA8pZ+r5nN+6IPrHuDPdvXtI8vVg4VpfbNc5ZxnFk8p6Vc4QQWLc9xhgedvdcXV+UOQM6ZcI4sL7Y4LYrrOvZXF7S92v2+wNzIWmrOOPwoJOYBGJ5c3/LxWbL7DLKanLh7KQQMSrjrMLPHmtWJRdKMfsRpYWfBjD5gDaWmCbW/TW2tQQPymhSPt3kNts1TScblmmeZIMYReUVshcCcil6Y/KEIBy+PCc0iqQy1qbS2DZLeyzXOJuyWRNuoirrQCEtq/PU8eqS7mQDZo1snoqnjjpb807qK13aXvpzrZ66diybnvqzxbPs8eMe/039/vnWVP3L79a1+aK20iMOZD4JQM6FIAun8OyxX3R89X3KOcvvfC/Gp5Vjk2XFV7CYyopHWeH6KCRC5+w1zo9fl+er9xV99ry1Rfnd33t69PMflLfzvtg5G9bKhFI5Q6yumiWYMSYhkgZxz10UW9ou8yBr8DGC0hhXEIq2Eedc62hdg67FTrlAhDQcAHtGDHt3ErDIC3Wp+OtXDqVqP+PBSEBnFIPAnE6IzpnsW9fckTox6rHkU1+6jsjjiVLl35UxlsSjdHm8SmKCNs8zwXuSnyFNpHliHI+EssCGYsZYs7yMkffvqsKhcdhqZ28M1vVo22NtA6pELigpELQtjtdNA+qkkviiiRbOuFCm9PxTUXGoWFGbUjCdWakrrYqLdSmwCgfJFEJ0qj19JcRGksjIc4yghM+StRIH1mJQlrNijh5lDX3ZEScC2llyVqSpoFDZo1HY1pGzyMdd41ivGzKJ/fGWVFRLcTqileX66jlt22OMI6eZ2e8Y9w/4SREKoRynaZs1N/2zgvoo2tYJAXWaeHrzw/QFuhz3D4TxwJRmmhas7oXA7+/ZXDhS31PDFP3lNeubF9zdPTAcd/QXrSApaSbMR1abujtrUYdI0/SsVxekBMZdsrnoIXse7t4SRjkHD29esuob2usLLq62KBxBZfxxZD488NG3f2NBwuZxJnsxkZuPR1a9Y9VfMY4zu92OGCAX2bXG4OORzfaC3cFzPB5p+05iBqxmc3VBKGaJ0zRhtKJtW6LS3O+O6BxIPjDME33fsi0k6ecvPiSGmfngOd4eudpu0EQ2rWx6KpFZCngxNW3bFXEOWK1Bg9OZq+0FYSpFrzVc31wxp5aQNE23pe23NE0vcvveklfyvqbjPUrBat2QphlnsqDQOmJbi2kcc9kUbzaO6ZiIfke3bpmmWYz9rMOUDeCx5I5dXF6TUiJqMDqSQiLMEKYZnQUNBymgFJl5miRfUAW8nstGKeNnz7FcsyoqphSF39M2srYpEYVk50qRkJa5fG6OWkmygoKUuV0RFSUCCpQQj2txo1VBdNTJ2DBrg9H1MdV9XRWp+jt8lPz5NTpTkRj1zk+hHtiC9Cw39PNi4+x55M09eo/pnQ3tIjqhbMaqqCF/3pTw3a/lJL1rVFgLG2rRWjfl8vWoeFMJpTQ6J05n5/R8SxirUo8MB8/fv6lqLHU6piKeFZTtkSr47LjLqIaJP8h4X+ycDe8DGUEjkqk7A4PSCm0TzkC2CZMarNIIl1id0IcYJRDbGGzT4VyDdra0ZkrqeXmtE+v+RBquP68XxLvS8/PfC9n3NOlOQWpC+q03Yylg4tLeqRdVhU+zLj9L4vQby6KR4+l9AY93CvnkUqxSJuSEO4MWNSXugYQm4r2gNXEaidNECMWLJfpl1yGSfzDWSusoA8ksZEttleTq5EjIpc2DKcWjXnZKMcuOQiDfGiQnqo16Xp09BX0apKiJhRRorLx/L37Xy9zVmSVAb3FnTXnZoYi8vH5G0iZIWSIeUoqSZ2acMPHy2TWTTzvPVD63rCMZRfQeXWB+pyUHzTgrk70ikDmilQQtLiGzrSHGTE6KYThgnWK93uL6Z2h3gV8dF8VOmEd2w4HNKtGvVowhMxw9/cqhdSbFI34hqo9oA53W2EbaF53TjEHhR08OiK8UoNuRru14/mJLSmuUBq0i2Xv2t7f4Qirs2hXbThAMH0b6vqdbrwtB3HPz7AnDXoqdu7e3xH1kHI5cXqwwzIRhYL/bYci0/QYf5GDbZkMcPbv7e1bWME/FqRuFazpCnHnz5h6Ay8stFxdXaG1ZdZl5tkxhZr1uubu7I7WObXGRtjaRYyD5PWvXsG5bumZDSpnWO7TKbHu5DlweMErhh5FN3wka3CjWbkW/3i7OtSl4YprIWtE0DeM84IxFm8ymb7m93zGFGhraoHAo17LePkObHuca5nmisTAed4KiIpsU1/e0rudufIk/HDBG4ecRBTS6X6wc3t4+sN8fiUna6sb1okzMmRSgX3ULgulayzwHTMnxOx4HtG4ga1ardrkXHY9zka5vsDaTk+F4GKUtrxVWaVIJQ/UhiZIzSEs8B0VMUojaDMqqRQRRJ2XOkLIi5bL2ZAs6F5FDbZGIjF9p8czJ1V/HnAI7a3tKiMmluBHI/HuiBiKwKB43+XRzP7/3nv5cLeu2vJYt7+OLNrjvIDAl7BPS42KjkpHPEJ3Tfy/C2+W/zx+zkKa/67t7PDSq1DuV2nBC898dX4S2qLPfvVskyptRZ79/l6B8utd8ntz9A1Y63/Vo34/34/14P96P9+P9eD/+JxnvkZ2zMU+RUDwdkq+QacCq6teixLdBGZw24tuSEXdgIOuELQRaU5AcbRuMdqhixHWCCoxUy1iyEh+IWvBqKix44pacV7g5i6y88lIy+cwMECASUxCuTg5lN1EljZT3VZ+rZkCZBQHK+dTnBcj+tHMQ/tKpUhdCNER16g8blBBxc5aKXRmmpAgR5hiW3RwKnJLEcaM1Vmes1hglRlgqpyUhPYRAzjONUeRYSG1ZkrGzjlB29DnpxRtHqUriPp1X0NQocYVFGYPWTfHiKCRHVMm0AlUcCJOclJLrZQq/qb7/SIqJXHaeuUjTVVIoIxwiWzhfWbNwsuQY5ffnkPRyXtG0hdehVTEizArnWpJW9KsWA8Qw07aGegm0Toi5Yxzw00SOnuGwJyZP4zo2FxdsL6/kfRVvqfl4YByO+LBnngaGEfq2xTlFmOW43r45oJJkRz3c73Em09gDtnc0TQeWpRUXQhCCq8q4phfuSruibx05JmJFx3IiplksCFJg2I/EmFitVuSsGA9HpsNDuayPNNsNq/Wl2AUk8Chsv2G438Hs6S/K60+B+/2R6LPIi1Wk73tizvjdgaZ3PGsvATC6483bIznPXG474aiRmPyIJF+3zMUMNOVI03agDJHIumlQJDpnGcJM11u6QuhuVxbvhcDfGMvDwx1ts2K13TLNM1Ph1lxcrpiOE5dX1yg0xzHSdA3WZCKRzeWaoYSW9t2WxvXEYIVM3zjmIHM8R4XKms7JORiPD1ysLyCPNKU9lFPi4W7Hpt+we7jHe2kjTdPEME5MIXLz5IWgnTmx6VdAwnvFNNU2tmeeA92mQ0cDtsW4hm3ToXCMBd0bhpEwR5QLhRMosbYpiN9U5xrarnrcZJIPxBAIIRNjRMWZFCKub2mbvmSPIcRYBBWVOaOFkKxqBpZeuIcFagctXjmqhgErI/xHexJBSOu+zFPqGilfn0MjclkTKq8SWRcrWnJCIOo8f2yel3Msr5c+h4IspqhnaP7ysmf/XRGcL0Z2HnN2BAWuCE/hhJZ7gj7HPHI91s8bBgpic/rvxz8/P2eff8zSVszvPk+9L33+76qQ5V0zxaWd9d+B6sD7YufRCAlsroTXk0EcGoxVEOVDtVpcaTSWrPXSwlHOoFyNdxD4lGJqVwsg5eTmZYwR3DNrQs7EJBB7vVHLRX06hkq4i8tkKhfFcvGf9bBTFLUGcrORNlh6dGmkxWdCl8kQiDFJfMO7kyUHUUAkvfBbEgIrppTIyiwE6UzEp1yeLy6Oz9YoMIZkm8XK3ei8FCSifABlHGhNjpmopOwDpM9eSNRaZYySG6V8nU8AMYE8J3ebMhlTJdxVbw8jHCUl9VrhMMmzqNpnVicsOOUE2HLujbQMc5aUctJCtlT5zGXVFIPDlIsarCjk1Ak6TyqU6rFYv5djElWHvPw4jWJMaB1NTDStwUR5MR8k/bzthd/k45E5DIzDgfF4QIeZHBM+w35/T3/o6FZCeLXtBe3lhnazwb+VuAUdYBx2+HHGdQ3r4g118/SGMHtsZ7l8ekk4juz3e8ZpwufAarWiWW0BiUpAi9Hf4bAjqUzKE7v9gZvrZ/Rb4bXsd/eEwxFVPovjYWCcA8Nxom8d3o/05X3lNPPZd77F9cVlcfmVQmG3OxBWDQbFVG609/cPkCP9ukVbwzCODOOMcQ1tvyaOE7qQt/b7B/bHiac3z5jCKPOhuEdbY0BbUrkw7h8G2M1cXFzQNnAMAz4Gmsay3jjavkGVZXV/PxNyYHt1CVZxcX0JwTMPI9oaUT4BaYo40zAMEmqKkvVm9AHnHDH5hVdynD3OB5Ttcc7x2ZtXNF3P9eUVOURUy6KG6tOMc4q7N3f0bYfCMx5G1ptLYoTMyYjSuZbgJ45jIr49sL1ouNz2GJfpu57jGGGUIu44BubZ064zs5/EkVhB37XkrAjl5tnllq7r6PsepTPzFBhHCWcNPkHMNEWdaq0mzYFc1J0xeObxyGxGGt+T12nxJTLGEVUpdlBls3amGiqKSpnHpiiq7KkQqnO9hKqe7rzSEpfWcn2uUkycc1uWXemZMzwnzk5tbYOsu+dE38WetRQzSkdUPm3OFkPVd/g2sgSduc+X40wpfq7IqfyeyvGp/51yevSYSqGIqhZsLGtaVaIu70O9Q/FRPHqfIPyq83becr4eFT26rH+1cK5/+/nHn7cAH3//Hxvvi52zUaV5KbEQSEWOfYYOFJM8chS3yWzIqrL5wQRBeoKOoMSkKhHozlRUUC72d3YQhR/2CMWpj+WMJFd7lVKdiw6pIiCkRAoRnWUyLAL2dHpdAJVK8RSjVPsRkZfnjFZacrBi7c+KSeGJsKZKim6ClIlpOj1/isQQ8H4sxY4RaapVmE7Tuw4Vm/K8Iq22qt70Ja4D5Wrpttw4MAbXdNjGFGm+wxpRu2ltl2ys5dxmUWZAKYrOmYGcFhIpYCZ5HSXFpzy2Cuur+Z8cr3xUGYk1lwVDMnvE2AzAVOfm8tl77wtpPJdMINlsyuEYyKcFSNLTZeFSKRHKDTkqTbe55OLqEqOkqNRZrPdJER8joSRj56xxrJiVYbW+oLEN0zzSxCPDYcenrz5hnj8G4Nnz59zvVlJ0zyPMM2E8omLANQ1pnrgfh/K+YBxn/BshpBsjiMX64hnWNoQ4LghEMjPDfiCFyHrVcXm1wo8H/Oh5eTzSr6Uosk4Tx0GIzmRc26K0lpTv45HGWMaCBLpmRdus0MoRMxwOBzY5sWosOirGYWb/9q2crzlim57tzbUUxq4pNzvLbjwyzRO6XFtaNbTNjFEzmUjfOu53gbbVWKXRWZyKAS43rTh0K89qvWK97kkhM4wHrDP0656LrRSSn332EuUkdVypiFWSph4jdM2WriuOxPOI914Ko+2W/f0Du7d3jKEY/PWGq5vnAByGxJwyfdtgW8uzJ9cMwySos2053A3oks2FdZjW0HYrjvcSq9H3PfvjxH4YyTEv12GMkaZx4DPjNKN2iof7A0+uL9lsEkFFdMlea02DcZrj/kDf98w+oLG0jWaePMedqPf6vufqYlOQTORcWouxQqqfYmJ/PNltiHFrLpuvRPATfpqFHB4iMRXbDtuSjRQvUSkhepcNRs7qVPggRZAqyPkytCFrs9ysT5Lyess9bSJTjV84I+dWnuTJcLSsxZWzt0QgSLEjz31SOdVlSLg+Jx3piYNSkZ3TTf7EzzkhRudK1VgMb6vhabXZqJ9tKpu1GGNBgOXeU3at5VUeZ1jVQu7Rvzk7R++Met+S++PjEuW8AJJzfiIbfyGHZ3k9ea+PCqYzfk9S6XPF1Xcb74uds2GMwipFjKeTWz0DVBZoW8io5USXSZaTTNgYI6FM2Aho42i6FqcbQk4QIyiBjU3OmOLWacxjTwel3/XQYamyhcyrOUfycs4LcSyGIBEQWcjBaNl1xBxlsV+eU26wMUtIaFTF/6VKbE04ST1zEnPlXHcmMnFSDsSUZPLEujh4ghdyaS436xQsyioa0+LaBkL1ywiFTC3kRO0k9iHixFnTWEyFo63BNB1NyaEyTYu1Fmdb+XyqoiI/PndZWIyPSHnLAnS2n8g6L4Rwo0w5LyfpuTZ6+ew0csxkaQsujqpl0TTKLoXUYnGuZTERxMcUgiLEkAnlpuZTxCghlJNCsTKQY+z7nsvrG4xrmYYDx8M9KgYyHqsNyjpCKRFjzJA119c34v8yHFEqszse2e0ONKst2ggCst/dc6EUl5stQXXMxtKuN4xxwBnDNI1syu47pYRxM+TINMyMfsb7QIPELPRtLwRqIBqF6zt0tszzzN0UaKxFd4owHbl7+FSe0wfxX1Kay+trwjyREtxsL4nJc3i4J5U8uuQPWGu5v7/n8mLNzdUV4zwzHCeOx4BVmuvrawD8NLF7OPLq40+xfYuPQEw0TUPUic224/b2Xj4bpVmvt3Leoqd3HetVxNmGcTqyXW+5ubgBYBqPgKbvW7re0rYWn2eCdhweJsJ0z1QiF9brFbdv7hlz5smTK7reonJgyp5pHri9v5PXd+JWfHW5wSrNerUiB43Nkd3dDqd6UiEdX1w8IesWo7WoGlOiUYrj/oH1eovNirZ6hBnHOMwY14JuyEnhp5n97Rs22yvuH6YFCZPzIFEX4xSIyeFcz24fmMKI6yxNV+ZCSkzDKOult0JgzwH0zH5/WNSOtuk4jAfx5koJ7xPHKZIxYB1929KW60UV9MRPoqKTpUuKFj8FjmmQNRRou4x1LcqokgllJeYmU5RXp2JHihAhHst7fGfDmauXS71Zl/9OdSNa1rXzm35ZTzxB1GILulOKlHdynuprnbetqv8Y5rsXO0qZR6jO+fda0OQsgaxZlaLmexQ7MYWi/q1FWfnv82LHyrElldHlfT1qnZ3tGR8FZHzBBv2LW1qfr0wW9RenQoYzf51c1HR6OZcndC6fUTO+33hf7JwNrZyYup1V8YkyoYzFGLE8V6Z4DsQkN+y6+46z9EUjoqzQWuTClAszsfgU5JCJVsy2GidtHHuuEDj7BM+N7HTNl6rIjpLJVzkQaI2KpiwCCCRejenIp3ZTljZUhV5zTgvbPeeMVW7xjRCkJS1FQ4pFvBW1pJ7n4pGDFDtSfGVUlPZY9jMqa3xu0Ep27wBWuwVZOqnMBCWxrvhclIXbugatLUlJQrzAwpmkvKBC8bSAxZgfJcVnFUsvurz3dO51VCEWCQDVuYQcFk5VPqsqbUXdEIVe0lV6ft56lLafUhLpoa0mRvBRokVUFoOzGKXgm30o71tjS1tyLDc2qw2tk0LjYnuFTYb927cEP5BTYPYTMUgr6TyvR+VAjJm3bcd6c4Eylmme2G63XG0viNPEXG7Ic56wtuHNbiD5gGvAGkNrGmLINLZjHk5+SMYYktKsrtc8XW24vrphCjMvP/2U++OeCyuf7XazQmXNR9/8hE8//hTXGV68eEGME6vViq6RNtb9dI91lr5rOIYZnSLWJx7CjC8bizRXA0bFar0lZ8Wb+x3rcUJpKdqNyrSrLalwUO7uR5Tp6NqGbCzj4UDbSJRI8JGHcSSk0kYiEeMsUQE0hGS42qy5v7/n2fUVx+PAruSDta5hc2HIWlpc87BDJ4s1mXEaSDbTd6Lc6lrJX0op0W/ExPM4etpmLYK6culNc+T6UtLpm76n6SxGN8RxZG17NpcXSzEv7U0tqBsUqwBLipowTxjnGQoSN40Htn1HTA3GWJJzmK7h8uaacZylhUzlzynmHItHmKSiP73aEoMnBcl1W5W22+hHLi9WONsSQuJhd8CLRJOcIl1pjSUf2U+R4BMhzljTcNF14r3lMn1vcYXfRMp4v2a2juM4inLRChJhE2SmGrtG0oaAFmNBq0kkdBJLBlO4kfXmqYtJonARxEcHLGRLRqJ+HgELSoIxq/NGVXufxy0s0u4kdnb13xTOnjp/Pk43filU6oZZC2qUWF7rhNoX37Ml2/Dx69a5WNtVOUMoUTfvcnfgxNnJqS7TxUBWle/1+bUSaxVjThlYGFTWkE4eQcCj+9MpGFrOc6rhzahHj5WOQDmPpvi6lac5MU4l5TDnALqUoVmO8fE9oj46P/78vsd4r8Z6P96P9+P9eD/ej/fjf+rxHtk5G9a6YtN/6lUKZ6fEElhBDEwhyuby+xBKQF4IxCztkcY2dE4CKbXWpGJoVatSYzTGFv8d7ZadeY1CgMfVs6qQ4jsGf0qwVjEhAyH/KoWYFMbSz/VEpaTltPydqL+EWCfQby5cPQWQTnZOmYCOYoGuojj26izVuMqAj0v/2s8jKUhrYp5ncohoAzopsEFgrzL6vsW5jlS8jcKym9AlnoEF2ZHICUFqrBZkpZ6eXFqM5UxBzoQQl51Srj5DZQey2I3nx4iSoEwF2raO0m0GICZBkapVffXFEaTj1KtfjlUJzyuFABkcGosmkPA+LLsuU2IwrDVMU2Cep2WnZG3Duvi7HIZDcS32bPoVzhpiUbhdXK0wJpx8mZRi/3DHONzi53uyMazWl5BbZh84DDt82f0ra9huL7m4aPFz4O64Z0as8yc/cHd3x7gXDsb1RceLZ8/ISrHf74kG/Ohoup6vfOUrvPrsFUMxnrt7s6PpWr7827/Kl377b+PNqze8ff2KZ08vuNhultZ/0zn2DzuGoxghtusVqBGUIgwDOkW6vijSUMxxFsfm66dMw0jnEn4asdYyTROHSV7fqcCkNLZtFuXOq1dvuLm8IerAurP0xYhyPA5EdPFGElOSMUaUsxzngM8sCETKgeAN62bF3e2BTd8TXcJow9XNE+Y5EINcB7dvH0hpZLvdEkLgeDySgqexhjl4LosiTumG169fcnW5ousbjuNA1/Ss2bBdXdC0muNxLJf3yLa/KiCFReVI9NWjJqJN5H53C8Cqb7BWQl0VB6wNzDriGkWMiu7mgoe9wCV3ux05WWBEZU/fZNpG4XUmW4ePgYcHUcXZpiFFGNOAtQ3WacgJYzKr1RrXyIfbuI79NBCCp+kaGtfjs+MwHdFTBHWK5wFZSycfyVbQGK2SoKhWjEanYkA4DANhGOm7Dc26FzNYK8KFev2/613zRd4vwntMnForWtrHWdCiStSV9fakoDx528RH/64xNe+Ox1yd4sulTnE3+YxPWY9x4Qrlk0s8y/cTWTlV4UNBb86RnXpfWn5W2lgL8lPfYxVhlHW9okJyfMK3ylk/em8VlRGSdT1+Qdsz9b5UzmpmcVkWTzSW9XppIVJJ0mrhhFYXoKUboqW1uLj0Z/GiOyc3f6/xvtg5G8oI2a3yPEBuRhKNYlg6HgWSrPBgCCcXS2uM5B01DdaespTqlyuyUOfaxeZelZaLLk+yNE7OJuqpwEnLd3lQzb86TQK19E+F2W9UId+eLSwq66KkqhduLC2fMnnlCpXnVF64P6mkm+cgxZvPJCUSyrmQY1OYiT4wzWNpKSRM1mL+lxUpeEKZ0EcFbaNRjUU7K8Z4SknBqNRyTMDSKhJOUyn+UnrUS6/nShWFmZFqZzEvlLaXQhdFHEEXB09DNqXlVQvCnETpoc+gaX1agIRAXBamklpuzGk6xVhS6VVpTxEIfiYkOV9VkWYbh8qZeZ5QOWG1ZggzGiVtgrm6KgbWm5YQM9M84GOk61Y8u35CSgFSwJf21/39LcateLK6IMaIJ5FTlgiHh1vmYaQtPBw/ZP7bm29iXeZLX/oST6+eM4weH0a6XvPBqmcapDB6+/pTvvnJp9w8ecLm+ikpRN7c7miagf3DA9HP7HbS7lGrlkt9zfGTj1n1G54+u2a9XvH2049IU5QbJOC9JxFAKd6+es1H3zzy5HrLl7/8IXmluL+9PZ1Tn9heXzJPnrf3n/Lh8xcchwcimePdnXCCyvzqN4YOgfsfDrPkYfU9WoMPkWEcaAqR11gFSQQDPkbJwLMdMU5L27Le2J5cP0GlmXme8d5jry7ZbDuG6YhrLXqI+JK91rc9rtF47xlGh9KWftPRrVb01izrxnTYlRgZxTR6rGlIIWAVEDMqWNraVxjeMhVDvo3rmaaZGDNt3zEFz3TY05Vz27Sa/f6W6fiG7Cfu93uSDzSuQ+XA/jiy35WiV2WMzrTGgo5MY2CeEyEKR06hCV4KScyMDwrXNGit6Z2RdpPLbLbtwtsyxhG13DSnKPzA4+zZHw4iLcfQlF6eM4axuHanJCaZtnVkI7uqFBO23PQG7/HBE2OmU4muV7Ragen4Xre+E2cvijikrIGngqtGvyRI5lGR81gVxTu/e1zs5Lp+yVX7uI1TipxUi56zNfn8XgGclE/La58c8N+VnKeUH92T6nd5bClu3imGVJWBFHNLncEVOb+ytW1Vz2ctCk8xHMtQpR1VDzhFlNbnjEhUcaKvG9AEj7g25y7Iumzg3y0bF47VWSGbF77G9x/vi52zoU2tB9SpKi1oSyUO15N97kNTr1drJWjOaId2lpgVOQRyMuhGkJ16cctzit+DVhIel+sk0iJDrzfTXL/ySbJXJ4CSq15ueJwKpAyk0tet7spK5cX5mCwXlZcEucXbJ55LM2vfW3SGaCXaL6UNJiqCyWAUYYqYLFyNEALZgzWOmCDHKAF7QIiZFD1zgXDSNOOcBAe2bU+30kuBWN/D8tm8UzQuX+9+hkqRc8Co4n0RJTaDnAtqZciFIK2K6kueu37GZTHRRVVQyXCZokSVvCCtLKYxj46vzlhZyJM4b2f59EISwqBWBmvcwimI/hTyF6M4KHeuF2l1jNzvZTct8vREay3ONWyvtjjb4qeJeR7JacKXYEnXStREIGPbFU5rjvuB+/s7pmNivdpweX0JgI+JdHWBUor16hJlNb0yzHeJb37zWwzjjou18Gsuttc4bRiPE+PxldyU2pajVwzziEGxffYMgN/49kd86zuveH51wbPnDn/3lqwSmyeX+GliLAUBOXF181R4LZeXfPQb3+bjTx/YHzK/+3/9OkOT+fa3fx2Am6tLzHHP8+dPuXx2ye7+jmEe6W1D12/59OPP0CUUUGuJQ7CmlWJWCZL42evXrPsV4DhMcjMYhhmVwdiWZBvmOTDtRlZtx7ptOITDQhSPyaPTzNXlBU1smeZIfpBA0KQi3apBl6gZ5wThfXt7i5/3xBi5unjOdDxg245U5oE14snUtg05Z9q+57jb0zSOmAJ+CLSF5yaRIBGtIiFOsg5E8dNyWna/fVF5+TAwF6fsefYQ4MnNh+x2O2YPcZaNCEBvNf3Fhk9uH4hNRzYNbx6OpCSv7aymW8vzXlyu0Fm8eaxTNJsVSmua1VqiXEoBk7Jw4qxtsI1sCkNIbDaSsTb7kZevpZhfrVYoY8jGEpJnGg60yWBRzFMQ1/N6R0xB4ifCnmyKsMMYVDak1oByqDPSbS1UVEVkOAvZPPsOipwFTUpnth+5rK+VPFvz8CpiXP2tMuELix1Za06IzvladlbrnIqfMzf6Rxuws2M9FVyC7NT1JUVBdM6LnVzEKDWIOdaIjkqEPiNUJ6rT83lx+HnH5XO+DdQCJaMQpEdVfnF9D8trvVPQfUEX43vZ5yiBhc7+5gdkJ/O+2Hk0jFJLUGbdxUub4UQajjEKkTcJ+iMS3EKitZaoNTll5nlGq4zVzfm1e+aTIC2npEqrjFKfqtNFVsnEjy6EqjDPoSBQ5Xs+FTuLMqs8pmJFiXiWYSXk4rlAm7WGSrlegGck6VQhxrJzIJS2WkLlSGslpwfA9IbkAn4+luMTy/ikDTkpUggLmVjQlgTKl2IDaDqMkyLwnKBcd5fLLkk/Jm6fbMxP8Gzd7eSye9NaUDe/eF0YtCnFqTWLyk0pRdQUH6FToq5Wuvj91OOrZ7JM3LL710rMA1MKBKK875xRRgiRkdNkjzGKh0dZtKwYEzEe93g/YSrpuIG+aVEKgp857DzTMBJCoHEica9rdtteQJGG55JxbBvD9fU1c7fCh5FYyLlvb98QQuCDDz5gf5zZ3X/GNE2sVh3/t//9RzmMA7evS5K4H7i/vUMZzWa95fJ6Td+vSVqz3cLD/T3TUZCCr//wV2ms5jhL1tRq84yriwsOhwMmWY6l0Gis49VHL+naFfeHe9q253f8rqd85zsf88v/9/8HL54/Z9NLYRZGz9v9A/Ew4la2SKlXHA4HUkpcXm0ZS46WHwLD2yMxjWSrUdpxOHpidIyp5eXLl0vyu3OG1bpjjuBDwEcp4rJKgrAYmCZ5X1ZvUWbNYZSTHeaBmCQ/KI2ezfpiKZCHYcLnRNe2NI2VgNNxELK9SsuO2s+BVd/jvZD7TSf+NNY0ZJMw9rRMT9NE03U424ptgzXknPDzkXkead3ZZiHOqJxwuiOawMWmYx4nxsEzzgHtGuxKzsHD61uMVqxXLRwnGpLYbyiNyYmcPNeXUsiuLy/Y7XZkY5liEF+fDDokYEbHosiLM8o6NpseSByPe0wHuXXMIXHYjxyGgghHKaK26555hNxaNEnO4TziZ41x5yiIrB8+iWTf5BmVNDo4yHEJocSmxTcpq4hSTuajvKqcp+WGWzeSLIj3qdj5PKpyXuxIu+lU7JzG42LHFCWvXRLHz6qdRXiRFpRdip1zJOOE4FdkQwwDz9pYRWFbjWYXBKhsfuPi6CkosyoII0ZJIagUKsomvErul4Kw2JFoc1aQFXK6yhR6QUVgzlVTLP99Pt79ty7tr3OgiEo14PNDnJbSF/zm8+M3laD8t/7W3+LHfuzH2G63PH/+nD/5J/8kv/Irv/LoMTlnfvZnf5YvfelL9H3Pj//4j/Of//N/fvSYaZr4qZ/6KZ4+fcp6veZP/Ik/wXe+853/f76V9+P9eD/ej/fj/Xg/fouO31Rk59//+3/PX/gLf4Ef+7EfI4TAz/zMz/ATP/ET/Jf/8l8WYubP/dzP8Xf+zt/hF3/xF/n617/O3/gbf4M/9sf+GL/yK7/CdivGZH/pL/0l/uW//Jf803/6T3ny5Ak//dM/zf/xf/wffOMb31gciX+wcV6NnlpUxlTDP734Fyzp4Vqj1Kl6h0SMJYTvLHDy1PI6bxPV1lTdGchQ+fM1bDWySqUvrHIQeLMeS/bL81XCWZVL6mUfExcIMGdFjokQBaWJxX+hxmWolKH0a7OWllrK4sQb0yyoR/SkEMWDZ2mPSTDlatMXsnUgpUxIYnIYixW8vCnhupAlOGOaJkDjFDROEBRTCcrWImiTnMvqf5OLIZ8q7YucMtHPS29aznXpMycrsHclEhv3CB2SZPjSitKU3VfhCqEEKi/tLq3MAg+nsvNQC54dpZ8fPVnn8pT6EderuufqLIiJcKsk5iMc5wUt0rXXnQ3TMKKNom87UhLk8GLVExLMwYjbb3n94bjHqCRomOvouhVTPHKcd9L2KlykZ89eMB4HPv7OR1xu17SbDtVIS+5heKDrOtaX0r640Vesv7rifr/j009e8q1vfoJpHDdPnnF5fcX26hqVBYVpjSaniNd7VmbFR598wqtXb/naV3+I8Tgw13TyecT0LVdPnzJ+GvjOd76Dc4Yf/u1fZXe/Q2UxDwQI80y/cbw9HHnS3jAcZ16//ph117JabUgkfGEKpEZB1Bz3R5zpAMvhkHnYZ4gTx6TZFMNIpTR3D0ecVmw7R5xH2m6NUorDNPHk5ob4RswK97uBy+sbMQEMAefEc6dtDePoOR4OrLbXcg0FzzR41pcXbHsn5odtccXWivVK2oOX2jBNE9N8lBaKD/SrLWGOONeQsqrODqwunjJHh4rQdoYUMm3rmL0nxoBqDOMkhHI/j1gNQSVi9Bz2DzjnSCqz2a54uL0jzPI5HIeR9bbn4TAwx0ijHfvDkaZr6Vsx8NwPlbMjCCpJMfvI0Q9Csncd2361SM+nacYnIU6PfgQ02imGYYAEzoArULqx1SAusdp2GKWZ55kpePwRiIlc1jWjhA+ilMIkpK01B1wTyXEmne3hY56l1WcUikzOBp0SxrDQE07rhPjpVNfjioicozhwxpc5CzLO5e/e5fdU9KgaGCZdkePzVlZZj/LjVj1UfktdtD9PUK7ITkgnPs65/875Y6t1SLW9UCTQJ2qEUqdAZG1kKUzpxGuSDsKpnVapOv8949zWpRKR4eTfk9WpW1lvKUrV+8vn74sp58Ue4PuN39Ri51/9q3/16N+/8Au/wPPnz/nGN77BH/pDf4icM3/v7/09fuZnfoY/9af+FAD/8B/+Q168eMEv/dIv8ef+3J/j/v6ef/AP/gH/6B/9I/7oH/2jAPzjf/yP+aEf+iH+7b/9t/zxP/7H/zuOqNxgznxuxPDvsY/K4sxrNDme3HlTkuKBbLFGi+FUTMunJyTW83Rw4cmoM1+IpYV1Bu/Jf0dSipLVVIoeuYin0qrxj55XDqj0WOvFTF6clnMsUGjM5RqStpmmeu4IqRZYINIYY8mvmUvPXMjI1fsHZCGy1pKSIRcOU86pcHEstCywbLVbF75KFI4TSpystRHidlHM1EJjIWgXjwhSJoVILseaQkQjRN+kbZm4lQguRUptM4jCy5RFo3yOdSImg2kMjT05M8dcfJWyKQt+kAWU4nexmCUmIVErI/h8LCTFFFFJPk9fPq8QAsaCH0fmOJOj+O6gNTGEReVmVUfXiakiSlQTjZVU8xgCUcEwCf9hnA44YyHNaNfgmo63bz4lxJlNv2LVrbHFIdzPe8nN8gOvX+1pdoW8rTXxItH2K1ZrcQS+fXvP3W7k6smWL33tK9y9vWeaJt6+fc23v/1twhxZtUIQXq0tziqun1xxtd1gs+XTT17y//5//Ue+/JUP2ZRYicNhx7d+/TcYjhM/9MNfxTjL/etPCX7m+skN8+TZ1XZha8jKknPg/uFIjjDPcHm1QbUGpx228BHuXt0zHCM3VzckEvPs0crTOM0UZ4gJXx5rU0PftHRWYXTkattxmAbabsU4jtze3dOtCqHbe+aSaaV0pGla9seJ1eoJ1sDhMDB7KYwO+yNPnz3B2MQwPtD1Vozykqgz56qw6hq0ybSuwRjH8XCkMb146yjLcfSkslRf6DURcQAGTcyexvU4lbh0DpLncJBix1qLz5kwzex3O7JKKKNJeaJtVjR9R0Cuw+unz9gdZt48DBjd0LQZVMM8RRSBftVirRS90l4wxByYQsRYxWq7YrPa4pxbjApDCngf8D4zBo/WwjfLBMZ5T4yZxlZDmwTThAaapsVaQ5ozKkacNqIaLcuGeNvUjakmJQgpo1JE4zGYhaic0bJRU4YcIGePrpwbBfrMnVdxWo/gXc7K9yp2WNaQzxU7ixHpY65hNaY9v9ecPNbMo/X/XBixcHeSerR2Jh7H/LxLUJa1snrzyL+rz86iqyi0jBgjSpfWkRZz1ZzN5zg7796nTsenHnFrzsd5oVM5l+8+z6kPWIGB5Refe76k4v81HZTv7+8BuLkRt9Jf//Vf59NPP+UnfuInlse0bcsf/sN/mF/+5V/mz/25P8c3vvENvPePHvOlL32JH/3RH+WXf/mXv7DYmaapoAgyqqQyVTQj64WPcY7ABC/ZUTFkaV0WPkisO/py0ck2THg01kmBUyXo5wRlQT6kYj3tLtRJ9ncm/q65JsQa4haXPqwUO2dBoCqKzL0SclWVT6dTxkuWhSDrohrKYq6W6807n6SVKsRS4MhuwZeCJ/qJGCaRApZzoDU00WFSQw5SbKAM2jqC0lAyakCUa1oZcAqDZGY1TYOzRalm1bJoyXmraoC87BByndzl9WMIWM0SKQEaXcjgSSuyMicejBITtJSTFBDaYFQhkpe/OScGLrL/GFExEMIsVgWqZoRVPpEqbtOqGHIllCr9cirB/eTaGqYJP4vJW46Qy0JojKHtpHhouoKUKelR393d8nD3VvrvRb1SFVY2afa7HXe392wutmyuhAC63T7n9aef8eb+s4UYaZzGdT03T67xM8SsGMeR9arj6uZGHG1Ln/76oufhbsftmzdstxc8f/6EzcUFKMfbux3jOPLZx5+UOfUKpw3DMLO9uOL6xRNe/LYPebh9S8rDEnB6ZVvyV3+I4eh58+oth/2R3dHz5MULQphpnKFp5H29ff2G588aktX0nXB2rOuJMfCw9xx3w7KGxCmy7ta0RnF/eMC6ls2FomktczQ4rTgUY0W0ZLf5eUQ1jpwyvW1QMdO3PdMwLzyHi82alAY2m57t5Q0+TDBp5nEg5sDN00tCkfVfba6JBOZ5T9NYcjJMIRKSkFnXpYAKWBrTMAxv2TYNMXjG4cDV9RO53sKwFJxN06CzLZEawvEJs0c3jhwV0/EoJGG5+jC65Xj8jHW/ot9sef36LVo5jscR5SzX5XnvdzP7ec9qvRHu1uGBr/3QD6GVuHkPfma3kzl2mB3rfsVhGNiu11xdXaGt43g8chiOzMX9r21bjLU0TUsaDPv9gXEomzIlPDNdkVOjmUMkhD0xzVgtqkxtLNrJ5qMqI40xJQ5HuCIpQvIeoy3KJPmqyLzKsvEohMiK4ObsiflciYWgtVotyPZ3K3YqRyfluuGsz3kqdpb1vGzC1DvE5FronN8TlnsDail6AFJVCHNGqk7q0WvFzKMi57zYqf9WuZoUFuuLgphU5TloUauCqBNjkhzElEg6kJI+odc8lqKXD1XOcWKRoy/HfHYfXbiRnBeU5RmU4hTbkR89h1Gfj5YwOWO+oBPyReO3TLGTc+Yv/+W/zB/8g3+QH/3RHwXg00/FUv7FixePHvvixQu++c1vLo9pmmaxiT9/TP37d8ff+lt/i7/+1//6FxxDRIIn8ymQU6UT8pC8+K3kgFSvhkgmFbInWXKidI4kpMCxVqNNqV45OfYqZZaiJi9Eslrh29IWqUWKR6WIygFJrC2krOhRFOUP4ex91IVAk8kY7GnyVcxPsbhiLmiGUkvxJBkqZw6cPokPSfQQPcwjOQRMzCgt6icQEq8mo1Mgx0BEC1IzjygrjrK2uOx6L4nSWhlp+RmNUbYUQUqwzeph42eZFEYWqOgzRe4lniNlwlonwX/kU9EYc0IrhdNOzvvZRERrrJHC8nyXFUMoBNLH5DdpVCZCJTIXu3Wl1OIHoVClOJWgv5Q9CdmJS0HN8pnLubdYBWEeySljOsn/atoTEmhVJoURH0d2uwfGcQLt2HQSlzFPR97ev5K3ZA3NuudHfuirNG4FWhFC4M39PUPO0F4yF4i7VQpjBDFa9w5tEtZsafobCXtsYC7eNbe3bxiOR4JPjPsD19eX7O7vuby+pneO8Tjx5OkVANN8pG1brp5c8dnHn/Dpy9f8L7/r63zlw6/w2WefsGoEJbjcXtBsJu7f3tM2K8Ypcf/wLT779JYnVz37w92ys9tse6Yx8uzZcx52bwnBc32zYbPZEH3iQTWLIi22mavrS7TKrI1D5cS233AYPPf7AxdrLQ66gNXiV6R1RyytvzklVr3DktHWEIsz8zwH1ts1wSt2tw+oDM6u+OTTlzx9cYPt1vSXglo5rTjcvqG1Btf0pJDQVtMZK0TqkhGXZg8FWRp2d/RNiyZyPN7hmgbrIkrL6/tpj3OXKMA5R04z03zABYWzBpU93kux1W5apt2MbsBpyxiOXD69Yhxm3ry543g4Ep2c3PEw4A87OpPxOtB2a6Y4sF03kBW9aanId06a8TACirbfkFTDfnfEWk3XN3Ra5rfBYXSLygZrxUphmqaS5eVwtl2k54J2jhjlyAlmn2icpW8E5RiOnlydea3DuFNaeWkyA6fQ39OEVSid0Eh+l6CuDSmxKKxUtdggLqjvqag4xerUkWskQ/YFMZG1JpYir6LmAFmFRfxhUCRTNjJnhU4tcqyS/x4BkzRKSRzFaR971sYqgZo51uMrRUkom191emyO5a62iFmiREKQMVmRiy+U0qkEXCuycrJRtuKBVvfdlVSPiiQt/krkhMGhjeDcFkoe4emzzaW4UcWxuv4MFFpLC3M5v/VcP/4YkU3uOyKfzA/cxvot46D8F//iX+Q//sf/yD/5J//kc797l7H9OdjrC8b3esxf+2t/jfv7++Xr29/+9v/4gb8f78f78X68H+/H+/FbevyWQHZ+6qd+in/xL/4F/+E//Ae+8pWvLD//4IMPAEFvPvzww+XnL1++XNCeDz74gHmeub29fYTuvHz5kj/wB/7AF75e27aLb8XjUaFDIdICJCWy7JTyIsuWNOtUyGyZWBCQGIVPE7Musj2L1g3aSC/+URZTeT2pbu0ZPHfenw2P/lvyTUpvOAXgxBB7XNgV+d9SyxZ4MUOqXCQUymoMmZDDsiPwFQb1gVyJxCmQoieGmRw9MXhynCFLWKhRJ0K3tJciIQvRWdpLlqQsOkDISnK2AJ0N2AjWkTU4a9FafHJCCGTOTQUrlyaRtSaF2lKaCkG77KQSoGdBx4wTd1Ul7cKcFVoZSUmGBfkRFI3PvaZ81o97zDnnkwGWTuXM1s/vtMVQOqKyJmYFypVdZHVYPd9jiEw9GoVerWh0/dvENByXdqvVCeccYY7EEEnzTIyJKWWMdiSv2PRCeG1a2G63uNbi/cjuQbKzOmtYX1/hU2ae5Np6eHjg1ZsdVifG8cjVs6uC5H3EkyfP0Bbu7u4AcRq+urri6ZeeSPbW6zdcXFzwycuXeO9Zr1ase2mL/Oj/9r9zf//Aw+5W/ua3X3N/e8fh9cDTp0/5zrel3XW8Hnj+/CnX11s+/uxj+rXly19+xrjbc1QBo/Vilng47Li+3PLt7/wafdtxfX2NHwL/7aNvM3ppsVY5+XbTkdNEApzuOewnct8wzBPXl8+4vb3lZlXk48EzpYBxDqstMSbGcRI+W2l/uJJ3Nc4ja93RrxpM1syHAdtHftfv/G1i7ZA8fiw8q1WHXncElVE2LlJuZ1t8iksQt4+BVrVsN9c83N/StC2mcYwHQdTatmMaqh+NRimPUTPzMDFHacUp06C1YfbDggLdvX7LsL9HpUSYI+1qy7q/4LB/hcLQNiIJB+h6w8VVy3x7JPnMfjfRuYTNHpUDGHNqgWtBtZ1rhfvkPc45VhtpP2MriRbmyUsensqsGkujwS279IQqnJ2UIs4YGquLZcNM1kmCfm0P2TIuvkQNfddijLTzY4z46AkhYkNAGY0qwoacDClotNMCFKNIOkmvOMn6mc+TmSoisxCBK0n5zOumoCmBWdbjpAoCVEQi4dTGijouyHlCZOTS2pcsvvoFSDaf1kQlvMX6N/EdiwsoyM7Za8cqWCk0inTG99N1TVeFq0PhfSpB4qu9RswarTNRa2J9L8mAVsRsUMST9UkS81rpWJyb3lZXanPmaq9haUHFM0qCvMOcz1fO7016freNpd5F8r7H+E0tdnLO/NRP/RT/7J/9M/7dv/t3fO1rX3v0+6997Wt88MEH/Jt/82/4vb/39wIwzzP//t//e/723/7bAPy+3/f7cM7xb/7Nv+Enf/InAfjkk0/4T//pP/FzP/dz/13HUwlvObMUMEoVH+Jc/A6yprr8Vbht0fnnSIxCxFO2pWk6mnaFsz2qtsVyJY2dFyiPFVqVSEY6KawqGU4eWHrS6kQGy0vAp7TFchJyWfVryOQC6Z4M+5RShaAsC0HOxdsnigFV9JX0nMghEuIMIRBn4emonNBKAhoX5nz1I1ISmaCxJAxGd6AtxtqlNWOsxVqLdZ2QEp2QZqvte41ukOMtyjJVCXaRHCMhzKQYWVQP2kJSpdjRaONQ1qK0IWtbggDPesFRFojaU68zTRPJOZyaWFnS0M/NJNG1B13UWGeFqnA8RCUh7+UUzpeSP+NuKbSKKJNJaIY5kMJYwpv9wh3zWZEDjH7gcP9AmAdWXY+xWgrAFPGFV+JD5uHhiG0aVqsV2YjBXsyJ/WEU1+LyxppOPIYOh4FufcNuP6FR+Cngx09p+mZRPT5/9mWsa8kW1pse67bsbu8gGYiezjhSIe/u/cSqbVk/fc6rl5/y6rOXfPDsOZdXz/k/f+W/okvf8XB34Bu/9hHPnj2j7Tc8PNzT6oZZHTFNg9OOuXjyrJpLDg8DTQkRzVmx2W5BZ97cP9CbbmnTtq1jOsh51k6TiBg1sV1blJ5Bedpe+FDzbs+qKW0RlTDOcHVzzXA40nctkNgd7gBYr3u2rcJlzxwSqtEYlZmHHcGPMqcKqb1vGzSGtmlLIW1Zby9EYZaONK60c6eBpulIKaBVw+xHTPLiMh0Ds480pdia08iqbXBazPZau2G1WjH5B+ZxYJ48ruyn5mGPJRJm2G4v+Oz1K16+fMnlkxfsmxHTNWxW8rzTYc98mHBKsd2smX0ihZmcOxRK2oNlozZPibYtXkBWo5tJWmpqJsRUuHKynnYNQCTHQNMk1n3DqtOM84Sf48l13GimMBFDUdhEzZxm4U82ltVFSy5qMGOCGMAaU/oYihgN3k9MZb41dd3QiWxBaQcqyOYklg1YLpxGfaIAUIm/pbBbjPiE3SwPicgGUMn7ylmRQySqULy5pJ0EQoPIpdeSlSqFohQ7Sim0PZGRjbJoK7yhpMSAL6OIZXel8rm7cnHArxvtFBe1lazfpyKLlMlRTElJaSnulNIi7KjPrxUp2YWrYwikVNReSjZvi2t8SqjKLU1IIZSRVlbd+J1zjqlCnnJ+i4K5bhyX/WMpfKr57aLMgiIHeVz0nXOpvt/4TS12/sJf+Av80i/9Ev/8n/9zttvtwrG5vLyk73uUUvylv/SX+Jt/82/yIz/yI/zIj/wIf/Nv/k1WqxV/+k//6eWxf/bP/ll++qd/midPnnBzc8Nf+St/hd/ze37Pos76QYc2VirunFFnqEjmHVOkBU2RdNy6QxOjq4wxakGPJBJC1DWotNy8pFAp5Dx1ViEXIzvpBVdkpyI5ksukyGT9mEBXFWIpldRYMjFn4dAoIdcqrU8XV86Q5SavdMYmTaFXS/bV2X4nR3E+9XOUhWKp4jXF+QpVnROtQZuWRMaalqQdVhm0FcKtsZIXBqCt2M0b5x45J1flQlUAyBsTZKsSd001fQySnF5ZdlrZQjjtykJiUFYk7EnJpLNV9o1aet0qp1KsxELsO5eP1s+s9rwre70qSeTs+zMVRy1uYj7lpuVc7c1B1943Zjm38xyIPuCajLGGNIk5JYjx3W7aE+ZIinD95DmbzUbQnqjIRmPLzVOjxVgszULyNQ3zPDLPR3QWs8HtVhAY1zTEmNhey/OGeYSU2d3vUTmyXXVsSlEQpyPTeCTksJBg7+5eyWtozct5x3Yj6Or+MErSe2NoG8uq7RiGgW6T+OrXPuC//KfilRW3PPvgmof7e/4//89vM8+Br3zpQzb9ho8+fmDdOVmoQeT0Dpzr0X3H7X7gdn9HoxWbzhK8JxdkZ/Ijh+Tpbc/+9p7Nar2QQiefsa7FTyVNXVli1AzDRNaZm8sLYjyIump/xNqOiyInd9Zwv/ese8dmLciI61d0jSUlQaLGqRrlyWf7/NkND3dvaZ3j4f4tThsuLzrKNBBUKg7kWW4I3WrDNE2oZHDdGt2u6DZX8tmalpAMnXE0jSFETUqaGBS2adlsFaFwdtarLdNhT3KpfNYdTpuCxBjG6ciuZGONh4F+Y/nK5onweYZE20BjEiFFjDPsj6XYaBraVceqN/SrjnbTEJMmTIn9flw2K13f4qyINSY/EUIgOOGyTdME2dLZwnNTwi/0Xhj61nXkLNL2HDLGRHSWay4H8ESCqiiFEGdVDvhhQpFE9QZgEilrMkZuyroSgWX9ykTiUuwUtAe98GQWaTmnzaZKStZoIilHVFW2Zk+GBSUHSkFUkWwhG8vPC18nnzg7iYjOorSr/EHRzJR7Uj67yZfNaS3OYg6lA5Gk2Mmn9SuliNKlIFLCQ6xEZVDLBiErCymSlBTZiQxBFw6PRAUleyp2dBQv6qVbUHMdU0JpvSD4SnEGZuez/z/VY1/073z279MTPR6fJ0l/9/GbWuz8/b//9wH48R//8Uc//4Vf+AX+zJ/5MwD81b/6VxmGgT//5/88t7e3/P7f//v51//6Xy+7TYC/+3f/LtZafvInf5JhGPgjf+SP8Iu/+Iv/nR47QvizNXq+fiiFKZ5BpOa5wnSg0+cZ6cY12CX3yiytD7HmPrUv5Ge1ZXJCfcTrpUCSZ3LynKuKoVbHp4yTRzdgSnheYdVbbcqkSYA6seSTkosfIGsiYZF21ptCPX8++OV9KqVQrhGZZ1UVOHNSgLgG6zqcUljXg23K84l3gy1oDojPjcCQ+uTjUM85+XxjIEWLSoRcIzCKssFY9BkZTylbSH9W0C0ySoXinqpJWjOFEwKj0kndJk9QEZiT++hplN2YtkVeL48JhcB+Qpe0hMLGTMwJa5yowVKCIvWtoNlud2D0R3KMNE1D4wzTeORhmuiahqaolg67PSkHjHas12u01XzzW98ihcxqteLpl64wRm5cw5Rwrik+RS1jSPio6bZPMMawXl1ICwI4DBP39/c8PAwQE9ZqjocD677n/uGWt/fzggIdj0eO+wHTdlxebln3jq986QVJyc3l1cvXDEcpzl586TkxJj7+7DW7NzvCeECrzJNnT7i83PKlLz8H4OH2Dq0v+Z2/6+u4fsV//dVf49uf/gbPnz6j61Y8jANf/uAJAFdXHd5PXG423O8P7Pd7+r4ldw2z9+TcLMX8PM9crDe8fXsHWeGT5s3rPbZpaWwL2WNMVcyImuZi3XG3O3I4TFhrcV2LMgkfJkzJ0VqtHKjE1XZL37eMw4HoJ9rtmv000/QtJDkHnpn7u1s2vcMPB/yQMG0HhsXKQa4XKYanaaTv1xiMFKghYhsn12MhSB/HyNXNB3hlsZ1GJZjjKPM8J0LODMVFuut7Rj9jVCJqg+1bYsgc5wFrHYyarhWUzGQhd28vekLNuUsKj8Y4iS5pCmJzdbFhvV7R9mts08pGp6xFxijaRtaiVW+IMTMMoxDqMaQo88J7jbWaEOucD0xjIoRcIncMrlU4HCH4orwrhNeyvlVlaLWgqOfT53HxpzIugrIS9KqkuKBs9HJBFxan4UQpkmTeVqRbNpNxcQ9OhRgcdYBY8vlSloy38nxpaavHpfhISGTOgnBoTbInorVSAY0hKyOodJVwx7Lu5LP2WpWyl+NLqhxDJR8rztb32pqLZJGMCPpE7QzIw8TYviYFlI19qlETnqwycTlWhdayAZfcK1XQd6i2IEvXE7WQtKvFx4JQwePvCxiVizKO03in1vlBuLvn4ze9jfX9hlKKn/3Zn+Vnf/Znv+tjuq7j53/+5/n5n//5/x8e3fvxfrwf78f78X68H/8zjN8SBOXfKkMrjXZ1B152HCmJPK/sBsSf4OR6mdLJgVJrTdIGbVu0ceJjsyAOhZycqheLkLaU0uXvc/Fr8MXYL3CSpAsylHMmLnyWUxrvOQqzyNaVpkGhVemzJTFfqinhBc0kFn5JDBJGGLUiW0PKSZLPQfrjMdE6kU8bDTlrbEFRTOOWPr1pW6zrhZvjemzTCDEzV07MY3fQOiqaVKWRlZdz+mwUSllM4dekVMlw0nI6R83E9CsuvCSdKjJVTLvO0utZQvKq+VfdBVXPipP/kTGutODEXJAzDo8q/CmQXXsN4zOuIcQTMhZjxHuPL7vneZ5xzuHalpxm9vsBbRSb7ZUYtBViKqrB0NC2DXd3dxw/O5ALP8IYz9uXO1TNetKOthVYfb/f8/b1PdZabp5e0zSWe/N2gdlDimw2F9w8vWQaRsgDx+PAw3AAqzgMntnfAvCVD2/44R9+wTDODMPE27dv5fprLcYorm6uyw4e3rx5y9XlU7722347v/arv4o1gS89f8Hd3R0f/cZ3WG2LK/P1NQTPp9/5Jj/85adcrn43v/KrH/Hysze4JxprYL8Xk7zOKlLMItsOHkvEFB8Yaxpy1nyrxMQY09KvLC9f7vngg+fsDgMeMaxresdxjNWrTXLstCCYGHg4HjHtCvYjHz5b86RtUE6uj4sLi9WK9bohac3xfiKFmd0DYjwYIq6iS4cdJk5Mhx2HaebDDz9El6TweTx5fSWAHOnWW7q2I8UgIZutRavE7A/ouaAlmxti9OTUoK2lbVv8NBLSgZykreyK+R/OsL1p8cMRP4/kceI4HmicY549YfA8TOIx5lOk7VYc54hrVjid8UnhlOVwmNkNRzYbQYHW6y1NY4l+IluLnzLGWKxVXF03uFbWghAC8+SZg6ft3IJ256QIyRNCYkrHMi8AlHCAHKTkycoJ2tk00gYuPJjqAq19ZlKKOCRiSuREQXvigio0HRhtSpafQjlF0FbWi7Jk5FDXejGMzTkR8QXZqRye0xyu0vMq5a7u9tVrTBUjUYCsqidYKrxKccqPSpGyQqeTKa2sf0YW3HS2Vubq8n7mDF28uBY/IFUCiFMEpcRTrbbdKvqv5BhSFUqcCTHgJOlOKRKLFUeOXugZhSOUcnVfZgm8TTmgkkKpKFzU4rCtFo6pKrJzsfiQRkS5B+QqpimfReXolI5IhELckPOqzo5X3kM+I0J/7/G+2DkfSmEwUiCUtkZSUpicOC7C4SElYjbiKXOeT6/0Wb81EHFC4j0riOp3tUyEGgGRBGKMvhCvzpLMc0B8WqTPWkmuNUm9KoxqcKYQ36vRlZjuxeIHAaDSKS03hyjPnxFvn5oUXgoAUpTjr0RcHVHY0s5phAtUeDCqHI+ybinCrLGYGsvA6WKVU64Wvo2SVQMSosoiL1e/nD4F2ZRAzjJZbKDapstzFLPGtPwRpDKRs/BScqjJ2HohPFezxlpoUZyxc+EiGW1R9rQoxJiXlpfSwrMKJVAvhEBOsliEWVoiIUsbyHuPMYquqAE36x6cKp+Hpe972lYs9ne7ew47udGv+4b1es3uMKG15urJFTkp2nYlBorOLNeL0hHVIO2qfoXrLku7bKbfrIkx4oy0x2zOxKPH5T0mBB6OR7zPNCU4dLO5YP+wA8C1jpQsh2GHtY7f/vXfKUnuTnN3d8fbu/3Cx7rfPeCjx+0anFMks+ZXfvWbXD9Z8ZWv/RBv39wDMI4z682K4Ce++a2PuLq64X/90d/Js2evOe7vMFovnIfdYWBlIbuA0YHnz65JCt6+veM4JlJU+OIZchgDH716CdnQ7Dx+GlhfyHv/1jdfcbnZEkK50WbN27uRqCx3u4F133HVJYyNzNMEQWNbub7nzmLWHcmtePv6NReX17jGcNwfGCeFVQpd3KmtSVw861hfXWLmiexELRVjZHe/XyJxul4+w0gmpIi1CtMYnDbEeSJllvnddWvmeLrpDcOBxhn80bNZt/hRblRyzfbEKD5Uyll8l2lnjXOOw8MbQp6WG32/vpQNVHLSMuo0aU60G0e36emP3WmDF2XOaKeLGqzBpIy1YnZYHW1jhmnOKBr6VYeRPRfKKlQ2soHzZU6ZzH6WWBBKpIy0kli8c5pGzmvTNETly03dMutADoX0a0R5NJbNBEY2ZyYklEW8xWyztIpOPB1ZX5aA5cW0tHrqhOVx0kYH8HJPKK0xlU8bpXr71ojxbNmBnZrzSYqerE7GhjkpCVsmFPfs2t5/HCEhj9WFX8lS7OTaSlcKCWkua6f8BTnFwscEVJXVnDS7ubT2UtLCh4pCAdBa45WX4yv7T+EbleJOn2gUWtdopcyiPNaUYkgtR1P5R3VDmmrhqRS6BLW+2+Ja3vs53SGnpWX4/cb7YufROEv65rzaZvlvXSz8UKqY5p0Y4zFnrK4XaCxyY4/SzVLYPEY1olS5sZJXH2eXpHjOGzkZ/FGq7hrBIBkv9RiFJOZ9IJWJTy5J4IXrA8VNOYh8Xco3mQiEWW78flp2UiRftj1CPBNnViOFjTKPGGg5K4JPkuqcAlkpslVgGozRxfr8VPidT+KUQikopW9u9ImgrGsPvRYzBWXzakbrzBl3r8RNFG5VymQtpoLUhaGiGt6TUpReeCVAp9NndE6aTkkktjFmKH12rTQpJ8IUipldIYI6h2kEBfPeczgcGOcJpSRVumma5TPWKjPujyQfBBHUGj+OTNNAToGuL0XJesWYhRO1co2ojaaJOXqmWeIALsvO+9nzJ6xWHe2qp28jm63n8rgiBEGCEpHLCyHcvnrzwMeffMLmwrFdrXFNjz1GPvnoEz77zkuef/icF4UzM00jh+Md7crQNZr9/oFf/9Vv0m8vePr0KU9vrvnk448BmI9HNsbhNGideXV/h2skbuHt29ccBkEUXjx7gTYtx+ORcRi4jW/ZXga2K0eY4XKz5e5WboLTnPFhpl2vSAb2U8A5R9+vsTqwezgsKq9xjrz1gtJ8Ng483fasuoifDzTGYp0mFzPQMM7YxgKWdr0uROPIprdsr1q6ruWUiB1I3vPmo0/I2ZMshGBQMaFsIFuDa2WRXzcXVKVkrzviMTDFmWma6FyDNVW11ZGyFEohipzZOUMmM8eZtl8xx0JUjx5tWhrbkzJM84SzGmNykRdrbClksZrGwuQVfpiIaaLtwJiMsZHVarNEt2jjGI5Hbu/3eO+xbYN2MA0zXWewVi+Gja/ejjx9+hQdtEQutIntZYcxghz7w7isW1LoikLUFwf2GDPTNKOVXYpj6ywrtcLPiTFKPIYyRmIjUhClGjW6pUHhZIVWCbRGW9lYtci8iHWzmhKMI6pRgnxpRVIZZRwqKsiWc2AgFMhb1xvoogj15KWAKRu3M/l1PlM5yRNWt+W0bJQFoV/IK6W4OFvjtCb7TFTCB1VagxaeYS5RDudr3COzwlJGVQ6i5nFRoM8UuxU1qY7wdQiKVM5PSgSdZD1MERUFualwaIwRnYvaN2Sy0eXdy9p9btAqz13X1XNH/Hoq8uI+vwh1MoIuoYiKkxluOXfL3+WTIu37jffFztmQkM1zbxrkZpkS1mi0yaACofguoAXtWHwQtEJb+bBTqi2GFoVe2ks1uqGSYlVpXdUJE6MvMvO42HgrVRnv+SRZVgmrQRlpxdSJGIJMQJUQgnOEZWNBPiuXNVpZkUsCKlogin9NjJDjgkZlSc2DIhvXRryIlDWyizX2hChZDcqKe7OComlnzh6dIvYszE4bQ85aCMZJkQpio0teVc3/kicukyxL+yimhNIGQ/fIvbS6QMuEr9MvAfI6KE2sC1mWnZBKgeRnTDk2sQ5wUjBWJYXW6CwePa12Uh7mSCjeR1qzBHFaq5lmj/eReZZQUqdB6UQY9wwPo6hOgGF/IOQgZHajWa/XNL2l3/T4cVqI3223QinDw3Hg7du3pLeR7faSVZEOP336dGnLDPOB4zhyrTTbi2v6rkG7PS9ffsbD688wxrDfFZfdVceLD27oGgskrMk0zYqvfPV/w5ieXYh889OXABz2Dzy/ucC6hoTC55knH9zQdis++eTbGKu4uroE4OJC1F7PPniK1prV3R2KRGM0r16+5OriBoDdw8Ac3/L82Qfcasuv/dqvc32Ycc7QNivud8dFUm9sh/eeu7sd65XDmYxthRA/Hu9puzVDluvQH4/sQ+ZhttweZ4xr0PczV61ms+k57AdWfWm3zCMmW2wOGBe4vtjy5Mmaximyilw/uaIp51mjidOE1aBdT9t3jFPmYXfPWjtaNFNB+PwwY1qwtuFwvycE6DrLxXqLsqd5cPvmLX3fYyzsdvdsNhtpmWojOVBJ021EkKGVQTeOmANaW3FbjpmcLBkrni3LXdCIAioJ+rYyPfv9nsM0YruexmSBX4CH/UjbtkxT4DiMGJXQSmOcZX8YSCkxFfXaZrNhOk6Yzgvh3V6ydpKB97C7Yy4Zcdv1Bmsc8zQxTDPBR1IQpRFZnwi0gHMaZxS6AUbQTmMbRWsAq5jHxOgFiZvjTNO1KO0wjaWNLcmCMxbrFE3vlveVc2aOgehnISArhYoB5VZkjKASnNZkp/XivyU301g2YGeCiRwQ8KcUINKjgVyLiNPQmCWORm7kLI+RxndaNtOL75eWzkEthLIvKD4nwU0q4paEZIXV4qZ6v6Wzwqj+Lp6rfhH5t9KKFMsGnNLyiolY8veUskUFKwR4VTbACUUwM9rAnCzOZExKKBVQVdG8FFK5tK3UIjlPdVOZi3N9OBUssZKvVZBzqcyjc3qOsJ13QL7feF/snI0qDRbUoJzAnMoJlYmhkRtejQmAE/dEWikaXaSDxphFfVT5KKmiNgXR0ailD5pCJHgvu7ucseqs8KqwatZAwlQ/g+gBfQr4TKLCSsX/KSWpig1KYhJqVZxOk1JgWsnZigUWzOhF3q2UICNas9yUJXNL2limaU9QrKlqKL3waKQ9XCzVOSEnMcrEEBmALunhBq0EoRIA7SQVEIk40uYrbarThZ6X16ptrURRgWHJORYviih5RnIA5DSX5PiILTsoP8cS0qjQBTpfuD7ZMmm50aSQy0JhCCEvOww/T5C8xGmkCZ0zwQtypJGbxnCUY3CupbGr0m4QjyAVNONhDyriWnn/97d7fIKsDM+efonLbY/R8pmM48xnL9/w7W99JG8rjHz4pQ9oO8N2s+Lu1Y5vfes7DGHk+fPnqKSZ5xI/MGtizIzHSI4TbZvZbjo614BWXLsG+0xQIPvhU54+uWY63rJ/2JG9Z7zbceCO3/aVr7C7f8NcEJvtxRXaNtzd75kmz5ObZ/zar/5Xbq63rPoN0yCtsVXn2LgnfPbZKzabDV/58ge8evkWqzXN82vmMLMv5+pyu6GNDp3E48Zqx3TY4aeZ65tLjkMgaykOd8eRrZowm45X+8x33uzZ94p4vWa1UTir8SUGw1mFVoquafGpgSycq75bcTyODIdp8frR2mJV5ng80q07zJw5Hia6Zs163TNPw2KC6JwjRoNuYLPacjgcyMrh2jVhPiyqJx8Cve5p2x6rLCHMxOixq4ab66fc7wayEvm/cT05JnzaSyvSwDBMKA3eTxijOI6F47TaEOajoMDdhtkfabsMyrPqHYd5pC2eQLodeLi/X9aV8Thh2563uwOH40DbmCXNXNo1iWEf6NcrEpnhOJFTQEXomnaZM9MwMw4epcBpw5QnvJcNR1YGc9YKicoIZ8UkfIwQQLcWZ9eoODPO8nlNk3Dp+l5acjlEok4YLdl6bdsuaPs0TYQxMU+z+HYxSrhEhqRatI6LAeH5OCWDU9pP58hCoR2cr6dnBdMj4Y1K8vVOL6aWIl8o0onCpwn5lCOVUhYzxGU8Rk7qKlgLDP3oBYsi2AjCZEDibEhykyjrtMrCR0oarBA0St6jFDeRjCpK2op0hhAki0xnUK6+Gp/jBJVW3HJc1b0jF4RMnZ2PJZiyhFeoKH9/Ehwvj00pLh2Q7zf093/I+/F+vB/vx/vxfrwf78f/dcd7ZOdsVFhMPDAK2ZNz5CYvXgJCeC3cksW65qS0srZBKytdR2XEiCqmBcZTORfFgcQjLFVqrt4FLD1gIRtXr4bKCUrF/0STc1hIgWrx7KneOoKwKAzoE19FVeiV026kpuZWe/QKhYrdVwJTvBTOIhdqoGltt2jXFGRHnZCdpBb2vc6nfm0u7xVlUKpEM+TijpzE2fOx904kxRNkmXP1tznvActuSBRRZXdWSMci3IqoiqRFT67O1CmTtRiApZgw2uB9XKB2a5X4mijFHLzsCBGYeRjEMM2aeqzSAlSI8iqFgJ8zDw877g9HnHN0a9mpO2voekdjO+ZhZjoOfPTxJ4SQaBqzKGDaVc9qveHm6VM26wtiGJmPA4dh4KOPPuLV7R1XV1cAfPkrv4PNZkPb9Rx95vXr1zw83PHsyXM27RrXtnz8qcQ1vHz5KRebDX3fcv+w46NP94QQ2K4b2s7x5Mk1l5eC7IRo+I1vf0oMR2IYaazl4sklb9/e8e3vfCSqvLJ/+tVf/W98/etf53J7w14PfOMb3+CHv/oV7u7vMUS6YnQ3jiMfPH3BR5++Rs8Tm+s126tOgmdz5v5+RqsyF3OgcZe8+uQTYjqy7VeoCH3Tc1SZvt8Qs/B7HDNPVi12zByduIvs/czLB7hZGzZOMxRuibMtzmmapsEiRo6NE0fe1WqN1QZbvGO8n3CrLR9cfgUfBkiKy80KFTPD7RvxAXoq50sZi24sCsN02GNsxueBmDvG47zw51brDmsUfbfBdpn94Q239w9cPPkQ3V0RDhrbSXswJEEh0ZphHnDGEFNAoWnahujnhXye54TDoltL8DPDMeK9ol9tmIInBYPq5Dq0MRI8oBUXlxuyzww+MvkRT0JFS1sIp43VNEbhXIu1jv3+iHcz607Rryy6rAWzj6RCXL68aJZk8MNx4jAH1us164u+PKchKwlanQY4HAYOgyCn63VpGS38uVmohTbRWEPTtMSSAC/GrZrKDcFonLOi0gqelEHHDNqDTVjTYNypVR1jUdouHK26Fp9xW7S0o6Q9xcJ7ykT5O5WWz7a2308Izol6qxRnzSZOiEb9ZxbOj4hYkLZbvcfkuKzfwMnndPnbM3UqcpzVaLEqUxcC83L8giDpXMRgZynu7xxp+TsJEyXZEqRcugpkIYLXj0CJQSwLHUPWSJC2cD0X9dgqapSVqJJV9VRbWpOnYxAF8xegY18w3hc7ZyMXc7Fzwy9FkZSX4iMVRU+McSHxV9a5RqOcFVMs22CbBmUKZJs9qJOBlZI+lhDCiKXY8MuNEniUOp44wegahDCcNAmxK8fUqz0thY2QiVTJhGFJ8AUgnjhDKQWJjaip5uV7SGeTMgO6wKqNxrksUuc4o01LXODTUtyokxxbG5bnArXkrkihqKUAjLnYoqsC2z4+XpWF9C3s+0CVY747CcVsTBY+q+tkFSWWQmEUCwdEJrmTFJcUiUEs8lOqLUCFdvUcOFJKzPNMUJLvIvB34fmguL+/AyCMB5SG7EeRyceAUZFVY1mvLDkrTHEi9fPE24d70I7Jz9zvDhjj+OD5U1wDrnyuTddwsV2h/MybT74JKjCNnk9evYVs+Prv+BFWXSGm5sDu9jXHtuOz1/f8129+SvCJGcccJl6//GhJaI9kQmv5+PVL1us1Hz6/RKnM5fUFu4cH/Dxw/1aKjacvvsSXPvga3aYhziJr393vedFdMk2e1abHlqL2gxdPOex2WOPY3e34X37378aHyP+XvT99kiRJzzyxn152+BlXXlXV3dVAAzOD5XA5JEWW/79QZIXnLkc4s0ss0GddmRkZEX7aoRc/vGrmntWNAfAVkipSkpURnu5m5maqrz7vc7Q+Y7QiRSlKPj2+pw9/5PXrd/xf/2//T969e8c37+7JaiCGgbdv7vnD76Uwiz5zPDxR1zXn00gMcHPX0vdHWgvaas7PpYVTW1xjCD898bqB9faWUzfSnfYMw0Cl7MV13Pe8ev2anCNhTOhaM3qPMa64zkZuV8LZaZsVu+c9KSVW24UQyvPAOI544M3Xv2BZZPXH45HjUaTeMWecMWxXCwiBZmFRZfrVtcIYxTj2DDmjTYt1kag0KSvuXr/BGGkNnY8nVqs1IUaqyjH6gcoKKTdHS1bMUQdVpVHG8vjxJyrnuFg6TKaoA6dyvYZupDudeXw8oDKsNzXbmyXJVnz4tJd5qWxwqraGMGBzptEVwWlSinSDJis9t6b6cSCESF3X9GMieJlfjVVs6pqqMdRO7tnGVYBG+4FIwmnL0A/sDx3Byxw7lI2OUZqqNbiKWVhh0KCkwNI6YmcepRYndaPJIZKjkHl1SnOrPM/qBi3zqkibPtvkUlr50xymcqljyu+mTeSfj6m4udYXcXnfq6HmGAeJnlGX0qW8Vb6qZi5ROv+csd5n/KPPPjeVeIar9zcTD6YUeSXWIqVYjAbnoycb4eJolVFB/i7n6S7FIsxuyn8pxyrNxc5UyFxUW1mVdqGSIu9iTHh1bjnMtiH/3PhS7FyNiyJK/ezncV58dVYXTkjypeIuQwtfx9Utrq6ltZiSOAbn0geevzEhASeYc6/E8jzNPgifFTtqClArSM1nHgnXrHc1H5Aq0TEqy82UU54pbskAoRRfMZB9FD8OLx4mMHnZgHWUhV0CALU2oC3WaqxzKHPxHcpJoY24HZcSi5zBWC3hqlf9a22Qg0sKnwKxyL3NRMxLl0lElfA6pTUU52p5eArnKF7k5KbEY6RYHpAMJkGKfflOLoVXCHLuIfiirJBCKWqNrWuMm5yhRT6uyk5VKy3OyX6k6w+k0TMWroQCnHK45Q3D0BNT4PlwYOjP2FpI3lVlyncbWKyrSeNHe7um9xK6mZOl3Qoxdb1ZUte1uMCyIMWR87Fje3vDzY148ozF4+bUHcghomPi7asbfvH2Ae8j++cXnn76wMvTnqqW7+vbb99S1Ypz13A4jWxutrx79wrTVNSLJYvKUYRA/PG3f+KP+XvefvMWpRPWJOrG0JiGV80d4zDw6eMjAHUD24c1Y3/mV7+643nfgwrc3q34+PHj7F9ULTb88MMPvE6Kv/sP/z3/0//nf+brd2/wYcSYhtEHvvmlhAD7bsRUmd2nZ97+4h37pz1/+PFEjpn94cTtFnLJ7Fg2LT7Cuq3ZrhLrleLcGJ7RNJUiRk9bCargrCaExHa7oW0snz59wjU12/UGbTKH3Z7vfvcJEANTXVWklGh8TYwjWsHNzRqtVtzcrDgNQv72caRdN6wXSypnUCFxOh8gi2/JhNpNHlOH3QtVVdGsVrhmSUICbNvGkQqh3eoknIvCizNGYY080CoHjE744uCsgb7v0CYxjmdC8Bir2B/kOwpDYPf8AojgwVWZm9sFMVqOXeDD0wvNwlE5xM3Z6Xk+MFYiXoyVmJm6bnB2SUqJ3f5lPi+VNYe95LGN44g1WQjYVU2KaSbq11ZhTWK9qlguLLe3C/aHA0OQeS+GTCgEaZ0N4oQhys++G0mhkPwr2eBNfmTaGEzO1FVLwhNDRlsrRGWrCqm/zB3KFlfhPC/MqqAi+Rp1KXL0eapNqlzt+GcFzITST15q+c+QnsuY5rTr36urokbsUCYUpqi4tPDN9M/e7noJm+bANK9UFzQlcYmhyMUPKJAkHUCLh9n18V3//3QNps7GHIWjsohariI3mH11yjHNuUV/iUlT1hI9bWqFu6N/dvw5Z5LyDOV+/+fGl2LnaugsBlFG4Bz5Yc6Q9WW3z+TpoghJfj7tko12VFVTbliNLndB9GN58C/+C5CIWcLbYirFzmT9PasUSiVOUVjlXIhgaUaT5psnX/xzJklhTPJwTRDjFNsgHz8pkSIpevw4MvRnhqHD5IyxGVe8cyaSdTYWYxzKOaypqJpGzNxKFAQIgVmk8JNzX7wqzsp5TMVZVlLgZMnLyQX+nKSGSqf5BpcHNhe5uEC7KQniMxn4QSESc8kWm1AXKR6F+B3CRD6X/8+xvBZBOijnoIwVUjeyOCmyoFYhM/qBMJ7ZPb+QoqgSSoQUy1WLNpbgE90IMRtsvcU1It+sastyKQvtcrmgH448P+94OQ2AZbFcs1i3bLYtm3V53WpNfx54//4jlTYQA9tVS7VeEhN8/PSBsZdFdru0LDc1KlseP37k0Afef3ohpURlLN/84ivevhE5+fZG/FPevXM8Pu3oxsAPj8+c+5HlaoN92DAmaffcvv0KZzTdeGa1XoDWjCmjvOJ8PEoRV9otP334jrdvXnEeMh9/9wObmzWH/Z6X+Mx2c88//u635dlI3G1f8/GHR959u2CzqPnTH/7If/cf/o6Pnz4AjkMxFWzrhv3xifvXb/BxZHW/wS5ORO9pKk3yHj/IxFdXC7puwCnNerOlto7WGjbuFmUimYwqUuq2rnAuk2LP6JVkxSoJvl1ax9uHe3ZnQVaePj6hhwGN5mUMLBYL9ELy2bKBD4+fqJ08N7VxuEravMq1nPsjPmbaqsbZmlyk1O2yEcK3zpjK4ENP1oqb+wfASguszEeLxaKYVRrIClM5Kd6toNEmpxldOx339N1Iu9zgfcSHIyGMWC3mfofnj3PBl/GMw0AYPT5mglZ8fHlhG1pWqxU5Z6oSmaGzZKr5qHjZ7amaBmczIZ7leSvHOvaerpNgWUzAWIqHmRDku/OAsmWhypplK8aDGSk82ralRQiv4zhS2YtYoK4sxmR8P+LjmT5GnKpoaKR9XhZRheToNU2FdkFsMUpmHkqTYp4VspoAk8mrwOeXPKrr4kGXDS/T5njKz7q03K/H54XLRMb989dOm7dLgVHiEuZC4bo1lUsRdlFbSYbV9PsLITeJ58aftcnIungATcdZ8KfpnDQF6cmFunGhFcyIu1KzbFwVtD39jKCslGIKQJ0Bn1llWwqXuXOhL21B/flrTDFSnH+fM0FF/L8Q2flCUP4yvowv48v4Mr6ML+Pf9PiC7FyNlBLYgvlNjrzFci8XMtpEShZeihYey4SAVCI111cBoDknqbiLUdUsUYyBFEvrpBj/UdALCWC7UOKs0iQdMdqIm2guKJRKpGIBPlW7k7xP8JOEOB1rnDYlgXcKvwuEMDKMHX13IvQlwiBF0CL9ngI7jdVoq9DWoU2FchZra9AWjMVYJcGC5ViloC8mgAjMmpG2lbry2YlJCIyq9GVzirOlupocQPPkyxBEmh/HOf1c0o6zuCJP0vscyQSMETfSGCO5cKxyaZPpKyfkFIpdu5FdibMl+sIalLKz31ieDLRUJMRASCP70wumzSyaRUHM5NXHITD6gB8Fgr+522Ctpes6Rt9jjSUW8vTHj08cTie8j9gE62VFZQJN7lFj5OVRJNr7l080yxua5YLvfnhPd+xYLpc0y47zuWf3tGPRFF5HpdisAkM8cDgc2J/PrDcr3ry+o12s6IeEN8JB+e1374lhYGErtHKMUVGlzHqxZLuWVPW77Q0gqELwA0N35OnpER9HlstlsWTIjEHcvUF8fw7HM8ZYjqeeOAZu724IKdMPR/7u3/9azv+n9yyWFe++ueXTy46/+vYdf/jt7zjsPrHd1my2t/yP/+P/HYDt6o6A5jT2PNyv6E4H/DAQx4AKjsparBO+zOFw4O7+ltvblmbVcDqciT6ijXALtqst/VmQsNP+hLaGqAJtu2a1Ks8wiefnT7KjLMjpzbpijFAvlvK8O4dPkWSytHadZVNaj8PQ03cnnFWcdweUsrSLLdZU9NETS9sxmUzVNPRdh3M1rqqphfRFCIO00bM8X029IWSxR1gsFox9EAJokvnF2AuJdew7XN1g3RrroDuPxK5nt9uzaCpCunjHKMS7Z7VuSVnTfdrz6m6NcwajoDYWkyaCcCAE6H3COceisTgb5Vjj1Q46ByoTSsCymGyCtADPfcepH/BJEOCX45mmqbi/vWG1bEvopSAoGoPRDc7JXGAUGCPWHm1V4yvoBk/vMzEOVJXFOTkzi6KaXmtacs4MYQA0IULMiTjNyUmJnxgZleeGP5MvzuctpvwZd+TapO8z+Xn+y2jPPzXEYG/+yzyfq0Kc/NzFR1p6M+WGC2qu8uevzKVdJ/ybgpAQy3o0tcZK1yCJ9Yh4n2WRoCv5GcHNx2kQTllWSswTbeksWPEqmpAZ8VWapOeXtlwuXRM54Cuk6C8gO+I1l+d5f/r3KQfS+IWz868eqpCoZF67Jn+piZ4ucFzKRBUKumguUQnKQNZixpTEnntSNCmVyEoRYzG/A0ii/Ell8VaFfzaRfSefHaXFY0ArfVVE5WsyPhf3TmG+q9mYSVMZK87KMRBKevIwDPi+px96uq4jjOI+qKzBajVPJgDGSlvHVA5lHNY5rKtJxoAyn7lhSgsuXq4bE2KZIF9Mr4A5iR0K70b+hxSCFDsqfl7sxJI5U0z8QggkXwqaPH1+giwW5yklaVPN5OlCLB7L9bUlrVdIRWKWaKx8Zynj3IUb5b0nI62CYegJY896aXHG0flEzo4wzTo6s72t5XsKgRAi3akjhIBWBqOZ21iuH+m6EyFHqmXLOQa8zaTssHo5w8VGV6ig2X96z7YyvHp7x8vuzMePnyAbbu/vZ2L7/f2aqnbElz1rY9hut9zebVluVyilaNeW56cdAB8+Htiul9DW3N3fsr3dslgsaOsWbRyncWR/kILrD7//Ld154NX9Dfd3r3l6+sCP3//Iw91WPDh0xX4vLaeX5498/dUvyEpam2O3x58Mr7/5hv/yX/4XNgvhQj083PGnH//I6zdf8fS8x6qa3/zmb3l6fMYdDcfdma9fvQEkbiPGEWsXpKTw/SUTra5ryRlbyD27qpdUjaJtWlEoqcBi2XI+n9EaTqfDzDGwbc25H7F1Rdf1xBioG0Ndt2xuHui6DlddFj+FYr1ek9Aslyu0dZxPPTENLNsV/SjfmXUL4llx2J3Z3Ky52W4hZQ6HI1FZFotCZD69sKgc2liMthzOz7TNmv54wtVrUKAKdywrDUbhKkvKihgj1igqLYtd151QU06dEwJ9ykGiJ0JH1x/QBLRu5JoNJakbT7uynA5nlDLcLDSjUfgAlXVUVmFmQ1TLOCactTRNg7ES6WFyxlk9eRtjssabCp0TzhiMsfQ+cTz3dD5zHsCHS8v+fBrRWeYqZwwJiDmicnlu7dUGNGdSiKUYihjly3yoi7jEz/OKtTVwyWpyTrhQk7I2zotvyXZS4kD8GaH2ZxzgS8FzMQWUwmj6L8//7Lr4uTYsvLzPz96ba/82cT5WWn9Gb5n4PdJeSpesKWWK23C+0EOv2lcTx3Nuu0UuBVRSKJUl3D1FMTVMScQmVgm1Y/bHyYSJ+0MmaY1KCm/FCy7HRC5u5lZpoTposXmduEY5Z3Qubd4rDs+kFsPE+WfiWP/nPJ9I+Be3sb4UO1cjKk0ggzYXmV4SCbe2Soz5ciSrJLK6CLKITzdnJuPxKc9f7rSIGyT3ZmKdxxKNEHMSVECZi2t5Lu+r1fxXPYVuUhw2nSUrhfJS8StVzeehjJBgTckj0UbUYCGMjGEKoOwZh4HoR8RINYi5mklYrTFGo9yUbeLIxoGpxMnXVYKCZNDq4g4KkJLGGOm7C88gybkryFkT9BVJL+ryYIpSwaDKdcuEoSMkjy7vG/KkHIhYFDkqdMqMeZxRHxDHUpSZs6mcrUVckSElL9e4SDWSUuissdZhnBN0yRbjxCQ7iKEgMH0f8DHRnc6cz0fi0LNXirqx6Nqw2ixZNVLALJqGEEZOhzPH7sw4BqqmZnu7hhw5dwM/PT4DcDp7hsIzcSRevbpjsWzQhYu0bAunIntSjiyXLZ8ed5zHgG1a7pY3LBYtdzeWUMzsfnp8xvUVm+2G1lY8/vQT/aHjdOwYY2C5WXNXZOrrZUsYI3135McfPnI6dUBiu73l9vaWunbcr+QYtotfczweefz0nr//+594/fo1f/O3f8c5J4Zzx/7pPYsSlcDNDR8//MjXb+/49qsb/vRjx6fDDvOp5m/+5q/5hz/8bwC8efOO+4df4IfM7eqGxw8fWX79mpfDnsM+cPjuI9+8fSXfVwSDpT+NNBrapiGOiuwG9t0JpzXDIZTvoCXgOPeJ0/HMdr1huV0SiCgi425PU9Rrtjb0IVDZzGrdCvfOWp6enuhtoKoqfFkoq8rROsNivSCZmqH3VONA7DqWdyuyLoajQA4J4yzr9ZpKa3ThlukU6LoeEwWJw4/4nGgWCwY/EsbIyR9ZZkFys1IsayEzp+CxqsZqzW63o6kt3g+oqsLaiqWrOB8P5Z4RC43Ud3jj5H1PBRFcrUlmYPTy2tD3xJg5HgN9fyYEQaSrpmYYz7KzLvNBipJT1W4M1masUhhTzcT/VPh6VeXww0B37jl7hfIZbTKLRY1L0LYNvmy+clLgHOTE/vCJtq6EJ2QsrqqoKzcvcuM4MqaM96NsQpIS8n4CY0tG1xS2lBLZD+ImrYXvJ3szTU4GlfXMuQw5k0MSF+qCKihztaBfKUPlZ2JZkRA39ykgdCIEAxQb1fJ9qLnQkY2JLvPixGG8hILOc1kWB3jRdVyrmTSFtoNC1heATCCrgphM/MzSOchziPS0Wc6FD1rmwxzLBlTiGzJRzg0lhq/JYKfPiYrESCzzu8z5gZAdJhmwYqgJELUT9Pd6UzzlfU18p/m044XXE6Yzlc1zMFf8zasR/Zdi5189JNnaSGtlgtJKUJtSGa0pN7S8fsoquYY3Y5REj+tqfiYGpzxX7aSMmmXmqhRB8jk5f456lKObJYnGGNKkFii7mTw/lAZrTHH8LZNTDoTgi4eFLKzj2JPiQMoRpaByDoNCqygFvLbz8Y/jSGOvoOiYZKeZFTkrYrjcbGU/hjICEZMlPyyU8EBFmMnVIQbiKMiMyhFFIgVPTF5cUWOcCac+9DhtMDphjCGgShtqFMJxmWiNMYK+ZYRMrRQ+IaRELcc7KxeyxlQV1tVlFwwhJcYhELMc83kQcm4/ePzYE4aRFHqqWtM0juVSnG8lRkPednc4sNuf8T7g6pbb1xuM05wHz/HYYZXDFzXS6fRCUzm+evuKm5uGthZVldIZZSJD/yLHpTI+GcZRc//2G9Y3W5ZtTXfc4/uB05O0rABuNo7tdsXHT0/shsB6vRZPk20rO1qt2Cw3cgliwmrD7rDk+z99xw/f/8RqsUDhCD6RQj+njucs16PrR8Yx8N0ff6QylpvXa263N9xsNrMj781tYuxW/PjDD9ysV/zVr7/ifD5z2p84KcVff/vvAXh8/MSyrTj3J0Ls2GxbcjjxH//dr/jux59QwzPDWVCou5tbhn5P8Ce++/6Z1bJG68DNpiGGlhg03z09AXDuMu2p482rDZubJVUj0QlN04iSzGmq4kdzPp8J/QlrNU3bUlUVHz7+gK4N1lQozJU/lWG9WkFMPH58j/eehXW0bc1isZA2STHoJmVubpeM/UAII/vjDltX1G1FTANVaacaZWgWDc61RBQLU5dnHQlDrWoWq/J9Wckv82FAWUNIkbpdkGKmdo40DmikPbeoDefzkSGOHM8HfDpyc7ckBHGFV3nA92IB8PTpRPDQhzMxK3zKDD6zcC1DJx469eQdoxRtu2BVtyhlJMEbTdBhFigAqDn5W5P7wBA8zlgqC1WEVW1wrbRTnatxxtL3PcfzmRRFhBECDGFgDHr2bem6jskXzHtZCGtXF1GBuCinEj8wjiOj71FBoUoMjczpIv2P2aD0hficUylQ8mWzKidxkZ5PaMq06k7iCbG3yBcpNxOq82fAUHnfqRC6rN6X47v67Alcun6fv4g0yYZyRqvn301tNnX19+nY1Pxz6ULocjxq/jd54murREwTCOAlNJWIfDElIUCVc8igij9WMmlWHM45iJPibS4Kr4jaf6HjJ8Ha6rPML1Imq1jCaP/58YWg/GV8GV/Gl/FlfBlfxr/p8QXZuRoGaVWRrxAYpDcNJTPqioA2GR5dk9GEuCXQo866wHcKq8UhNE0ukPriYJljmIlsWokBk0bBdQilzqV3XfJH8gR/Tr3bC78nK0NWevbrCSHR9SN93zOOgpSkEMgpYbL0ZLX+fDcgfetLFR6Ln4UJoI3DBtl5aRTJxDkIVOnJA2eqviMxZpIPwt1JmVgqcR866e0iSE7OaQ5DJSZ8GGaIMiXAWAYl/KeUEikqtHM4vUDbQl40BmUyEYWtKiFa53L9c8b3A7k4KGsr4az9OEAK4vkRxZE15ETfjxwOcr32+z2awKKtuL1/hSawXNSXz9TCRwDofGZ5e8NqtaKtG4bBcx4HvO9RxoICV8n1+eqrG7atI4UzQ+d5fN9hKsfh2HHuA69eSQtntW55c3eLthVVVeEqRYwjZwZO5x0xBFZLOZ62WZAw3NzeMg4d603LerEk4vj4uOO//C//25z985u/+RVOCbpRu4pXr2+Kj5CnOz6TGVi28t26uuFOr4lVzfHUM3Rn2ralP/X8+NMHHj/tePP6Qb53LbyHr776luBHzoNH6xXbzZoP7x+xTlpjDw8P/OH333M67Lh7EMO958cdi3rFL37xC9rFin/4e5Gp55cOZVsWrkGbnh9//J77uzXHwzMPtw8iIy79+wwEbVku16TcY60W0rmtCONIrVpcgcW9NyzXtyjXsjsci6+Loa5rmkVDVVXzs+GM5qeffiq7Xo2rW27u1rTtEu+lJTlJpNfbNaPvqWtHzpHee7rDidvbWzbb25mUGWOgG87EGGnqBVlDjAljGoYQaeoKH4q5pDNQvGeappLAYKtIoceHkegHUPLdRu/xYSBnLfl140iII1Vd4wOEZElTknhlaWrL8Hxm4SzZZmKlGcOIUxqnHXG8zA/GGYYsHmHWVGiNoL/WUuIbGUMgwIzCqlR8upSFOktKecnbqipHTNL2q+sKEP+gGDLdOJLjQCiBlRPHUWOEfxMKWdUHatfgjJ2dQ1RKDKMnxUjIgiLH5DHaoa3F6Ho2ZDVKi4qimOuh80xnSDkzudOnVLg9+oLyf8bBKX41lzE52Ze20UXLIMc4t6bE1+bCEyqu+UX0odQF/7jwcaalQ81oYM5ZvH9mJKq8z5XHz7VkfhryM4kVld+pWSKeizNtNMUQVhmmBGwxnJT2odFKEJ984dPFmEtnpFzfck2m9UX8by+4y+fnlotPnJptQNTVMZMiYfjSxvpXj4mQZsylgJn8YVJJVxX4tzhoXv27aVxCMC9tpgt8pz7/rBkqjHP8RM56JsLa+WYR60pTUoy1sReCGfIgTI+BuAVLUF4uxU4MiTh6YvTEwusIfiB7LwTgFECV1PKrNtPU8zWqIheDM3ng5b2FV6RROcwQocryYMRU1FhJEcII5fqlkPHF38SHQRycsxelVUizozOFzDw5x1bOYK2bPYjEmRpMUwk/Jxd3VQQuFZN+RwpiqDYkITuHEOaHSRtHshqfkvAC6pYcNeM4kLIsHCZIS2BTZ27vtqzWC6pW7OfDECQmw0p5e7u+BeBXmw1NI+TT7nwg5T2q91gVqJyhqQzIWo9Rcj3GpOnOnqArfvzpmeWi5ZuvHlgWIq+uDU/PH3G24v72gWM/EHzksDuRkyHEOFtXWCr6XvH4+Mz5uOdm0dI2n9BW4Zqa/+H/8n/gVMI1T4cjCcU33/ySm5sNgz+z3+/ZHc7SvjLwvJf2WAyKzXJN2zjWyxWvH25omoZnEl+9/Zbtds2pvDZbzfnU8/s//ZH9/siv/urXOKuJvqNeGoazcJb67oXNBr7/7j3Ho+E//e//E21z5PHpicP373nz9iuSk3vgOPa0rsL7yGq95fsf3vOnD3te3W5IRhRhfiJ3pkijPCp3QMaPiaYE82YfaJYVQ38uX4LmsN9jbMvmfk2MkdVixbYQivf7F2x9cXq9f3hAKSUtp9VSXJQT+GHAj2LICeIgfD53NFVN8LBs1pz0EaUyIY6yuALGWBb1ihgjp9MZbTWuaeS5z4aqamaDz65/wdkW29bkkHCVEFKFbNwx+JGmqPKOx47RR5rllv3+SO9HNImmdvR9T9Na6hI0exsqctIMdc3pPOJDEKKwq3G1JiWPL9OXc7cYbVFB3Iudi1gr6tQQ/EwYDd4TQyQMniGKalIHRYoZW1u0dnPA6jB2xCTcPFLEavHgslrT1pac9DzHicfPyDgOohCtxN188JFhf2CxiCzqpnxfoiqKQYoIgyZNBOGUME6hCj9Honyy8G+uUsplXrm0MhMKtBRAs5VyChJpkaU59ZeLiMu4rARpLgqmguVaeXJNkdD58vcpdmiKxZjdnAsxOXMpwIoj0FyATdyjKUT5s8KsqHvn45mep1zWq4kznCHrYjwby2HEBFZ4zDGp2atOqShRElozK8K4FDE6QzKXc565Xz9rdcVyna7bUSmMDMO/rI31pdi5GpPaSWt9yWBSkFOec11ELsfPiqHLkAJnkgpeu2cWqXOacn4uLskhhEs8RTGeMsbMRYExBhXlYbPGSHp2iSooR34huTE5PF/QpxhFSUS6qJtIihwzMQV0imh7MaWKMaMt5CK/dM7i6hZbOYyxRCUJwxojMnelr1w0vTx5saA0Ic/E6Bg86oo5H0NiCF4KsRBIKRBHL0WVEev7on7HmQh9T+cLyVNrjLJUxpJCydKiIFKV7CBzlKIvlgK1UgZrK3I1FXEKbSpWbYV1WvgZOROs0KU3yyXpRqqSOEoafQqerk9o61jfb2mahkVTMwx+/r6eHj/xsv8tfT9KLtB2i3UNTa3YvXzCqZa2qGsOhwOdTzw9v9CuGl4/3HCzuSf5wPnYMZ7kPZvaiKR+nXje/URlLKcucDwM3Nzf8+rrd3MERd+NDMOAYWC9qlnf3BB8ZIiBVfOAyRWVluvV3LSczgd+94e/Z/10KxEgIzAmbtsb7r++mxeZT88DY9/T1tDWlhRHfnr/jG1qfvf7P1JXlr/5q1+XZymDs3z76695/PjC7/7hH9mulrx7d894GhlSIbaU5+DvfvNLdvsz3//pj3z9zTuMcTz9/jv+1//6/+N1yeY6nQ50/ZHX797SHXtSirS1oW4X/O6PL4xDx2IpSMX9/Q2xP3M8B5rasFgs6I5n4dVEYScsFs18L759+4rTqeN81rx69YrT2IOBttlwPA0zanbujmA0i3YlSEHW+D7gjOXx0wdWqxW6FGeH8wFjHCEE6rohx8BmtaXvz6QE6xIrITluI8GPDF3Pq68eRIFiarLv0Vozjt00SQmpU3vIBoJB65oQMsEb2s3by4ZGDSzWC5TSHPefWC8qyAkfe6qq4tgPGFuugfEkH4hxZNE6/KjJSTO5qSagrUuFri2nvsOohLUa5WVui1mKiJgn1Va+4rMEaudonMVo2dCpfKVKSgm0wcSE0mAx+AgjRmwAtMYUsl3dWHTUJN1hyDgLOdV4HTj7gZAi3djP19aHQdzbjbjP67Kx09oUhLzMz1E2nVGVYkRZkhJ057p4uFaQUjg518hOvi521IWU/PmY5u6L67LisuGe1F6q2HZIgQDzFntCO7jYcGQQRW1RaV2Pz47v6j/g89fO34n+rNibOxn6cq1yNJKCrhQ5BVIGH3usEzXWtFnW2pK1JmstdGdVzA9LUTMnG01X94rHM8nVlVKX18TLMaXkGaPnXzK+FDtXY/oiJWTzKnBy+rNkhpB+3vK5IiqnPP+ndPmispCEY7o4/YprcCL6wOiFZHtBhOR97RW0l7WSjJEsD6mw2ZlRmOuiS9CVPD+8ycvnSMEW59dprdEYMhmt5LwlVC2jgxQ8AK4yVLXBViV/oiBbFJRT6TyTlHMorYHiCh1HIUaf+544CoQ8xWDELMflvUy0SQnMLBouydOa9hwGc8mlQuGMojYWaw21cZiy0zFao2PxCFKKbDXKOlAW4yy2aqBA58YYwujJJTRUVRFjLXWjwUhwoS1E9VErklf4pGCs2S5vWK8WpBTZ7U4c9kd2+3O5TzI3txvevn1LXdcc9h3f//iRruvZrLaoyvJy3Mt1CpnVquF2+47MKBEkZo1bLshxx4ePQri9u9tQ6Zbxk8f7I9lENne3vP3FG9rlitWiJRRS5ml34vnxE1+9vsfWDSFpXL3g6XBgzJFw3OEm8npSHPeRfnAYG1kuFPf3K27WLTerJTmpOTLjbhPYHTuU0Qwh8uNPjyQFjUv88jd/w9CN/OG7j/LdhoH1smUYPHXT8Ju//ZaPHz7wxz98x1ev3/Cn734HQFvX3N1viKOnaVputnd8/PiR1XLDr3/xjt/97o+cCon2cD6Rc2T3+MLx3LFYLMR9PERuFitehoHTi7w239xhUFhjeP/jB16/ecA4zYfHn2gbS4yGRVHPHXY7qkXLtlrhmppu6BnGkfOp55Q7Hp8/Ui3elofGkZXicD6z2d4zdCNhDOhKsWzEbfhcGMq3t/d8enpPY2ratuVlt2db3bBot7i6mTc4T48/0p33rJqKpnUYLD5FnNMsFi3oOJPqx2FkUTeYrEkTCkpkCJGqaVAYYlnMl6sHVA7sD0/FWRxednsylqo2+NMwE3nPPjMMI9o0DF0P2hBJHP1AjJnWWVZGirPx3BEHRbtckLUhhBGjK2ojirAJGA5ZyP5KgbWi0oREiJGYY7HBkDnOafE1UkZsFiR6xxJRGGMlpNVe5i0bKnQy+LHDaU29rMg0uE4TE/N8NPqBMZbPiQkyWKeKy3shAZf5SKHL3JmuwkAVYUJlJslzabfnolxKWRRZUBCWpGe/m89l5DBJq+c1Y35lEcjMWIqg1IpLeObnoxRI+dK6mgqj/BkN40KSBpmvc1alQBNC8oWGoa58d8prLkdHznkuGCbrk5SSyNezKLjkGCQoeQ5uLZYfxhhSQd5jzheH5+Ka/2dneFWEKaVIRhX/pYn+kYhpJIxfip1/9cg5QmHCk6fFoEjxPqt2L8Z5l9dceqpSsHhAdiRToGUIgVSChlJKF8WR94SS7aK1Fs6ENhcejy55L1EgTx+F9a+sxpbff5bdMveRI94HfD8QRultpjA9JCW5F0qrS85PWkcGre2srBF7BYGXtbaU6k1MAEMWs8LpBiyTZ8iRcRyJYxBFxCDn2I+BXGTiSkec0hgkMywleSisshK0GuO8gGcDPorPg7OGVa2odEbrgDH5EtKnNDEbYpCcsroWlYytHBiRBftyrGM/YHLAGoMPAyEHtK3J2ZJTmgNFQea5dtNgTcNiscIaR/SB87nn6ZMULlPWESqQk2f38olh8Bz2R1Y392xv1pxOBwY/snl1A8B2tURnCXj88PyJ9WrLefD89k//yHK94df/7m8AGIaOxw+fOJ4GlouGxlWkrLi/u2HVLnh8fpl3rO26ZTUs2Z1OvF0t2a6WjOPI/Y0jZ8XxpWfsZQJ/9XrL66++lVbMmDicTxz2B05Dx/58AtKM2rm2RWnHqfcMZ8+yNcSYiX3ku9/+wPN+xzfffAPA11+94+nTB4wOGEb6IbJsaoLy1HXmzduvAPjP//k/Y6uKqnI0teanH7/j5v6e3/7uH/nmF1/zH/7dt/x//+s/zPdhjpGmMqRg0CkyeM1pf2DZ1DSVnhEYnc84pwijcD3GAVz2LOsGZTUhZk5F6aermu40cv/wmpAiH593omTMR2pnMDnSn0qaunMcu15iG4LEVBy6gKGiWS/p+pFYFghrHUY7QWOMY3N/z5gDKnmG40gq/LnQd2xXWxarDc1igakqxtNZVE1xYDx8YgpMdNVS+EghUNct3nuU0VRG2sHD4KlLCydnR/QZlTXLdsX5fOTl+UxM0DSeROJ8EsQo9pGx9yiVqRrH0/6EsTWKmhgGkmZGLgdv2DQttYPKZHSlaZsaWy8EOS3PTAgBmz1GKXwViTkz9PJMaWMF9S1zaEhKNirFy8UZg6kvRqXCeyyt9pypFSTryMETY5ol6NZWmKTEA6yMlBJ+vGyGqkq4RToLXyqlCekVJonJsqHVys7tLJnji7osqc8Kis9Qmyx8l2kTmvKkxvo51FJaMvpSlJhZWp5n/o3cy+U8rsM152IJWSdKjTKtP58jN8LhSeRLSkOeLEAyVyI7puIzIe20a+5qJs+2CiCFnCiXC9Je4hxszqDzbEGgdRLzwezkWiojPFCYpecTajO16+QTp5Dl8veisp2RsJxJMRPHa37UPz2+qLG+jC/jy/gyvowv48v4Nz2+IDtX45oMdt2amshVc4CknoIlmZPPAYyJWOd+9qayG4gxF8LhBQ3KKf3ZrkArCd2cCMzy2mKLnRIBadFEwOkEpsCf6mKhPTliphAIw8jQDQVFElRKzktIYylLqObUAzba4Ww9o0yABLxlENpPwEtcOiopUowMJWBTTlT+8CnS9wPJi8qpH4WTk6OfA1Kb2lFbh8KKSgsPaGHp5wafMn1fkDAUmkpabYOnMYKY6ZQYxkjW1fQlUC8anHPUTq7LoetR/YCpK0GoQtlRj73sMLQYKFrd4L0nxkztGirlGLL0/lerJVXdFk8gOB727AoZd3HTEoaB6MUPZlFVQtzzmsWq5ebhnkSkqWvu7ypyTAwlwXn0kaygvbnj69WGH77/nq478d//3d/StitedoIo9FHz5t1XPIQT3WnHdtPw1etXnA9n/vDbP3HyHWOQ6/r9TzuIif/wm2/YrO9YL5cMw8DHp4/kHLi7aWmLv0nVLjDacToeORz2fNo/Yci0rbTF7jYLbjab8tUaktJU/Yl96jntDqJuqyqaZsG/f/NL+uLj9Kc//p63r99g8oqXx4/UVSKMR/YvO5yxrIpvzNs3D/zpT3/i3/3tf+D56ZmcDIeXA3GMfHp8YWePLNtivhc8ddVCFJLj7nBCaYs1Cm1FrbErXMWgPK/XNbvdjoiXc4+Kt2/fsFk1aJM5n6TtGEKmbVfkpKnqBd98teLQ74oPj5H/SvvXWYcvSsru/EKOidP5RNPUtO2KWCv2+9KiHCN14cS0yy3H4xHfd+SUuFlvsIXEDomqqmjXLWjD8fRMUwI6U9JEn2bSarKyJzZG4dPEb2tQSRC4xmWGEoORVeZ02LM/PBPDwPl8xodAXVmUShhlOZ/lgiU/0ljN7tThved2tWT0EcJINhFn7DwnVg4xBnQOW1WoCvSixehGVDpFZWaUFoNT6xijJ6VMpRz9GAgpEwm0Jd7DoIqgQkQKCmicFXK20oQ+0BUiqkR3jCQCujJ0Q+B4OuHHLC1FZUUEwLVgJKG1oW1rGucwVhH9SAz+QjxWQg9IyRWYx108aAo6D6CztGREZaRkylMSw3AJ25zm2YLWXCEt8vef0R/gIljJE5n3Zynqf6HVMxsPl19PSP0FjSq0hhJ7ISaAZiYlX/vvTC27zyIZiJ993tzxypdkeK3KZ01u9znNCuLraxALSqa1vXCNClIU1AWFUulzFGw6vqj//PdJJXz+0sb6148MOidUNpckVyXlgUahrSF7iZNIAUKKpUVVbohoC2wpZYpW4nYco6Sba6UIP2PpT+olg8GojFPy4KcQSBMZLCWSAq1cIRxnMa8KkaCKUF1NBGfh9YSYGIPAuxFPVglj1NzuUlERy2ejHNqUdPPKlWgIg7blgbAJzwgI3ybnTA6ZnIzc/DESCsQ99W+HEk0RY2YcAmP0mARWKaqiIHBBEtdJiZhz+Q+sFqluymp2Rp4UcikNck1RkA22aWlbfQULa7KOpBA5R3FIPndHNIqmqclE9CSfRGNVRUpQVQpjFE0tqiwM7Pc7KY4ApytyCEQfOXfiNtvWmsViRd93+HGg7wsXKSRevX3Dzc0WpT0//vAD4xBwmw0g30lfVCjOOW5vt5zPZ3bPRyplWN1uOB2eSWTefT1xRSwfP37iH//4PZvVitvbd/zpu4/sXjrO3UCyhmMnhZHV8NXbB6wTEzW0JqREvahRymBURVXJInzqT/j+kdDvcNbw19++oaqX5KzwY2B/7tmdpIhbLRvauqY/D8RgcM2WIZzpTkc2yw06nnm4kSIq5RU/vn8kjB2/+MXXpDxw9gPv3r5lOHccd8LtWdYV9es3vDw/8/BqzcePHzkfItZaDvsetCWVyaxpFrS14XwOHHrDx+eeNw9rtBbl02KxoCmtodpoKaI1LJy0VobSUvVBsaoWpNLrv9lsOI1HfLmf63rBw+KO86mn73tWmwWqELpj4aKdTx6c4ebmjjpYtK0YU2T38owp8TFh7ImF19YNZ06nA6PvaW3FcDxz6OXzXeNIGEI06KwwVELaH+OVMlTmI2dbnBbnYa0DmFIUlUgF4RuWQro/EoYj592TtLTDQFVbqmaB1pbD2WMrKTb60aOcAzTBKz48dShlqKqK2iasNSJ7B5bLpWwm2gptaqgarF0LkThnUpLvQBkjuXg6AzIXYD3OeFIcqCtNXcjcMtFEyBrjxC05KQ1GUymNdhfS7dCJqaWQjwMKTQqaofecuoTWgfJ40VTSptFaU1lF7TTOarICrxRDzvjyYp2TkJi1FS6fdaCEO6SLISkI71by+S7uyhJpUFpWWiJz4Ko+yQapIS4b3IzwOmf1UVEeaSM7S61Mmfvl9+aKX3Nd9+ScyYVLLkWNmgsduTeUbJgRjs/EL4pKSxHGRBTOszpKqUIuL5Ydc/F0tS5GyZpAJy08S1UCc3IhTptLsSN/eoyyRISfCVzcm6+KqgkESNqU40lXAISeCcxKGZLms9baf2t8KXauhiAoxc14QnnQZJVAleC4GIkxSS7LTFie3iHi0AXNKQtNFFWD0RqFKYGRlEU8EcIgnjwGtBb3ZfHiuUKSJmKcVF1yI0xhmDFyUWIV8nJKRd0kXgfGGFCaHOOlcyx3PkkljFIY53DW4apKUB13ycayWHLMcw4VE6qlBKjyMTMWj5kQZAfkY2QchXw8joGQxdencoqJBJJzQIVYdnSK8yhePNYGFk7yeNwkNzWx7A5EepyToDFKCUlzKkq0shBkZ+QL+VmHAecq4iA966ynwjCgGqjbBtU0mOUaUzt88OS+w6QBV/rO6XQmqIzSFqc0lVPUjcYPByocpqlYr2Tifnh4ICvNH/7hfyHkxHp1i06R7thR1YrudOLTk7gS/+pXv+J4fOLT4zP9USbQPipWqwVaRU4HISijHNvlgv/4m/+A956u69DOoFzkV+++Ynt7PxNef/zpT1SVY3u7ICrP8+6FGLNc3yiZbj/8/XcA/O4PfyDHyG++fcuvvn5D6uDw8ki9cDTtGtXUs2vq4Hsh74Yzw9DT1gt+9YuveHp6ZLfbsdtB00jB1TaWu+2S01Hx//p//L/5m7/+NW/vvuK3//A7jMrEsiCSIn7wrFYr3v/0CWUcP358knyuBXTnjuNZzusYO3797T1325rT+RP3S0NOI3W95enpiXVbcbsWZDWNHd2Yid6zXFXcrrecTh1pHBj7zPvDgVw8Zh6fz4XnEFlZUEnx8XlHGEca19LaijyRY9HkLOhas2mwesP24Y7lYstpPLK9fU1t5Z4Zu5HVcotzNT4PDL5ntVxSa8vpvMcUB2VtMmPsaWnFQ0QrrG1wxkiGXU6sV1Kc6kr8qayrGceA0ZFxHPBxpGkarNWzlUk3DhjrqNuGp6cnXG2pSoZY0zQMMTL0cgyVrfFjQGlLMl6mGl0QswBK2dlLyxlLXVUY21A1S3AtrmrlGk7kXibC7UQCDhgN1iQqm6nDMIsyZC6QOQ3AWnGQNrZs/lQGwxzYmQx0cRTn61yiCpRFWYVxqsS/lOcWTcgBg0QYaFuTiKQoHmO10fNi70Mg+SwLdbMAHVBaNphCYVHz1JlgjrK5zmrSGnK+Jv3++UJ8jdqLyuTPXjJfk6mzMKmAL0KUz/k7qRTEExn5M87OzDG64vDAz7yef3Z8BY36+c9S4RgZFCZPartQCq4yrxcvORMvhZEo0TVxWlfVpWsgx3Z1zhMKpbTkahX+UlaqXN8JbZuUv1+KnX/1iDEzF69TtIpoEElMoWv5AmmqQqhSV5AlGq0uycPy++K5kyJ6ajGlQI5BYhKUPCRGy0Qliqk43zRKKZR24nGjSoyDUqWCL8/L9HnpQk5TSeTkVhvIiaT07M8wOUZoI6dqjMJaLVJSJVDtFJnhKdL76KXYI16SabP46OTJ/0ZLyrC1kVpHUqWJlcZ7w8I1LFcNthQ753Gg6wZCUKisWC3EL8OWVh45Ypxc27YsDOeUUNYxjiMqeowWe/iLKg2Civhx5NB1jN2IUooqZJQaMcbQlBaOrSs2N1uqxgER489SHGmNDwkf4XCUloDKQBpLK7EQIZUEqkaVqWvH3as7AH73+3/k44cXbm/uWd8sOR4+klJiaZccDgFnKxaVLLTf/eE7+igPbds0bJZLNrcbUhixRs+v01VN8JFzHMhK5Lbbt7dstgtijBwPH3Glhfpwc4P3nt3znvNxoFosyVkys6zSxGGkK2qw33z7wN39hqpyfHj6wI8/fkBnzevXD2j9xO50pu+lfXCzWfPq9S1to6mbmtB3fP+7J95/euFpf2SzvScEQYGcSnz17g2r1YrKWD58/J7D7gN39zccd3tSSbvuh5EwBAY9cj6f8FGxXKw4nToOu4Gvv/kV3/8khVnbtry8DJATwWc221t2Q+CnxxMpakLoy65YkJ1aQ10ZrErkOLBaS7utXTZ8eP84G8+5qiLkwGKzZYgR+sB6uSTUjhxhGAJjJ/f3w909b95sOK8PYDK9H1i4JbvdnmbdoHScVUN1s5TWik+gW96++RWEnpxGtrc3dF0hBwNV1WKqihwy3nesmyWHw0HIuMstQ5kLuv2JZSNKxqZe4cMgcSXWMQ7l/eKEGlpSSmxv7uiHgdH3xOTRzhaRg5EiAIgmkQdPUorRR4yGqmkZvLTS6hTmucsYg7M11i3RbiGGhdbN4o1pQ6eVxRrJqSMGac8UpU9IU67VZBqa6CdbCaXLopbwfiQZS0yJVIqtiCTkheQIKovZoJZncruR3D6rpnBmhc8i9rBKQUyElGRBjZD9Jasv+Cj5hUajQgAGsgZrFclMKqVLbZKneX62JJHXqKwvhcIkwirHMiMjkz/Oz/KwlLr+AK5+rmYpNkin8C9JzCclrrz39OeF3nC9Lkmxc5W3lcU4UQo5Wd+uxTii6LsqgKZWmDgLzV5QE6V4vgRFYZyUIqjItdBnzkm8qrp08Y9DJ5KyaCXFkDLT66cWnCrH84Wg/GV8GV/Gl/FlfBlfxpfxBdm5Hn4MBCfQ6lS/qlRM+mIq6bFJZN9kUCLTtgU3ttZhrJ09BZSimO+lAjV6yFPKby+tl9JGUjpjlVS1abLqzlPf15TUc0vWFq0USSVUCd27DlgjqysekXghiPlC/FzWlyPERCodu5RKIGfwBTq97DgmP6AYszgdl/57ioKGTTbsyCdijcaSUVl4QpUzLA00jcXWbrZnX9Q1rh7xYxCCtSoOxyWVNwRFXzgYfZBQP4Wkn2sNdV0LcXz0DH4sp2/wMXAaBkavCCnTVg0xKqzTLJoWV1yJnXMMvSf4hDIjlRXydwiRznccDieSv7IxN1BVFf04MOwGvE8M3jOGkXa14u9//zK/9v5uic/whz9+5Hjo2dxsQVvq2pBUZlkM5ZbGcjp5docjh+OR9XbNYrVktXpFDCOfPnwC4Hj8AGiysVSVZfRnTqcTx9PI06c9rjLcboX0u9m2rNY1StViMHjs2O0OHI4HjMo02vDNm3sAKhfZLBztZsVm6XjzbiNeKVT4kKl2J46Hicgbef/TM5ttg4oe8sB6vcItHG/GVyTV8PIipO33jx/Z/+MfuVst+MU3r+m7F1IKjP2Z4D0Z4ZW0bc0xCJnXGYszoKslxjg+fnrkPHpWG0GsVgv5vk/HE5ZA1VR0oyfmEW0tRMXzvsi+VeJuHbldNVSNohsHVEooW9MAtnISDwKYyhFSZsweHzw3d1uiHzGuRrWZbDPhWIz64pnxVKz2tZgrjuMLySd2HupqQa6knel9ZIjCJVo1a6Lv2b98kvNcNFhXQjAL+qGzJuSRlCIvhx0pBOpqgdLt3FJOviOGkaQSQZvyXQliHIaekNOMGPV9R0piULo7ntA6FfGDEfFAMDS13IcqJ46njrauGOqG0xA5feqoGkNdObRWM8pqnUYZjXEXRDVGL3wTrVHmwm1hQrW1lXZ5mb9sFouNFIfy7zOmckz5mkopfOgIITB6saAI0/bfNtRLTVJVaYdeJMmmzFcTh9FaR2saOYYsc/sQRNSQfCRngy/oUlRWOCoKVIrkGMgU01KYESulFNpcS7YNgs9N53pBLGYuyty1ujJSzMLZmYGcnAvnkLltpbWe23dzewnE9XmSjud/uiX1z41rMc71mBGgCaWbEtuvQJRULFmyEjRJIcjZRFD3M1yTZ8SV+VprKNxWsr60x5Q4XBsNKQux/Pr7TVeBrJMB7790fCl2rsYwDjhTChV71UIqbHalRoyWnqLWQCFQTRORMQptNdooUTsYg9VJCGhZWlbZy8NtsjiNqpxQZuIJQYi+9K/zxTtHgdJZCMZWieX9xISfnP8mxnoKpDDKg5pGef+UiVF4QrOhXxSicyzmhCEkVBYys1IKq91nkGcMqbg9J3ySvK0QAiGIId9EiIsZamdJOmO19G8DGl1V5CzOp3OiPJqUDFYrFo1D6xHvhf2dk2JMhsnF2SeZCBprpN2nLCnBEAMoiOXBisEzpiSLgNbU2lA1LTkpYfxXC3wptnwIOKNRMZCGkUELITqMI50fPzOPNChRvmVRQBgyI9IWaBfidzIRM+/vX7HaLEkofvntN7TtEuUsx+OJ0/6AtRX7F2n3fHrcYZqKu7s7bt7WvHp9DzpyOB0JIdFPc6UVdVT0mu40UlcVKYycDwdeP6x5++5eiJ3Ay+7E7/74nskwTUfP64d7fvNXf4VzhvO5nz1Tnp+f6YPnJno22xXL5Q0pwTh6iJm7m5b7TXHZVZ7nT0903QtGtxx3Uoy125px7NmsW/6P/+lvAUj8e96/f0+3e+Gwf+LmZktTO8IgrcRPxSxxu5XIiWEYaNuG7tyTGdhsW7q45acP77HlHujSierhhi4HWmcwTos7uMq4uuLT4/NM6l+3kmq9Xm84nA6QDPebNYrM6XTC1hWhTLyH/ZnFaomJFucsu+cXVtsbtFI451D0YnSH5D2t12sh2+pIUy1E9RgjldHSkiublL7vqZdSULd1pKoamqahrRuSUTPsH5JseCDRn88S5YK0Z0Fa5tZOfBkRTBinJQeLROUcwzgQoif4OKtVKms5nU6c9kfaquXUn6TVmZ3EL6SIL75bISoyFleiaIZR2rg2JSorHKy2KS1VKw64sgmMsyRIrPQMk0NcIKORtoV4Vls0SYQROZc2oitzQaZCCgeNiAV8sIxjL6qwNKLKfaCMojItC1cx+jPRB3Gh98W9OV+8zyJQq+KKr6UBZpRs+rrgSZG5YHNOzddaGV2oC0HStpN47sDnKqqJUiCFyBWBWE0F30TALa9XqVwuLZs6dVmstUhrUSoy+ezIn+U901VhNP05+fhkceuXlhVcWDDMx6N+/vefq8S4FD8zX6gUnlk+bG6/cf06Lryn60IuXfWmJjXYtPGfFHCz21tZE5JKl9anyiVVrJyvmn420UYgKDXzgP658aXYuRrjONArKSYmrydnLEqLTZg1ZeHPWki2RZKe54s9ZXeI3NHqqdcaitQ8kgqyk2LE+zhXrDlnjCqs+Um6aaeHW7g01lgwGmed7D7mYLqLzDCVBz+EADkWOeNk0BfIflKVhMJ6l+o9J1WIfKIqULoUYMjuJMZISmLG5nMiJMhRQbZYo4viAqqsMdrgrCAvrnY45/Cl5+v0hRAVlQJTk7LH54jGgookncUQUF0k9c6YssOarrHkhJ3GfjYqA9nJyS60wroWVzfkGKmqipASOWRiUV+obAi6p6otEOk6DykTAvig6bqO5Uom46quiGPkfD4zhAGtDMum5fXda5qV8GaalShj3rx5Q9KG5+cd527Ah8xivcQ5yzffvuN0HHj/URCb95+ewGScM7SLW4Zh4Ha74XTq+O4PP/Hx8QUQsul6c0PlDOtFi20M3THw7s0rmnrB6Rh42clrT+ceaysGP7JsFrS1IkVDDGCMpvf9zO+5f3vHOAaSaXn/8czx5Uf604khdiyXLVXdzpOk7zv8ODKmyGoFm60rklPPerUgnAf++F//VwBWtxvwPQ/3G5y753Q687I7sFq2bO633NzeAvDdH79j0dQko3jZ7VGmJpxHFm3NplkQToFQ7u1z79n/8JHNZsO+P7FyDYdRFtNw7tlsVwxBUCijIsNw4njYk5XwoVIKLBdNQRY1dSlgun5Ea8X5fOb169d8/PiRl90P1I0YSHo/oK0Uh/e3dxwOI92po24d56Pce8P5RLNyWKsJu115LhWuuqdtVxhbEVNmub5B5SxOxlMhrTTO1XTnExpL8AnjBDHuh440Rux6DUyLnPDxlBJV0aenJ0xT0SyW9H3PqR/K99Vz2B9RmnkRd7YhJo3S0PdHYtn8pKxpmw0hjsSo6IazcHp0S200bVOV5wS0qoQT6gesUqgwcRQ1OVNc2GXRddpIMWEEDQsJ2ckTC/o9oeISGKqLw67W4JSTP12mrip8uGzUZkIukXFIdH1gHP3FhLQUnFYbUl2UaiqVDaaIPwSFKYg9UFmDM8L5yVauSUiiWk05XTZpPzf3+wvcmc9+jzx38m8L/68s4ddmsBpzxccUwm8uX/qE9FwKk5J1lfNsKCgxQeovFjt/6ZjUz8jRClEQm6lQQ82RD2oyGbw6UZsNsRRakSJYMUKWzmTh/UwjS7kbkTVJZSX3gcp/ViRO7swwFa3qqli7In+jsSnPppD/3PhS7FyN03lEZy3BdlP1mBPOivdLhtLAyhitCTPycXWxs5J+B/KQ6BI+GaM4B/vyEEYvzskaPae7agzGWHIOkiA7qaGsSB+1AeaWlZ4JajlfPCAkEiJfPYS5ZO+IMonJvTinSxCbNuXm0uQkBESJhCg7tDASQmIIgRgUISfZQZYdU+00zk0RDFLc4CScsFkuqOu6eKMYsnKEcgxTWKgfB8ZxFMdMrTDB4EzGXSnCTHH4Hb2owUL2pDySg0flSFOs/+tmgU8erOVwHPCHM0oZamswJlJZNytAKmshZ7rDniGLhF9ngdlvb2revNqQsqA1zy9HXl7ODEHymG5vWr7+5Yb1aoFSjajQyvt+enzPjx8O3N8/8O7tA8YYKrckhMSPP33H7373O9qloCX/p//0N9zcbLi5uWG5XuCalvO55/H5yMenI8rIdf3Nb97R1hZD5uXlhcfHHXW7wrV3fHrZczx3vHsjCem/+pXGGMVyvcJox263o3KGemHouo6qaoQ0C6AiOcKYeqqmYXVzy9PzjqquWK1WbNcrqlJ0T5k3Yxg4nU60jaOuBZXZ786y427keNtG0VQLDl3H06cDXdexaJY8fTqQ/Di3pu4fNvz00yMP92+oFg3vH5+w1Bye9qzWC2obWZT3XAbDuR+gO7OuHC4lGiWtxYWpeHl5mW1OmuWGEEY+PXVYG8irJcvVPda1JJMZhoGi0BavoUVLXdcMwXN7e8cfvv8JcqBeRNrVclblheC4f7hFv5bYAY0ixsxhtycpLwT/Vg7i5WVPzpruPLBYtByPJ7ruhHM11tZzwVmXYM7t7QPEiDpGVA4MfsRaB9bOz3ddybyQlJIg22xp2pqoxbNJm5qmlufrp+9/IJTUdWOk2RVixjYNtao4nY+XRToG2kXN4RTQxuDqluQDlc40ztA0dUGaQFtzQTVSEpddpYhZcJypdaO1JepEzl4Ivln8iXKCbDUu15jyzBjtcCbPyqOEFHbGNqAixjaYOC2empgV3kdc1lSpxmeHz2dUHshZ4ihAEAW8J4xerELK3FjXNZU2ZK0ZS8srK2nJGGtE6q4UOlp8gpD0TC7Oucy9SqTykMrcJsiHkLAnku4kqZ77WBeaswKlr4sd/Zm8m6KumpENrpCTqX2VL22sCdX5rIK5+nfXBOXpZxN6BBRrlEuEx3T8nxOoC4qnNaRJxVMKz2J/IIHZias67nKfZSmIdUFpTCFzT0Ggl0xUwXQktUP97BguxVrSin+h8vwLQfnL+DK+jC/jy/gyvox/2+MLsnM1hj7gzEDMhsbIrssoikcO5T/h4WhliNID+kxOKChNJGYtXCyVSFGRgiaHIpNEAJacLCFn4gzpSstK5wpnrRhOAVkV34HoxWgqUvrkn1fp0xD42RBiIE48Gy+ycV12GlpljLVyfsZidOn9qiwkZ9RMCByDo/OewStClN1LTMJRaqylah2tk1vJGFd8fRTWVFgqTHYkZzFFDmqm/BWt5vaeUQJH6iQ9amct6MhYvIY6H0khoLTI6VNIZONwrUW3F+LcEDz9KJJWZRzL5QKnpeWVdWTIidVicgcNpLG038hUlaFpWmL0nMORc5cppq2MQ6JqFzQ5UbuGh9tXaLXg+bmnrmUX25fcM601f/cf/4qqahiGkf3LgZxP7J6eUNrzP/yf/yPtUnK0lDLsdjv2+yNoQ+015/0RHQO//vbNnLeV8oAicdwfWa4XvP7mG5rFAt8HtvdLtAVTeq+10oy+JwTPoTswDoG+S5hDoG1rnEmFSyE5Y841qKTw3uPDE6/uKzarNXW9wKdEdxrKsWbhQrmWpDWdj8LRqhxfffMGcjU7Q/e9+AitVwusHjmeRn748QO/+uaeaBR+KLypbPDe8oc//sjd7YJXmzV9P7BeNOwOB9qFm0mN9XqB1pqffvrA/e0DOmbWbQnUVIF21RB7IeceuzOrpiZpx5gVo9ecu4Fz1/H1X3+LW2z5VFqEpyGwaR1PL0dWTc2bt3f8d68e2B8O5CS8Lm1K+zl4jl2i7z3HvuP+5pZKK5rFgtNpz9BH6loQkIdXbxj8Ga0yh/0joNlut1T1gmEY5l3s8fQirWO7YgwDKXn8MGCcI6tM6gd0U7g1xqBsBdQkpbFVK+0dK+7mp8OZ00Gufbta0p8TSiequkIni08KbSymUlTNEuWm8+ok4PyUOXYdta0ZxoDOmsZVOKNKC5oZWTZKk2MQGXvhYQjXorThjSErS4y+SI4L501VkEzJ2SxLkEkQIsqY0trRZCSlPFPa2raePz8Xw72m1SyamvWyYRzXnLsj3o+zYCHGRBg9/XkkB3HvVVYRg8I44QEyhRfHTDIJ5cQkT4jIlHR2ISDLvDG5BwsSkbUhhjy35JjaUWUukHFpY1FakII7Xcz0Zh7NjFzoWYov73eRd8PnrbOLv85f4uyov4jsXH/u9KdWeuYZGaUvknmkrTUFZFsliJi2RvLXjMEVMQ9GE4lzgKp8dnnP+VMLgqQSCvPZMVyOMKExs+O+tCLybGukdPHb/8LZ+dcP7z3eS4EzDqXXqjSoAaNEPWCU9ClTEpZ8Too8fxlaHnaf0cljVbFAjxKVkEiXmHpnwMoE4ajFvVgbchYr+GyYi52pZ2yxmDjxfjRKS3stFadYoCgmRDWVg8IPgTB6Yiwk4slZUwsPqLKT86diDi6VqmvijGEN1E7R5ukhKIQ+o6mqiqq6tNzSxLq3kxNzjatrcs5UtgKlZrNESYEXxYMfEANGn8iVISIERl2ca2sswUAOUSYVJXRIZSMmJXIpthYLx60xDEMEIyTVPnrw5XyNnR1Ex/7EOHaIn0/FmOC4fyEWjk8m4+pS8EUYMbx6/QZD5hQi55cdTVPRNBUZ2DbLcmk1u08vaOsY/EgMiqEP7F4OdN2Jsc98/c0DIC0YqypuNitc1XI4HPjhxx+4vVlhjeJ4fATgcBgZx5Gvvn7NzXpF8oHh+SO70xmtNV99846xk2v1/vmFw/5EigOVM7x6fcN2s6YLI6cuEJUmDMWEUWeSP/P040fC0LFdKRaNBX8ipJ7Rj/N9sN5sMS7iY6KpZUEaR48fHOdTol141qsSQ6Ez/Xmg259x2vLrtxt2reLp8ROubhgHOdbVesEvfvHA6Xjm99+9p3E1rkqsrEW5CvGTK8ca5T7tfOLUd3QqQ4psFi1PL0ecNtwvpZ1pgcVigSazWi8YfQ/ZYyvH4emJ9d0d7756DcDT/sjge968+4qqspwHj63k33fdgLKal2OJKoiRSkeG4xkdep6POzabDWazpm1buqFHVaUF7jSLqiHHhA4BpTRD3/Pysqdum7k9mCMsm4rz7qO010xNtbmlP5zIKbNY11Sl5XU+7NnqW5KxLJo1MShUMhAitbG8jHtyFt6SqyClBqLCB03vT9jKFmdtz3K9mBOjz/tAiLJQaWM4jwPKGjyJLkZWypAKmVgrg0ERcyCGSIjD3MogXsjUPmdSyIzBk7UYchqtJRzWWYIZqUoBk3OksiUE2VYoZYlKuD1oI87tagrzbLB1A1lTpyV1NRDCiPcDi74WI8biOTSOI904oE1mGEfIGR3BqIS2lRQTxSNMhwBe5r+UNboWgrjSwu2Jk1O+qUlkMTBVCpNFjTXllWfSrNzKmbkwmsnMWgG5FLvXS7AomdQUAl1abikb4QzlNJN+PycCp+LcL55vKafiYTP3jsgpogr5/NK2khJET8TrnEUZmPPMlVTalmDsqTU5mTWCUY6UAsaKKiprjUqQoxd1cSrnpgAVLnSPrEllDdH5uiAEo4UCopSCIr7RhXqQpnaWufjaQcKmf1mD6kuxczV8DAwe0BpXCLfGG7SSRNeYIlnLhJtIokjQCVUudkyjoDBaY5IiG1NSXRVaOaxV2Cn2Pk25r0Xpg+xlci67icLuh3JDRzHTUjoJKqMNKWdEES87W4AQg5Cfx7FwbUaC7whxIIdwicEoRLaYEjmFQkBOBUVSEgVRPl9bQ9YK5yRFvKplUqpdVSYngylImGSzyIRpbXPpP6sERir46XoRIwrJv1FZeEFZezRGVCcmMxQSaRg9GcsZceusqgWV1VS6kA8nVUdSDGGArBg9+HEAA64yxOjZn3rGImdPPoBStE1LZVwhZidCtPhkOZ4HNhshhv7ir2+5e/NA3TghgY+esfeMXc/xpWfRtuxLztAPP/xA0yx4+9VX5JQZ/UBIgXrdMOKpVgvsZGxYNbTrDSllfvrpJ/ZPTzzcbXBakQmsm0kavOCnHx95/tQzDorKaYzR2MZQWUMYR3xBNRqnyEtFbZe4Sq7l+XymDxmF5eXlxPff/QiInLtyBlNrWWjdDWa5xNWa5bJlqzXv30u0w08/fOTu7g5nFNYoTGWxOXMY9sSg+fD+hCtRCa8ftiyXS45hx4enR9qm4f72lsV2yWH3gnPyfB0O7zntKlarNd/+4oHHx0cIisNuR9UseNnti+mjkI5fno9sV5tyW0WsM5zPJ9CZkAONKannRjGQaNsaT2CxEI5Ufzxzf3/P3XIpSj5g4RTW1hyPe5bLJYvFgtPpxGKx4OHuXgwhF/I9nA97ch7kedZWEIe6RlnJhGrbJdpe7kV0S9tanp8eOR+PuEbTNAuWy/XsGJziwMdPjyilWK02YrB3OHE673h1/8DQnyDIeypl6EdPsidsblCmZhgHktb0546Ew/uibIkTLxCykh2wtVZUlV6iXyYeTli0+FPHol3Rtkeeuz2VVizbhkp0wIwlU073PbYWTsU4jqQwELzwYYRyUuToITMOA+PgZxWpK3OGrWwhZst5OW04GTGOrKrJ9kKQHW0MytQoXeYYLcizNhprDNo4nDOFC2Wp3MBYMsk63aFMR+UacvSM48jQneW4+4I8cCkgchFjEBKVNihtMLk4+cqsVQqYic9iAVHeoktK9zW/ZOLVlLigrAvZdvq5utiBqKwlrqiY6JGueDjCT/5MIZsK5/Eaw4miewJ14flMZrf8DAGZlFZ6YhFpQZUmhEdeNKFNU4FxwWZyKjzMLHM+SaF1JGmNusoSE2TJluJNPtOgPiu85gLMmBnpme5ZsV3RmHIseTaQnRRwgX/J+FLsXI0QEyFlTEhz/IDHY6hQBqKORWFlUCkSJ9b8VbgnukCjVqytdclWET8cM99vU4GitRbJd4z8/Du7rt5R08NRKmElluMpR0FtJpWXD4Q4kIInRWnnxORLgGW+WLlrgEwIkRgClMyfVAquTMS5adeVcNrRtJa2rbC1LROXk3OzFbYsMllpcjLFa8iRYiblSFADKSeIF0KZMsUdMymyTWidKCkrMkukiCktAde2LI1jqxNKaawVdVSMEtx5LoGh/ThAVBhbYZInGsA6uiGxO3T4YaSkOlBVBmUVh/OZkze0zZLV+oaFcUQFr13Lu7eSTbVab/Ex8NOHDzw9vfD4+Ejyifv7W8ieIQWadYmL+OUr3jzc0zYNy+VrQjdyOBx4fHxB58R2u6U/y45693wk//RICJ7VusHoxNPzTu4xrTmVsMrKOu4ftoAmhUwg8/TpBehZr1fs0idubsTB+aZpyOkV0Q/sdjv6k5fJOEbO3Y50OnHbyj3b1JkQz6yqhvtv3tE0FaA5nHuGMEJMKOS87h6aOcstK4dWFUp5qiqjKnj98IrDUc7rD9+/p2pqfvnLByp7z3d/+shhN7K92fD+cc/djSAw68UahaE/n/E5Y6nx0dPUNcEPNE3D+4+n8h00GGO4f7jl5fTMae9RWbNe3GLHs7jxeik4N4sNtqqp6pqbV/d8enmmNjXkgd/+4SfOQ+Lbb38FgD6PxGGkWbSARivH/au37J9f+Hj4yO12y8RmbuqaD+8PgCE1hm5/xtpA20K7WLJctlgrz9g4DPhxT3dOdENHvVjQNq4siImhHKtxloe3X1O5JaRM1+8Z4p5FazEqcOxO6KUU3VZZQgiYqilxNIGmqjkOB4wKhKGfd+FCdk1YU9GP4gzuXE2MibpqOfo9dclIW6o1jZMg3NOp44fnJ0KS3X5tnYSilrUrpkDqJebDDyNjDIxjYAyKrg8MxdYgJkUYxSMnG2nVG2Wpa0ddOWpnaIt3T+0qdG3puoHKijBBUOMK42oqBXESV5CIPqFMQzYJkNgYQYIrjAFbcoFdgqwUjYvkFBnUGe87bJYCjoi4ZiPzaiIzjiOVMiRtMU6ew8SljRWlUpHLkSMYV+b1CZG4qJYUgtLMZca11FxrbPHKKS8uHj2xFAZ5ViYVlfhfHFIoKFKKMsfyOa0hEcuEX0i/09FoNYtU5K9qFsCYnxc7c6vpcvy5FHdyv5XYh5ylm5HzbHNy7XqMzpeWZy7oGMwbhOm6gKBK5Zezl9xnXkNKC+qnPw8r/afGF4Lyl/FlfBlfxpfxZXwZ/6bHF2TnagwpUnmDyoGJXKNyJOeB6BIUUz9pYSYyP0uXTSJB1E6hZujNSGquNWhVXOkQ0vGUlKtQRZInFTKzfPBScStjMcYJBGwtSRX3SFX6vHMVncpHJBKRrAJkLb1Rc0kudnOyeCDmgMKQsgEVpD2iDXVb2gdO0SxbFqsllavRzqJVRTYKhZ0lsPKpQtZVxhT5qMCZEYEjU4gzyc6o0ooLnpytCDaNQZVk4Kq+VPlaS785hMKdUBCyFzJ4jFSll9wst+ScOZ17XOtQVWa/3zMOHpMVIQZOhduSFw2rRcu7mweqSqS1VVtT1w5dWWLIYkgHHI5HzqMXl7II3379K8bYsds9E33il7/8dnZFPp+OnA5nnNZ86vYMw8BwHoCMtobHx0eGTs6jbWseXt1gTMv+eJC2JI797sy574iFPLlsl7j+TMo9w3hmuXJUVcXr+9csFivOo2cnXSx2p47zqSfHka4Tx922bjgcDoS+AxVZFRdpqxNN1WBtBdngB8l2WrY1OUdcBW3hIsUYIYKtLTEoYrYkNOtty9D1PL/0sxfJV1+/5rA/8ff/5Xte3d/x1et7Drs9Lx+fqPWK7757BuD1wz3eD9RVjQ4jyhqOuxM+amxV3G4n5PR44H5bYaKHoMnJYnOidRWfzmecstT1dG8lVq1m8D3GJn71q1/w+GkHzqCjJjnFd++llbder1lWlrqu6HvxWWIcWa4atIk87z8xjnLPbNY3fPXLX9P3PSn3rNdrvO9YLdZ0PvL8/ExdybNQWYvVUNWWzeo1fT/w9PLIarFEa8t6vQWgDwGMISo4HQ8olVms1nSHwPF4FOuGMkJK4gQ8Dhz6Z2Iy5KwYw4mUI6eXlyu7BsPhOGBWIh33pVVt3YLgoW5WVLUgbFQevWw5HPbUjaG1FdF7/BjxKePHiwQ5pECYEuRHJajpaWDXR16OZ87FZydmTczSzoomYIoT7qJyLCvLwmqWxbJi2ViqRlM3TtLQ64rVasFi2VDXNTG22JITl4OcRzIJbSdBhCAW4iYhbS+ZZwGtCKNHqRHjKurFmnw6klOQFnxBQWJQjMHjo5yfMaa06CsqY/BFXJKjiErURK4mXf0/4m02e4kJQmEKepNyZoK29eRdM/070YbMsvs0HT+F8qBKPwtmFOXz/7941cDl9/I5uRguXzxsJvfmqWV1jeyo4neU7ecE4IlaMROuk0IXasFFbj8hPNO/S7MEf25PTiaDhSN0McdlblMZMyE76p9AduS9Jjf2f258KXauxhg8Jw1VSng3hc4pwJFjxDi50S/scFUgylIYwRwVMUc4aCXBcj8zS5qGkIZjIbVd/ZurXqoxBuOqWemkUJf08ZzEIr20Uk2CFNMc8RDGKOF/KCEHTgF0SPtnjIkYFSmKG6pSicpkqBS6QK6Vs7S1o3bSujJ1A1miK4x2ZH1RH6g09XglQkIUYWWinNPGy8kb8VjQupBKlRays4bg+9KiKlykICGcPmWs0hK25+Uh1tqSSrHjo3BdqqWbjQfzaDnHARU8rjXipAxstktePdywWm7QVUsIkaRgfzrDOdG2LYvC1Xh+OXA6iUfN64dXpOixIWNvbrm9u5MCabpe1pATnPZHxhw4H89itBZh0SwZx57be4l2aNuWw/FM13mcrTidRlbLlrt1w6vbFU/Fafnjp4+8/eod99t7Fs1btjcNy3ZF8o6+GwnnA+PYT3cVIQReXvbilbMR08PV0tHcL1m0Nbe3m3IPS/RHzo7TqQM14Coj1zcm+vPAcCzKqk1N9IExjmxvHsA0jF4WHmUNtw9bUikKjqc9TmW+/npL1x15/iT3w3ZliTGRs1zX/tzjFo6Pzy80leXhQXyJum7AWMu573CleBjHgSEbGivqocolXs5nuucfuds2LJ1jLC0U09bUN0vu2wVPT59otObbr+85nUd2xyNKaepCJI7RszuMDOOJ7d0tCVgsb/FDT+RM3Sy4e5B79NPjMz4G7m8feHoa+fDDj2y3S2oLVmvqVTNP7IM/UzmFHzI+jsSYuX24x2DYHw+MxdzSNsLr6ccTthLSfw6RttnQ9z3L5WJWF8lz5fHJ0HcnjF4x9J7OdywWDW9efzW7Yz+9fEI8ZRwJcZueJvwYI4umpp4KCGXkObUWZV1RY4me4Xwa0DnRRClMhhjoOs8QMoc+8XgKfDr1nMbIeYyM5fn2UZXiVxFUiYRBU5uM1T1WKZal5besHK0zrGpN2xhuNy0PMRDGkco1tI3HtfIdVFXApUxVJVzhgOgrZY4xilQWSouopEY9kpLMXapzkDV+OEHKs9ePdmC9picTkmykQo5SXBs9e+LobIr5q5znHLyspkX5Mh/Kei+li3BVZMM7mQR+piSaOCzzz8Xrh0whTU9mihQic56Dn6ch9F7k386zgRRgU4zFZ/wYpebzF98aiSAyU0vOmZljJHyZ8vEUNR1XbbifqYOvj4tCLmcWuRQKyHVLiukzLlwd+SeXIkf+uyrqtCLbC4/ovzW+FDtXw8eECpEULlbXKunCiJc075wTOpWEclsIXRcmGNpIMTTd9GRZ+FIuBlGTTXZKGCXux3myizelfppcRLlUuNZWhRUvbHtywiAPOVbjfdk5pIiKYrYXi0tz8AmjMsRMF6eb7iJHTCkVBn+eYymMvRj6aW3lc6UuE3l4ebCNMXjkwQHmG5RUDLaUlR2Y+fNecpzNEKV4yyrjw4AnkfxATMMlWTeN4vLsPWNSOO1AWzKWqMBUsnjWxqIRmXp/PnE87cVsTilW65amadiuBalomoauO/HDDz9wHj2b7R13r9/w5s1XhNjhu4H9iyAQjWvY/OodfoxolWjsApsqhsHRjzuqaoVxwqs4v5zoug6ra879wPk4sN8dMUpxe3/PerPmXNQi2gbq5YYxHclKcfNwz9ifcE1FVWvetrcA/Lv/3d/Qti1WO4axI44D527kw4cfePzwidrAw/1tuQ89blnx6vYtx+ORNBx4/eqeyq7IOdMNIzmWosBGqtpSuYpVa+nDQuS6HkLwLLeL2QlVkVmvW5IRJ+tUSMExjFjn2D8f5mK6dS3VWpNioLKB2AR87+lCj1EWVZQtJit0gle3NzzvXnh+fqZpKqyHrjuwWmx4PEi0xBg1L4eRkD0fTwY/JGrdEEPgpAbUAjZLuQ+cc1hTMabM+vaOIWcaH1ktl9jG0p2HaSVi6BPr7Q0rZenHzP7U0fv3LBcN93evGbueUGJelu2KYTzx/qff83C/pvnVhq7ryPkEVHx6Ps8uvjfbO1y7ZDydOB8HVqs1zjWMQ0dIibaga1iR9Db1EqMRZNmAXW3RtuJweL6gO9ahdU27WmFbRXcWVCwNmXPX41PmtN+V6+W5ub8FpRh6j6LheBjQNpQ4FYMtnJkUNSgRFSyWt6jqA6HzdD6y8Jlu9PTFfb3rPU/ngd2oeOoChzFxHgJhQrqnPCUhtaDzhFYnYkp0XmIBVM7sCum4sQmjoTGZhYOHQ8fp5LlZ9iwby7JtCqdKJPWrNBFvZdGd1D0YMfWb7lmD8PLIGk+QudpIttf5aPFDRw6TtYLC6IA1sXAiEzl68fxNljwlqediMjsTlX+2sHMpYuzMcZGiJWrAKFEtAZF0yStkMnotxROUHEQpfFRW/NkoyH4uc/JnFiTlGAxA4XmitHQKlAI7FTtufr0u877OsmHnqtAQlP2Cqnwu+S4b9axnscyE7Hz+uvSXf5cnBF+LEEcp4S2qnxc6l/eaUP+chz+/Ln9hfCl2rsaYIioUopUqO6mUpQjRGp002soNaJWeq9FLdaqkVZUVKWaRpmtK1S+w3XRnC+m4LCJK4iVm+G+CICcemdYz6pPSZRehSlWdcrwErIWRFIMsZsGToycVFdZ4xZCXe78ArlpTGY2tLc6KY3NVO6pCXtSVI2GISbJSSLFIBCUYVRs7FznzNdGX4ivmRAzqs/MAUFHkmpO0URElgkJltKlK66q4m0YDOpOiQedINtLO00ZTaQslNyf4zLn3PL3s2B12HE97jvsdd+sFi4VBpYGXg3y33Yee5EUq+/Dqhl/+8h1Vu+Hl+cDHT49obbnZiCvxYrmkaiuGYaA77QmjpxtOaBTr5VqOe5Rre795YK8Hnl+OPD71DD6i7IqQAyOaxXrD6mY533f9GGjqBeM4EsaRu9ttIXEanLnI/PvDnp+edxxOHcponl/2+BRZ1A2rmzVDaWXuD73kdEXNj9//ie3NgoSlbcSRNGZF1cpCWyGuyOfDDo1hsWlYbm/wWa6lMg0ztU+JbcDYdTjnuLvZkHzidDoR+g57pzntXwB4OZ7IIUpeklKQApWxHPdnxrEnxMukHI6BzWbD69tXjDHQx8TTaURjeXp6YlXcptPhxO400kexfYjpzGa9YGFbKmulSJocnNcbmtWWum3AysS93z1jw0hdaVbrZiZAZgzH3uOqmvuHW9p2yfG8I0bP49OJuq5ZliKq58z5rIgBHj8duL+9wQcIQaJltqvtDMNbazmdz2hjqNuWrBTH7kwcPT70DIPch8tVg3GK7nwgxkTjKoIfCf6FNHb4eGQY5VhvH35B26wZfaDrRxTg/Yi1hmq9IuVAmoqoEDBOcz5Fnnc91tUYW4lre84EFKqoHXMKRXVa0TQL2rblfOo5jZ46ZIZzmkUA+yHy0nt2IdH5RBIVABpPVRkoSjtrSpshRKEA5JLHFzI+Q4xqdpk5Bnn+z1pzHBLHHvZd5KatuFk33K5GVgUJu4mAcrKZbBI5OpQWufWYMsbUMwpjMGitsLXBluWujgarLCrD6CrCKBuPYRjk3kwZVBSxRBZif0yJUI42xkDSDm3NrFKaxtROusipL/47Eu484S7T3B9nPESpi9xcvpPCSr6OlJjtSKL45hS5eS7E38ilgLguJLTWJDUhX4Vs7NxnZGSl1Dyvmql4Kc+ILXP3tRLqswDqK7+bz1tW8rvL+PNi5/M22VXBlv9yofOZL9BV6Oo/N74UO1cjxkhSBq+KdwXSaVEpY/L05wXRSFPBkK8vvgV0sbOZOq/iVaNU2bVBSSZXl7RwPfU4FejPi53pi5YiZ0KagsCaIRCGkVCUHX4UM7lxHIhhgByIWRFDJsQ030jOgtUZbSK1czRNS1s3YnevFLaycwRE0ga0eN/Y8lApDVrLhKMQPxsAZdxsGZ5CQLuMKknwM/O+TATtVCAh0HwKnhB6QcJSIKfMZEOlVCMPdx3RWVFXLU47PJKKfJ5kpEoRc8ZqRaMdrlqxusksFzVGBbrhjDayQ9ysH1DOUtc1q82S3sN3P/xBog3WDW9e3bJeySLXNC2fnvY8fvxYbB4SPntennbw6GjbNfGjTJrvP34k68T9/Za/+tu3s7Q/jpHVasXYn2lK+2CxWKFtZL02ZC+eP1lFMoGX3cCixGB8/+NvST6gbUt39nx6eaGtG+42NXf3a9pVzVB23kkt2e1OHE57Xn91z8N9y2rZUFtpVfQ+EAuyk4v3hlWBnDUpLPCjRjmNcxLgqpD7oB8COTuWixatEuMoypn1puGoE93R025v5LtdWcbjmcN+oDt0hCzGljlEDIrjWa6Vqxqyq/nu4yde5TustSwWDW9fv+HDh0faesGukJFirBhCJvSZmEacqvl49DQ2sW0tT+cDt0rac4s7K7t8YwkpsWwa6rtX5BQI45lF3TAtM8fjyLuHt4RkyD6DzWyX9+z2B+xqXYqWcrxuQbNKnA4JYyFpS12vORwOpNyTc8ZNmwSrOR7PdF2H0QlXVySkTbVoljTT82Uy4+gxOeKUoh86hqFDxx5nDCu3oZ6sCqzlsH/GOAvRMw4B5yr8GDj1ElQ8dFKU2NoRfWIcA23b0rRLXF2hjBObgagpIBTW1EQiaEv0A+umYUemi/B88mgD+8J1+xhGhiAbL60tziYaJ6no67bCutLONbrwdBxjDmhtSEjI6H4MHLvAOE4tPwkjDkl4SX3oGZLjNGYOY+Rwjjz0JRJnTKQQicOZetFIHIYT9WdWBmPGiwGhcWhnSBjqgoxHLKZdUClD3/d0RfGJPjOGhPKgUgcpogjEnAlZEcpcFHGCiuRiNvuzhfj67+JZpoohH3MM0YSs67ncK5ScqVWUNTlFUGJfInxG/RlyIyiaLBOpBCWrUizla7M9JcW+LUjJtOmc+DgTsqO1Jhsjhq5ZY5RCGSmIbFl3sr6SfZfPUHoq3MzVOqVmegdAnkwEy7n/c+MvFTbz+UzIYdlI5TlG5L89vqixvowv48v4Mr6ML+PL+Dc9viA7nw0JotQoUUsB2kg7MamL8mkiZZlSyXLlADmZPenSvhIOlyElhdKXdHIxr5Ied8wJnS3KGukxKyVkOzOhJRalhNycSyshEwklAiL4Hl8IjCF4vB9IOcwVtskecsbYixJAKai07Nxd21K1S9rlBltblFI4k2ejQHm9QblK1FjWYE2DrsVrBaNnZ02tLJMvw0S0jDHOzsqfdXmV7PaNUoTgCbEXU8QwFuTh2t7cYayjtUJyFGdrCyGIw3NTUI0cUApCHBmGE+PgUcaRMcSk2d7czSZ1m82GetESY+Tcn3n/4SNDX4iGCYa+F6Iu8N13P+B9X8jnFd4rji89+53n07FjsQj86t09AP/+b37BkE/4XhyE727uGFXPGAPd4FktFmwnp2GrqQk8P+3ozmdyUhxOZ0lVXy757Q9/AOB87jEqYxuoFw3f3HzN0HsOnefp94+0C8vNZlu+K81mseKbN/esl8U9OCayUcQworWE0gJE7ajahnZjSBlC1gypJ3dKfJYS885Nk2nrBnQjzrjjQciwOoAJbFYNh/1evq5U0ccBreH2bkXGs99lPuw7KlezbKfgWIWyitqsgETXdXgfWTQtq9WC3f6MrmSXHroRZT1ZJUzMwmXLhs2i5XbVst7cc/tWeEva2dLqChhlCCGxXK55enrh7tXXnE4nKDvCzc2W/fnM3d0DKoOPHoJjvd5yHvY8PX6S8waWi83M5VBKAkWdNqw3K7ruJGTP4vA6BiG5r9driTZoFihbE30ixJ448Tqcpm4tcSzv1xiaxRqDxA6nFLDF/G8cI4qKpt2S6YjqTIiJ3XGPRQkfpLxvWy3J2rF9aAlRYdwCrSzGiBmiNRW2oJxaVSSVMAuHXXXUy4/US8Pej3RhJATFobTdfAZrMotGs6g0ja2oK027WFDV0BSjwMoZnJXOfQq5aIoiPimOXeDYJbq+mEueA/vR040wjBk/Js4xk4ZE5wcOfWRf2k3Pfcdt13N3aFiuKjbLhkW7ZNE2Yi5YQyrKKWcMGkEpYtYo5cTPS2lyC1Zl2mLYaE1D5RpO7oVxaEghMqYAxkqQ85USSsUkvmviJYzWMr8rkiD4V6iKIPEZZa7MBI0ITPQ13qAr5nDVnAW9Q5CuKRF9Wj+svqA8kxJKugHmz1AR5nWkoPZKhC6C7IhhojyLjqzF+8YVc7+sJyTIFhTnoriaCOHKqPk8DIaoC2ZaEBydIZdA47k19bP0zmuy98/bWvPl0ZPQ5/pncn3+JeNLsXM1dE6YLBwSV66n1cLulwstt7suE9qU/jt9b3LTSWqtPFQCQZKEQa7S5YtMSZj1U16JMQZr7NzfNcbMtutaSxEmJOFESogsdBCH5FTiIEBkmcIkls8zCNk45yis/PL5YnZoqGxF7RqaqqZpGlwjvWhnqrmAybq4WhaZpy7J5qaqiuzTXIygihJhejCDCjId6PTn/dmo0CoXiTw4V6OUYiy9baXyTJJWyqGVJeSEc25u5ykNvu8JTG6o4hIcvGLsI1ZZqsawWras1g193zMxBVKMfPywx9m6nKOjXYjirKkdPsD7D98B0J177u63NO0G7z3BDwRV06wtf/v1mtVqhS0tyfP5xKJZ8er+Ff24oz8+YpuGd29u0ZVi7D2hmNTFwfKyf+GnH35kYRzL5ZLbmxXH88j//F//fm79tRX88hdf8XAvBU2Imd3zC42B9r7F2IDW8p7Hc4e1DRHLh8f3wMjD3Yq6Miy3S4y5JU/yPeUwtkZbMROsihJD7j1NEj2LfGYSE0xpdRrGflOk7WeMVvT9M9GLCWJ36ok+4KqW/X7HsjUsVy33MdN3kTGWiTxa4ihW9sdu4OZmSxw7uuOBbDVg8L4UZgEcFTGIa3btDHWjWLQVzioW1tKWiftmsyXqTLtY0vmEshU+ZjY3N4zBs1pvyXGSz2rWFRz3B4ybzhHIFc7W3N+9JpYW4ePjE5VTdOeR7XaLItOddrStPD9KGXRpoWhlOXd7Dvs9xsqmoLGG3p8xpQ0MsP90oHJtiYypSGTC2MsmZugY+jNVMV1r2yXBJ5SrCCmTk2McBipTQ8r88Xff8dU37+TzrSNphe8DVb3AaFWcjhU5Kep1hWnKHJMsxESbDauqYtuueK7X/IAU1J4wL8vbpWG7aNgsLY01WCtOyKaRDc7kD+ecobIZbYAk7soxJcCyGaHrRoZe7tnRZw6dZ995dueB3dFz7iNdGOmypo9wGmSiPZ0T3SkxLAduNjVhE1F3jrqqqOtarD7mRTmSs0FPwgttyLnwPKIc6EQoN0ZhtcIZOHeWoTujoyzyNhu8LzEzMYlhayzt/OJ4r83nNhkyb1lRQk21z2w4+PNipSz4OWPLa6c1vLIXHsu8WZ7+bVKf/X3iziR1Zc5XNtDK6FK4mHkNk7R5M79OuD8Gp43M5cUkV5U5XumL8mlqIymjC7HaSGFrchHtTAWQErCgDCl21HzO/xS5+7/1/9MwKJL9J9wWfza+FDtXo9IKq8AqhStytvr/z96fxNqWrfld6G9Us1jlLk4ZETfiZjoNZLoCjGQJIcAY2aTlBoUMQmDZhhYIyTa4Y0sIaCAkaFjCCFrUSBgBsoSEJRIaPMtCFs/5SLCNM/PezJtRnmpXq5zVKF7jG3OudU7EzRtp4+finSFtnbP3XnuuuWYx5jf+378wBqPUZK09ysrfJmedhlS8CohykSdxLiZzzUYJXsqSTGOs3ITGTHyZsYqeXCW1nqrkEJIUOCFIFEToRboexrypAd8H4iBk5OizrbjSDDHgh3GTmqgKUiiwyVEiJGSMwxUlhS3RI7Kji5P/Qu7jamsnMrY255PLafUx9oetFeIznCM/+WY2HoI8YPq+A+WwzmBdhck3p+yvFH/KGvq+p216hqEn4UlaMcv28H07sDnsaLZ7jI5EPVAWMy4vLzm2O5q2RWvh4Rz2DUU9I4SB/V4e0qt5jXMOH3pub24nr4cnz55SVhYfBobQU1SWn3h6SVmWfPb5l+xvv2SbUY1H60vq9YKvvvySodvy7MNneBXYHTbQO1KEIs8Zh/2Rm7sDuCXLx2sg8cXnn3I4HLhcaJ49k/ym9cVSVp27ls1mQ+871us1pnR4nzBmxZDt/F0h5Es/JEiO+bxi6MXjJ+iCqlxPjtdYR1nMMK5GKcPgG3HoRY5zVC1lkVEoM2cYAkrJg2G2WlKUNduNwiRPaVuKZfY7sg0pJfrhSGLOYdswtD1dGChnNYdcwDR7Qcu6wwFTldzfbZnPKnxUtP1AtbpGt6/lc2kwOG7u76Tw14pFuSIS0NahbOSwewBg8D1PP/4xkqmYz6Rw1xhRrdi8GBhNYmPCWktVWm7vXlAYy7aPWFOSlBTWo3rOOsd2u2e9uqYdjtRlQTVbcXt3g0oDq9UKldUh3jc4Z1mv1xyPLf2hoSgKKuvYbff0WQSRVMIUCj/0DO3AYjFnt9lD6pnPCqyqpvvA+x60Y+g6HrZ7kkIKbbvi7u5GitmssGr7Li9GEikORKVQ2rA77nGukDkoU0aiBowmeYVxFldUlLM5ttije09tDKvsu7VeKK6WJYtlQeEcUcsCSBlB1CZOhUaQcA3WvE1mnVWK9Xw2RWaECMd+YHs8sm96bh8abu8H7rcdxz5w8IFOjUjHQEzCGVJKlJmLeUfoS2LlgPKtuTlGkWkL4pIobA5Txmak+1RAGDWi+RLtYDNiXis1FUVdSHS9kqInBdGGWCAWU2Ewvf0ZifbrCqa3H/aTg016268mqhPC/m6BNL0unrY/cjsnkvRoZXJWtGhlpdgxQtaWXVUki4Rvao1JYxKAnvg5p0XtSS2FTuhcUAmy4ydEfPw8Y7EzKs+SVl8rct4d5yjPu4jPtL9oSdX+FuNbFTv//r//73+rjZ2PP/gH/yDL5fLX/Hd/I4c1Wr60xuYb1hqFMxrrcjaHzqx5IpOK+2wbSgchekZFippk5ELRWqFUmJRb2iRSDhctcrFwsuiWi9WoCTI65bL4QAqBMPRSSGV1Vsjqlr7zdF2P9x6NofeBPmh8giHpKQSzsAZVOtyiplotqOYr3GyGKQu0q7BVjcsrVGNVRpTGIgaMShKpkcTGPeWbYHzdJFdUoEyaUKLJIwimCUAC/7SYFTohO49S+/E9ve8JCbp9I22x5HNcRU0cIm0rxcruYUPfbFHpQGGhXqypZo77zR29j/ig0PlBX8/n2KKi6xqsk+BHow2bzZayMDx7+vjtmy1B33a40rKcL1A60rVHysKy3wbqmRQFUVt+6dPPGLqe60dXfPrFHc8/+gBrSuZ1Tds03LyUB/h+f8RVNR89f0rbHzjst1xdLljNLRrDMsttu6bn9as7nLHMa8fjecVqteLYeoZBsp+GHF57OPR5UvIsVhUXqzmzqkTpJCtfpk4LSht8GGh8h7VjlIGZyO1GJ2LIboUESIqu8xhj8b6hqipms4Lt5ogflKjSgNl8hTaw22mCV1ir2d8feHix5xD2TB5iyuO9KOhsMvQ+ily9rnnYNYTNLUoJBK6V4n63ofUOlTyz0mA1VLYgRU/bNsxqObd937Lfblg9cvR9z9X1E6yZCyk3tGJFNuzy9Q1N06C1ZlavePHiFYuLCy4uL/Des9sdGLI8OYTA4ycXNMcj+/2R5ANlYXj0+AqrLMfjcZp8fdex3zZUZY1zJXcPe/oh8ujpMx49LqfiuB2OtO0R50qa5kgYjjiraY+B/cMRUypMbgPPlyuOh5a2PbJczpkvVwwhcHNzQ58CWMMxy+T9ITCbzWi7jlB4yrnGh0Df91TlXNAqNxJpAyiLdiWuWmJnG0xlKQuY14plabhYyYJiUWvqmaOeFeiixFhHVBomFCCfWqWEcJ8E1XFOEsdH9MHoYkJuQbPwkVUrgbdX64arRcPLN1vebDoeNs2UZZaiRid5oFrdS6G6PWCtRhcO44ZpvhnnUAnMDjkGSMI4VXy7AJHCUBDOWCdAMbhWVIUqYPOTWkdBpBkifZAIHCwyb5t8HHIBIcdFi8AlFwhyvPN7qm966J/aPwD+TN10eu07RVPMqlbeLnDGvxsX6CQpcMaWlcqhrvInRkxzlcJoK6iJOdmgjN2NcZtTTtY7xY4x9i1kRyfOip231bojwvVNhc/pZydhzbtIj4oKf4Y2/WrjWxU7f/gP/2E++uijswvzVx+ff/45v+f3/J6/5Yqd9+P9eD/ej/fj/Xg//vYb37qN9Rf+wl/gyZMn3+q1f6sWOUoJjGm1VNwwtqViNrczJ98QQKURxTgVgUo7SBBTxGuPSxqMQmtBN4IeVxEOhcPaAmtGqd4pCXRMJZchBn0xijOu7wchKYdA9JJs3Pe59+0TPkLEErQhOYtxCp0UlVWUWe66mJUs5jXz5YyqqiiydbyrKoqyzn3YDFmabIY4hredcZSkmlcn4nOU30fSWy2tlCJ9DiPkDOIMQTgEWo/mieLZk5LChzTxNfphIAyexIBTDmMltJEQaQ579tnfJfStBFMmy3q5QCnFw77h2HiU1jx+8pz1xSK/u+ZwbHh98yBOxtsehazwL1aPqOuazWYDwM2b1ygdqKqKeX2BMY62OdD3PU1zoKodh+xg/OlXn1IXM9brNU3fsbxYUVU1MSUOhwP73Y6Xr28AKIoKA7y5ueHYbFnOF2gd6YbIbFHTZJ7Ay9s3zMs58/USZzTzZUkXEl+9us2ryETXCFKhVWS9XqHSwHK2oChqrCoxhRPTSS1kyfH4i5mZyu25kuAj0UecqUjK4zNfhX4H2hB9omsjRll27ZGiKoWTZtPI+eX2bktVltSziug90RWkWLDat3RdN/nszOdzXt9twBiaIaKV4xCgbTymqiEk9tnBuQuJQ1C0AUrtCEGxO3SYEAmVpp4tmF2JL5IrClAFflBUsxmhV+haE5VYKSgdqfQiXwWRoc9+QSlSzBYYW3F398BsNqPrei7WQnxuuiMPDw9cXa65vr7g/vaWYQjECD0tRVWxyAnrIQw8bG7pOknb/uCDDxlS5IsvvpBE+YXMk7NZRQiJ7cOWECL3zZ7Hj674znd/jBgGIAjJHFnBl2WNdRXKVAQvHEEfA9oYtJoxm4v83ruetumAEmvmwtNKUM1m4Aw+hgk+0NoKYoKhsKUks1c1s0Lu71ltmNfyuKjmGlc4sS0wBpxBkg8kGXycO4mCSKvMT+yGgNMF2pbCQdR2Suy0RjGrFVVpSGnGYlazqPeUFVT1Dmc8Dw9yDPwQ6XykGRKbLmCPAb0NaGdQhfAe1SLva2XRKfNjoiKqcMaZGT2+8pwLKC1ROUOSdjDKoLQnpgFzcv8DlQiqIwyRhEHYghKLoM5IwpOb/sibmb5O7aBxTO7E07yfEbDsofY2snOaQ5U6iy1KI2n47d+ft59GJ/7RmdicGfolK/tmM2dnROtGZGds+Y0ojlKKaN5tY8VM5fjhyM5oHAhvmzL+MIRHnjvfQEQ2nBINfsT4VsXOv/Fv/BssFosf/cI8/vgf/+NcXV1969f/zTKMNhRWEsqnNtYZWV6OacxtKnE91pwuzqjEnCuhUUkRonAbkpI+tjIKo0+QpBRAQYqjmCamvs6ePOdjLHQGL8ZXKQXwkijse3FJlu0aSfNWRnwzyEx6NLpQ1FnZMqtLZlWNcWpKFy6KAmOtFB4KRtPDlP0fxp2KI3tfaZlg9bn/w6gyyA/SkQRKFFMzY6beN0TKQvrr0tqKkjCcbdFTOpHsyrIEV8gFn+Sh2rYtzeHIYXfPMMgDUetA1xzw3vP6zb28jVOUdcnF5SMhn2cflN1ux8PDVpxuC/HcuL/d8fjRFc45aYNVsq/LhWWxvmK5uCAG8U958eIVIQjfww+J/YO00mIHj59fsVwuCSagguLh4R5nHFjHy1cPUx9+fXlBSge6rqOwNVoX9G1DWdY4U2Byv+cnf/1PMp8vePHVl2y2W44HgejXM/EJQofJZbeqHXU1Z1YVUkwpLUW4NWBKCJ5+MvXz4tIapU009JHDvqE9HqnLmsVySV3J8WrbBhVk0lGhZwR6tw9bINF3A0Xmi9jScmwavHdYXZN0jzGKoizpmhbv8wTuSqpqxa6LpAD7IZJI2NKigxZIPCuhNrd3dEmhtMMqmFUzuVecoViWLB9dYnIbyxU1Q1IU1YIQFcdjT228nCvvGYLH5YdX6QpsUVGEhAkBkmYInsv1Ffd3Dzhb8rCR6+vp08f0Vc1u+8But2O9WLLbP2ALR2ELjscjL/aSuXV9fcWj66fs93uOxyP7wz2L5SXPnj3j4faOm5uHPLFAURSsLlZorbm7M3z/+7/McbdnvVoSwkCZM6y6YSB4sFFOZzWrub+5Y1Y4SiNChsNBUuLL2QyCPOT7GDADiEuyIwwdqigI+Ulf5DlIFKQB5xyz2YxZWeGspnCZjwMko4hWCK4pm6vKA1ScoMfk7ZgGYkDy8EZVGYYyyTaU0tOD1kWLKhO2nOGM+GhVVSUFcyU8p6+UFPP324G2GzgMAdMqjBrQsaVQR7SxOFtPhqhFkYswpWFSyoqaFrIQJM9nIQRpbRGpKkOX+S0peEJsiWPRnyIYKTqxkZgz4tDy4NXKMmU9jfFBmauo9anokd9/3fV4WjyPypdMZH+XpwMn8vG72ziZGnIiF6v0lrIqaTHBHT8/aKKJf03Fjk4a9S2KHVL8ocWOTqeFdIxSzCdOvnNfOwbfwJ39pvGti51fy/hjf+yP/Zpe/zfLsFoKF406rU5AVijp9DX2R0+0qJPjY4xyEwsDP8n51pGkLEmryU5fLJcEPYnRv3WyY1AYQzbVQzg7KTJ4f6rg40hADplYN968elJdGQopImJAKU/0iUHLDTsMkaHUaF0TFMKbUbJPYgVmp15uGhMgYpz4NuNNM7U28/4bfZJIapUdp/NNMhGv9cjZCVOfOWVpfgiBMAy5p68nbklKFgyEoWF/2NO1A8H3+NCh1ABJkK3DTtAWrTWqMFxfX+OKkhijcHKM4f5WiqDdbsfV1QXWOu4ettzdPUAM+BQxznK/27LJ2VRVVYNXvPjiBYdmABTtELi8vOTy8pLPP/+SoZdj8Mkn3+HiouTyqqbrA1989iU6gV2seLh7gyEydMLXsKwwpqScVex6zS999pLdZstP/Nh3+fjHPpgmrfvthtsXGzabA8f9HqdaKgePLtZc1EuW6xVFMXKsLGDBGpwriT4IuVtpVIwMKRIy8TIwgDKk6AhRolJmpSL5RPQH2k5PWUvN8TiRk4e+YwgtaEtd1ez3e5Qyk4JkNltQlwPH/YF+6DCFmFLOV3OGzhOMrNLb3vKw3dEMmjYNoCUHTvmEcxGLJnby/oVyuMIwDAMLZ7A6Ma8Mi1mNVZr9pqWeXQBQLha4CF98+hkUjg8++i5ai0uudRZt3SlLzHuUFa5FaUvhUejEcb/jydPH+CFR5H3YbRsOhzuROJua7//gV3j8+Jrd4cDFyrC+uGC3k4fTZjOwWDo8hmPXozC8efMZ6/UlV1dXdFkt8PrNLdvdAW0V++2WWVXw7NkzuubIg09cXF5SuOy4bcXFu6gcCthuH1AajC5omwNd7KaA0S4oknLM5pbD4UAaEovFCpXnFqv1JL8POqGMQRMx0Yi6SkFVFbgItjDYzKpXWjh2SWm01Yh4MiI6jDQR5X3fS6ETpJDwMcIQaQuPclKUmELumcFKLl1ZOBRajAILTWEtpVHMlBVTQKB0O15uAm3vOXhQR1AhUFlHWRfM5z3zucxzhY+UNgnfMhcZY0aXFCJOzPvI0msfSAmiFy6QqIsMKmhCnresGWCIdD5QEHMunyYoLYsTZSZ5tFEi5DhlJo4xDGMUj/6GYke9VQBMGVHvoB5SEJxM/t7dxqS8PROXjGRj+SBS7JipitAkK5JyrSVHcZSeg+Zdzo5Oo9FgmoofED7qqM6CjOydFTtS0Lxt1/I1wvU7379b0E2fNT+vv834G6rG+rN/9s/y7/17/x4/+7M/y4sXL/jTf/pP84//4//49Ps/8Af+AP/5f/6fv/U3v+23/Tb+/J//89P3XdfxR//oH+W//q//a5qm4Xf8jt/Bf/gf/od89NFHv+b9qYsKa0Q+N6I1aiwokzyIR1jyfJwXKnJxZBREMhkkR4iUJXjyN0ZFkYAm8cwZIUulDFEbotbTgwPEonwYBnxuJcUYiUE8bEbXTJB4hhgSKQ2TO6rW5JtNU2TScVXMKe0C5+bYQmBxbUqS0SQj+68mUrEUd0llEnWeOKT4kQl7gm2FwU0UxwmMkYmzC4NIG5PCjivE2OftyP5570U26uTzhSgOsfL5pVXQdnvxFIqeEHqGYaA5HiejBmMcV1cLFusltnCEGFFW0A+rLDev3zCuTtbLC46HgLWG2WxBCIGH3T0YzRcvX/Lyy5eTv8rV1YzPX3+J1pr1YkFRFDx7fk3XDnz+6Wc4a/i7fvIDQFqExihev3jNly8eKF3FxbKCmCjriodXb1hfCPLpo+XhcMS5iuAD16sVv/mnfoJ6VvLm1Q1NI6v0qnSURrGsI2kI+D5xdXXN9eWSqragPF1OYLRYUGCtYUiJiKdtB7kQosJ3HTGTPVEdqJhXrTIhN0Og7Q5obWkGT13ntrRS7HY7UB2+66cWZFHNWCwWtG2YWk6F1TirUbonxcRm09IeOyrjSMYxWsrv9ztC6jBFwdAmoldUxoGxkrYde6If1SqJpBKz2kEMDEOHUjXWaubzGu0M7ZkzdDUr+Wh1waAt95stfd/z9NFjQrbzn8/X+Z7xRBqMs4S2EYl2lMgVCbE1U1HvCoMrrrm9e4OdVcwXK968eS2O6jFxsXaTpT5a8YNfecWjR9es1tdC5l413N1tmPc1dSWqwMWyIviSoY1cXT6laQ+UpcWpGUPXcnNzw4cfSQHltKKcVQwp0fc9wUPhapq+Y3s4Ui+WuKye833HYiatYaKi9w0YMKaYIlwm236jSTFCEP8wo6TIndUGnyy60JPTrogRTpGTSSdCXqRFr6aA09AF4iCRFj56hgA+SYvFVeAKCdMFQW5TsqQI3iZiIW2kcm65jIL8FJlM7axGWcPLmwPDEDjEhFYFs85THzvWTUebPYHKrkcbWZSNvjAyJ0rBcY6CaK1BaUKIWGRh5rXGe53tM2w+BwZUwKduUoRpbVDaYLS0T08FRUa/0VlRmjMO9dl+MN5e76iNMloyom/nratxTG7FuRgw6Z3PyFmxM4oScuFCVshNC/CsxlJJ2poGdRbCObapztGU82InF01J4/XAmOsoe61PLstxLGQy+he//tnj2YNPfn7WYXj386tT++9Hja8fvW8Yf+/f+/dyf3//7bYI/AP/wD/Al19++SNfdzgc+C2/5bfwH/wH/8EPfc0/9o/9Y7x48WL6+jN/5s+89fs//If/MH/6T/9p/tSf+lP8uT/359jv9/ye3/N7JgTi/Xg/3o/34/14P96P//8e3wrZ+bmf+zn+z//z//zWPJyf+7mfo+t+dBLpT//0T/PTP/3Tv+pryrLk2bNn3/i7zWbDf/wf/8f8l//lf8k/+o/+owD8V//Vf8V3vvMd/pf/5X/hd/2u3/WNf9d13Vv7N0pAl6tlNr+KjMmtUSV8QsI1lcFIhLnAt/nv45kbpNNiImWsRWGw2mCUxWqJ7RzTnkPu+0roqLS1rCqx1uFyNe1HiDkEiBqrLDF2pBhIBFKKKB2lH553ofeRMAzEKAGXxhi0FT6OrSxVLb3/YjGjWi4yqlNitUOjcHl/Jw8DAJ1j66Yeq3xm70XG6szJO0eXko2VtJlWVCGJFFOfERcBhiBE7pQSfhggSA5NP3oGJU+IY8srczlMgVWakLlLITQsaqgzp0Ep4XFopWiHBmsKhq5juz+CNpTVDFvJ59rv9yxyAnrft6iUeHr1hCfXz3hz84Inj66p8ur7xeefEYNnvloIMVEl9tuBbn9EDw2r+YrFPPuA+IGbN3tSMjx7/pTFfMndzT1ffvkKdOTx82ek7GHU9IEnz5/TNw3L1RxjFF3XcXf7QGEtbl5M1+zd7YYQG67XC1aXT1nNFxhTUhRzbFVis0uptiajbj1dF0FrUhAkJAyeEBKHg/AfSB2z2pGCrLqGPoDRbPZ7MBZjLft9JoZ6j9WGMDSyHe9puwFXNByPrax48yqsa1t0WWKUQ+FRMaDjQNsc0dFDGkMVA9YW9IP4oJA8PvRURQl4IfeepVKTCfGVM8ysYlbV1FWFNTOqesasFnJu0w4MXnF5dUFdzVkvn9B3R169uefq+oKyLE+8IaUw0VK6imM/UFU1bdtijaE59lxcXHBz+9l0j19cXHB9+YgYOp4/e8T2QVprurDcb29Yr4TMfNwf+ODDx9zdPlDPZ2wPe0LomC9W3NxtubyU6+XZ8+/wxRdfUFSOh80N0Q88ffyI6rIQflHsUBkNDV54MFiN0gXryxUxQhffYJzGlsUpnTsMDCFQOo1zBp8UyQ+oEkrriN4zZJl6Uc1FQp4CKfV4ZWhCoEshiwbMtF2v87kIEIeEDQNaCz8v+kiXA0N906FSIAwyRwUPnpakAs3gKepEneo8JRg8kSFGyliRUmCpNM5aqsWMIXgustuzMgmjhDf21V2gG8CEyObYsTgW7PZHZpkk7lw2DDUWlS0+osq5TjjxCZta5YqgBCQW09KU205RWn752jbKCbWhKMTzKGkSTvwcjMsu1RktmXzZbDbl0yhlp5+N7f3p+k6KxInPMtp3wEmKPr2Wr39/3r6a/h3ncfOOj1smaJ+3wqKKb71GnPszNUMpOA8Cfad1Ng7LyRdIdlzQHel8jAhNNp/Vws18q22lc6J8HN/bTtSRGONZJwXOZek/anzrNtbv+B2/41tv9NsShr7N+F//1/+VJ0+ecHFxwT/0D/1D/Nv/9r89qcJ+9md/lmEY+J2/83dOr//ggw/4jb/xN/K//W//2w8tdv6df+ff4d/6t/6tr/18UdU46wgh0eeHrPeeFCMaMSGLEZxJRD9I6i1a3M4Aqwza5IA4lZ2XrRK37nxSRyxOTI4ztKc1xopzr7VuOqnZ+QqUcHZGD5sYhSOXcqyF9MtHPDBOplHKaVxZinrDWkxZUM/l4V7Xc5wupM0WIoEwEYVjHGMSckE49mQnkp1csVpLqKFKp/efEDWlhX/jx9iKlMl+J78en3/nvbTo3DvkPaNLSmfy8Yr4riW6gbYZ6LqG4D0xKipXj3WYGOIpTdIRpQu6PtD7QF3X1NUcVxj2zUhmVhyPe6y18vu6YuhbvvzylzgOHbN6yV/+v39etjt0rGaKtulYmpqqXhKS5tB1dEPCNrD3UjQPXctivmS5XPPy5p7bu3uObY8pDY+vL/nxH/+IIbfnHh4e2O7e8OzxE2aVpT0cUamnsJbW92RqDU2r6EPJvHbMZwscFpUsxs7QhZizHVppeWmbj2HycjyjJsbE8bjnuG+kFZNh5cNB3IoIUD8EAAEAAElEQVQjjq7pCb5FJxiIaGUpyjney3b3+yPOGUxueTT7htpVDGyIx44uBGyZk6ULOOz2zFeXWFMQUk/TJ/oBQg9+yCR3LG70bBoiIRp89BRuwFmNj5GYpynjNMlAinKtWlMSQqJrPUWZKFyJtSfofrlc03UD9Vzj44B1mvXFEu89bdvi3Dgp53ZOMiht2ex3FEVBOSu5u99irZ3UWHd3d+z2DUolhr6l7RRlPcM4T0gDRTGbPHnK0rF52GGMww8JPwTWF1colQhD5C/+xf8LgKtHa37qp36KTz/9lPVqgdWK29tbLpYXosIykTqHVSaVCKEnDlBWM+a14+FhC8ozn1f0bQOl3ONKQT80hKjo+pah95iqwnsREZAJzSCsQ7ktNSR7MiINiqjPDOSAGIXZp1UiDdAqD0F8x1JAFi7A4CNxkGInhUCK4qnlVZB5LAs+ZOLwxGhIrkSFhEkljRHPngIhcMeYeUupgOeOpAqwG17f7gmd59hrDu3AZnekqop8DkoKZwjOEq20R9GZG5mEjHtqcKScCJTk/2rUZchcrs64M5GCkFqcslgsQTliSqBdbt2PCw/3FodmnJtPBn/mbd5NGr3czto637LYUWMR926xk38X1YkAPbakzgnR5/yb8TXTXDySkdXb73c+xv179+cnDo4UkzC2s0BYXsixm16fF9Q/QqUlP387PuJXG9+q2PnBD37wrTZ2Pv5qODPvjp/+6Z/m9/7e38snn3zCD37wA/71f/1f5x/5R/4RfvZnf5ayLHn58iVFUXB5efnW3z19+pSXL1/+0O3+sT/2x/hX/9V/dfp+u93yne98h77zWFNgjGZRZFOo6KS4SAmtQu59OlBiD66U2IvD20Sy8QEvN01OK+dEOo4RyBe8zURS5wqMdig9/v3XjaNCViNFTr3a8wvPWiuGWcbhSks1q0VlpR2mKqhyenLhqszDUVIgJfkiWhLgQ3ciyI0umnrcD/X2RXgWg+F9TvgezQOTqJVEkqmEsHjmsAxMRZMhE/OmuAJOGU4+YLRm6Hri0DO0HfvdFmsUZVkw5CLLuoJyXuF95Hp9Rd97vPeUpZCUj8c9d69fTsezXlxycfWEqAaO+72komtYzuZ89eWLLP2FsrAYE1gt50K27OB237M/eFbLBdpZusx33R8C1Vzx2cuXfPrFGz7++GOeLEueXF+y2+34xb/08/R9djuuSr7zyUfs93vubyNhiGx3d1xfXzM0kZikKJrXmifXa6pCUxUlzlnmiyW2XOJcgQ8dNieppxAZugZrFDFEgkck/ClRz0oe7rcTtyalRN/0hNBwf/tAP0hh6FMP2pBoGB8Gh+2B5XzBcl5yf79hiAGrOpELhz2lczRZ/r5cllSzkkRBTA2Hw4GhT9zdbdDJTkXxsQ90KRHR9CkwJIVKPm97JHKeEBhtNDEGhj6ia4cfJDojAp998TmPn0pUwtPnH3DYN6wvr+iHI64sCAMTkpoUEuGQj1efPCFIHphRmq4/4FzJcrVgs7mfpPpFVTAMPYvFgpQSm82GsqxZLRYk33LY7SblqtGATlhr6Lqe+XzOzZtbnj57wnI55+kzyVJruiOffvopdVWx3+zFrC8veKy1LBYzjkc5X3VZEJDojHI5hyhSYqvndKolDEe6Vi7E7fFACgPbTWS321FUNbNFmfl+EaPdxOtI+UGIkSgJORcRSYTKc99kRKmz6CLhkyC8Q+8ZvESwpEy8jiHQ9ZEwiBGqqL81ISlUkoJxzEhKPlBHh6kUPZJp1Q1i8KqUIMU2E/ArLNYVWFtIETJ0vLnviSiOvWffDlQ7McKsiz1lYalcQSiF44gW7pdwjsyEfCiZjPJse5JzjwvMcSilsFpTVRU2aIaoMThBs5VDWeHmABiXEZKRw6LiO8UO/LBiZ+ThvFu8nI9x398tQgxvFyOj+upcRQXxrSJWKUNU/msF0DkZmbP3+VrxlX/3wwjFYsyaOGnhfvg4FwS9bWHyNnk5xihcs28xvlWx88knn3yrjf0/Pf6Zf+afmf7/G3/jb+Tv+/v+Pj755BP+x//xf+Sf/Cf/yR/6d99UKJyPsiwnme75eNg90PUHrCmoS2lfFEVBYR3WGpQh246PVXqaiG/jiPkmScpMRMXzXJOYT3NE/CjGDCznZEWgUITk8dETszx4BG1iRm2SjRl5SahopqoZRI1ljMIUBldVguwU2ZG4KCdXZGUMKXv3aK2JerQuH9GmMRFJhlY56C7Kg0WNK8IY8yQ4fsYx3PT0tyEE4cZ6IRm7THRUdnQTzTdPLuB8Vp2lMOAztNG1EmY5xIFhGFA6sVzNKJ0QMK3NgYbaYouSstIkZdAWYt/y+vU9b169FoQrr/psWZIUtMOBwmmMCgzNgElw2OyoIiyuVtM5vLxaEnziyzdvmM9FXXd5fcVqOUMpw2b/BoC2h89ebCiKgu/82HchRHb3gZvPPmW1rigry+UjKTqH4Hnz6jXz+RJrNU2zAR0Z/JG6MNh8rIraUpYFRVkzmy0wpeQ2WetkYnOOIecMeR8hWTb7A4fjDp00Xdex2zwwDAEfErf38vDcHFv2B0k+CknR+wF/d8R7z3K+4NhupolmGAbmdYMx0u4kKlIYqEqNjiJXdhlZCcdE3B8wty1lWbE/HlHKEPpI79uJoHlIibZNeAJB6Wy7kEhDTz+2jE2+JkkYHNZoTEqURYFS0mZxZcHzq4vJHbuq5xhlSSHifZIWRYSyrDgeD6SoaNtbAB5dXZNwlNaw3/UkBbP5MqM/JXVd02eFkVKKohBX5tXVNaZc0DcDPhiq0qGxdNnNuyxLFisrgbgh0nUDs9mMly9e8eTpJdePhRbQdyvm8yXbhx3VbMV+f4Mm0blucthdzDNJPGUU1FUYZemHlpQSVbmkbRJ9vz0tfDT4qDg2e4wxzOoFwSe8SjgnhH1rqvxah9KiyFNaE7VhCAllbV7snHL70IGoFASPD1IIxAEGH2Sxk4udlBJtgG4I0h5F0FStFa5PdHGAQbYZBnlopaSxSeYIpSylBm2iFL5ZTq4YqCpFVZdYC2Ho6IcNx2OkbTwHN1AYOQeVNVQzR13XFGHAeyOtJESCrlRC6WKc5CRI1Wh0CFJkJZm/gjLErL/VaVQrSTCmwRJwRKT1r/IcLMfVTNJz4GyRei4HP2UgjsXOeK2NE+Q3FjpnPxsLmfHn57+bVLWjx9vk+SOo1nmxI7XeSYo+EZJHkvNYaKQf3kr7YY7I5+OHFTPj76RdFc7+//brz7cRo/9hb/PW+FsqG+v58+d88sknfO973wPg2bNn9H3P/f39W+jO69ev+fv//r//17z93neE2KEwHPMyvSgqZmVFXc+oK0dhy+kCRoe3Trj3Xp75SSNZWIqkzBS/EmPKoB1SvRstbS4j21Nabq6YWz3f5J2gnfSGBx/xg58M4MYV2lg0Oeco6kIksmN7zJ1WcuOIeZkbY35IhtyjtycejiKgtcIqJRLdXND5FN8qtECiJXTSmEmqaHIB0xIIhBAnJY7O6btGubyqCfS9tKi896jkJ1mhdTnbyVswFhUNKkbQCVeYM+WYIYTAMASGXUvTHthvN8QUmM9KiqISdAwY+p6yspQqivokFdw/NDzcbShLx+XlekrnXq9W7Hb3HA5bPvnuh8LJUgpraj794oZXL++IeV/LQvPRB9c8e3qNLh3f+/lfYLfb4axh9fgx9aygz1lLq7KgnpWkALtti/I9i3mJMUkknPl82dmM5eqSqpzlIllWZmno6GPkODQTWtR1AwbF/f09m9sbhvZISpptC69uNgw6sDvKBHG77/HB4nPQoZeoW3ww2EOLUeGkTFSW227AOIVRgVIndEyUvRGbgM5PPBitNbOywtIRhgNoYUkYY6TVMSoslKMLHSEpSlejk5y/rukxs+zVkj2knHNopajLisoG8D1uNmM+X7Ner2mHnrKU4rBtWy4fXXPYN8zcjLKYEUk0x456Mafve0ye/Debe2azGSEOzOdzDse9KLSicGSsrRgtVpwtQEk8ybHZM5vNWc4rXn71FSkWkOLkiXM8HinqCq9kBd73frr/Xt/cUuQkc42i7z3ri0u+973v8cknzznutvgYKMuK+/tbFrn9XFXSutPG48OR6BNVWeKJJFrqyqLG/L2MLtd1hbWOqBTHw5F6Mc95dWZq+53PY2OenbQTFClaEnbi8IUk114I4icWQ0+MoEIkhUSXn1tDMnQh8nAM7HcNTjuqEmZlRVSK0J+k7zZBpwKKHpsMNqsEC21QpUFZg8o8N1VIsGbpCq6vl3TNYza7wJfdhi54dm2HzWmaVdmyODbMm4ayqqZWjzEut/LAjH584lAneI/JC0Hj0CZgohTN43Edj5nJ6fFRFWJplAwpc17G1ygknkFUWG8rq0Qp+8OLHaUUKb7dkjofU4Ghv7nAkdeMKE165/vxNWeKsFFmnsaf54VGViX/aiXM10JKv0FO/m6Bc/7v6XXha79792/OXzvyzn7U+FZqrL9Zxu3tLZ9//jnPnwtU/Vt/62/FOcf//D//z9NrXrx4wV/6S3/pr6rYeT/ej/fj/Xg/3o/342+/8TcU2dnv93z/+9+fvv/BD37Az/3cz3F1dcXV1RX/5r/5b/JP/VP/FM+fP+dXfuVX+ON//I/z6NEj/ol/4p8AYL1e8y/+i/8i/9q/9q9xfX3N1dUVf/SP/lF+02/6TZM669cyfPKkoFAqEnP8gg8tvi/o+5ahr1ksFszqBa5wGGtJKWEzZKmVEuVWbgkJ9AsjEhJ8nJCd0a/HGCN93bF3nhIhCm9FmxMKhHTOSd4IMTmBHwIxSQp1kfkaVVXLNrXDWNn+2D+NkVNSQxJPCTMx9DOcqRMoIe6dkB01VdWTykAptJLtE86C2rQgOjFDr+K3EPEg+5Ot0/MByxCvzm7LcQo0TSkJMTwjNiEk9vstjW/RKGLyrOZznFPEMExISfCJ1vc4W1GVC0jiV/T0yRNi9GjixMNpGg9efHq0rvjqxRuO/UC5WGIdXD1+Qgyyanh984pZrfno48doYxiCAmXZbvccjhs++bFHPH0ubYlZaUk+4Lue25f3+F4M0Or5kl0zcHe3ZTla7y8WEBXbzY67uwesdVwsLhnRshGxnC1mzOoSox1D10gIZXa6JckKuW8E2Tnutxz2DZtDw/3dkbvNlu3R89Wm4zhAZMhGaDB4RfABEM8cHxM+epQrUEMOfM0rwtKWwuDoejSKrtA4bdg2Pc4YDGHiYESl2fcttSsgagonKIIf5BqKQz7POjLYBFqjkyJqMalrmwZ6KJ0lZKK81ZY4JHwScUBKgRA7bGlp+o6qnqPNqUV6c3uPtY5f+ewznj/7kEdPn1HWc7q+oa5LUr4OnNF432O1xocBVxQcDx3eR1RKBH+67kNIrNZzdrsdc2vp2gO+G7i6WrPfbei6jsv1hZyz2YyH7Yb5fE7hJIZD2cSTZ0/YbPbTzbg7PHB7t+Hv+PU/wZOnj3n56pZPvvMRg+84Hvc4K+7V4zYVlhgTfS9wk7UavHid1NX85N4L9L3HVJbgE6hAYc3EX/NJTUicsRGtEibJfe0UqCTKvaRDbtDoPE8GUVRGQf188Iwp9MoVaJNbNn3i2HvuNpGbhx6nE8sqsF5ZlqqkNCfkQA+emVEEHdBGWn6jEiiqgqA0ZVYbWluhVUArRVXPefQ48WzfsWta7rYtR++pswDg2AQO2552PtDPOozWkDTWgnYJk311AHSyghYnTTqzzjfGSRREBkJG3qFSSoi1IqfFOYfSxajZkm1qjR69yYx+C8khjXP8CV1T6BNBeWxfvdvW+ob/n3N25LPor71mRHbOW1fj99NIMZ8TabGdd6NSSif6wlk76Ty5HeRJldIZH+sMiRHEVLb/bqvq9JozL7mz/wPfgOwkvq3LzN/QYucv/IW/wG//7b99+n4kDf/+3//7+Y/+o/+Iv/gX/yL/xX/xX/Dw8MDz58/57b/9t/Pf/Df/zVvZW3/iT/wJrLX80//0Pz2ZCv5n/9l/9q1DS89H8BGls3dwLj5UZoUPqqfRCWUgqEjSHhstRmmMkl6y0dkqu8wp3lrnFPSEyqTeMRVaaYs2Bdq4/PAXQm8IiRhDdvXMF1BMmEwUjCSG6KcCQySMiiJPMIaRQDheLKIqSMpgosoQdO6dG3Gr1ShpP6GIBLkp4uimCDaTtVNIDIOfeD7je4MijBfj4IX0bDMHKbtK13WdycynCTaeQa0j5B6jEOSMMSQCbSZb9kNLCAPOSBq8MyVWK0LX52InK0CGgXK+YLFYsD+0xBh59OiKhML7yDAMbLa3+Xw5fOy5NjMOxxuqSvMTnzyduBVdd+TFV68AuLpec3m9BgP39weUsVRVZLWu+G3Pf5LFbMm+kX29u93w1RevqOuaGHuK0vDx8jlv3tzyCy9f8uj6gkdryXCqZ47Xr++5ubnl+cePhd+BYlYtuL6+prLCHTOVkFbbZsOx6Wh7edAc9keiDwSlaBopCt68vOeLFzfcdgNf3e64OwS6qOmjcFdKqum4+zSgjKL3Mnmb0mJCQkdFisJSGONBmr7FaYc1BpNgaDxWyzWpfW7p5mLVukjjezZNQ2kcrk9YI2onlTwuu/H6YWBIAbQ8NFU2c2sJhE7M6saHkc3Fuh8inQJbGZxT3G9u+HD166irNcVMjleMkbou6TvPenWJUoaH7YblcklV13RtM7VFuq6lqq2A9iHfx0qiD4iKoizY7EVpJ/ltC548ecLD3S3r9ZpXtw/cvrnh2YdPGILni68kLuKTTz5B7zf84i/+PL/pN/0WLq8uuLl7w36/x5U1Dw8PgLhNP38uHKFhGFiuVmx2e4yOLBdLDrsbbCnHqzkcKctKuIFB0/cthYv0naie5svZZKtRuIq26UnRYAqHVxFnHePDrOnaieNkyzmoPFekiIq5+FFi5hgIUtQgLUgFQkSOij5FtDJEZUDZiWToB89mH7jfe9rO0pIYQhASrHWkyhHHB3nSqGEQVnffYzR4BoKBzmiUtpDkc6WioLCWqDXKJepZ5On1ms3Djn07MPRhypQ7HD2bQ8P60DCf1xTGopSTVp8xwHCa5/IDXkUll3HSRHUSi4yiiahyTmEMmaKQi7KksGislbaVfLCRHzNK0JkWoGoy2ztrJZ4TlL9WlJzGuz83X1NHnS1WR5qNGnkx7772VMB87X2mH+V20hkX+C0V1Lutq5SI6dROPW9DSeESsilp+loxM36pxPSaH1bsxBjpv4XNDfxVFDt/4A/8Af6Ff+Ff4B/8B//BX+uffm38w//wP/yrEpn+p//pf/qR26iqij/5J/8kf/JP/sm/5v0hhyWIp8zIKUjZY2L0g4mEPjDYRAidZO3EU96VUkpY+tbinEzuMnmIUiqff7TWOFthtMkVdCIk8HFgiIEY+tOFFoXFnpISt+XoZZskbHa6HIPlQG4WbcQBWWuLthXOVuAMZuS2qNxHntw9EypliX0MgvpMqErmAmk1XYjjDSvb4rTyTTHL10+KK63zyhIFKRJywRfGC191clHnyTQmTz/04hPTy4o2xkhZlViXIHqaw5722JLiQN90dDkw1NoCReSw24JRLJYlIQQ22y1d07Pdbily8VatKioFbbulcIqUxKPo+voR99sdv/TpV8xWUlg//ujHcDryK7/0ixgFH33nOclC0zQ0h5YvPn3N3YOQft/cblBK8exJSVEU1EVB0xwwKfCTP/kxy8WMfSYIf/X5C9pux9XjR1hVADMeP35OPV8xq9x0fwwpEfqeYVAMwXLYb4ghsL/fcXNzw7HpOGbl2uc3D9w3njfHlj5orDGEFLPyLtGGfpL0J5UgBcqyQANlIahhiBC8og/ZMRZwTkJAvfdgLTEpUkwkxDFVG0emNdB4UEScSoQ4UGlD1w+osR/fjIR6Q4pSZAcdJyI7QyQamRBdVrZoUxFjICAr/7qoiDHy5Mkzhj5ysb6mzUhcURQkY7l6fEV7OHI4HHi0WtD3PX3vWcxPCqeydITgJ8KoUorlcknXtNSLms39Peu1FIhdO/Dy5Uvm9YKyrIk+cXV5yReHA1988QUffvgh25yj9dVXX7FeLylsyf39PddXj3h0/YQQIn3wPH0saqzb29c0R83Tp0+5u7uja/ZEH7i6uuL+YcusrPAj6ddFQuwZgsc44Q8dm61wZmg5HAImFzApRgrnst+W4nhoKNc1cfB0PoAO+Ey8HkfSQUKMU5QFGSoXInriukWdo11SIREjKLzSkGTB2OZ93Tc9D7uGpgkZJYMmQlJHogl4ErOssCIl4QX6gNYdhU4ENNE5oh0YzpBmHQ0piZjDGSGnP75YcHhyxf124P6+I+SMmyFq2i6w3TfMFgeK0rJ09msu+XIvkJWu4kQ/clsmpEKdFoqA5CdGTULEKKMMWqEnQrK2IxHZnF1feipmOCtSpPh5u9h5N05iHOccnh8uyEnTduU/3wwAfNP2J0Xx6GOTUcj0DloDTKHPZC+dkTB8Lsz5GmcnnIqarxU7SSxJxpiRXxXZIeD9X6diZ7fb8Tt/5+/kO9/5Dn/wD/5Bfv/v//18+OGHv9bN/E05klYZqtQERh8QJfENaHyEIh/g4FtQmmEIb8HGWlliaClKD7HAWj2REos8OYOgCs6VE7yYUsKnRqzBM7ox4qZJpTzRSHuoGwLdECV8LsgKZTSeslZyrVKyQq4rKqwthVDrLFqfSJGQL0g1XjzZs0BZwXjy5Ja8hOOdw6miQss3XGFPbPoA2spq3xhDzGGlIRNfYxhOZm5pvKlUVnUlhqHHd/Ka9ng8HVeTSGEgAs1+h/eeqijwMTIkPbXxjLNiT6QTdTFDa832YUvfdkQfWS3nLJey+lc60bZHjDEcDgcWixWr9Zr7h3s+/eIVH3/8Md/9WCIgjvsdv/iDX6YuDR98+JTN4cDP/9JnGF0Rg6ZyJRePngKwurxC4wlDz/3tHaiI7w/8+K/7LqawvHnxGn/MxmtDYn75mEfPP2I+F1XOcjVHK8XxeKTMJNYwiK/Q8dCw3T6w3dzz8LDlePR8+uVr7vueNi+TX286UJZEReESzngKp3E6UBpRWBRjJ9EoQkoYF3OxrWnbyLEd6HM7chzO1iQFvW6kwo1SQFktRXxUTNJdYyzRD4ScqN55CYCNWpGSJpFjRryXojsBMaJSL14sKWKSAmux6dRCIvX4OHCxqnJy+Io3r2745Cf+Tja7B1ZXUkBobcEZqnpOvZijNxW//Eu/wne+8x2q0rG92zGbj0okTfQ9MQ4oZWjbPVXpqGqL73sePXrEzc1reW1ZUDhpzCpd0PnAYb9ntV4z9B13r++4zgXyw/2W+7hheXFBUIr7/VbCPZcrEpHlSpR+l48ecfPmjvDlKz56/jGff/UpxaKGFPj444/Z7R8Yg50VEVeUhLbluGuZry9wtuDYB4Z4wBlFym2/FDucVZmErEla0tNdZei6jt53GC1k6tXaizJLOYJPBEq0rUHdiZGhUpj8sIxhQCdNJKIVEk8TEn2KDDjuG5kLXm1advtRbJAvomAYWsUOj049dinbLJWh0xGtFFYbeuUxyjIMHjN40JoJVEiGmXLZS8xiCke9CFxfrbi+3nPYt1PLJijNEA1tD23b473Hq4S1Ims3WfUF4vkUtJYYnrwfVmlMDHi6aaEajRJRhVboZEjJARk5jZ7zx6rR0mYcC5doRo8bOaFCd8hk5fiuompshZ1k6ON4m1D+zblRpxe/9c/Za2NGZ87n/4w05VbTWC6lLEYZ1cTy5/kYT3JhP71mtCSBHPVDmtCasaAZ7SdijJPFyDn6E/jmVtZIapefR4Zviez8mgnK//1//9/z5Zdf8q/8K/8K/+1/+9/y3e9+l5/+6Z/mv/vv/rspMPD9eD/ej/fj/Xg/3o/342+W8VfF2bm+vuYP/aE/xB/6Q3+I/+P/+D/4T/6T/4Tf9/t+H4vFgn/+n//n+Zf/5X+ZX//rf/3/0/v6130sTZlTtvXk9AgiTRT4URyTY5DCVwfxmzkvqmMmEw99IMWB4DKykzTGnGR/2IS1I1FZ2kNFqohESSCPcVpJpJSIxkJMBKUwLqJ8QiXRTVrrcFkibYsCl108VVFkk0QhLCd1qm2lis8rkUy0E58tSSsf3xfE30R4Ibm3bDQxnmTl5x4JOonEPqVISGOaeyQFCc2To5tbGFmGGUPCpyicDaVxVYkaHNqdEKP2uMPHJLb8pmBRzXMUxY7FajVV7ce2BxRlMSdExXZ7pPWJoqpxS0E1QsyEVxyFqTjsGwpXYDC8fHnD3e09H37nCVerGZ9++ikAm9t71pdiQ/Di1Zbvfe8HGSlrePL0ik8++Xgy9WsODTevXnNz88Dd3R0XqyVPnzzieNjity0kcHOB7z94+iHXj59QlCWz5YLKFbRtR9tsiNHTt3KMCi1HTavEMARevn7gzf2GN7uW19sjD52fOCiz2lE6RVkoqkJRWE3tLGVlWFYzSq3FtwRQOghsT6APEd952ibQ9pFhUGyOPYe8iOmS5zgAKhCSwYeE0w7tCrSTleiE2sWAKWcoQo48EIJnzNyzcTFolBY31ZhIFhIKFcAqK9e5isR8vrxXlIWhLMRbylpLYmA2q2m7PevLC0KUfdXaUhY1L1685PkHT7hYrVEfKW5v73j65BJdaEZPqRiF02a1oWu3pKRomqPclwpIGpX9aPou0A0d85nF1QXGGqJJ3Lx6xXc/+RAF7LbiOL24XLPf94QUaY4DauZAF9w87Kjrmq++9ysA/Pq/68f58KPnfP+v/ALWwOXlmqY5cDwe2R0PrJaXpLyaHXxLVc44tp6iMjibzfV8oK5WVLWbDCND7CjLAmOchAh7iEHhPRz2HcPQsRb/QxRi/xCStF5cbn+R/WXeah+ovEonm+1pS4iGIcCxH9js5Hxtdg1tE4hRT7BCQtrXbZ/QR4maAaZ5qu8SLQkdElYn+qMHNVBiJJIBGHSgtwmjo5B+jcHOalZXFzzb9mwfOvbbPNfkAOOuH+jagdCH3JY5m7TVWcvdABhURlyU0gTE0uIEcuYWT0IQc20ZgkLHIO2edObKnESQMXIcR2qAzryZaM4Qmrfk4ucoT5qELue/h7dl8Offf9P/z9GhaV5O56jQ6Z6YfhbP0JdvkJJDRnbieEyS2FfEdLaNmLl3p5ZUTML9VDmeKYRT6+vE2/k6siPv+zaZ+dtEU8FfI0H5xYsX/MzP/Aw/8zM/gzGG3/27fzd/+S//ZX7qp36Kf/ff/Xf5I3/kj/y1bP7/52O1Xgn8mcTNFeSA6vFiLQqUdWAdyViiFQfiU8JrlIwY7fFoYvSk4ZSS7sMJmhy8xodWnIPNKX3XFQYTZvKQd+fAm6ScD4MhJY22wkWxSgmfJvclrC3ytmTC0ln9pIyRYme6KWTSUYr8My9ZJykBaSp4gDwZKNKZIdZ5gTOS8EBIzCAtopg8yYeM+CUUCq0KjM1Ov2m0jR8kLV6JcZnGkGLH0HbTRDSvZ+gkpmPEgO97fOinnnaXH7JVVTBbrri9vWW7FTff+WopeVrZ0dlnP5p2OLA9NlwsL0hp4PPPP6fzhucffMDQ93z62feoMynx+dM5Q4Kb+ztubiRiYrac8+FHz5hVBbHv2GweANg+7Lh9/YZj0zCbFSQVubnbs5gVWOdIauAn/i5ZDFxfP0K7uajogL5r0MpTFmLUNkaKhKyM2dzd84Nf+Ypf+Ow1L+727HzAOcOTixnLnPn1aFFRF4liblmva0qnMApMZVjMZjhnJsvVIXjaZuB4POL7ROgH4jIRtaEsK/ohcHMnx/F+03JoYXP0HNqBAxrvB/qoqMsFpbEsZ9LCCQqW9Yx5WZN84NXDKw6HA7FrUEnBaOQW0xT/oIlEpRky8T75QIp+cjpWOhHVgCtKdI4fKes58+WC1fKKpvMsL3L2Wz2jHwbW6xVvXt9yeXnJ1dUlVVVye/OSJ0+eTAXXvjsSvaeqLcZYVDD0g6jUwiDHpppL6/P16xucLWiaDh8T69Ul11ePub/b8Olnr/gNv+E3YIvcxnp4IOmBy9Wa6FtCgifPntJ0gf3+wDa3Ml++eM2HHzzjg48+pDkcmS1qnFnz4B8wGLohsFrI+7tg0cZQVTWFq/DK45OfTDaLsqLPpkB3d3c5viIx+IQ1JVpZ+k74SVY5Ci1F95RzlCIxBqyVPK2UFDGnS0zPOnX6MiiGJMncEUXXe5rs4dQc5ZpVWFDjwkcWjCFEmqZnm7l+RVGgjEOVDhsBH9FDwLoSE6TAT0oKWasNwXqi9oSs5nRKUZaOx1dLbi/mHA9S8EU0Pmlan2g7T9t75kMgFoloQCkhVwMknSCCUZKHpRBag9YaZSyMpoJR5aiecS4Vfo+1lhS18H7yOYhGTYKOsYCRa3083qeWFkrOww9vSJ07Bavp3x9W4Jz/TAq8TAiepFuR9K4bvoqy8MhFxchVTUnlNtSphaTz34Q0tqgyHWMsjDJ3Z4wGCSGcFTcnXqcocb9e7Pjwjt/OGfeH6b39X79iZxgG/of/4X/gP/1P/1N+5md+ht/8m38zf+SP/BH+uX/un5tUUn/qT/0p/qV/6V/6W67YUVpTukJWhfl6EPBBYZQGK6ud0smFjdVvVeCoKIGfOkmBocRhkxH9SGDV6QRLXzlOMnQhDYvbZkoJY0b+g5CYg/colTDKUpRywo0imwCO5DmbOTUu57koxlWGD+cXSpwuIK0USgXGusegwBj5zJAl4Jpk3ukpj7wfTn1n5fLFHNMZ6ThhyhLQGGUnpUKMvXB8gkJbC7n67447+rZFqYFCj+q1SOhagu9pm4MEASoFWhFDmpyGQXN/e892e2BezyiKgn7oGCI4a4WoPAjpeRg6njyWSIlXr++xquDR9RKbBghHLhcVRSbyXiwX3N5siMcBqw2Xj6/5+LsfYrSiOd7T9z0jT25oWgrneFzX7JqGej7jxZcvGfyCp8+e8Hf+1K/j6vpxPl8ZLewloqPre0gtRE8I/dQa3nUNr24f+PLLOz59ec+XDzva6LlaFFysSp49clzmB/1yUVHVDm2VKFCcEJ270KIBa048Mx0tQwjYtgQi0VrqucPWicV8hjGGR4/kQXvz+sD+oeF2o9g3nrvGs+09xxBo2khRLmGSBztCAlfUXD+94uLxNV9++TkvX32FDoEwup4mycUy2hBiEoJ8Rn5CFgyEfM32XgjMKcl95VyJK2ZUsxUJw2K25pglx/W8AJopiuT29pb5fMF8PuPy+opje6DI2Vi2LGj9QIoGXWq67Y6yshz6Y74P1cQ5Wc4X7JuG1WrJ0LXsd/fMFjO++/FH/MoXL/j8xWsu18LFKVzFsyc1Q9cTtIgWZrOKy8s5P/d//WV+/Md+Qq6Xfs/rV3esVgv63jN4QVJnM7FOqGblqGTGty1xAG0crqxQqWez2VHP1zRNjzGOOkfCPHr8mERgt9sQQsAUJahA1zUURcGgEqYcXd4DMXpCHHPwVM4vkgegQmI6AFm5p0yORZFUyA9DiSUZ1TGpzw7YZ77x2X+dlKTgabNdws4eMW6eTUktVmk8Ch8D3musjW8/HH2Ptxo9aBQWaxJl4VgtS55cL3lz2+Zj29N5TWHEbLPrOvreU9dn8madH7RRZbEGjEVEyrxClZQU6YwqpKwiCgNKO4yVmKGUDCGe3KZPD+9MbB7n3zx3ig9+RqHeNQwcidOcoSSMt80PR3Bk789em4ub8COKHeGE+ulnYop7KjAkr/FUaIzFzVjsaHKRkgSxGTk5KcSJs5PyHH9CbHLhE06u2+eKrG/6mxxLPX3/102N9fz5c2KM/LP/7D/L//6//+/83X/33/211/yu3/W7uLi4+LVu+m/4eNgfKG0PSeWQT3mIF7nIMVpjkpHbVSmUAefsKW1aSzje2+QyneHDDAd6uQnPGfRTIByGFMGTrenzfqXoiQR8L1EJ0QeUERv6MS5BZ4XRee7KWESNSe5Kn6DIqMTtNsQISvj6GkUyCdSYUZVvQiOrSZ0VF2OrAnVSA4wXtkGk5T6O/h2KQlcoJyS+8faWYyCtrtGzIsVI37QMvsX3R6An5GKnbY+Erudw2FI4x6AlAb0NA1o5huw5Us4URVnz0Qcr2u7Afruj6zpWqzV907K52zCG8l5dXfPw0PKDH3xKVc148mjBsoSLC4N1IgUucor2/cOBw95TVEueXTrW6zUzZ/jy88+oSpnENjtBQJquo3Alw9BTOI1Vio8++oDHT5/xnR//mLqac8w+TqtZibEjMTdiU2S3O9LsH9A+TK2/V7c7/q/vf8nPf3mLVw7nFN99fMWjpeFyWTBfWOaLLCOuLWXpSClM0Rsit63wIchqdlw/WkuxnKErRfAqWxoEbBEoK4ezitniQvb10QXH/cCj+y0Ptzsu7jve3DXcHgcaH2m7I/k0sFqtCCHxsN2gteV6uebR+glvNlu223uqXES6FIlJk6JIArRKOKXxIdChiIbJuRcradJ+SHigaTtMZakXNcoYjNOYTOh+2G64vr5mv98zm81IKbHf79nttswXNWV5Cg313jObzfD9gPeRej7jsL+X9kRsBCHNxYZzhjpWlK4g+Z6ycPRdQ0qKjz54Ttv2k11CCgPdfmA+q2l3Bx7uDtR1ST1f8+GzZ2w22/yxClxhqOs5KSmqquDFl1/y+PqKoq6IYcCWsq99kjgHUgQjSKqPA0Vpadtuau+BRGNorWiahuAHCldRuBrXJ4qilGBVNQYe95Ny1IsVcHY31wSl3vKZCSGQsFKEaghaHAd6H2j7QNeOK/rc+k9jW+astaOlgBwL2aYfqLuB2llAo43LSlUt/mJn7RbxLBNlbDJkHyBFCZSF4WI942Ithf+rN428Pll6H+lyVl4IAR8DRnGKQAgigY8hkvLiS8W8qAthIsYGRmWskJlV0mglLTWjRYE7At+TfxkZYRFNO4xeOrzdgpJ5N//ttJj8ugLqfLylThpf8w0F0BSsORY4X0N2FAkpdkYvnMkH5x3S8VuIS25z6kw+9umE4ADEEIhn6MxbqE323Qlnxc55YXP+N+OXPkOXUkoM3duKwh82fs3Fzp/4E3+C3/t7fy9VVf3Q11xeXv5VhYe+H+/H+/F+vB/vx/vxfvw/PX7Nxc7v+32/76/HfvxNMQ5tR2+GDM3mHBgSTgtC4pyjdAVVaZlXNVVtqaoKU41kT4s5Q3mAsxZVNuab0tSl5yn5Ki771GRH0Xf6ut5HhjDQtS1d1zD0Pa6oBC2KhQRthjGTyGYUymUIXoz9Qoic1gwyxAVZZbIcQp7LV4SawEIIgwcU2pxWGjHzfaTFxok0lmWKYz6XTtKqSVrhh8gwtFPFnwhTy00pRec7hpDwEUxR4vuBm7sHAHa7jcimnRBqh0GxOx5AF1S1Y3kp0P1sNiMqz93NG3G/DgOXVytC37DZ3rJcGh5fidPx69tbNtuBJ0+e8PzRBUZ5ZrVDvPE888WC3V6O6/7Qcnu85/LyGkwPseEHv/wZq/kCo+DV6zcTqf1ivcQZaLrEbDFneXmNcwvmywtcWaOUYr0SZqjTWpKlQ2J/bBjahr5rCEPkxatbXt0IWvRLL+/46n4PxvDs8YynVwWP1yXzWjObVZSzkyfPiOY5ZxHqcZL8Ii3WlAqDySu0QinqWYUuZnSDmFr2fU8KHR5pTRibr5uZZVEblheO66uaxYstTkfMQ2DfJg7Bc2w3ci/te+pqhSmXbDYbog/U9YyPPviQz2Kg74TEG61Ge6SNqpJA+THleyZLUKc8oURKA1oZZrM51bwmRUFRy2rGw8MDj55JlIy1mpvbVyzmK/b7PRcXl8xmPTc3NzRNwzAMPLq6lH3QkaJQaAWbzVauWeU4tj1+iLTtDpdDKOfzOQtrSbFjuZyz3W5RxtJ1HXVd0+43XGT5e9SG+6ahG/Zs7m8ZhoHX/+//D3/P3/NbWS3nYksAtKGha+HJo0sWs4rdccuTJ9eSIJ4CRqlp9RrCgFLSErNGnN1LV6FJOGs4OdRm59+UWK4esb7QDMPAMAQJNy4KYghMPJDsh+RDmjxhCltK+3pQxHRCGWNSjM2EFBMeTVKWmISX6MM4T2SfmCA2FmrCqhVEQaFPvqlaUKEAPsAQhAsUsWKlETUqZngtaEJAAl4HjVFGfIe0fJayMiwXcr5u746k5EnJZcJrDvbM6IGIR/I+4AnBZG5IQOGEQJ+fBfHUV5rI9iGKBUMMHSomisLAaCgIp/bV2Tj3mzn32RnbWFMG2XhuUvwaqvNNrau3/n2H25J3+9Se+gYOz+hbM/4sJT99f+6VI5/r7fbWOdl4QnZSbg/mNpb3XkQ2+diHIJw8+f7E2QlnXJ2QETVBeN4myst1Hhn6v07Izt/Ow2aPm5gUYbyxSWImrBSDKxhMjx+swP3RoWPCjDagRUGy56nommjHkM74lkGUUgqMQ2mNNbnYSRpUJCDcBDsWSAx4AsZZdDDYJHyclMQ3ox9AZ6KfMY6iKHAuYigm6DGEIBPOiNiGQIoSpBlTylyINMrJps8PUJSnUFAQr4+UHZZjUqBON3fSZ//PN9YwDAIbj+2vcTtGet+KRN/1NO2eeGYf3g79xEVaXc7R0UvLMEj7y1qNqxyr9WJKsfe+p+0znK9KYgqYBPf3N1ytS5y17A/ykFnOKxbLpTgPqwFQvH5zz2q1opw7tvuem2z+9+rVGz768BFVqTkej9wcW0Cx2Wx52Nzy5NFjLi6lgNk87HCuwpU15XJOUZbU8wX1rMQZRV041EiAjxGtPG3fMvRH2vbIw90Dd9s9v/DpHZ+9ugcQRZRRfPi45oPHNau1o64N6/USY8EWZjJlLJwkoeNysRwSw2RMqfEh4afrm9y2HOh68cZVtiRqR0gJZ0YlCBA9Okn7draseaotiYh2icMxcH/s2WVO2rbb07RZ7VEm/CGhjObDq6dclUu+95nExBwOOyGGogipJ8VEQJEMqGSmewfERbsyBh8Ghl7jzCXGOIKHEBSL+ZohE0PX6zUuGDbbexbLNYfmSFWUPH78jL47ojUcMoF9tZ7Ttw3WWuZ1KWaDStpJXdNiTUXMpmqHfQsqMatquR+twRjLw8MdMXRcXMz5xV/8eQD+zr/jN1DWM4YhoNyM4+6eql7w//qzf46PPvmAVfbZ2bWB7tjw1VdfcX25xmoQo0dHczgwqxcMOQ5FyL0BYyQGxZoZVVFCKklRXI7HlrIQjBPZY5CQAiZJgnhRWvqDoWmkfVBVPVUtYomYZO6q5zOMrQjtEe+FiwFIJE4aQJmcpJ1bE1FLe2msn5TCOUUKYlwaIyi8FD1a3qNwsjgsC4mZCEkzJA22IBlDwJByayhrH6RdEshtrEBprBjapJMKb7aQ42Ud+HYgGkcorLRAgxi4pqikpRZHNZZ8JeQBnXT2zEmRkDVZgJi2RllAKozQlpV4ng2DxzJQODnovY+Zn5mLmrPW/9iymtpY+TVjUTKO0//fNtR79/fvknfH8TUjvrNWlxQRp2JnKlByeyumIc/HbyeOj8VNSmni6IjzfxRqRDqZC0YfxDQ0P3PG4mYsZEIIk9tyjJHoz1RbZ1+jj08699lRMPTfzvLmfbFzNqIRxZBCE3MvWyWRRquYSN6TgtioD9bjS0vrAzo7hmKgUELInVLKo/RsfYpv9a211llu6QhhwBiHVXkllI3XxsiPpLQQj/FYaymsyxOJy6RidYq3OOfqIBlXkSCqpnRe5UumVog+m/sJIZGks1LjZIYYgmcYIl0uRLSOOGOI2VgwhVOaMzYRfSJZLT37lKX6aIwrsbaYJuO2PeaJwOCHOLrSoWJg6APO1tSZRHpsHjA6YpKgXL7vKKoFy/mC5Xw1ncMUFHHoGLpAf9xTFZZmu0cF6b87UzCvZZu7fUPT7XGupGvhiy8+59mzRyRTgl5yaLa8evkAwNPHH6K85YtffklVGC4uVhy7Iy9fvuRiNaeez+gzgdPWDrAYW4Ky+EFjUSyKEmOU5G3lRapSmtAPpG4gDQOH7ZHvf/6GT1/c8703G1Imi1ytKp5dz3n6aM71uspcsURZO6zLSrMxMsRayrKkT4HkE+AxAXz0WFzm8cj7b33i0HdYO8i1h85Fjfw+JCUuy3LVkjQYZVEW3ELz+INHlGXJ7c0WYxpMln6r5Dn2nv3+gag1c2vY7jfUleXD73yAKeUh9wu/+FfYHW/xKsvRlciUUwBlxC1c2VExZFFJYZUixkQICe8DxjiijyhrKPJrhyFQuAVlkXh42HB1dYkxhrZtKYuK2bxm9yCF5MPDhsXcisDAWubzJfvthqqqmS+jcHCSfK62G0ArjLVUUdLUu6bn+uIpX736ghgtz55+BMBXX73k4x/7mM+++JynHzxlSJ722FGvZuyOW9YXIui4uLhgqOb84l/5eb77yXe4uJwzGrB1XUfbWnxOdjYkbGlQuiemhgRYp0i0uMIzHFusmeBZeSBrK+c8O6FrLVycspjTZcQo+igP+FFhahxFNQNrCUliZsb71ieRGwvJ3cr7eIh9IHQ9aiy6jWZRlyhlOLYd/RCQvKfMBzKKIhfkzmo0SiwHsmLLIA7wCRhiEJNJJPfJqyDCD5T8P0pel1MeZTSzSjg7s7Jk1wjP0Q+arhvoe48fIrHIiMHITdQKrdOUZQUq83PkoT8FC2oRnzjlCEmjsShrSdrgfSCm/sTZtE7k9vnYqdwlGEUrSusTt4WR9P11+7t3i5ixkHircEonnsy7f/MWmpR/psjFxbnFSbYLebfYeXf7KaUpssinlPk6bxc7Ew8nnEwER+Qx5tihFMNbyM6E+KREeovILKR92d4ZCqTUtMD5UeN9sXM2dEZwQgrT5TZV3gqkeMiOkymSei9EurziUUEIcyAnwnuPyWaUkz34xLWUm9iHHlTEaEe0ZfZksFKAZJdZYqL3HW3b5uysiC0cShkK6yh0XtmQ20omk5ZHuaN2aJWw9gzi9o4YPSq7ZkrkRAKEoB2VnpRAKYi0dVyBhJBJ16NvQ4jYLA9OylMUFUppFFLkoWXbWufwxnHSjAFtNCkIAmRsTaGgj1sYPMaCbzPTvh8yjO7wHlYXS4rKYUpLFxqUFsVQ0I5D37LZ3HGxrOiOO7Zdx2w2Y7lesNlu2R1l1ad0gUcxdJHmsMPYkuvnz6nrmsOx482bV6yWWSKtOj598TkXqzXzumB/2LJpWqJRlIsKW1qKjC4VQdEMPdoahq5ntp4zn9d0Q0voPXVVMKbX+dbjQ8vx2LC9e+DTL2/4iz94w6tdQ1KRRxfyuX7swwueP5qzXpWUlUy2XdcQk8eYEutOcLvTgkR4P9C0PX5QEugYNW0a6Id2iteIOJI2FIWlrmusTqRhgBxSS0xMmYgpElWiNwGjNIWWOI7lTFGVScIj87JeE7E2MTQDh+Md2gRUveJud6SsDnzw7AkA2/sbjl/u6IeIMtIqUHH04pHUOJMnt8pZdEi4osIqaI8HtPJY65nNpAU7Ku1mywXOGmxvWczmHHYHetdzcXFFjOJEXS+k9ek6A3hi7zHWoFKkLBy77T31zEFSHI95ko8eDYRw5H7bS25YkmN+9fgDvvjiKz7+WIqdm/s7On/k2dNrfOepkqaYzXEX13Shoc9hqBdzS2UcfVTsmp7l1QqjI323oSw1fXeYHp51vaYoSrzyhGFgCDKXxH6g0JpWhUmZ2AwdVTlnzLlzrhA0SuvsMu4xmSgeIsSgs4OxJmhD5WrqukY9yIN5lEhb5QXZjYGoDR2aDkXjI8e+PyFLSlEqw7yeYZRmH4/EKNYYQUke2rhIGkmwfejRWlpQQUmRwwBF1JRTOymS7IBCYUXRgdUKTSJZEWLMspx2Vip2RHyM9DHRDEKg7vtIUQyTElUuWo13gtShNFoVaLKyNEkwMYBJiaRym045kpKonYQoVkNKp/gapXPcEHgfUDplvx35LEM4LSxglJ6/XdiEsRg7W6xGdUJWSOlEPn6XjCwbyvd6/BoyIm9wer8hq3THNlgY21UTIfnMkiWNZPUcjJrbbUOQdtWIEo3Bqad2VCSEfJ2MCE9eTHjvxY09xlwYSWE9kqZTPvYg7621njx6ftT4NTsovx/vx/vxfrwf78f78X78rTTeIzvnI1kwQq46Z6hIVatQlkzUU8TYSzhjMviYvUWUY/JnwEtIXtDEkNDaZgflsfL2E0IidODsVaClxRRSnIyWvPe0bUvTNAI1p0ThC0zwqMqBsdjcI1bJYnNbajDqLeljPDNyilMfWQr/lKTlJTld8h6TNDJzjZTSmZAsq5+RWKz0idNjMkwbGLeZ4VzjpK8/xLNYkSx4V0kIkyR833FsekpTkujoM1Lgg/gBRQcX19ckL+2voU0UhSIict/j4UC3O+C0Y7s70h+PaCNy3C8+/wqA5aUQlJumIwwdzmqKecFP/ORPsFrMuXvY8Pnnr3jx5oGLVfaYud2yXi1YL1Ycjwe+fPGG+azgO88+4PJqxbEZhCAA9EPAA2U54+mzK+azJV17xLmSWb0kpUTfCV/k7u6WbmjZHDr+8i98xfc/f83LzQFtFU8ezfj4A2nRPX40YzG3aONRIVG4meRUNQNaRfHV0aOfhmcYBo59y/HQ0reerg05yVkyqrqMKqCEe6G1Ze863MxOkuPSOVwRJ2K6LQReVsmglMMj3ThjIpeP1oIa5LaEfrUh3g2EsmJz9PT7HbWtCOrIzetX0Mv5ms1mzMqZGAiGIKHXQ4vWlph9XMa8rdYPOGswhaKelZR1hStmNE2gWjiGbqDKaE1z3GNWS2bzOa9efsXFxQVt29M0DYvFDGstfSfZaxLmOwiiEXw27xT4/nhsMcYwTHYLhsKVHLYtrg6kaLC2pO8is+WM9XrJ57/yuZyzx9e8fnXDo+tLjt2BwTe0feRRXVMvrkhTo1o+4vNnjwh9l92yDUGJQYC2BpP5e03fYa1jyKvfpu+YzSoG3wvfJkZ0NiN1tpzaYSm9TTQNPp1Qas4Rg7HtEXHOcrlc8eaVo6MhjfcyOTBcGUIQHx3VJ/BJXN9Hw0oim6ahCYEhBEEorBDKVQgim/fnxFSPU5Gh60mFJQVp6cfoGQLTXGKs8H+GQTAQpxVea1KM2EGy2LJzCIXThNjRR3EEjzFm6flADA7v+8nJnSTHW6VsnKpGBCSJuWcaicPSsolEyY9XkjEnsZny79jCwQtyZEbj1UyKjpmfExTTVaATRKUYfzKmivuMkLyN7PAWsuNJX0N6JuTmjKA8ojZwaq2dZ035/Bw6R3ZGbo+KCZ9OEnFGLk3SE6l7JCOnECc3c0IkpmHi4wii02cftjHsM+R9ilNIaGLI10Xe34zwTBynCGEIU3vrR433xc750JrxQptoCinTCFK2ts98nBFKS1pNXhHS1hnhboG3YwyZ3DWglJoCK3Vm+QuMO5Ka5d+RvBXyRDAMgwRZdgOjPgHfEEwk9hZvHDASy0q5CJOHpPFIgKKoDk5wX8gXuNWigNFa4G2TZwlzljLsvXhTyH0kQaMxaLQZWydKoF9AOyuTgbD2UJn43LW9QJ9yy8l7GOEXpeDpeyEWd83oKg1D1zImnJb1ktIZdGnwgycGjdMG4wQi7hppX9y8eQ1RuE3NrqHpApfrWSZQJi7W16RcnB72OwqnePx0TbWYs93s+d73voc1NfXiguVqYJet96OPuKJis99xd/vAcrnk2bNLrFJ88eVrFqsLqhwsWRSWRV1xuVpTVSVdu8dYMNYTQof3kV325OmHyBevtvzSFzf83C9+SRsUprB88GzNJ88Knl4K96CuoXAqk07FTbiclZSmppyXdMOBYYwUGMQa/3hsOe5bGAK+T3R+IEVNnxJDOBWyKOFeGKNwweCs+DQFV1JUiS4/EOvSSNsGjVJSOJdGY62n0DBbOZ6xzPdPwPcPqGNEJc1903A4bqiKks633GY7/6IomC/WHA8tGDEZ0zYXxlE41m/rUKBtW7pCU80WoBXz1XoigbqR43UUM0etFOuLK/phoKwqXFHQtg1VVU3me6HvSF7RxwGjEpFI7zspgIyhOXa4MlttBJ2vW09VzPAhkJTGOks/HFnMKvpGCrn7+w1FXbA/dPg+cnH1iF/+5V8mhEtsMJOx4263oypK1uslu/s7drt7Hl1fovWS4/FI1yZmVRYrpJTdaAcCCmdLSBal5P4UPohcB64w9J0Ub30/SItOCf/HD5FiNpugfYmGiIBBZSuswhlWsxnLWU3TH6Q9ARBFwZnIBqSZUD2ERIic5saUOA4DXRB+YO0KqrLGaE3baTHi9KcHrTGavk852sJP/jpaJ1QK48eC2EM0JKWIXjEMEROlmEhaHO1NnsALZzBKFo7Rt8Shlrl18HjfyzmYzALTZPZnlEZrebgG7yX4NRdbAU1MmpBEwKK0MIysTpmCcFoqj1yXkeQflMIElSN89MQJAqZ21uj5d/79OUn4/GdjgRN+RLFzXriMf+dHlVc48XA8WQE1Bn/G02vkszCdr1EdBblASb0QjvO+jMahbyWce4mGkKgRP7W4ppZX5hDJz0a+0BhtpN5aQIckBOX+LWfpHz7eFztnw+qYJ35hj8sQtEVrlZ1UFdaKQ6bRDoWZOA2aiNKZ4Z8STOZMcnFbaydXYq20pD1rTUr+bTvxpIlnckORSg7E5HEpierAKFTwpCR/H/MFYE1EG4/RQq6TCiWI5TsBNTJjxxwXrbHW4mwpeTjaZFn5STlmVU/QhpBVGuh8sxqbOU5KEtgBwqmPq7XGD3kl5eUmG7lEIA8x7z0p9oQ4YIys2FWM9F0jEug8cThX0nUN4bjPhaBhvloyqyzH9sirV5JKfTwcWCwrdBJx7Lyqmc0rhn5gt+/RpmV3uAGgLEvW6zUxKB7uD7y5uePR4ycURcF+f+RyWTPLaI33Mtk9PNzx/IMnLOc17dCyPRwwZcHF1SXzhTzoF4sVdS3S3qE/MqtrZvWCGCPb/Y79fo/38rlu7o/80hc3/N/f/4zOa4xVXF8WfPR0xvXSUOZVeqEVVkNR5fNUlWgtKI33fe5zyykYukRoFLGF1CZSH4XAGxM+BLwPQhZFDCPFLSESBiFLqqoC1bPvBmyTpodnV83lGi57Uuqk918WKK0ZonCCdLZeuLic0bUe/6ohac2gDNtmx7Gds149mcjUUVnWq0uOxyP7fSTQk5TJq+ZA0hqV70XrCmKM9D7ig6YsK+q65rjfsL68wriKNqM1aM1+u2O9vqQsS9q2xVorJoN1wf39PfNc7MwXMxIDd7cbikKTQs98Psf7nsFH2n7gaily8j4nZ5dlyWp9lRHXA0YFfEo0XTeZCt7dPeDqGb/u1/06vI6Udc0nP/ETLOqKw35LkZ9mTSeIbWEKFqsls3lJN3R8+PwDjrsD1pWUhSCMPvWEFMQ6PURms5UgD8EgnEI/oQoiQOhoji1KW0pTo4wUO2VZErN7u8wbWQkUPOgCg8IqzbyoWc1X3G0eJjVWUgMaGFJEacOQNEOK9N7jY5gKhpS5ijYZisJwNV9xsViilOJuv+N2GOQBzJhhBT5F+hiEsE627jAKk8RwEpDIgmkxr4hdJDpNVIbgANxkmlkYQY5l/jSgoqDz2cw0xog5k4aLe3cgBimoRF4e8WmYVEtRaRIWlBVsJyZCGgiRjCIXE8rqQ1YzZUf9mFGdsTgfuZYyH54KGeBUWPA2CVl+dypaYpQCY+TEjHjdVBiNRN+xEIpiADjEjNTGM2RHpUkNNRZE43ukGE/PxfFnQUwFx2KImOS+jXHi9xBOxoPRD1PxQxQulZCiz9RYcczsGo0Nz1yfYXqtSjnOI52O4a823hc7Z0OPJF2VSOZk9z22dDQKYw1Wa0xu6RilJog5BQgqobVsAyXqAylqzFQoABJgN7loWkF5ULwVRDOSwYIXVUqScDSBCkW5hJaJBJ8vbCOKCrSaVBnGZAlqjqEACFkFYBRokjg/Z48fVDxDnUAX1cSQl5XjmAWWi7MsPwW5YZUWZc0wDBwO4qciaI1IotWkavDZsydRWieW/SQOxx1hEJjTZ0veXbMl9h1FqScPn6Io2dxvefPmDd6LquTR1QrrFIfdlvWqgKQZAmz3A30fub/f8OSZ+KssFguGLqKLkv1ux+XFE66vVuz2W5xV+MFTVXK8qmrOZnPH5XqB1SJ7DcliqgXPnj1lNpuxHmMCigLv91RVka+DnmP3IORyGmJqeNgKYvT5y6/4lRdv2LQ9tjBcrWZ88mTNZeVwWk32A1VZUc4d9axGFw60pmsH2rbH9zKhDrmA6QfoW4+PCWWgSx3HrqeLcGwCvVeofOtro9B9ROso+x0CbXOA5KlrIT6fIOaexcKR+oGiNBSlxuocJBuSoIV5TjKF5fJqQd8E0qbHzyx9iOz2G+azC6oqZz3pgqKyXCwv6fuG4COD91mRI8jB+JCzCpzRXF2sePL4Ecvlkvm8JkbYbrdcXJZU2Q8HZdlttlRFjS0LZrMZt7e3aK05NjtxBh7RzRz/Mp/P2e+3qOSJZ7lr+mwu9dGz3d1SVTP2xyOLesHd3R0pwGwxxywdb16L19D6+jEv37zir/ziL/DRRx9w+8UXPH3+IUVRopeRkBVWRVHQdwM6SQRG13seP35MiIr58pK+PU7vb1yFLQrw/UTynHxgckthLCAKLa1mHxpW8xnJWHyK7A8N1nVYU0yLCaUMxhbiHxPFE0cpQ+kqFrM5dVVNzu6hF6K6UUm8mFIQ350oD62xdoggrvNKcz1f8eTqkvVsRe8HDl2HNWZCwk8hleYUM5DObDyStPtBbimdkAWNPA+lPWIiahBkLpx1NpRShNgjXjs9KQ3EOCI7TP4/gm510mbyGSnKmVAh9oRxjk2aiEU7ce7GCBegG/rseg7ZxJpkdEZVwiQrl+sqFxfRT35qSsv1Pj7XJ1+jEcUJb5OWv6nY+SZk59y1+G2y8eiPc4bs5PiGMfphet0kBz/FvJze3+fvpYgKBNTZa6e2VEqTY/LotkyM2cE6Xwd5G5A4px2r/FySZ+N4Qyp00pgzW5Rfbbwvds6G5Er1AsuqsYJWObNHkBdnDNYktIkYlQTOHStoH0jq5Jugcs7KWNSMJ1m2O/JgmG7olMRCPSYPcZgknCr0aBVAjbbbgRhEmWJ8Ilk1TVpTJEOyuTVlTr1edeLsaIIw+pXI/vo+EYJB6xFSNpPtvIomt7Gk2NFaiiYxUTRYfSqipigNJejPbCb5VCLrNKigpofykM29Qif/tr6F3L8dho7mcJjM1FIcWK+WRBXFjEwrYhyY1w775GLiATlnGfLK9f7mgSEIp+jYdBSV44NnT6daTfgYjtuHO8rK8fTpmqE5YkKgOUiuUj3Lqol+z+WqpG9bmiYSKoWbz3hy/ZjHj66oqzlqzKDxAWMWKOVIiIpMYHPJ+WkbxaefidfPL/z8C97sDmjjmBXwwZMlj5aORam4XK+YZXM0W7uMoChowYfAMEiAXu8HAoE2m2v1ncc3AyEOJB8I0Urydh8IlCSrGYaRC9VjCGitGGKi0CYnost5SilhstfREAYOxx1VZQlekWoL1mDsWMOnzGIAXTiWVxUhGZpwQ3PoWdSO7aHnfnc3FTvSWnJcXl+xPW5pWsD3pEHQSZvU1AIgBZwpmJWW9WpOVZVENNoV+G4vSFO+Z+q6JC7nbPcbVvqCsiyZzSTry4eewroJgdntdqyXJWVZcjgoHu4fGPoOa8UQryzr6fryPlDWM0KA7e5BDD/7QPAt2irW60susllhUpbl1Zrb21seHnaEPtAe99SlYbfbTw/PoihYLGa8fvkF6/WaY9Pw9MmHNL1C2You7FEZAVAJSl2QtPD8uk48pYxRwnkpqykYMWJISoxOfdR439EHPxUWgUSTj0HXDVjrKMoSFQMpc0yMcVyuLri6uKR7JQuXRgnap5VBJbBJ4ZLCyjtO4bUkUMpinWY9W3AxX1LWNcMhnqw5JqQiopNGh4TyCR3GOU1LMOXZAy0p4bYobYgqCEdNtK70MaBDYPCnAjAqiaXwKTJEyQBMISMVweOnWIaAjYmkJY8tTXO1IqQ4tdyGADE50hAwLmEKI3l/ShaQ5+055ex03lJKYtehNS7H+sQkEnqZOPIa95021lTYfEOxc5J/v43AhJFPA1NxM/4s5qInBP+W+R9R1FgpvIPeJMkAO0eWBEWSI5eSzx5eIv9PKqNL47k94/Gk3AKdODyRt7fLWVGrR36RgAdKaUF4pktBE/WJB/ujxns11vvxfrwf78f78X68H39bj/fIztmwRYkezbNG1VSGhm32HbHaYFXCKi3MnuQZQkYftMHhMjyXORTqrKWlEt6PKxnpJSsU2mT/noltHzNJeZj2QchZCh+EA6RG8lj08hXySsYHovVEZdE+oKyE7okp03DW843SVz5rEWiVSEosw70/KSXi2SpB6xPXyEpmHymZCc2yGdFJWlpnhcmojzbCE4lpcmdOUYJPyZbkZVXhh57+IMqzGANVNgBczFc4LQoV5xyuLKjLgq5vSClMROLm2BHTwP3dlqYZqKuFIGs6cbFaog0nNVhUHNodz549Y7acEfoWiLx69QqsYVGvOTay3RSkHdh0nmpRMl8uePrRd1ksVlRVQfTCOQJwRYG12afG1GKgZQaO+wPH9sCbzQOfvxaO0W27JylN4QyPLktqG9Has1wsqJYFrs6tSGdIyhGTJQYY4kHajQYYYOgTo7elHpJ4PoVESJpoDd4WHA4tx8ajlD31wK3BR42JhpQsbQw4G3FaghVTCmf9co0h4PFyPrXG2RqnFMpIUnZVjaT2HmJisaq5up7T+0jyCV9F9sd7Nntxm57Pl8zqBfP5nBc3r2n6VhQ4SpBRpfToUSvtC5M5bHGg73vmxhIifPD8I47HlnH9lrSh7wfKasbxuMc5x3K5ZL8/sl6uOB6PXOS24+GwY7/vWcxraW02R766f0AxtrA0fVaEOFsRBlnJhhBYLGa8evUGpRQ1M168ec1qLZ+taz1BWT75+Mf5pe/9MtYWtO2R+/tISnpq8dqm46OPPqCs5ThVsyXHdmA2K0FbjK1JmQuFH7JgIGKto+2PtG3LfF6TFBSupO9Gd26FNQVVORNju6QYfASjiWhUUpOhXDMcqJo92opnjcJMSO5iNufJ5WMOW2nP9b4jpYhPEsYJdlIZodKJc6IVBsWsrJjXtfhvoUmcQpJtGo0KM+tP5dDRdGr7nNyHx7X52RpdK3Gcj/l9U4CQiCPpNgp6cW5QNxFgowRQqklUwmQmG8+IsSCcJJ9VP8OgGYImuhJbgBkiRTnHFqVcoJxaSKFtp+cGMDnJR+VF2WrNRMDXQsec2pATR2jis5y8ccL4Hr8KsjO1A8fPmsKkhhIC8Rl/Rt4Ij58UvyO/55wIPTWX4on7E8imgikb1KoxxHQiHYmyLY3UjuwdlMNgpetxOqWRMS5J1EFpbF1pdULB5AJDqYEzytWvOt4XO2fDlgUqWdTgIRcwgYBSHk0SkuhZm8p7j7cWeoGNVVkiyJvNMB45KVzJjZQSSY85HgI9K+cwuszbDCQdCUOYJrS8E6ioJtmdNgas8CyU9pD6iQcTfZvdiBMoN8lblVJEf8oQGQ2ZrGYqXhQGqwyFUwTUmSy0y86rOsPPI8k4E//GiQ4gaaIxGQZOOOcIIdAPfSawnS7soiopMATf4r2n6Y50nciDQTObVyzns7wPcvPNZ6Vwdko5xn3S3B17UpbeD76j2XtSMlQzuMymfFaFbKynmOdteu+xpbQa2/2ervV88eVrYoxcLGqU6kjZpK6qajqVWD96yqxe8uGHnzB/dElKibY5ooLHzfJ7GTA6EEIrbeYMmTftjte3N3z/B1/y6estAK13aNNxtS55tKy5XNRUlSNqQ+8HUj/Cxh3GVgxBOBmBBj90pMFDMMTkKeyZQVuEQ1IcB9h0hlf3HV++6nm4azDKsphJe+zqqqAsNKVyqOAIIJb6qgdn0bEkDKe2bEiaoEC5xHDohIw6rzCmQBuR2MplkBjaHqUTl8slqdeoeKAfIoOK7LfSxusuHlFdP8UPkfVsxX7zIHD1hFZn9SFi0GaVpSjnuKLObVCfpcE9s0WNzm2DwQeKspYU87pms9lIbEddS7vHuYnntagrdvsHdAxYq1kul1xfXXF/f8fNzRvqecuTpx/k60BI0EPfowvHfn/k4vIRv/gL32d5eUXvNX0vRcF+1/L4+YdcXl6T1Pe5uLyg61r8AEWpKHJ78HDcEtMTkrLMVldYa1CmyAWjZ1aV6PyA70JC9R4fh3xPyoojJYW1buLegMS8DF5aN9aW0ibSA01OJRfLCDlfMUZ83zJ0wq1LOuTjKhXm1WrN7uoxAA+HDV3XZ1US9CnRk9DZWmNqw1iD05ZZMaOqKqy2ucjK80gapdZgEWUSSkmLWiFFmYKACENGpuDpGhfekNEKnYRYqzMX0XdjmvtAOnPn9T7Sdx1hqIiDIQL9aCoYRVihYiKaTIpNSRYXxLFDSucT/WAYVIMtI1WV8MFQBCCLNnTm2mmbOUg57y2N+zdyY9JJsDGaNorJajqpfEe1UTy1hnx6O49qiOcZUm+3sYIf3sqjioPPba0hFy0nHk7If3/OB5L3HvlKJyaNilHI1nHIa+YoLSrNRFIHWaTkph4qjUuX/JbZrFadOSvqTB0NQaOVza/XuV11MhWEhIqOb9ugel/snI2ynKEIDLqHbNzLqJRKiLQ8T8JC7jXEzkORV10hEfoEJoocURm8kHDQhJw7k8nM0WCRFXYwEoLISCRLioAjZU8DcU0+qW2kMMlk4UxSDrHLuxsIfsDrDmUEhYlaeu+YSTNFjBGb5PYyRpOUwYdAVELUMylNMvRYimpFZZ5RUiJdD15WTLr0k4xWo/Bei7NwWRGV3AJORWIShCJmFEppLYTUQaSxXdsSB1G6XKyWOCNhdADB99S50AFoG5Hm62jQQWOUnANVKOLcs1yVXF9dQoh8/uVL5ssls1pRVYbdUQify+VSCJYkdvuG7tihTeLR9QWqTNzc3FA5kX4XizWzwmGrGVfXT3HVjO39Fk0iDB11XcqqBZmQDscGjRzLrus4Hhv2h4bt3Y7Nw55dlid7pVjPSq7WFdeXBauFRDEYq/BxIOZJW7mCvjkQlZMJum2JocPYhKLPwYTZj2awBByuSETv2RwOvHwzcHPT07WGpDXbY5ZHHzoeXy15cuXkerEVJC/qEhWJxWnlG5VliIbUJopYgIk0h+zvgsLZyKDzgzSBH4mH1lPWkdXK0Aw9vYf7HAS6PWw5HlqKoqSu5milCIOnsgaVAjpFdHYE1tpSOks9c6wvrtDOkjBUdU3bJVzJdB2gNMtFxfF4xBaOIsLd7S1X/1/2/iTWtm296wR/o5rVWmsXp77le8/mOVMJiEBEBiGUmTSoZIkGAokGPUTDXQu7g2ghISOMhOhAA4kUCAT0aNA0Sgka7mRaQWQQYQG2n/2qe+69p9h7r2LOOcpofGPOtc5999kmFRJOdMbTefvuvddea6655hzjG//vX9w+QZtcXbKnejdomqbh9esvuL3ZohVsekuYO0K4pXFdLcAFYby6ecTd3QMlzXjvefLkA97c33E87tltNtzfy/X15tVrPvjgQ2wpqGI57D0ff/iM/f09jW24fXYDwPc/h8NRgkS3fc8wDJALbasYjx5r7erzk1IioUgl4HBoZWibrm6WMjGH1d/EKQdkVAmkoGiGLdPsSVlTUuRq25BVVW7pTJwO5E1DzJZGGWIQzpcpisY6Hl2LP9Xu9SOm+TVFBYmNyAVTZDNWMGQV19dvup6hv8LpHqNbSg7E5KvrbUFVVaKpiAjLhk4vJGSxMShK3jeI3LsULd5MWZRpeSUaK5IvsvgDMWdSFg5jzpzDKmPEB8m3U4snTknEyiOUBVW4O2jDHCKxonshKgkqVQYXpeALuYhnj23rnLwgshbbNlhlJY7HLKi2LCR+DmdUvKpclwywdOFWfImuwLnYocq/QxFOTExhLXrWzWqKNYQzVo+hM+l4ed8ga8fCw4kXBGgFpFgwSq1ihfqH8qUWQtooYimCGF6AAqiLCFi9FFCm8kjr7y+K7gr3oGu2myx8CZQR4vzyXEpRdHnHgfq3G++LnYvR9luZYLVfJdrKRHKUQkLrXIlyiwxQoMFYbxaThXC3pImnLCoFhSIX8dwxdeeJEbRGLros6GeqBmAJqOx3GZmoAlFFqbpzwYm3vkCEc6hhilCYV0Z/JqG0lbT2thfCcS0WGm0gR3SV8xaVUNrUQiaRlcHpxURMJoAwi1ldyKFefxITYZGiSt6WID+5QCiLHbyiaCutmKJW47m87C7ITNOJnBPWGtquwRlLLp4S602gLaUofAxolFiwl8J+ekvXK6xZJPWFF8MTlNI8vD1yf7/n6RNpZaEKhczNo2v5bDGUpPE+Ukqk7TTbzSMa1/G9lz8k54ZHzz6S92UMN4+u0cry5vVLWZx3VxSt6XdXYqRYQ1QV0LQ9JUf8PBNjIkwzL1++4vPXD3z++m6dIDa948ltz82uo+8aNv1ANrLDckpLPhEwpUApioeHgxBSNVAUjTO11XqeJH2aCQmOIXF/StwdEq/uDnifkFs+r7ujcUq8/PKOmBIfPLuls4Ih5NIQAoxJ09ai1zqNj4GoEW+Z6tVzHE/EHOm7Dp+WhS5jq/W9JuOMpmss203HyQfG+rdvX3/B291TKcptYk6BTGaKid7IDnltp1poux1QUDrTdZ20NF2L0ZY3dw88rX44rXPEGHDOyo5fFa6urtgf7tlu5ZwuaKgfPdpGdlcbXr16xfXVrt4zLY8eOUrWPBylgDkdjzSN5eMXT/nOb/0mZZo4HO+53g1M08Td3R1PnzwH4Ic/eMmx+il981sf8v/9X/4Xbm57aZVoxXUlMt+NR+YQUSUxbISsvL+/I2eZK/pW2rvyvgwa+bxzjMx+xDmHryaNm8YRgvx3CEIyd86hTFfngh7FSNd3uLYl18V3mk1VP3o6FykqycZlaSWg2FZrhY9fPCfEmS8eXksbqRQJ9TUa5yzNLJ/Xtm346OYJj69uBEkj40tiTqLIuZReZwpKZYxVGF2jB3KEooTwrDK6yBxTkhQxRhW0A5ZNWFFQJeWpHkMMrKgG5CrS8IQwYXxNU18ynHIk1Ny4jLToYm3lZX25IFfytCpiWBjElgNdMLmsWYbynBqbvGR+GYN2zTl7UInFyLJ8p1TpBksbcCl6loT2RcEExCrlLtWnZil+lsyplMJazMQYyTGSs8zfOZ6VWOSyov8lijhkUcEJuVtLMVFJ4nk1O2Jd694ZCqFN1P8GqlqXc3GznMtyWaUsNAmzrnsLyVnVuX4h1i9HUBB0srwnKL8f78f78X68H+/H+/F+vEd23hldv0ORMWbGVOjce0+IhpwCKKn+UxUrLqZJS7/RJouyZ7dHEKM1aVrKzysAcpZ/Vrt1MCsZLKVAyPEML1JtuKMEp+WSSDQYJahELMJZAFAIf0YrK2F1Cmg0OkdwYNqK1jS28njKajaojYQg5lJQOTGrxX8hEWMgeoFBA4uEXtNqKzYTSdCvVKBoSyjgi3hWONvRbpq62znvDEIIhHli9qP4CKmCaww5R+YoJoptDdfMPnI8zTStwTUNp+PMeDphO0fjDMHLDnq7E7fkN68fJGG67+l7hw/iK7Lb7dZYh5QKh1cPHI9Hho2h7+QYP/vh5xhj+NZP/KRwFoDNZsvkIzEETGm42T6jaOF3OJuJfqSp4YNNdQBOOHAtp9M9b++P7MeR779+w33w2PrYzcYwtJbbTc/QOowqWAvKGJRt8QuXGss0T9J+tBZKYp7FO2QcRzFUqym0PkEulkOAuzHx6q1nHBUxCVR+JsJDVoZxTrz88sBxmnn+bGA3OOHnKEWyeU1eJwgnR0tqJMlqTFaEDDEkwuTZtBXha4VroLRGW0vTQRMKQ5fZ9YlTbc89nA588eX36fsduczoEtBVnqq1FQ+oCpdbKwG32+1WyMm72qZN0u8YhoEf/FAiQV68eMHQNxhjVtQj+pnt0BOD53Q8rLvSEAJOZxprGYaBcRyx1flba01IkQWQLSXhp0QaIs+ePePh4YHj/o6rqxt+/de+w3a743vj9wF49Ogxn796Sbd/4Cd/6ts8f/aM0zRy//aOYZj54IUEhl5f3/LDH36fMI/E6FEl4oxCFZHfG60YZ2mjYQsxBZphg58nSvY0roNihXifRSYMME+CjFnbgDbkkslppu8cjdXisFwRtqKKtHymmdJ4UA0ajTONGOwaaOre+PnjZ8QYOYaZ+3HEIvJuq6Fr3WprMAwDTx495qrbUpTwRbz3zPPMGL0YB67ybkQEgqn2FlpsB1ImpEBrVy2FRBHoJGhPKmRdMFloBqn6uPi0XLKFWM3xUoZQDe5i8vgpUYyiVAqAzLfiI1ayIlSOizEG69o17NihSVkREOTD6FKDkqVtK55qdZKzqnKWq6lfrtSD6oG28FDkHOhKXj4jOMJVrIjGQhxGuKRi6ieoeyyC8giKIya0C0E5R0F0UgrVAkM6BKEmxZ8hpEypKIypBOhSrUt0ZRRlffZFWuwjF65RrvYseZGOL1+VGF4WhMOq9cI/hbMt9plvKBFGFd1RguIt6fDaGC7ApfVa+d2M98XOxWiHAU3GGIutZE/jLGZWcgHluZJBF3fhROIMh6cs/cOQIibLRLzAq6qSeBfejco1P6Wk6pZs5CZOCV88mbhO8jFDDpBn6WWKsmomW2HX5xIJSytNQdc0tE4cUK0RQlooE5lm9evISlXnZC3J2RK2UiHHIvdAXuBEgZSVFgO2hWGmivTWxXBQfpZCBAKmbWjbXkiUSqBb5xwhjudeMhEfRqZpZGg7tIF5POH9hFGFtm1X6/20eL50lnGciTHStC3WKsbTAWuFW0NpOO4PHB5OPLrZcLXb4HPBaYMuWRQwtdh5eDhweNjz9OlzxvnEaUyQE7ePntNtOprOrAnSRmusc5ihQRmHMQLray23aeMcunIV5mnCx4g1DfOc+PzzL3l7P/HZ50d+8OqET5brjdx6Hzy75cm1o20MOXlyBqctBYRcukRA5MJpnHEWrCmEWVSCOReUdozerw63uTjmlDiFwtuHiTdvHwSu17Y6w18QypVCKcscM/FuJuTAhy8e8+jaknNmKoVSifJz8AyNYdM2FBQxQEniyxOLcJeaWhXoKJyEzWBwFkYNbk4YHeg7w9Ug1+tpOvLyVWazfYwtijBHUKKCCmHGNQ2p4vrWOAoarQ2mtmdjyczTgSt3xc3NFaf57J3TuBuU0rRty+FwQJuCazQ6WVIKa6ths9mwP76iKEXTNMIdy7JQdkMnHJG51GvmDuMa7KnB6MJ22PCDz19h9MDjJ7doZRnrNTv0W97c33G/P/H48WO+9emnfPbll9zePuI3fuM3+MbHnwAwxpk3b+54/fpLnj59ilGaHD3bTQdGo01miYNZiP/WasZTom9aWisZdTkJZ66xbZ3RJEncGCH9hjQTwkTrDMZoZAE6CxhUVSrGGHFWVDNFK7Q1qOTWBahvez589gGnMPPr3/ue5IjFxLZpiA2kRp5zt9uijbSrY5R7dg7Cc1oW4kVgZTg7yGtl17gaIfdHNFZMTxEOj4giqqFeKCgr5oU5JUjq3O6p91AuStrJITGeZlqj0F2DvXCKpxSc1ihjKQYaLSnwxhhs12DtmTuWi2JMiYyB6rGjjMTjYFnvL6MNzp7FHYu/8dpGMufXVyyto/NiLxvnsvJzVs7OEtVQ14yY01eKnbj65YQgRU6oxU6KEkcUl8+gXi3isF5q8rqsMwpVSeQLh2fxwNHrtZMXc1zF+k++XwppKZagiHoXua5ks7G0IJdFpf4N1ETzdM58s64CBhcmmmiUvqSu//jxvti5GF0zYEzBakeqlbc1QsBMIRKTkeIi6hqJICTkNWgzZ2IMKCWKJLSpxLiEwVQp40I606QsgXzaqjWPJKUkUvKYiOmcjTVGv1qPL3JDpcS8SlAEWTys0swdDC04rXFWUJ1cHFql1YApRJE+mqr2aWxL13Wi+ii6ytLlooqxul7WxYE11qL2mhcVBXJhG2Nomoa2rYTiYlCmENNEnOe12Bn9TPKBbT+gUYzziRgjXdehSsL7+byTSZG+75mmEyklhqGjbVu0KhidOT5Uwuu0Z394w+MnW4bOMc4j9/sDV1c3TMFTYmGKsks2yvKNb3yDMAVGNG0z0G83gjilQFsabFXMjOOew+nE02cvwFi6oWXOnuITV1dbnHIcD2/lfAWP61pC8Dw83BPSzBxn3u7vKSQaq7jdyMR522uuekdjhfx6fb3DdJbTNDL5uHJrlIa2c5QUxZRRK/rNlpw9ThsabbGVU3CaYnU0LhJN4ZMU3EVdyFjz+nnJuVCAZX+feFmOKKW53rSUklargKZaK0wxMTSOVKBtDdYVtM5YA6mq14puJLsmWLTSNKYwbBLjWJjnSFfX48ZpkX77SGs0JXq0VsQsKFRKCbsgp85wfb2j6+RaXe6NWCfvUoogd0BOiWny5Cioz4J2juPI9fU1x+NxNRWMCvq+Zz4cCCQ22yv8fBJTyb7FGLXaS7x9c+Lp7RPmUHj7+nNub2/pNwOZTNtv6fuexsnzNq3lG8On/Oav/wa/9Vu/xf/4P/yPvPzyCx49fsT3v/sd7u5fy+uXyPPnTwnzyMPDgZurHfN4omst8zQxbDc0ncjZY5qqNFwIt33fySYqRFKeMXYjZPn6WB88rtXYRjGddA3vFf6DwdTwYkFkUtKEmJlTptOK5BNFF5n/csZW+Xsk07UbvvXiE/zomb78jNNpQnnPoBWlCjZapTAUfJgkayxGxumI99M7i/k6p+gk6J0RtLtkL0TXkqoEeUG65X85CScmGYXBkZT8LMUzmXgO4nycsxQ+2cM0ZnxTaF0iu4LRi2Ciut0bRyoF3WgaU4NxO7fm/xntxC4CRcyKkBW5OLLVEvlwwWMRM1V1oVZlfd8rh6WOJSKoLOelKJY8rMVteFVY5Xc5OymnFeVJMYoKLZ05OylGQjwXOzHGVeK+cJFUkc/WKOk1WK1JJWOQiAutLvg3CgT/Wd7SBXEYXbMfLxAeJUiOrjYorOkBCLL0Tp5YWv/GaNl0GWMJqWDs2cBWGYn/eJf78+PH+2LnYrTtgNUaqwLByISljNjGR+MJwZD0RDQI8y2Xd/wEpCovVUmgawFTP9yldVCLUJ8itpLKlmwPo5X40EQJTAtV0j5NE5MPhBBQpeBnaSXFIKhRjJGmqTtqFdhmQWRtYzBB0zSFJiuaWDALidZmlALjqstzC14Vgl8u0DNRzFd/Hsl8EbKes031jtBYvfhtCHG+cQ7jZLGLoaBUQs8Cq4YQVp+bBfb03guJ1Cl2u2tSmklBZOtLYKYCxulE21tub5+gtWY6jajG4P2MdVWgqAqb7aNV5t64lu2QGA97fATvI0NNxn7y6DEpzyQV2O16TOOY/AHQ9H2Hcw2nk3wGr7684/r2huBh02+xZqAxmX7XMM8zD8fDukt1riWmQEwBHyZO88TL13s+f7snZbi57tkOciH0LbSd4fb6it3tFc455jCR6pOtXhkKnDMklSHWuBClSFnXnaugP/UkgNb44DmdZnJQqGQoJsmO/kL+L34WBqUkz6Zozf3DkUwivXjEplOUiljpxjHOEdVamqwxBFKchawsMdi0rSx0KWuKKoxzorMV8lbQOkvrEgopippWY03g4bRnxtBZh6PIBJszGIVesnBUoXGaXLykTJeCNprGtTWH6bzxkIiUCErjY+K4P3D76ArvPYf7O2mPVuL1OB45HkautgPjtEc34qYsnigZhWWzuwFgf5DCauivuH70gv/0a7/Op598iOs1j7pr7u7uRIEJhCnw5Mkt3/zWp/zqr/4qoz/SWCB7vvnpR2vuWQqF7W7Ds6cv+OLzV7x49pjNZkMIgkSUrGkaQS79IaI1xJLIJRDCjEYRgl/RgiUMdfYjTdOBcZKvZQ3uuqFUjyIhfqp6yVhs0xCyZ44J7+V9GtuQ4oxSF32kbHDOcr295ZsffZO5ZPz3v8/b4klaUWyu88bI8bDHZENUCR8Ch/HA5Ce5vshnfxVdF8nq0L60+UsUcvJlVEGp0QFG63O0AkpUSDOEACFUlNUHIe+iyTlWJZihREETNBImDLUlYhxFGYwCtGS9GWvRjZxDub8dKINDEXPBBo2P4kCTqFL4pTNQo3qWDeOimDR1fs1FneMilBK1mNJrMfTOv4rUAecCqP5OEsQvvIQya8GXK/ITksj1Y8ykkMUvS97m+voxgzZayMgIMT2jxEJF6dUhXfzh6t9VZXCuyqq8FEWLDQWcLVsWlKg+tj4BLK7byHWwFH0A2tp6XVe0yVy0vIr5XfvsvCcovx/vx/vxfrwf78f78d/0eI/sXAzXdjhrsTaKcR+gzcI38djQEIMjhploPCm7d7JFSoGSAxQIFFLJKBMlD0QVDIqy6IMRnotkyNU22GImVcnIC18jxkyO0oP1OTCnSIgFH6m96CgSUUTyazJYbYTUhchuVUroxq4GWjoJnJ2L9O99iaQwiYy0hpwuu66U80VCuwElLr5oTYqFUA3OAJxtxcNiv68uyw1N01SSc93xVVnovCBGStN1Hf22ZzweiSHgjOFwOK4I5TD0tK3DNoYQZuY50boG7z1936/8Igms0zzc7yFL68t7z8PDAdduePToMaoaO07zA4fDiYLGNIY8e66vrhj6HSnDaQx877ufA7DdXROyYXvzmE2/qU7SihQmKCf6jeJY5cm5GJJyHPcT9/czX3555Dc+e8PDnFBWock0VtAlYxr6vsf1DarReCJRFfGGKfncIi2yM3KdIRe43x8Z/YwqipAKKSvmipglHN4XDsfE6SR7MWV0DSPMkM+wegZSiaic6y40oJXidAy8/vKAftbRbKuM1mjmEDE+0GjFppE2U9FigTBPfg3FTb3GUIhzQXXSDpSQ3Ugs4fz6OcjrElFa/GNMtrJbVFrk44OgRUPf0g8t26FfnVc1ClXzhnKWMFOAt2/esB16LAbTOqbTSArSJj6MpxUtAHCNoWl6MXmrra7GaTabnv3+SKaw3Ynb8kcffcDd6wdeH77k6YfP+OTTDzke7oHMo8fP+eL1az79xrcA4fdoa9jsdhhjOB0ndjfXeO8ZtjvuH8RYMmvFJitM48gxMfuR509uGceRYRhqhlJtX6RA14gnUswZn0INsLRoo8hJr/dMDJl+6AhZ4b0gJH3fE7wILzKayS+ZX5nNppfdc1ZM/ohRklWVM9hms7ZgjBaJMMbw+OYZP5kzJMN/fPkDXu1PxMogfX24Y7IRhxPvppw5xhmvEkVJILBZ0CJVMwStkHtLddX1OdNoTYkQ6xZeV5Rw6Xws4aU5ZEJMeJ8Zp4pKzxl0weosyJYtOJNrtqHF2OZsB6IVRYmruzLizYM26KbHugZTQ2addSjrKIDJBWMKKhR0yeIO7YwgIUBIfhWsSB5ZFafU+ySjKEvgclmQkITS6py1l8+OxquwYCUqS7BnLrLepJLJ9esyFp7XmnO1ICsL1/RC6g2Cwi6Gcrq+liqFoqFUfERdeOcsrS+9ZDxyfhzU4NMLN2yRp7/bevqKZeTamhKEbwlPrXyi+jtdOyHvCcr/P4ymsThryQq0lgvbGIPSmRQs2lnMbLBW3E1jmoSQW028SNV1FMVqelLko1fKiBfFV4a1jXygWQlZOSegkNU51r6gSUqLAV6ifsCKxhZSEdgvVkWBshZfEtkIJGpUQSXxbaEzxMWoKlTYtkR0gWgbGuvkZslQ9JmQqE1hGGxVwzRgqxliLMxzELPC5YJbrllnpNdt3EowyzlzPIzn0M7qk6KVKIyOpz1+mtBa42PGuJbt9qo+YcIYxTxOpBxwtgUTsGTCNNWoABiPEykV9nf3XF0PvHnzitM80bQ9u6ueaTqurz/PAVTD48e3RBXobfXCoAjX5/6Bb/7Ep3JeTcPm5kqcYBVM44mkAtvtFlMjIYbdMwByLoxTZA4n3r6959XbN9zvH9BO01nYtgpXIeRNa+iHBnTh6CdQBlXEvNI6vYZw+jkyzx5tDQVTFSbidSEO1XElyp/myHFSHKfI7LMQk0NBOSPKCcNqXy+TsaqGkQqKkaDXXDgeJ/qDpV0UVibTtw6VxIE1poI1oHJEN9BUzyaA6RRojRUjMy2tqByl7WqMIVRuTy555RF5Cqomcy+eSwq1noPtdivRB0XV1PvmTFg2hpTCGojsnMG5lpSEH9C6jvE0cbW9Yp/eQC64GnQbq829NpaudUynI34c6bqOEhOvvnwlCfZAYyz9tuf+5Uu+85//Vz755BNKbtnv93Tba/puwzguaeYDpzFytd3x/IOPmKaJ60e3GB04PuwpWT6DYSsKMFV5K8PQE+MEJdC3nQQiLi63KtD1W7TrKNlibYtzPT5PGCNtoPX+am3lK1lGP4u3i5GCr+laQir4ZQMSIn2W9oo2onjCUV2JLTnEVaEKsnFpux2ut9zsbviJTzWqsfzn3/oBJQt/7vVx5LPjGzQWY4VPKHNr5XPUcGEAlRO0jqZVaAe5eEIApwtKWXIuEJfCSKN0qn44SjxulLS8YpRYh7nKsXzKKCWE7r53dJ2l7w1tI9eMUjWGACT8VGu0sYRcZAHWDus6bNOtbayiNVq7SiRO4mdmChbxF4ulMFcKQqj3Sim1EKitVms11lqSOquJ1i4hqi7uWWb/WsgvXjNAJTvXxy8tojqWtte55SXnqCi9/uzyOdaiEVWjhYQXJY+pBOparCTOhdHKdSpCZ0CdicXqwihQKb0Ka2ApiM6qLnm+C4kV5/DftZ1ZytoWW39XkJiayz/9bcb7YudiNO2GxlqyjmAWI0FZAKMN+DhhTUNME2Z22GiJJpKq7XyMkZKm1Qq9AFT5qrFSNNiKrFhtcUbjjJYPXks/NcUoBK0iiAwID8UW2emELOoZowqN0TRWJqTzBkluYlKWBGCtOUSZTGaf6Fr5yDtnaYeWkqrUUzXkogmlkt/8tN6Eve2xugEtURVZK4wypFRo27rLqa/fdFK8JZ3pm55pmkg+o6w4emrn2A1CIu26jlIK03xkHGchrnZb4QD5ma7vMStBORFDoqhM2/RshoHxcOTudE/wE/ODoCopRE7TSM6Zuzf3aA2Pn96glOLu7QOn04SuRMNhGPjwow+4v3sgaVBNTyoWXwohRT786AWmEWKo0R03V0/x3vP64YGua7i5luedZtDGUdv0HE8H/OHE3etXvHp74tXdhA+aohVNU792snDYvhXX1rngoqjbPEshoFa3aR8gZkNJthpGGqxVxFQYk2cfhIQuF4Elhsh0P0GETBClSFGkXDkHtdgxCDcFmykxVlJ6JhtRFx4OR3YVWelsg+17sJFTjMQSaYvBIUVtY8WAEkTtF3JAk5mzx2JJWTKXdDEYLRwUlT0idI+kWrg1xmHqcRid2VRuy822Q6tC03TEJLQ511qK0iv/xE9yL242O4KfMd3ANM80XUuMXswriyQ+W7cgBQllHYeHB66utjRdz93DPXMq2K7n7nTCvboH4OOPP8ZOM1fbgV//zz+E4vj4G99k9l9iNVzvBkK1YZDCLKE0bHYDd/evuLpybNoevdutRUkJHnJid7UjPntMo2Vna02Da3sarXh7lIy2nDMxF9qiaZqOoR3kmpmPItMtirkaEGZjOI6efujIYWYuCWd7lHa1cAg0jSzg2hqKsZATWokOVNFSiizWWZUL3q2saimO9G2PGnqMSrT6A66d5Ve/+z0AXMp8mSP3hxkfItZaERVovSZ8l4pAWKforKmS+wWBkI1XTgn02fwul4JDTFVVRRB88pTqEHzwgX1Fj09zxGa4si2DNvQVabaNQbcOZaWgAVH7KaWISYlUXINyjWxyjVn8D4V8W8RBH6VJNmOSuMHnJOjSIsIIqZLBjcFo4QdZazHa1YKAVTSySKoVSpyhF6xFF6TU0JS6mdBKVbRE3PQVCaOtxBIZhaKQK49SG4spYFJCkUlFiNRJVan9orpVorxSRpOLcHQWh2Ph5KiVoKyUFFC6Wl0XEDPFirTK9bMgLrrWQmpV3FELt/W9L/yedxCd839TCqpyPN95TJJZ7Hcz3hc7F8M5R9s0RGPWTKKiDcaIQ69JimgCKRuidsQk3hbR14pTB8wiS69OlAapdE1ln19WrNrIv3c8dkomxJrHsuaRyEWYEPt0ikga+66h0Qrl8sq8F6tzQ8mFkUTwkh2kcuE4zbQnuQB3u57SNLStQRkjzphKSNKy2zFrNIO1BmsN5MI0jmRl6ZseZwxGa5I6IztFRWJKxCgweokFY6qt/2agSensTq0LOSVSEm+Km+2NkMHTTNcZCvNZoqpU9VjItI2hJE/KnkYbfIicTtISMFoznWRnudv2PH32mKw0x8MJpQubTc/uVmzvr6+vGQ8njDEMm23dFc84Z3jy7ClGNygtbrtdt+U0PnB/f8+TJ0/YbQZmP5K8Rzdyk/u6yIQ4kctMiDNvD/ccxyOpZFrboon0zbCqhqxpKMhEmEokZyWZQwlCyCxxGSFONF1LyoGMpdWWOURyDjhn2GiJGAEYvcGXmf04klQR1AZpNWk0KeQ1JmC3HbjZXXE4PDBPkxS7KaGUobGGnArjSY7h0c0tbbOh1ZowHchpwmhH0zpSioxTYqhKIK2lRQszMSXGKWOKKA+tVbSNXC9do3AWnDmTNdedXE5oxRp/sCpRUqJprNjzO40yzWqBkGsa6lLoz/NIyBGjaxaadrWVM1JqdEsIM13jiHHizesjTx49rvERr3ny7DHX1ztevnwp18z2GuscYY58+q3/E69fv+Hl51+y3W6xpqFtC0uI0vZK2lfBR8JUeP3qgZIi3/72t9ldtRxn+by+82vf5aOPPqK1LZt+yzRnvD/SuJbdtaMotYIaw7CTwk5lsUZoGnyYxDU9J3QqSyIBcQ50bYPVjjBF3NCRKJwq6vBw/4bDQTYJXT+ImABBd7umEfVn9jRNwZiGJQ5FKxFfLIIDOwx0SlSc5rGir4TfZ9sv+dXvfcn3iLw9BuYpEKvwoGhZkJ1aCk6N0xJwLMGdgVzJrtlIiGmpJ8EasfIwSovLcgaSqI+8j0xjZH+UDcMcIp2VUsHoOo8bgzUN1lp0bYHKfFTbSVqCP62RwmQhvq/z1kW7RldvIFl/o7R8VJEiCkQNqzXOCDJeluyspRBYFv9606hyTpVSShAdxZncuzx2aetgzjCHEL6z3HsXApOcE2n5W6Or3F2sK0qlLSzvX9yIdfXbkbBrgyIXhUGv7aVSkLZfAUFitKitLlRYel3rzoiOqkXz+prqqwXM8jfntVJe76LwuRhFFXR592c/brwvdi6GWM8LN2U509kmdLKUmFDR4mwipploGmKyaO+x1SnQNoGUZnKJInnNwlGwqnJ21GI8hZiyRemQQt2xJS+mfdETQ1ot4nPJ8qFqBY2lqUx44cIESobq0UZCkJkUxZhPZTG5s0pur+WGTQGOB880S/aXazTDMDB0LUUrkg+EuksO80hJAVODB03jSFpBcWSlME4zTjK5xCCFT1TSurM0GGNJMeOLvL+liDJZbmajz3EW4tkx03Yt4zQRalSHLLyBrhcEZRwP5OQZjyfCya+Qapg9hcSm7xk2HTln7g/3GNfRNA2N63jy5Imcg5RxXUtvrglJ2kTXjwZJZy4dbbPlNMticP/wJda1PHnyCHJiPO6JMcjiriLjOOLrIuKD53iceHu/Z46FMQTxS9GBTituNg1tI9eXa6qks0DMpRIXTM3kWdM96FRDmDyhFNrWiJJHGfCJlCNtY1eDuJRSbXvNdVdU1ROL+kYn8mprMHF99SGPtltevXqDag2v3r7B+whFM3RbjF5aOB2N6TC6YNqBQoNRWXaUKHJWa/ug6w0lRUwjvkyj96gIcc5o1dPYunDpiFEehRjMFV3VJCWjlKar6fYApXLHll2xVoUQAjoVGmtQ6PXaEiWRZppGNruBFDxN6/DzRNtYrHWUaqdvjMQtbLY9n/3we+y2kn7+6tUrUhIvqK6Xe/z1m5eyAJoCFrrdhqbvmXxiC5jG4fdyHWw2m+oDI+jI6XRinu75iW9+im0cnavKNaVBS8GmtRZTQ9uQk4diaktTisi2sUzThG3E58RYBVNVYBUD6qxasrZ6EcVIjAlbZHFZWl0Ph/3aclNaJPbOaWJIK8/jfC7DeaFTVorSlPFpxJaOxjmSa9ltrjBazuvGOW42G55uPuPXfvCKzx9G9ikyhUIuEkdBNTntdS9tpUItYAxa17aKqllNKwIivDetWbmAuXhigNOU2J8C+2NF21OhNBq9qGQ1WGVWr5yQC6aeLxExWlCqzhW9oECmwWi7mgoaY0Ar8Q8qGZMACq1q0aagkySty8Eu7fzKK+PMlZNr+Fwc1H5UFSyVM1pfi63Lbk2mtnHIgsQl4froAkYlCHlt6S7WC8VWNdU7yqqLtU5pikoS3YH8WC+yc2qkRzkXfNTrCZ3XY1Pr36rLaoeiRU22FDG6XLSwLgqYy5+Vd4qYWkQqtbbS1ldMv7ti570a6/14P96P9+P9eD/ej/+mx3tk52IY43C2Rau0kqFyTGRrKSaBE3NBnQ3GBEy0aBOIVnZHJkZidOQSKTGIOSBfIVCVxWMGcQItChBTqFTVWEZRA9cWEld1QW1q39eIYsFaiy6NmOVVU8GI5jRPFGCOGSv2YxQgqkKsuxh/KtwdJxKCtOw2HdchV6Ir5FiYx+Ny0ITZM2waMXNTLYcwSpKvcRhn8bU/LIRuBxpc47DWUEomzh6fZbdxqTAyxjFsN2hr6w4j4zohgKucGaoCIsxHdBFF2zRNTNPEm9evMShCmClxgaAtRhesq0ZxPqKUoe83oAw3N49wFSkwuTD0N3z++ee8vX/Fs+dPaNyGoRc0Y579yqvY7XYobfHe46wGjChlSmaeK8G1GrSVAnf7N7x5OPH6bmQMYFtL2xquNrDtNV0ru5PWQbHiVGq1qb4WGquFx7WarmmJ0ShIO0aRaaxinqAkTcwQKswf58h8mkkhC2lZARU+zkliOXQl/YYQ+a3vfh9jDPM4oVsjJphGrtJxPq3o0ps3b+hcobWZkjyNU+jWiZovZlIIOFPdApMRo8KUKCmKu28paNUQclrRd6OSHGMRBKhoCVW0JaFLYdt3PK2BmV3XoY3BNoLsNE2Dz8LzmYKHolYRQC6ZRjmstUynkc41GJuIUyCXxDwGrhcDwpxxTYO2mqvrax4Oe548fs7NzSNev35FTobTglwm4dk559gMhtv2Cu8Tm2HDdJho21YQGeDu/jVt0xGS5+q658OPntN1lv1xxDYdbSu8pYf7I+pTgzOap4+vePnllzzeXmEw4nidpbVQJwNBTn3GaodVFQ2tnkMhzLhKpg4pYZxhmufVS0auuY7pNGNNy831dp37YowondGmrG0TioGytBrqbBAjRhsiohZM0wHX9bSdYcyGpnLybNPSu4abtuHptuU3PnvFd96cuDtFpigmpU0lurWuOiTnKKGTMjmg9dk7aRFsZDKpQFQeXQo5eErOnObI3THw9jBxqgijRmFYlIASgJtVwadImiMmRmxdBpvqgmyMxXQtbbPBdS1Gt1WcsTgoVzSkZDHyVAnIJFXQ1dXXLqTn2rZCi1HfgkksDtFZXeR4Gy3I1kIYLhXNXz778i4KsrSGoKbAl7LeqyWdic9FW7QuaJMgiWszRUOqSFJ9/eUaugROigKlVUWizm0mMZ0FqhOyuvCbq0KuFe0xchDrMYMgPWdEaX3UZR9roSyd/6r+zqwxRuK5o/PlAvvjx/ti52JYJ31VrfU5VkEnSR/WGZUNUUdKtARE8mlMIC3OotETsiElsewWR8sZUqQQIQmpE2qeSKnQcyX8Cc9Bo6ylpFT1OsgFqRWtcXSNo7F2NREsCXrbEFq5uU/TjEmF0zyTG5moEuBDwscg6hSofWSNUZmuFaFgmCcOwcuFmfO60FsDwULyijln8niqvImWthvo9HY1xnJGS4FTv07TzDTuK5Qe6YZ+db9VStFYR9f0KAwpz0LGy2IR76wVFirUIsOy3x+5v78nhrGavonyKXhZYEoRGfbN7VNU00CGvulAOR4/fYpr2/WmscYynTwPDw9cX1/jbIvCEXxmSqNweXpZDEpWKK3Z9AMxeZqmSvFzFpVJVqsj793dgZdfvObNmyPjGDDF0piGbefYDEIobM2SipxxpgGlUWRCqM7RGWzrVolp0RnbWqxuavZQwhqHc4opelHx6SVvJxFDqNk5eu31xxJWguEyCpr9eBIjNzIuVTflaoaWc+Y0Cjn2TZnYbR300Lra06+kR6cN6SJ+oGs6SpikQEsJpUvNWSoEf5bG5qrgyEUJrF5kUW0UOGtorGLopSjYDZtqZdCKcWOUxavURSCEKOcSkUavhSIZH044Y5hOe4zaUFJgrFYBzkl+VtdYrq6uGY8Tx/HEsNlwOB7xxnK9uwbgO9/9AX/0v/+/8p3v/DqokdvbW+5PJzbDNT5PFMzSmeHt61d88OEn/OZ3v8fVdkMqhSfPX+DHE9N8oh9Eadh2DQ/3d9zuHtM4S9e1TNMkeWEZ/DhzrNyaYXjCGDxXu2GVM8t1FDDOEqPcP8vIJRK9tHa1PvMe5jmwvbpmGISTlmPh7dvX5FjQdQ4MyaI1YmmgTquDsrYtWikJYVOKnGZCVPJza2jMoloyqC7ziEJjC483LR++OfKDN3te7if2PqzH5HTEFLk3NDXZPSMu7blU3kmdDgFKZI4aipCBfUjsR8+bU+LNOBFqW7+3bi14Us6ElDj5maSgzVIwm7Q4CItVRtv02K6nbTeYtqn3xrndI6RgSQAXObmQdXOuLSCl4IIHs3B81EIorm0prSRCYW3dLAXB8j4X9+Qic4/wsta8IYgi0RfnBzl3pprYXmZGJSPtJ1PFK1mnM1F4kVDVsbSnfnQICWKlYXAuOOQYVH2qWvZc8m2UqiICdUFSvjyG9XTJ+bjgRr1zXOsjLvg7Wa+mvL/TeF/sXIwzaqLR1Wk4KS3OnDqLDNbIQq61JkZRA+RF2WIMJltx6dSekqL0k+uNJrhE3f0vjUtdlo03KulK3JLKW9WPp5SC0462sWz7jr5rME6yrUoqeO9XvwydE3bbigdKySux71A8p1kxh0UNVrDaYAy0xmJSIoyFYy6ECD6mdXfSObBWc1QzVgt6shSFkAlxRlfeUiEye0G0jnHP/mEkZ9CtET6UORNNtTb0TYtOhRBGcvGkFElxorEQY+JwEAdlSsbPE6fDvfBbQibHTNNbet1iR3n9/f6Bm5sbQZt84njy3F4PPHvxgqKqL1B1V3UODsc3XN9suLm9ZZ4T+/0eax1XVzfsH440vRRmz569YPJHSil0XVvVQqIMmYJn9vMqfz+MJ9q2paga/meEM2C1oe87hOFSc5m6DVErUZk5h3MGHWyNhLjwqkDXnKFq5W4bjG0YNh1Jz/j5JNlpCDk3pnTeES/qGmWEf3EhdxVJrBSarWvorON6u+PusK+xGYnWyTnw0XMcR3bDBnE5BZJ4tKhSICt8LfhGmxlaTS5BpNN1oi4a5uSXGpYYRPqdlOTMlRLRKqN0oTGG3mmursSTaNht5ZQsxFVkwjPr/RhXz5TWiSqwtYYQPdNppL26ou831T1YcTpJEXf76JpxHjGqI/iMVsLtWrOghna1bPjo46ckAs8/fM5vfefXGIaB7XZLzpFpmhinA8Mg56uExOk0cdhPlJTZbrcEn+i6jtPpUHft0HcWlAgJStZ0w8DD271YQDy6xhm9FnxWW0rld3VdR1YZazU5SbGdYmEY2nXemMdJcIGccI3wYLKG4zRyO1yv14hzci9r7fA+0nWKlDLWWeb5AEVja56bKnKsphEvrsXSnxxwqqw5fZRM02pQjp29wrUNXXvP46Hlw8OBt8cTbysCM0UJNCa7ipo4MlWhqkVtuixysch1kmsG1uwjp8nzMAX2Y2YOolaSOUaTkU2a8qDUhM+ebc4o1dE0cnwASgs/R1C3DbbpUGZJgL0kydbFPOsarrogsBqlcl3uzwjFZbGD1isXRilqvuAi4V5EHuufVpfk5T4+k3Z11sKDqYo2iWHQFJNQWaOtWbMVVZZ7U6kf/bd42CyzTKpRDevcUc7uze8UJ0qtCj2NbFpshX6y0lilL+avy2JPTs1SuqxF0SWKc4nunH+4Hs+l+kpfHNPvNN4XOxdD/DpshcfK+rNsEjYLvqi1ZLEspnLGGFKdua21xGwIwZCNFVhYKWKZa6CdWIGDwKtan70I5MMM5LqbXvwo4LI4qCx5rShWo1uRfLvGUKoiLJYIKqFVpm0dOcNpDgQyNgRSvapyzvg4Y6wjFDj6go+Bg58Za0uqrwTKoconh1jo2obttqHte5ytE2+MuHqs0cv3GPHG0Eag7n4YCEFs6nWVv7dtizYwTacVQo8x0jYOHwLzONU2H0Ahppm2sYRpxOpMs+1oG8OI4uVbyRlqmoZh6PHTzBTg4w8/Yth0HA93HKdI123o6sIxjiJRv7qSFO2cC7urW4xxPBwfsE3D7eNKZi5iutc2tqpFCrmcc5mcbWnahSX+sKrIYg5C6LRC5HbOSCL4ki7sJARUDBYVSjf0vcK4zORnllkgzIlcND7MxKxwrhUErhge3V6TH+5ISdqOJY2oKseWybZOWEmiIUrJqzRWvEZEafH4+oaPnj2nsQ0xRt7OsbYhq6ojGU5jxmeFztACShtiyjgl90OuRpjT5KFYXKNonaOkinz6QFGZKUhRtPiQqFzJsxhMkdbrzdBzs+3YVnKwMwXjHIt6wxhRsC0qj6Z1K/FaO0cOgb4fQEVOuTBNgaHfcHd/ousb8pKMHQJd17F/OIrNhBeLg6Zp2F5fCeJRFWEfvXjMNN5xtbtmc7Xj/nDgWz/x+zjuT1w/uuX1F1/y8uUXAHzw4iPGcWQzyPW32w6gFaZpOX7+GaluUD758AP+03/6NZ5cX9O5DoXct1QVWcEzdFXd42RBDf4AzqKTJH3PswgjnG0viMXSKujaDUWF9XcpzrSNFIjLRl3bUvmkeV2jQvD07cA8B/b3R3Q1wtvtOlKKGNdRShIlYUoYVQhZNnlyHQb8fMI5g3Ia4zq0ht2m4+nUc3c48nIv7cHP7w8cw0wmQbZEXX1lckLVgNMzilWIJaGyYoqBaY4cx8jJZ6aq1Fhy/DIwp4gO4n+mrAQCoxWubWiGDW0n84FpW0zb49oOZVtQVkz7avt8LQp0oRQh5S5ASymyoZVIiHdVt4uSa8l70lrXYuddgrJa2oWqLupFg5KNhFJiPbJSAMiy5i8KdWNq4SNE7HJZ7ERJDUeLrFwZLQVRkQ3LZarVgva807a8/LeipUtb6wJxKeciL6szIVjaWplz0UM1HRQ7jHMb7Hy+vu6/qREyl6+ZdCbn3x2y856g/H68H+/H+/F+vB/vx3/T4z2yczEu+5wLtSHrjK7NYpcha13tzLVU1kZjKskuxoiOFq0cOXm0nsUZNCcKjpQLjqV9UMhEckqYulMtSguBDiFe2fZMeFWqyk/10h8u6CQkv6JY++ldOxBPE0VLbELJsivqbUPfJupTCqkxi3tyThJvUTD4XIg54ZTAswCBllELF8S5Ii0rLW0yHyM6O1YPDi1JtRiRdlur0NqJI2tS2NaeESslLZ8QY21xiZN0MQ3FR4RevcjvC52zpBSwTUMxAtEfD4mcYOgXtKgjhIjVhg+eP8NaeHv/htNxEpKhHlY5e/CB7XYj7scb8UnxOeDHme32mtvbx6SyMKeymCCmXN1tCyV7Ygg0bU9KheirQZpqCSfP4f4BnzLYQiGgdEKbRNNZur46GMeRpB1giSkTcxCHaq3w1ctkuV5S9Gjd4pCUa9200grstjy3PUZLy+/wUGjsvrqOisW6WM4LkihtrTN3K6eEVY5tu+F2tyXFiNY16E9J+jEIUjCOntlLCKMVOz40Sjw+SCvxOSsxJSRkWuOkZVsMs58ZT5EKauCjomRHyR4UwtVQGU2mbTRD7y6QgojSBR9m2qEHCrpoCTecPa1rGav8v5QicvKhw5qGrhsIPrHpWqzTq0cPwMN+z/b6Shxtc+BwvGf0lg8++ICua2iajpc/eAPAo6tntNYRQ6HreoxtePXmNUPXY6zl6vaGV3f3ci1udriY+PSTD/jV//CaH/7wexinIO/YHyeGXnhA19sNw7Dl7dt7njx5hs4nhqGjb53wQMJIqq0h12uKOlGyw9CRs8ZPgupY01CsZl5QxQJD14Ft6IxcKyFI8vXN9TWmaVcn7ZRCbTOIZD/lmZxjDTPW3N+NbDfyOVxf68qNG3HWkGOk0bq2+R1hHuu1BcbB5I90rcRZtJ2haTbYwdJuBq6v5Tmf7g589+6Bgw+EIihAyoWcAyUnDGVtTUnatxCwZx85zonjGAhBkEVr3MohzDkzF4lycKbFtg1910j7cdix3ezQG+EtuabD9RtM26ONQykLJS3AyWproJQWekKOhBDx8ZxWrrUWH6DaaskV1VnoEdQE9DW09ivIDnJVn72mqK7FFSlZkZVySSRWlFxW/lPJilzieS0zCFpapN2YjSBxgvBctOeKvMecWBEeKnqjLs4nnM/F6g6dodjqk7Uc1iqwucBUBMIVpOuyvbf8uraolVIr6ijtQb3+Xl1gNLYU4nufnf/yodQZqlzOn0bIVaSMMkJKMygSkgmktT37dehEsh6bDCFI0ZKc+ElopcnKrWosciaXgClIVlCRnrlRFkwRtvpaGCWsU9UCX4z8FIo0RRKRxlpitdwHUNaJO2aKGGVR2qKsuBuf5uqrkazAokWhkih7UHDdNpyUZpoDtdsvJmMbi3MaayCnmXmU92GMw+04u4uWjDOOKQRx7C2alBQhTvLYBKn6cKgoWU3GCgnwNB5prENpIxEHPqwLrcmKME1YU2ha8RohBvEOTZlNJXve7w+4zrC9uRa/mSkwzhIh8ejpI4xtOJ2E7NkPW5ngNi1t33A4HFDWcH21k4yvNGErdG+MIU0nUvAonTAoDqOob2LJhBRIubZm8sTrg+dhglgsnbUYBa0pKB2xxjJURZjVhjGGSuzVJArRe9AWof7WrKkcycWgrBQqXsm5U6qF0lCyZzfcAvDxU4cOG/zR8NmXr/E5CUGexXZdreqIVATyjyUxpVlMIpFJGusqP2NJOpaJOVYr/UwhFyjZSjupaOwCietCyIUYMp0Vg8iiC05ldI4rByaWzOiFr2G1Q1PQJLrWsHGKVrFmqoG0XVL0q6pEa2k1KOtIBcxaxAGlEHzCOEuIYKwiljNnpqnqmlMc8eNE1w34KWO7DeO4Z388suk2PL55ysvPpdj57g9f8vTJLYNVmGJolKHEQNtsSWHE6sJ15RiVHMEUNt3Asw8+oMSEnwsHRnxMqCoy2D264cOPP+ZwOBBCotEGN/QoDbM/4owSx2CgTCc6CmUaKydPo0pARehah3Ytp1GuQ91uaIYNow8oY1C1KDTG0LYtylpynbtSzKQwY9G0XUcplraVvLCUZ2xbmOOpzkdFsvJixioHxhBDzaCymlLnopIzQ7chzp7pIHEYpm2wTYvNLcEmmkbmkWEY2F13HE8zhzlyGCNjSvgkLddS8qokjT5SsmH2hTEWjmNiLhplDK51OPQSaE/vLENj6BvD9abjejtwdb1lN/QMVxv6zRWutrGc7dHOoo0lq0QqkSWKRBSmdVObEjFLNEUpRdpDpbrh12iGNZtKRcnDsxq9mBMqs95Lcl/Ve2ZNEZcNbk5SCFgUpRr4rZsfJTSITJEsL6UxRjauUlPZNfNKKyteXiqexTdaoSK1mDkXDyWX6je0GA7Wo6v8w6U4zjmjiwUlxrlKy2Yq60pQLkX4rlTVrUrCUyyiZNVKirXFyPGs3VrEO7XVrxRQSIjRKUavxVQ1Gr8oin778b7YuRjvZI+stthUF0ux51ZJgaroRK6VsKo8Aa3ReemvZozJOCtOlVqDMWKWBRJrkAuoFFHFUHRCF1FiKVVWlY8MjXKFvhH3V6M0viTi7Kt6ZxJEANl9ZyxYB0nVHBdxK7W6FjXAlBMnH9mXAlHTpYbGWHIJsoA1dq2fOyc27rFoDnPB5xHnLK5p2fYN1nQsF2tWmZCDyI0zkBPKFlrdoYzDWoeuN4zKhbZtwGru79/inKhs5mlkno5olcg1iuOwv6drNCkH5iC5OEU5Ssn0m55TNREbug3FCIFXO8MUPE3bc91t8aNnGve4SiBtGrGON0Zzf39PTvDo6SMUhtNxZBgMucgudX+4Z+hauq7DqI5p8qsBZZw9wadVSkw51J3VsvORsjXFSPBW+DZVPplLQMUEWLQzmGJIca6716qmQibAJbtMKS0qD2m4U3KsvBv5bDddx7c++YQUDSX8J77/6kucckQjhYvKGlOv75QCSht61/Hs9ikokTvrUtUgWq57OVYplhoDQ2MwOaNSIlAge0Eaq/K8kUpauGHe09ksn+USOFq5PTkWfFQSSFsyuhQG59iahq7p6buN2AbAuhsuRfKdDJqkRPmVlSwaSyAt1FgMldf3ud1s8X6i7xqOx7IuHH3fVpdmyWgbeiEcz3Ngu3UUlfjoow8BePnyc37t17/Df/ff/WFuH11jtOP+eEeMkWGz4zd+4zfZbkXBN88zm92GkCJN09DuWsbJi8Jt8oxjRUCUZbvdouvfaJ3Z9D3OKtnYmIUxAVMQVaNz4rp+OB3xPjBstyitSSWupmubphVVaEw0bYOfhURtmkaypkJc+YZ+OlFSZKrhubIILdwTjXPtOfdsmkRRmZY5sghalgsxyt8D7B/uKUUcvkcvFhfzdEJ3mq7t6dthVXxO00TTws02kLImRRij5zRFpnlmTplQEb7jOHMYAwlPo+HWCuJttWHbNGz6hk2NONn0DX1n6buG7dAx9Nt6z7cY53CuxTZL9ltFX4oY72mtcdrV+Ay9KllTKrUAX9yKK8lf1mVBSBZSsbVovUTyXKITXyEuy4VQr9waeolI0xceJ0adH5IyqaquBGSRzbE2qX4FXesHXWXol/yXpegRp/I6bdXnW9yx3+XjVN7ehdIvGYmxULmKbPJCCgd41xSwUMgls2R+KbPERryryoJFin4mmV8ew488ThmyMfxuxvti5ytj+cC5KHqMgqKFpIbSwm5XUsSklFgMvrXWlCTOl87KPWOMwbhITuLRUqrMMepIDLIzRkkXaJEZi2omE6tBj1zL54wVq40Ee1qBJUMsK+EUNNZqtO7J2Uu2jErYVNjS09d2UzCFwXoe5sDoE8fJcyoeowubtmPTdCsU7Ivny/2RlAqDa7nZNTy6amiN2P47nZhPMnEHsvjNWAfaim+DcjR9g8KhYJVoy6RjiGGmcY6ub8kpsN/vUclDmpkO0hJw2qDR+ElmlNmPolIzDqsNbS+T25s3b9hdDbUANFzdPsEqy2/95vcJc+Txk2dseoGtrZXXf/nyC9qu4+rqGp3FHr5pGlCZqe6SxVq+5p8pCfFzxnE8HoFC61oOBzkHP3z5itevXyPSerle/ByJoZEircCpngNnNM52ZCw5FgnmzBUVyGolGYacMabQWEfwCV0UjRKvk9YZkaEuk5aOmLZhd3PN7uYaffeWkAIxR4ySCXPZfTvnpIgwhqbtsU2LmmYUBqsdSYvyBmocQ9b1Om4oSMxHyYUUJW9qQfhyjIICGsVxOoIVomTOBR8Tc73Wx5QJShEq/N0azVWneXYjmU/a2ZVQ7pqGlARVSknkyMUIUTlXrxku0pSdW5yWE85KIdE0jhQjjRvINcOqbVuO40kK2LYn58LtzVNev35NijIf2Boa+vHHH/Hyyy+4P+x59vgJSil8brm/f8v26lNMRQbqjUxJMsG3fYtzjhAjfS8S+jnIsR7392x6KYCtMxJrYHX1L4o4EKt+IMUCSgsC1HQ4J/OI61qmMXI8jTRNJdwaQ2OtLDr5vFCsbQsQhAyI4ch2cBxGOY+2ijDmENC25dHtZolTI2bZYNlKZLcOjLHEEHDaEKvPkLWSE3e92xFmzTxPNP0gKE2acVathZGzDYGttNmSRO0MJfNUWYxxgpjUVt7xeORwEq8tH07kLFEsfd/TtJq+7xnazTrHtLaVuaaTiIis1UokLlmdHd1NgzONtKCMLMIlq+pufw4tXRf+Gn5p1tbU0hW4INCqhYhseSciYSEof6UIkedXFGSjIe2csv58HaWqsZJcD5KcXp2S87vSc60v8rlqC8sYQyl2Pdfr0y7rXy3GFkLwWghdBnimhKrO/gowSRAZVYvkpaGl6vqJSpVkLSq7pci5PAe//cjLVVvH4j/0u2tjvScovx/vx/vxfrwf78f78d/0eI/sfM0Q2Z/897tQY4WTlTA3S5XN5XKudvMCm2stRJYk5nwxCRQa627OlEJKFqUyFGlpLTJmEviQMXXXZa3GhMKsAsZMtK5BG1BGiUOnzbBwSxAekUYR6QihhvVZS5wNYZZdV2MLjbXASQimoUomW0OyjoeQJN8L8HghMaeIOc6Mc0P0kWnU5OlE2Lk1OXeKgDJ02x260Vg70HSSNyW7BE2oUOjoJxKS61OKtO5UzkQ/keYTRp/Tg10nULX3nlIKp3Fku92w3fXkonjz+VsADmNge9UQfOHZkxcM7cB3v/ub7B/uePToEbePNqsvUtt3vHl9T9dvefTokfiS1DypYTcwjuMqv9xsduQUsNbI+UqJcTwJjKwc83Te+fV9T05q5ZpIK1R2v9ZaMXj0lYvUO5LSZCWZWiHJTkpph17J0TX8UJ9350aDazTUpHRnNaleL8ZZUtZoJ4n02oBOBbcY7V14hjTWsdtcYVHiHVTNJEMWAqMpF4TDmmYcU2EMkd4JtyrnmVKE4Oqrh1G3ENS13DfTnNGVrE/K5CTX6xwkR85pjVaZ3mpebDe8uBq42na03bCiKtY2zCnSdG3djWtiyiuBGVVWxAoyKQXhu1nJRXu4e8vw9CkpZYZh4NWX9+vzbjYbjoeZzUbL7tM4njx5KgZ7JbOvCOPNzQ3b7ZbXr95yeyWk5r5tef3Fa8Zx5KMPP15bMyBmmLKLTljbkkvg8ZMPiOmbq49VrsTs1hpCmMGKxNZ1jhREwp/LIgDQeF8wRss1YjPGKRKWYgooS9tVI8wiflRKGfwcJY26sAoCmsYx7uW+uX/7itvrK1xjuLu7w3aBYdihjWMz7DBWrfYSIRxRxYnPT5RMua4D6wT1Y0WolRg3xkjfO+7eymu1O4OzlhhP66bcNT1KGdpuS0yToCneAwpnB5xdWo2w22xJYWaeT6Qonkmt67CuQbkG20h7Si5ZaTUb7eR+UGqVk6dqwHfJy3PWruTcUgqRUnlLZ05kplCU+LIBJCXfX/rDLARlMTA3KLUEjlZzvQtnaL7ydWkHLSiGgnX9OaeEq+qtU6rPTm0PVWn3Jf9U12ysiidhVA2VZslLX1pThcWgU66f8g5RWubvc/dhSTKPteV2aWYpxxPW/1aVcyMAlHmnJXWJLC3fL2jSb4f46CJiBkP4sY+5HO+LnXeGXLSXpkeXQ9jziDdCLXa01msbS0zTzn1PrXX9mQJfJA6ikuzk95ZiohC3VJabqIgpVylpNR1rXOXxFAk+FDNA6bkaA8U52gWKXaDHArbCq845jPMctCLUBdT7iE+RqGVC2PQGH0XxMsVJiozqVeFjYPLSvmm0Epfl+0AODgv4MF2o2Cyb3ZVMOG3L0Awo64SEp8XOPlY1lLUCKy+LjzEaHyZilEiGFBNdJy2nYWi5e/OK/fFhvfl3mx26ZL73vR9wX5O5u37D9c1jrq6uyMXyve/9gP3+yG6349Gzp5imZVPVF36OaG15/OgpPkxCaPaeR48eMY8jGhi2t/XDz7RNI+Zx4555nmmdRStFyV4UI/Uz6PuB1jVYHSClVV2gjZGk5pRRSNtN0cpkWiecpmmE/KeMKJoqT8AasavPScmEXAsX14hvTinSRgKwxWKUpbMNriiaLKnFc04Ya8Wjtvo7dbrh93/r96FT4Wq75XB64DRNlCiRDpGyzsW2koF9zpyC8FtCKeIDUjKoKIs1QLEy3euIojDFuBIK9wH2tSiaEgQlycuGyKZpeH674en1QLfbsNlsMJVTUbRCF+FAxOiFl2XEJVgtC5erXKToCUF4VfNpZNN3HPeKcdxjjcKahu1WSO3i56JQZLyfaNuemBNt22KMmBOeDuJhtNtscVpz//YVfn6GQkJsd7sdOSauH92wPzwAEkrbdZ2ECCvFfr+XglkbttuBVM9BnD2ubdhuemnhKvB+pnELp8KfP1tH5Wk0pKgIvtB1G0JMpKgwTty45Trc4Od85lkYTdN3ovbJouhcCvJpOsHtjqHfch+OnE4n+n6Lc44cC01jVyu3pCyFyleMkVyiOEJ3W5mjqpu51g2bzY6716+IUfhXwc9M44hyoLUj1wUxJoO2LUYZlBV+UCoK7yPBB3TMa7GllMF2G5TrCGFkngNBW1CdKEWLXT2BlOwK5XjrhmNxOtNr++nCx0xFoQjUzVtMmZgCMV0syAvfrW4DxAvsooWq9NkRuGjU0o5a09P1BTH3XFwsnmtF1832ooqqLaRLjxnhFtWXKKy/Ey82USl+1a/m6/6t6emcn0Oul7Nac/ldznl9jxJeXIsVVeMqWIqjSmC++FutzvPI143LgkdzYctYzu2u/DV/r97tXP+2432x885QNUn2TFAuZTHAPotYdLGVwyP9zqXmV1lhcLBagpu6uxR9t/B7ZOLOWRQGulbrMRe0stVJ11CUyLYB+lZycwpJLL/rh1+ykqtOq7WKzloUAcporCukqFE5Y1WHDaw3dkonckH4AAZaDV4nMR3UiugTvt7woUhhlnMRwmNT06WLxk+RFMXAEKRPH2NkngKolqAC8+GEbiVRPvgTV5XA2Q49wZe1gk9hJsfAduhRKZI0q5P16XRiHEe0UsQY+fijF8zzxOs3e1Jx7K6kgPnmT/4ET589Yv9wZH/3imk60TaGR4+f0Hc7tGk5TZW3FAKPHz8mpUBKEq+w2WzWz30Yhrq7pL4/QQvmOeBci3GaECI5J5TSTJW3NB6OtM5SirgVh5goLlFqyrDW9jwvloRVYEsmKoczjqCr1BpNU0kwU57QpYCRnXqqPXXqhOWMxfh6zepCotB0DcoqUTBEcK4jZVHJLOqe1joaYyXKxAfG4DlNIykHtLMQM4sYSikwyhCDFGEhKSaS3Ac5oVMgxUUmnhkaK7yeEtHIhDgHxWlWjKcldV2ORaXA40bz6fWWJ9sd201Pu9lg24Zu6OvdaSDWiAKlKcpgrZyHVFVjnRXy+cILc85JXEIxcp8lj1auEmk367U1TQe0lsJpmk7VfFNxGmduK5oDcPf6Fd/49GP+5//5f+JwuKPrnpBS4Gq7Y5xn5mmib+UYUojs93vhkHQbHh4eaG2LKoXDw57DQRycN70jpR7X7PB+FrPNarOQ44SPpcZzgFOGWBLGObSzmCCEbVUyrbOEKXM6LNJvi8IQlaoSHej6HqNEzai1XlVxyrSAJSObH5ulQOu6hnEcMVjaqh4Ls8ZqI/EvXUc8jkiSuqdpLCEs6KOmH7YkL3L+q+2GzbYX53fE4mLJuwrK45SWwkQqIZqux7WF6MW8M1Rkp217XNticsG4DuMC2i6J9++azhktG6pSFmM/I3xLiVeHkokLImqMSMULck8XJPonC9dsKRqX2IoVzVnITFy4Ia9KK8QscBG8rCqsC7LyVzg7olgqF07KZzTljAaVFcE5Fy3VSkLld5534cRc8mO+WvAsY6k5hIsj61iMZ0XmwvEC6WKICENRisQb6QKu/DhX41yNE/PXvv+vG++8j68raso5Sf53Gu+LnYvxVaIWsMJpsBCvzn6TKMlGurxYjJFiR1/kjwhBMAnKUyG35BqoguOYA+hM0RqlLU4DOq/3kNYim7WqYYFBc5QQ0ZypGVHnlpc1CudEWYWGUiRjqGkdV1uZiFtrUFkxZ1nMJz+zPx7xURGzOFMuu5tNo9hU+/aSDEaL+3IwmpAiXeOEYAnYpqPpOpy1zOOReZ4FMhddMF3fiIU8oHLC6nr8PlJSpnMNnsjDfk+IMyX4+tiMSgVy5vnjW/wcuXt4EAfiTc+HH30CwPX1LePpxHQcmf0JowtZW7rNFuUM1jmmUSS0T58+xWnHNE2UIu00YxSHwwGrFSl4nFvIpoKqTdMksL4xTOFIKpJnldOlkk8mi4JkkWUlhcGS1yNk59rONArtKkqYznLP5XNfri2XNDknYkI2XTXwsuSqsDJ23U0qEzCqYBrxiUpK44te3V5VUatD+DB0op4jUZJmnmemaaroYKmKh7oYFE1nDYOzWDQqJ3wKKDwlekyKq5TCGZhioqhIYwypBEIM+FiYE+xrcOuUMkbBtoFvPb/i06dbdpuWpu3p+x5rm1UmX1AiL3cOu07c9Zwqke3XQ8Uqg9IKqzWnaaRtNLvtlnmeJTi2lFUNZa2oCUQJpWkax2cvP+Pm+gnDdsP9/Zs1Q+rLh3uGTvONTz5gf/+Gq+3AcHUNppDGmdN+z83jG0CCS7//wx+wu7rCaM2TJ0/JIVSCdRISPPDm/i1b73ny9BFN02KtqwhvlhDG+UDW8thsZPFWOkH2WJ1F2WYUJSdUyfSVrJ9SEI8lMhRLa1pKhpwy0zRhG4lEALi5uSVjiKFQlKFrW47HA8NmQynpnRaqc44cRG2ptca1g2SzFUSlWZ3XvfeCYDuLsopxOtL1t1XKDVk5bI0iwTRERKI9tNLSWlpBc5T7Li4bxQRjihjtME4EG/YiIPlSMSRtzQUZDxQyS2gmKpOT5GWBbKyMMRUdT6vLsVKS2+arci1WJ2PdWIxeoljUqh5aUQmWFs5Xipk6fkSNtTxmLX7OzyGoy+VzmFo0qK99vq8WUUopoT3E8rWvuzyulHIRBVTVvRXV0ZUEXc8ssBQtl18hUVGeBR1SZ5L1+rlosVeR64rz8yqFUvadIuxHisHL5yGAST/y868b7wnK78f78X68H+/H+/F+/Dc93iM7F+OycnwnAwS1Vr2X3y8thHLx90tFmlIlo+UiYXLGUexZ8pui8BxKEqoYgNEOrCKTMMphzPLMAjdbY9f2VSKJr5qyGHWGo3MsZJ3xKWCbDmvEUCqlROcSbXXb8k0hZ02HRRXNaQ8uJXxJTLPngFny8ehdg0URCsw+M/qZXApeG6JtcH2PrgZtyljZPafIMAz0vSWEKAZoGVRy+El4HTGe83ZAs9nsIEUOB0F1VImo2iT0QUJVnWk47Sd0a7m62jGGxPMXzxg2giyN0wNZRVL2gGaaJ24ePwKlGIYBP0euroSr4ZwjzkJwHIaN7GBigVzotz1aKxYV8ekkvj9910ER6a+0hAw5xRUZl3eiKDmKT5Ly4iqbAn7OKG1prIaaaZ9yQZmBUi0DCsLpyQowZt1NLlD8ePSoGpTp/YSzAzmluquv12EBcqTLmZu252q7ZQqZ0jh0KegUuepk973d9KgiXCWfA2GeRV6vFT4EkgKrazZVUbQY4efkSIoJciSnEUompLPLrSmSXK2NRSmEQxAjGksIM2Plq2hjaUh8eLPl933wlJ0pDINm2DghjFbyutyT+SyBzeCsmHSWUjDaEmN+B60RHpMEYM7ziLVNvUfF+G79vFQhxCPjNDJsN8Qovjhv716zvdpRSuZtJdc2TcPxsIcSOUwH3j7cUUyzeixN84lXr+S93d7eMmw2dH1L8BFnLW4YSAjqsciub24fM9e2W84ZbQ2n45E2G7atIShFrrJr7ys/a0wkbYhpIvqEaVqM69htWuaKhmrlKCbROsfkK7KcpQ0qmWhmzYUqaUv0AW0dOgWGoWN/PDL7CWM1OUeW5SKlJO3KVnb8fS/mg34cSSmthPIYI+M4oiiCYJbCOB5RqmBphYhd7//GDpgiJpSjmgWlsQqjHU3nsE0layMmkyVW+bRGpOT1GvFZAjGXdkvKCR9PK2Iqqd9q/W84o6e2uh+TS81uokreReSxEM9TkRDmS56MVkvW4ZkgLM8traul5XW5dnwduiLX+hnJWAJGZVy06L7Shlo8o74O2Vlk6KscvWZkkRUrSZVlXSurZUMIgZQlV0sv52kxKryQp3+1nXbZKluOafnZKjPXSw7YGckC5LWU/pFz83VolFBMmt81YvNftdj5d//u3/F3/s7f4Vd+5Vf47LPP+Ff/6l/x5/7cn1t/X0rhb/yNv8E//If/kLdv3/JH/+gf5e///b/P7//9v399zDzP/PzP/zz/4l/8C8Zx5E/8iT/BP/gH/4CPP/74v/h4fgROXL4u6hX17mMX+HL5sJYQtvoIlNIk5VBBTNNKToSyBPo5IVaaBuci5FJbG4WUDapE3EKyK7KAplLQpQj0Wl2Xs8pCrlTnvvEcZJI3/kTbOlpnUDozdP3aI28bUQiFHCQQ0xTspsNkSdZuw7j26J1RtEYIsbMJUGbpkxbL6ZR57WbGCmEORV7HWk3rGvEVKhpi4hRODG1P5F3iWqLQ9z1Hf2A6HSS+wHQkH3jzVngN03TCmUJpG4xrUEqjimFoBboevRBIZ58ZjydyLljTcn3dMmwHjJWU68YNNI0URn6WCVxEczOUzOl0x3a3o+068YQJF07Rpq0TwNLmScQwQ85Mc1hNz9q+k8nIGnRw0h4oidM8sz8eCE8GqGaBBiecFa1QxaAxZKPonCjcwkLgVIkUC62xzD4KQdf1FDIxerq+ISytzBIJvqBt5uqq4cl2Ry63fPCH/u88fvKM//T//n9xpWRxHcxMOJ7ws8eXxMPpyH46oZwRE7Ni1ok0NwXdWkLJ2JJIPqFTIs4TjdUYXVZyrI9S5PsEORTQGQ8cvebtIa7Eh47IhxvDt5/tuNp2XG8GVNPiumt069hsr5hqwRdCJPqR7Cyua9E6V/8ShSIS4uG8gJUiKi+r0DqTcmT/sGcYBlJNy15iXnLOdJsrXr05EEqhbSzb7RXz9Jb9wxuePn2+FlzDsMXaxDwHnj16Rs6F4/0bmsdPcf3APHnSSRZlrhQff/ARRltO/oSt7TznHE+ePFs3Pjl6yjxz//aO1lpsDjQqgg8o20rhXjczre6rn1IkU/DTLPd6N6B0g3YdulSfGxNFUIGjazdoLZ+d0Yl+aCg54OrmJzYDczhijEWpSDdsiSETfKRxrYRe6iUiQMwbrVPM80jXbHC2RbVFyPeVZ1b0DFp8WEgalIWkmeeAcRajEnbhEMYZY3sJesVgtCPHTKSgdZLX66r5X8jMSJinMRZdFCFmYoFUfDXFqxvTKOt5SVkc6I2hGGhsi9LQ2vY8qRc5frJ4CS30gBACOYd189lqKy0hXUUJWqG1kUzOokFrcd1HaEFal9VQUJi9C1HZiLh3XWvq+a2q37IYZyEqKM25qCvq3KqT4rWQU1oJvZmz308STRk5F4ySll9WiVRrlyWmQmuN2VhKLKKqywWlxRjMLMexcG2KwlgpSsQBTYxKF/GOVnpdC6W+akTUg0ZrwxKTYZDiZglGlnZgLYT0opar8RlWS/G1rregMaw70t9h/Fctdo7HI3/oD/0h/vJf/sv8hb/wF37k97/4i7/I3/27f5d//I//MT/1Uz/F3/ybf5M/9af+FP/xP/5HdrsdAD/7sz/Lv/7X/5p/+S//JY8fP+bnfu7n+LN/9s/yK7/yK+vE97sdX9vHXHZ/5dLQ+lz8vJsCK1XyZWUrPJfLqldOudYZox3FZlRuUSUz50jOiowW1c5yExjhWIjsN+NDJKuILkIeI4nt/jKETJyJKGH0G9ktaGVxrdzcrdZiTpdFuaAQR9YcMqYUOisTA4CxC7em4Pyyk5DNk59mXn8xkrZC9tw835GD5RgTp/ENfd/RNR3jONK2PaZv189lmk9M84mmMfgpEVWhRLFJL0nx5esH7t7UHbXJtJtOXJVLxDay0DddL+qPVEmhMa0mZ/6UePr0OT55Xn/5iu3uGrO1HPbC2bm6uiGFmaIU22HHmzev1hRwcRDV2HqsuUj20+gPNHWCzDnXXa4Q1RcOxvX1jtubG149HHFz4ZRk8phnw3H0PNwf+ODZDQAWQwk1lVhligFd5a4x59Xy3eeCD15SxSsxMKdAiYGCJ7rzRJR1Zk6CbA1Dx6a3XOmBP/Y//N/47//o/4P/55sveP1b/ysApzAzxiOTnxhnz8N8IpeCs1JERp9WBaHWdpW4TqMnl0ijVCUfC39ALVEBIROLWMyXlGlIzNHx2YNnPyuaOhE+blt+4vk1nzx7wvX1ju1uQzEG0xhU5SosaA2pJp2HSNN1UBIoS2MkDT74Cd3JdeBsy5uHNzTuBuMc3ovcWnbniwJpXu/btuu52t6QQyarKM85P/D2ywPboeH28SM5X6cDKhUeP3nCw2HkeJz54IMPGMfAo2fPeRXf4Dq5x1+9uePFixeM4yhy/WnC+II3ht1uIwsKMI/C3/F+pt8MzH7EGM1mM9A2wg27CBwCMjlLxMLpeKRkMVnUJjM0PfMoz5tCIBPRZsAaLbEvrUMbh/eeGKYVhen7vvKEqtWDaxiGDVMMQtQPEo0CEmFBEgWd1nJtD50hkTFGoaraUpOIPvDm/i1X25bT8R477ChzYjSFjbKophYlBebxhHEdrhVUbyGmHw8n4jTTV1dk2xjQ52ylnAXtsmhKEUf2hc1aSmFOXhzprcUqvSIXqggCmyt6nFIiFkHAkg/VRLMSk9W5YJG1WqOsWC8UpaEsG05B9MtqA3whny6XG2i9bp6/ilZ8lS8qBOBatK0LvaZ8JSdB6SIp6GRMRU+g2qBoUZ8Voyj+jHKVUlaOVdM0jPOJGJNsvrXGGVeFNWcV1o+M+rZXJMm8yzeUdY+qfhOrjLy8P61q7NIFP6eCC8oYKUA5J7AvEnp5sNgA/G7lWP9Vi52f/umf5qd/+qe/9nelFP7e3/t7/PW//tf583/+zwPwT/7JP+H58+f883/+z/mZn/kZ7u/v+Uf/6B/xT//pP+VP/sk/CcA/+2f/jE8++YR/82/+DX/mz/yZ/+JjuoQJ5UC+8vuKMuoislyB0r7uOZaCpzpxKs1iQQ7C/LfWosjokik5ELSui5uQwdYdkhJHBCGqVfVWDBiVSQlKLO/I8qwF27QCFRqJIVh2O7rmUmlliVHC/qzWXG238vyh0LedLAp1kctlwmhF8BGrE6poDseJQ/Tsw0RMhXmqE+zbE5uh4zQdGfqGD0xHCiND39J1DT5MzAeZDMWF1WJNg1GGoWl5+3CH0pnxdCLlebX/bzTkkGkGx3Y3oIxms90Rikw8SxaOKqBUV1UwG1L25BCZTyPDsGWappVAWoo4T99cXePnE4rCdrfDGCdqJq2hohohB2IMtG174SqqRP5cMime5cHTSdQpFk3nHKM/oW3HKRbGKXM6hnUBNzpRiqFoRdP2kA0xJXLJJM6tUx+93Oi2EIIgFVqL10QJEypO1I8WFT2URMiWtu9oNo4yjhzufsC0f8l0eOB0EsQsTneQTsSc0bahH7Yyiassvia6kO3SaqjxGDFSYiBnyf2xRpYLVxSlkkPL4lJbEjrBnGE/Jl4/TIRQeNLJtf3hTcs3nj/h0dWOdtPTdR0hppXQmHNcYWrTWJzRZ/J0DDStJaYAJWGMwtbdd+PEOVmVQIyGvm/JKXI4PGCMo2075lk+LwlqdOx2O8Z5opBQRdE1LZTIcX9gu7uVz3aa6Lct8xTY6Q3/4Vf/Pzx+/AFNjXL54MUL3j5IIKvSiZQ9Gsm2e/v6NbfXG7JnbWHJ+3J0pWc6PNA+uiUdR7QxeO/Zbm4wRlRxwJpthYbGOaxpyKqQfMDZwjzu14gV8b1J2CSvn3PCGok8SSkRgwgaZEJwtKVD+8g8ShupaRqSLigtbcFlk9J1HX6cRD2qlTzPpsOYIK2sOm+EcWY6zdy9foDY0bSWea6tIAptkyk1Y882DmPa6lAurWWlZY5s+4EY4yr/ttbQOCdCAAmGQqtEyRCixDo0FSWxztJkU1udMv8mZJOS0yTFRJ07Y4zVCTytnlVKmepCf57nixYbifPIiwMbpUTIlqWg1sqsraiv8mulUBOkTL7/Uc+Z+sjllb/ys4LI6tPaplvIzHAhsinSlLt0T16+dm0rrtzAPE3E6vNlrRQ5Si5klK3E74uOh9FnpZesV+dN/bJphHfbaKW2rsxFsSrr48XbWlpdfKX1VyutpdgppaDL+fvfafye5ex85zvf4eXLl/zpP/2n15+1bcsf/+N/nF/+5V/mZ37mZ/iVX/kVQgjvPObDDz/kD/yBP8Av//Iv/9hiZ55n5hqICfDw8FD/Sy7ZpUW1DKUqw37hROSlzv3RQgeW6rw+trLm1w9+gSqtyL6X6l1FzyJXB+EU5Hw2S1MUDJaSNUo5KL4a1SlySRe5JJK91Db9anlujSUW8D7gq0W+V5EQwmqit9lsxHirKXQKdFCkGm0RvKUoRWIiqkhqDcGLCgllUSpJsjUia9Yh4aL8S36m3w2gFPcPD8QU1glWMok8SivarhMl0HgEZLGzSlGq3DQjQahtp3E24bpNvanFdybV9zVPM9McxEq/bfn8y1fEOYq1fcjsrnr8JMhOjpHNpud4euDwcC8maSg0muwDXgd0ff0SI7YRFMznabWuL1kxzjNFaUxVSB0OB8li2m6Z0kliRozFp8BhjNwfR3Z3cg4ao8hlxjYNOTUQA0oLvyHnKHEbIIGTLKF6WvLLYiKVkUKkjGpVhaY5YCKMPmOKYttlOvWG6fX/xPz6muPbX2WcvpDj155+s2E7XNF3G5wVxG1/f8/x5Im57hKRKd17DymgimguyIWsIjkLF2BtHyA+LjqLuufeJ758ODIn2HWGbzwRddP/5dMXPH50xfZqi+1acgHbNviQ2fQOay2NPS8sSktQ4TyeBJXoOnKK60Ic6+cyzxPDMMguPUe6diPRGp3jdJTfbaqc/Hvf+wEfdD2b7VXNHlN89sMfyGe5f6DtO/oreax1mZubGz5/+SVdq/g/f/ubTH5P3gde/kDx9MULTPVQQiW++PIVj25vaVTPPEXGZuRquxN0YOE3GUUohdM8sd/vxWKiGGJtMccYKVXK17galVEKMYlCsBsGQoykFJgeTmtB0fc9JcnGxhiDzhCTRyGxLKlE1vRJqJuv80LjnBOVWUq0nVtN/Yxx9L0UiEpZoq8qNieeQrFaMHSNpXUS53L/MLLd9Gw2DSUmwv7E0F9j22ouOUdc31SloizGp9NJVIrWVGPDCxS9LKor4Ws5J5ElxWTyFJkWv6e5kJLksTktQbqZRFEZrUVFGRfPpzFSUvWtUWeuydkMcDlXmpyqL43JlIowKFNIpUhrZlUzyWZG6ypVR2TaCtYiaA3avaBDXH5dXW8uUJ/LcdkSk/97V8W0FB8xns33+r4nk5hHv3KRlnijkqR4s1qK6nTRHiurueW7/Byt9dqS0vp87tbjW/59pZBZ8si+mvjwjiptKXZ+hJ1TUCrzux2/Z9VYL1++BOD58+fv/Pz58+fr716+fEnTNNze3v7Yx3zd+Ft/629xfX29/vvkk0/+Dz769+P9eD/ej/fj/Xg/fq+M37PIzjK+jq3+dXr7/5LH/LW/9tf4q3/1r67fPzw88Mknn1xU8Zz7qb/Na3zdL0sptYe89FsXeNFiLVDOCekCxmRykupWaY22ZlUSLM73ShtykfTilDwlJUE8MhjboLVbjQ3l+DMpzxilsK4VdUGSY1uq+CWGIWf5WS6xpniv72RFYLTTGBSNVsxzQPuZ0GTmUWIFilarAeHd/gGtr9j1Dus02jqmOfHw9k5aE7nw6PYaAD8FjBWfhWk+cjqcIM9ojIStFok4kMOZGPorFJnWNcQUUNoybLeA5tXnr+RhWTFc9zjXMHnP8eRpbMf1zTOevXiK956Ho7RwXjx9SsmBu7dfklJg2HQYZWmc43i8J+a4RhE426CLbM+M0sQoBoyLWso5y+EoJOkQZ6yyDG1H3wqSpYviNGfujzOPrwbe7CuvwcDuqsOECVVq4GQpQmxUkKPcosIl0aJqyoUSha+lzQmwzPOIoirSTie8hznBnAWOdn3L//a//XvGecKHiafPXgAwbDf0fU/btjhn8PORfCcp6svudbkmco7korG19apUWcnzSimyduTaS4vBg7GYVAgh8faYOB3h2sAHW8fv+/gD+QyePaXbddihlxDJWLCqIRLEfbgU8ZRBSKbT5NkMA36e8SlUxGFxmLYrp2CaJvp+EDVkVV9ZpfE50bSKh/0rNtsbADabnnGcsbbD2A3KgHU92sD85hVGW0xFQK77G46nyDBs8dOBF89uUK4hK3H/DtNEP7h6DIm7L95SiDy+fQJlZpoyt9dXQrqsaGRKHq0yu90V8xxoO0XXSEijRlR9cUFbmg7vPYvzbSoRZRQUS8yJ4/F43qmXhLGtcDkQ5CbGyDxPTNNR5qoKFGTOaI6gZBJJQeVsOG1WNDzkxPV2J6gLBRMmoj9hu4aYLGqq6J4pXF33HPY9n79+hZkUMUce3VyTcuE4HimV59ZvbghZkuy7iuSlGMlJFFzkwtX1ZpmcBCFXihiFL5aKIuVMTh5rWB3CY4xiwGkUkYyKGXRtz+iCTuUdJCVW/o9SBaW1mGIqVxGJ5VwtEQ0WlDiSKzS5VHdkzOoNpWug6oKY/Xbr0lcRneXr4lrzLoax9BbS2kU4rz0Fil5bymQFNfA0Z6EChBCYRhFyLArKooWfUcpC/lUUVQnPaWmVyXmV91JDctW7CiytjCA8Fynvy/eX5OOvC0EF3vElEm7V+V1/9fzpYtZ783cav2eLnRcvZDJ++fIlH3zwwfrzL774YkV7Xrx4gfeet2/fvoPufPHFF/yxP/bHfuxzt227ku0ux4+7EIU0db4ALy+uy3F5sZXCO8WOtVY4O/UmiDESS64S9fOQxcWK7LoejjHSLkspiT17qly3yjmx2mDs0iZbLmrEUDAK4S6GjJ/CCpnGWkl1fYd1Ii31fqIkWej61q2tgRALMSMXfqMhgXHgWofzsZJlhSdgSkIlzxQSqIa7h7fEkMFYWuswFPZvpSjQBm5vr0nRcv9wT0wTVikaU5hOE9bC4k99tbtGbgPDNHqO48Tu+pY4e+Y5cF+zi148/5jtdkfwkf3dGzSK3dUVzz/4kKIyh9PIdit8iZwCh+nIOB64vnksJmUK0nzCj1IQ2dqea9sen7wYk0WRaictn2MuieNxye2G1jUoNYtTsTNsNwOH+xGK4jQn7o4zu14I9vt9IvojV9sOzShyW2eJGVHwLdQxrQhRCqesgKLxoydqcM4wxwR1IppSYU6FWAwoaAZ40lyzn+B73/stdtcD1giRd7vdYlzDyR853u2ZDnsO+3sOh0OVDScaKwuS0VSujLRYtUrS+kQMKmPIK7fE5IJSloMP3O1n9lNm0zieD5affPGUjz+Ue/pqu6HrRRKvtMa2ipCKxBooIYr6yi9y1qJIOAM+B2JMhNDiQ0LRVV6JnLB5mlY+XQgzuXiclhaQsVaEAPVe6LqOUDKH8cBVzbtKTx/x2Wef8RM/+VNM0yT8nToXPJyOoDJvXr/k+fPndNst9w8H2qFnuxsIuX4Ok+fm9gmnwxH1RLPZbEQd2bY01qxy8sWl+2qzYZ5OpCAcJD+PtEbTVpM9OQBb1Um27oY0KWacHQghEkJiOorSzjiNblowhaIjSklb8HTaczwe6bruvNhQiCFg+0GS4cNM2/XVuFRsBeZwljebel+kEIUAHjMDThyL67V1HO9oW8ft42v208w8emLx3O8P3N5s0RrmWVpert1gakvrdDqw2exoXEtUUawbQuD+7V29F9uVWF2KtFZ9iFhTFT6qrJyDosSKA8qqOgoh1RxCmQ/Xe6wUMoVcMqpEcjaQDVkjpHmzkI4lwbxUx2dZ3C1l2Rzqi8X3gnNSSl1HihRRX13oL4uhS6LyVzOqvjq+9velnPlz1a7BVoHBPE7ngpi0Hm8mV+6blTZbhkQQSX0VsKxYgFKVoF4zt74qLb94X5e/W0nLP0Y8tDzfJZVkoXqgpehb6SQ1UzB/LWv6R8fv2WLnW9/6Fi9evOCXfumX+MN/+A8D4k3xb//tv+Vv/+2/DcAf+SN/BOccv/RLv8Rf/It/EYDPPvuM//Af/gO/+Iu/+H/Icbz7wa2kna88armoMqWkdwhpizeB8HH0+hSlFPIZRnmHga+MRhW9VtwgxUQOWfr3KROVeLvkHCm2xbSyILnGoYwmhkBJGu8lXDR48YpYPSWcFEXLhJeCeGKM0ygXdU4ribJ1Bu8DISaIBZehyYVOa2JjOMZMrETewziSUTSNptGB1rUMbUejdSW4BuxCCEyeQmT/5lRJpyJLnILH2A5/OOJa2c3N04ztG3IxPOxHMBJ8Oc8zDw8PPH3+BIBuaDkdZ96+vcenievrW24f32Kc5u39fs3gAikej8cTm92ObrfD6gZ/2uNPR3IRPtOzDz8FEG+heCTnvMZFhNmTooeUSSEQ59p7zwVrxP/VaE1nHb3zQGGOntcPE9e12N4+3hJCYn8Q9Ue/HShZ4UOSSJJ6snINKMw5yaKWNMo0kuPjwbpm3Z03fYtqDVMArVt2W81Wb9hFQ0qOH37+ksNeCs7D8YFpmpjCxHg4Ms8jMQQBF0ti6DXOybXpFKiUQOXzrq661oIip3hWTSjH/ZS4OxSOx8xtq/nm81s+utny6UdPubkVr6PNZpC8NyMTsS6gnZw3P57QBU5HIfw2xrK93RH9zHi4w9kWrTIlezStcNdYSLStZFJZi7GFeZ5odte4tmccR3a7a+73wtVr2540zWz6AVXDRJUyXF3dYHTL40fX2K5eh0nkzUILbQnRcNNvOJ78qvJxzbKhmdhue1Kc6VrDMHQ4uyAICVOLyIZCSRKJIFrMDGR0kUiTpunWYifnjPfi7J1iYZxmuv6Kftjg7+9xznGq89M4Bprugr+RCyWLusdUxGaZD5rWMs0n/HzE6iwZZ127LlLCxariCmfEM7eKKHRpRfU0JbRy5BXVaJnGmW7Y8vRJYH93YL/fMx5mroZW7sVatKjkMaUVJY9tISMcOW0ZRxEqhChF3PjwFmcszjmm+QRF0zQNcwRtMlbptRhqrMOphTtT8DX+IZVMSqUSkc9xEVZllDWgLCkpYkqkXCTup1QvMZ1WAogxRtzEFZUH9O68vUis1z9YVVi63ivvqq/e4e3k+rvKfi75rEoq1O/F4nzl0qyFj8roZQNci5lxDnjv33GYbqxbndV1AW2d/D6rikq5igCmd47vsrApyGbMXCA86zXHWXVVD1XOGwtPqa6TC2IkLFcoEEvl7WiN8HO+CjAszs3/f6DGOhwO/Nqv/dr6/Xe+8x3+/b//9zx69IhPP/2Un/3Zn+UXfuEX+Pa3v823v/1tfuEXfoFhGPhLf+kvAXB9fc1f+St/hZ/7uZ/j8ePHPHr0iJ//+Z/nD/7BP7iqs/5Lxjsw4/pF/diK+lzkfFV+Xv+yFkiqKFSWwMZ8Ae1dvt5CIivWEqIXuG+pWEskpEgKofofKKKKqzTQNoZuI7upruuYQoQAMU2orPFTIHixfF/uFlUUfbtBlF2ScF6q7N3HSIpeFF1AsVpIoyoxBc+E5i7CmBKjMhxVYVpab8qST55bLf4+lowtgaYpdL0lTBOlLFV9rnDqkRBmtkMnNi0pc7c/cJozYZIdSGMSm01LKCJLblvHOI40JXD76Iamv6pn3fLl5z9gOk08fnbLtlr1j+OIawx90xKDTJrH/UTjtnR9D0Uzh4kwjxgtpONhuxEIHVlkDInsZVEbx5HTNOG0EI9Lyuz3VYWjNH3bcXABppmmadh2kSl4QiqcfOLtg5Ckh9bw6LpHacs4C5m237pKDj1b1Ps5oYwlqUwphpAS2jXoUkTFpVtKRRRKrgnnesKHggoBHw80ruPkZ5ELV3nwF59/hh8nVG1nxiS7W601bWMZOoNRlSgfC3nZkWpDUYlcqsmbEpPMpeAaJ83+GDnM0GnLx8+u+MmPrnl+e8uj22uGbslSs+SkaLqNtF6LkB9zld4H7yUPC6SvVxLjNDFPR4qLhLglxIg2hRzSeuNqrRlPI1dXV6jSgMpr8Gvbil/SUCNODvsDyjrmeaZrByia8XDEoNCqsNn07PeCHA7bHV2IEl67vWaKBe8jNzc3zHPAz/F/Z+8/dmTJ1vxO9LeUKRchtkpxBKtYJKtJdgN3coE7I1+CU875ABzXG3BQL1DPwdnF7SGHjQaabJBVdUTmFiFcmVrqDr5lFr535qk6bDTARmGvRCJ2RJh7uJubrfWt//cXBUkoBF88lVOQNbf7uxJcOYl+xyxmdg6yZjxdyH4mMTL2mTlEqqZjnOfPLCtykoUlZ2iqlqrpqJsK2xuM09ze3so1k6CqN5AlHDOU2AWlEkZlrLGCIgG6lQDa8/lIVcxLY4yCyNY1Mea1gBBFqLS6tNbU7WaNGIkpMK2tXcfpLAVc3SjUTWmV9j3zPFLpG+q2LHJakZJf4yOcNmsh5qqKS39Cl1gAH2dO5yeZM5UWonSOVFWDRtD1yyiIUQyZiMIaQ9NUxZdpwmmFNhaLWoUgKgvBPaUAzpCzQWlpIMWrRdVog7aVFHpK8sRyTuRAISK/FJH6D3RYfo5qcV2ELN2EXIjYuSgdX0jL11QJZAOupHBTKmOtWYSk+CAk5BSKkWaW1pW1mhSuktS1JuFf4jxKGoVSCuOWyIrPFWGfITZFaaWLpH25vtEaLU6n63tTi8/OF6RsOUCUWotdryn+QmnplJRzm3Npo/89tJZl/A8tdv7Tf/pP/Ot//a/X7xcezb/9t/+Wv/qrv+Lf//t/zzAM/Lt/9+9WU8H/+B//4+qxA/Af/sN/wFrLv/k3/2Y1Ffyrv/qr/26Pna/j6/g6vo6v4+v4Ov5hjv+hxc6/+lf/6u9ATaQC/Iu/+Av+4i/+4g8e0zQNf/mXf8lf/uVf/t/wihJ5SYwtP1kCzWLhyBQ0WF4fi4fCAkOyflWppKUrI4+RmDt0fCGdaVTZmYifROUMKois0WqNVrJDUllaByElfFSSLOsMzlkqW7HZbagakfI650o7KOKD2H0TA6BwVSMR5/JO8VkT54l5Doz9jJ8jOTsmH1A5QOn9N7Ghqiq0qrA2sbUOpwxD40oLQnE4Cq/icCkSRhUJecbHhE/gvOb83BOVlxgFoLUN/fORp6cD+92GCkWlDOdxJkWFq6ArJnEpThi39H4VYUwMoxcfGdfSlviDH3/4ABpevbnHNjUZzRBGWqXo6oo0DVz60/r5VZXGJpjPj8zjgMqRx9OF/f0dShnyEmugwM+Rtu3ohxOEQO0cp2PPHAM5ZPFDQXgtOY44J94vTllqZXBYJp05DiOmJJtTRbL1GLulU5Y4TYzWo10j3Ku57Dq1k/ZljPio5AU5C0hcQvQFlQD8OOLnRKUtl/7I8XQiaSNW+jhMiLhY5PfzWHZ9L86rpETVJLrOoJw4NIOQPqu8+KAmjIGUJ5HBKwto5qJufRwC8zDz3a7hH72+53/+J7/ibtvSbWpcVeHKax2Hme12Sy5+KdmAspr51JPTjCFhSxsthgmXNwzDif74gLm9I48jFVZiP1JeifdtV1M3isSAybCtrUQVYDB1Q0yKdvdGXsPD37KpNOSZ2Y/UVUu1qXn89MC77RsUiXmWe+HW3rLtGkFK7284PJ8wukYrQ/AT1jqejoIC7bZbVA74ywChpNu3Lb/7zd+w2WzYb2XT1l8uhBC4TCdSjDTa8DScaTsrJObkcKXlpSoFbiCpiYzBtVuMbUmqwboNipGuk+uws45N12JNJqcZV1mGWQif3ntJSV84fLNB06JzwGpHiJFxnrA2kpUgRgv7u1IaYsJWxe6fRO0MRMUUJ4YStKsajTWZ4XImxRmjoaoSBoetLf08YxtB15o6kfBo5cmuZsqZKmasrWiNgtwwTHIdVs6SaTidD/T9BUvmbtdB8GiniFHaVCAu6XMSw8+stsWjKBNTFKKxzqukPviAKoiLShq5GxZOk1lNO63VmMpIpITOGBRKSeAuQMwiaQcBW8RzJq2kclgoD3w2XlLNF8SmOAcXirI8riA7eSEiU7iChRtqFBGNj4g5IOBjlIaPkXVJG1PMPjXKXPkHxYRRpnjJafHwUroQ0Smcp0V6/tKuEmfpKOuemB8JqXvtWiyoJBglSFJSIm9XFAd0s3RJFBEJy0VncZRf1uQsa+oCNOvC2fm7aojr8f9Yzs7/iPGH2PIvhc/Lcdd91uuhtSnEyL//A8hKJDeL2+SXPdFlSOpsLGSyRFVSs60DVxtZ/ItFfAqRED0+eeYgPU1TSUq0rWRiAulh++kExgq8mTJE8NGjlNwM41ycRbN48ew2jkYbAp5Nq4hTzTw55phIxdujNho/zVjtmLzn5GFQmSEFnJP4gKksHEYFCDO1Ddw3Dm8VPnku04RxLSoVUh8QkyYqS+M04zQRfKLebNHdFpqOHz8K/2IMcLO/FZ5BUGIxHwAn6fLDfGGa+vUcN11LPx+Z/ANTf8apjvvbG8gewkAqaqwYIzFp/Nzjs7SSjscTKSiSj+hscKakPcdAbSrieEKnTBgHTKXJCESek+H5UtypjcaYUTwt2g0mRbyWSIG85PwgMH8glzgbKXzxErcxTx6ypl8yx2JkCoEYDDYpbEgMfsY5zTCf0EHTFDh6W4uDcx9CmTw9da247yoMCRMVRsn7CsyiCkqZtqohCbHdGEVIMExwKO7UGvj1uy3/7M0t//If/5K6sRiTMbWl3W3xJf7A1RVKZ9LsJbtKZyGOKiF+Rz+SUlnkKselP3A8PqO14nh8ZrPf0HR7xvGANQ2LlYjzNc61zNOMsoq2qlHTJHb5TuN7T1O4NV1bM089zljO5yN6r3GVoW4cc5zL4ihPfDg8cffqNY+Pz2w2G3HjNoZLP4ExHC/n1Ul7HAde3W34pAN9fyxZX5aIkH2XPLtxnhjHntPlzG7bSWGhxGA0a4NRZm21GBzWCs9hmiYqK0RfkrROmk23Khi1s6u5m7RIhOA+j2OZB9JKutVGeDtaVTijCeMIxTRTKU02Vgz8ZJYpvC27kl8lh0xa67F43PQxkaJmnhIxynUTw4vp3DRNnM/F9Tsamm2FJqNyIGvLabrgUqKtK9rNlroui3dI1ClKpEd/4Hw8cD6f6Icz1r202+R5kQU7QfIjKkm7MoRATEsyfOGkGVX8jwzaGjIWlTQJQ1R2XbSFFJ7FwTjnMkdlUonGEGVt2fio4sBc/HRyls8psyhnX3ibKpet9crrVKviLhfzn7XVtW6sFxdpKURSKnNVjOsaJaZ76kXNpRLagFlYDcWjLamrCCTEE0d+lSELh2elVpCvFGbLaynGt1fu0MDa/sq5xEIofbW+aZbibn15pehLOQkh+e9RsP2Rtc7XYud6qKwla+NqfM5yf4mS19d9w6s+Zs4vZOaVQb4SzfJLztBV/xWtytQjN5BIRePqgh1iwhpF1hplU3ELVqSQCcozpJE4lP6mrVbDrYTCWkPT1TIBq7TKR7UXEy6WXnYecS5jZlMuzlpUDYisWsdI9uKkbJRCGUfvZ3zyHPoTU+GA1LbBKM3kZwIWpRVGWZExa8XpPHIapNjRVrFtLHdtg6sMAeiLIVl/PBCzpysk6d1uIyZzOqFqw2wtXdfS1YIOXQ7LbvqGGCPHS8+27bAafJoJc4akGfuJodjp39+9ZvY9/fnM7Gca29JsW4bxTIiiTFsmbpC4jBQ1MWsUTibwrHHOcLkM9JeCxOE4nHq8lxu1P59IKO42G0EsTGIsu67Hcy8WAUDaZzaNIR9HUIa6MWs7NqooQqeyq04pM+dQTMAiKcS1MPQ5kaIqPAqNSpFaw3DpCT4Qc8YW3tRuo5jmwGWcSuiiYt9UGBR1CbLVZZqsrBN00yaMSqQ8k4DRaw594DAmmrK7/bNbxz//9o7/6de/wBrwfmCzf81+f4+1FWMxdmw3LSlEbNWVfDJQMZF8IAYh19tqyZOr6C8XQK/y6Bg8OU5c+gGjHfsbIaqP/Zmbmw1aJ1IWTsFud0MKkfN4oaprLoX4fHd3w4ePPc45zsMovIuc+fWvf82HD+/p+56uEyTq4dMTr968xTlHJArJViWGy5HdvuVyeub+tbyGaZqJsVlVmgC1rgrvIK+O26fTCe8n2naDMRqlMnUtERfzlGhqu3KhrEwpDJceaytIsZhMFkSr2a2u4zEHlHUY40hzJCQFKYkhoxbX2mUOMgaayjAlUCmgiaiUhHaRZYFKZT5Y0GgoFhplHsxFkNG1YsB4PDwRw8TDp+dCZNeFGzZzU1dUrmIozuspD5K9pSy1azA247LhfD4yDRWbzQ6nl2gLR0Um+Zm2dmy3Ww7PH4pE3RPDC8KntcZaI6hAAJUTTguSYJ3My24p+LQVi45yxSudsUaL+kpbWAqYQszOSnKxVC4BviX3Cj7nbn42sl4di3Mh+i/HRl4KDblmls9nKapenjeX58pZOFwhJ+G5xfT52nL9p1e+JkVBBSmpJc5OijxV3k/OGG2IxZ15MQpcsrkW9GuxOlFKlbDThaCdX2xcyr+vi5acvwgsXQqmZXOX1GcugJ+Tncv5Y63WfvJef258LXauxmcn9OeQm7yQ6T4nJF9fWH+nPPAnF6Fev77IB1kr9bQEBSYgF0KXsRT8jxiz+JkggXkAziWqQgxrN2InLzsph48vkKV1NdZkkjbk6MmVwITdpsaU7JxlE5F1JiVFHySw1BWXzGmUCIrWVrQbuZRsTviomaaMSpFWOzprsJXl3Pc4lbgvGTebRtHVjrc3N5yfe5I29PPMOHuin7nf72ldmWBSZuwH6hbqusKXrJvz8cR4vtCV1HUdPR8ej/goJN3n50eiLx5CteN4PHJ/c1vOeqA/nPHjGQgMQ+L5wwdCSFRGoXREUSDuOEM2GF2z292QyZzHM0bXxAH6w4VUJsP+cmLqB7k2kkSFXOYRRea2dTxfLmj3YkHw6ZQICeYUuekcjcnEfOJut8HoUkApCdaMFAVGToSo8HES6Ff5VYkUkmKeZ3IMeD8RUTIJRjDFj0SVxXFXgdpBaw2VsdQ2ksL8Ip/VVxNJksDDlA1zNkw+cpki5yGBz9xo+NO3NwD8v//ZL/j29Q4fMz7D97/4x+y2WyARfWBbPG6W6A3nDDFoUkzM04TRmmwSikzOCzFWcq20hn6SQu/56YSzHZfjBa3cGgHx7TffM/YTbdvS+wmMJvtA1dSYMJBzZBqFfG43O7qmxbka+oH+fMFWojDadRuen59X0u/NbkPfj2w2Gw6HJ5pKk2NAK884BPEuCXLs7X4vLuNZ44O4DHtveH5+4nI5U70Tew1l4Hy48O1+Q46RPk5s2lbCMFOW+IPKrefLuZp+OuOcfB4hzpgEaIWfI91mX+YcjzEV2jh0jlQ6M4+R2Y9YpYnxpdUQp7H4+kRCmrFayNnjOFJXG2pToRfFD3LufYzUdY3RojIMYaZ2lvv7ewAu5yPjWSwYIplpimzbjnmOPD+fef36NZRCY5gmsrXoZsNw7mlqTV3XZGt5Pp7xc6LZiSJOT56mqbCmwvtAVpbXr77DEpmmgbE/rxsq7z1TlMw5VzIGlUo4JfOIVZpcrnXvI7PKaLSISpSRMF9bobQjleVSCLwGZaw4LUdFRHIQExnyS35TWuW3i/rq83FNSl6GUi/rAlBIxZSaZ1noSxxLyIL65ywoVhSV1pX6fv23zBsapRYvISXhvYt6DvBZ/UTcpLWGFK5QnyIR10WhnE0J8ywp8GsB87KGSt2TEcfu6+6Flvd7ne24vh7pRKikxE9IL62v/2teyP+PdVD+Or6Or+Pr+Dq+jq/j6/i/Y3xFdq7Gz3FmvpQISsV61buWn/702OV5siKT0TkSr36/hLEpZQryYiUF3Ti8r/B+WivYGA0qJzIGa0ulrjUhJEnjjhGlSostZWKB7VNQZBLeB8Z+wmfWfva2FbJeUkAKnM8BchRuhbZsavG3kPcAyiomP5csq4BzmVvj2CbH5C2hGI6F4YIi0bmMUSJjH7yiypKntBDNAJrast92fDqd8XOG6LmME662VFWHrdqVQPnwfGLTNey8oq4Vrqk5nnr6SbKn+sKMjfOROSmauiNH+Nu//h1N2xUpt6LtHLOXVtn8dATlUTlxeDyiQmKcBjFirMWkrirS2G33CmUsWVkmFMMwcHu7J4XM4XCRNtzCL8qBSOZ8vhDQdJVhGCKVSwwhsK0ch4JAJG2ZQuLxnMh5ZJ4yd41hPo/kKV5JtAGjCSRCCQ7NGKKXTdEUhpUnkFXFOPoiU5YQ0ZyET2aAKmeqch36NNI2mVe1AzRhjswJMC9tMVUk7T5n0gxTmEnZchgzgwevMvdby//r2zv+P//in5brqzg858x33/+a3f0tWlnG/kzdbFiwc4WSlPCURao8ngg5oUv7M8R59eAY54F5niAm2rbmdDhy6i+8unvNdBnYbCzH5wdADPpAwjC7ulnvOShBlvOVwWYI3NzccblcqJuWkCKdtQSfuLm54fn5mcPxCYC3b76BJBLe6BPONuTo6ZqK9+9/ZLPZMhVUYb+5YZoHdpsth6dP4mXTC39os9kwL47EU8KZiuHSC+eDiDeZMI80zYaYX5Lfm9ZQG0vOimmMtJ2gA5Vx5NmTsyKVz82aCm0d1lhSKqGfKdOtQb+ZXEhOp+FMXYmD+vl4YrvdE0JiHE+427pcg3J9RTQxK7yPOFfaItqS0oUQ09qqFwPDkRACTVNTVUWMUUlO3RwyVUmId84SlXD6Ns0igx/o2i1vXjeMk8cqOTZkeDqO1JUFldjUDVYbcgooZWmqBuVEMNGfTzQEslL0lwtKW6IOGJVJrqa2BleuL6M1dRCUBq1AW0E4sxGOTpnv5yhcOVMJtyQjCeqLNDoV7gxIS0ypF66koDYF9Un5J+vL8igQEjNATqnwNl+QnVjaV0u7K+W02orwcyaDFIm2ls9ORDift9oUYJVElqtiL7ByT9ViKnjliny97ukXSfiyjuZlnVTCvbzmpSpYQ7VzEf6sj+XzNTSnz8nZq33KF/Ytf9/4Wuz8PeP6RK5s+qt+7M957FxfwNcf3JcfzAIvKiUOy8k5iBZjFckHloveOumTaypxt0wZcsKYQNRiFrguTMVYXKHEVM1EnNHShc5gSlsi40EJuS548VYIc2IcPE6Lh8MiO4sEYogMYcYYqJymrm3hBihOPVxKkjnVlmEeOfsB74PcEDFxiWKGF4Na4yI2m5bj5cw0eKbJi1KrpC13TcvoE6eDEI9j8my7HX1IhJww80DtDCkGTpeBsXB9drsb9vstIUT++q//Gq0cVbvlcDjx5rajwxFHec6+H5jGyO3tPW/efoNWmctlII4jWnmGS8/5JDfw8TThNhuUsdy9ect3r78lkujPZ7Aj261beQLK15yfDwQ/ULUdKWluuoo5RTaVoZ89e7u4HYNGnH2fzzN+nhlrQ2MyT5eJ+71wlroanNVoq8nZE5VEkPgobY4MK5l6ygmfEjmKL5Oks1tSmslRODFm8aPJWbgYOjLHmRQTTlsyEDMEFL60L0JS9JOnnzUhSTvgtoZf7Sr+2S++4Z/86Xd0bWknGkuz3dBtWtrGgvGM00S92ZJChEK4rRor6p8QiPOEn6fiDpwhGYyu6Hvh9/SXEa1KBEDyKA05BJSOWOPx8zP70uqY5yNaG+axpq4lmd5YI89lNFpbitBPVCLOoq1hW205Ho8YpRj7nk1b8+rVa/72N/8NgDevM3VVEWOk65rSSphpmpqPn37Auu/Z5BdenlKK/f6W8/EJZ2tSzljryswg19bDp0e6VpLI+3PPZrNhmjz9WYoOV7t14fPTTNU2xT/GE7mwr1qIiTB7YrxqdSSDRhOjtHditKgcaZqG/nIuJH4pdo6HJ9qmottIm25/e4dVlsPQMweP9R7nipN22agRxeHa1tXKEwnBE2IRIBjF6Gf6YSKmxG6/pZ8GqtqSTUXOkRSLQ3nT0mw6lLIoHCiDsoo5Bdq25X6zE7dJYA4RrWf6/kwmMl56dpudbOymC1orqkaUbp1pGMYz8zwzxpk4T1id0K4ie01KhmheFs/oEKNBJarDGCIhZSkgV9sYTVKJkKeygBuZR8kvztylFZOKX5AuKd8L9wXkc9L8tG200B2uI4c+i4JgiawQ0jI5rwWOuGqnovZa5vrSYMuRXIJulVLobGQjfk2SVqJA0/rFwHB5z1LAvHCGVpJ1WRO/9I17gQJeAASdpahaglaFsyTvSIZhMfUsfxlRmpnPYiOW80d5X3/M+FrsXA/90yr755Cd63P+h46Xi0Y4MiolYrHiXi/WtFx8Qi4lJhQJozO1We7rUuxoIaqqwtsR5+REqXlQMZK5SkgvxDmZfALWGqw1a4I2QPQzfhrlpolJ/GCdISWp4HPMLzeL1cQYSAqcEoVCHDPzJCqByScenor0fMgc+5HTPKPJdBp8kMwbpRRtU60Eyo9PR06nExHZxW6rClc5og88DQfOlwu7rRBDbzYNOQwMg2dSite3O4bThdkPqJi530sBZWzD4XBhGD0BC1kxfHziu7dv8H7i8eMDMclk3HUdztUcjkfmXFM3DbM11Le3OAX7t3ata+d5xudMVTU0bStqB2Op6h139xXee+YyyetN4LsW1N8m+ounaQwEyWhKKnBbWw69EDOHADrClGHG8HTxXEKksQZnEs+zFHGdTWycZdOZosYTTgbK4JOY++UifT/5QciUKRCjOGXPPpKyGP/ppFYugV2s4LMoLpTyhBhIumIMMEbNVGS00xyodOb7DbxqDK93DXebjtevbthut2y6GldQFO0ctmpQOuO6hpQVVWWL23FeFUvBB3TtSQSGacYaR+WkDJinkclP9CUuQmmoq5owzVzOM0ZpyZDyI5QMrCVQrqkd3WaPD4HT6cDuZs9c1Grn85nXr9+u5NicRY7rqooYi0t5jrRtzYcPn3j37h2v7t8C8PR05F2zYZ49p/MTzjmSD9zd3fLtt9/S9z23d3IvDuNF0MGqZbO7LcWwoBzzPGOKskXZjLaKvu+FSxOSGF8qW4jBiU2JOOmPJ7S2KO0YxxHmwHa7x08zBsUUxhfdTQJnalKYSWEmFiUQWcwDm6aiqWVROeWZ58cDVVXhXE1WFlu1hPyJfurpuv06H4AVVEJnUpZrbPnN5dIzzcKFMsbQti1nWzHPnnHwVE42M7o2GCPIG4gVh0mJqpYNpbIaPwd8TqjZoa0gPgANhcTtdkzB48eJ0/m5vH9xoq4q+WybpqHd3dClTDPOzOOAswbnDMK3z4xFXBFL1ElKmkjG6IypFvNAs5KPxVE4kbOIBXSZh6OGFDUhv0RBCNqkJPJHCVop3wvP5ZqzsxQ06gvEZ1HtSfGzHFt4N0kVTpRfOZ9fIjqLId8Lp2jhygjJfym6pWsRpLxI8lOtlw39Iqt/KdQwYiYqFNa8FnRkjUJh9TXvVdCwhYC0FDo6C8cnLJgASwZgFMJzqed0zisKtGRh5ZzJXyja/q7xtdj5Yqzk4/wzJ1D9PMv9c0RHfq91cZzkiikGooUEcrEtT0l8TEKYZQFNQsxy2rHamOsk5XDOpKgwGBKJmCPKJFztVlKbNVIYmWxIWmBHgX+FPb9AwVllQpoI2WPKa88xkY0Q8wTtKf4IRJSR3BsNoDO9D1yGgZAy53HiWBROh8uIVpb7roWSIRWSoo+etqmoVOJweARgiEFyjZSBWOGxEA3Hy8wwDGzamlgW5a6qIM7ENLHdbhmGgePxyO3tnrquV5XZ4+MDHx4HRg/tRrxq9rsNH56PXM6PbBrD7Y0UUNl72tbSNB1V3bDZ3VDFwDx6hpCZg2FT2iH3b25QrkxcWLnpTUQbR4qGeZ4ZiqQ+5cD9m9f8+te/5Onje46PB84HxzBMTIVQvC/xHlOAj5eBw5g4Z0tVNUwxcJkTODgtROLGcpo81eRpW0PjLCkHKmswSkI7lx1OTAnxvciomAghiju2SuSYqExFLtdhKM7XIWnmOeGTkZ1sDGzrjn2VcSWw8v5O8YvXtzituLm5oe3EQXiz3fL2m+8lpiS8eM+nCM3+HqUadEqkEMg5UDcNF39eb4la7UjBk5OnchZrFVM/EcOSwVTI3D4xJbicI8MlMU8X7l5vOB6P1LUjE9fw2mkasFZzc/ua4+kMeSOqHGVo2aBYYi7gdOologW5d25vb0kpstvteHx85vHxkVevXgHw448/cOlPVFVF31+oqhqdNTHCbnvHD7//z3zzrZyDvj9jK4cysug+Pn1ims8YC2maJXsJ6LqKtnWcjzPWVpiqLtYQoqaa5kBVvIbqdktMipSEfBuTl+KxtvJ563rN3JrmRNd1hDgT/IifJEZhHgf8PBL8xOUghUlOcwm9TWy3WyrXyDlRin64EG4DhCVqxqzCDO8ntANXaabB4MMLytvWjqqqynl85HKecDc75imy6STHLJeWl1aZHCZ002CrjHIVaMswhhKRMa5za123VG1DuIx0tSYaRa60ZGTliPdCjgaohjNNW9NVjspoXONYgpF9Fu8xW8jfOc9kvCAPIRJSkMXYGjDmBdVIQqrNsaAd2awbTHJGxbyiNWUKxagX9a6gmH79/hoNAXnoS8ZiXpThn7WxllgilZZipCiTYoaUisPy52vVl50HpZY16gp50VqUa0bWIVViRVIqS5d56VhopUEldFFhKcVnwaKLYCKnjF4et6yFmpUOInL7si5qsTjIWhIHWArA0rMQ36GXttbPtev+0Pha7FyPK9RGrbyc6+pUrTd5OeonbSylirSUsjCmvFpTiWeCHBszJZslEoLEJsRpIPtJMqNCwC6SwCyTo9aapMFUFpukjZSjL54KxYfDGJGp54xnZvmDKoOzirqE7Q2TJycNAcZxQmWJOKiN3ACpVsWMELR2opYhyK5XZVRQtK4hJk2OUN/K897vZAcaY+T52DN4GEOAnKm14ziP9GVHrbQEMtalYzZMnj7PKKfQVpGTJ3k5CZdzIMyeqnUMY2CcejZdB7bmOEQ+HOU5Pz1dGIrBnk8ZayCOPfubDfffvmOzranaJeMmUzcdbdsWVECjomJ/s6fpamkVlMn4MPS0qaFtW5IW08cQRqaLl4BQavZ33wGSJD72F/x84tXrt8zDkXE4MQ09/fnC6XTm9CyF0ek8sNsZni+ex4vi4hUHb5itZgyBVBb606Sgqdl2LUN/Zhg8zhnGgiB+fi2KdXvM4tOT8QKXF//3OI3rLJyyxccgfjkkXm8bbjc1d9ua5APDZWa7FSn16/udLIRtw9DPkDV3dzu2tzfSn89qRe1C8my3G5ythW9iwBpwSuPnEV94LXd3r0hRvFOUc8J7AKbgiWEi51RauqACnC+PjN4TlOLpMmA6y2bTkasAKdHY3XrTxKTxIdOU/K227fC+tHGGM3cFDXx6eIasGcaRuq5w1hCjJ/iZd+/e8Zu//R2bjVzXTbMRZU0y3OzvuZwOhBi4HBVNq9nfdBgt1+I0TFh7y3DpQWculwvnw5G2aVDJcT5JUXC6eNrmht1Oc3o+cDz37Pd7jBVVndOKufDnrNFoIufLE8FPmKpmSoGN1ihXEqIXhVWeCTmI79IsuXjDZUQpzThLpMKloGanp0dev37LHDz3r+5pq5qUFZt6z+l0ojLVei+ItUVEGwhToAoWjFgT6CRqPoDBj3RdwzR6bLvhdLqgpp5X7Y6UEpumpSkZcUkp+iTv81WzoSbQ3mzYbg2nwaNNw7Ty8s5Yq9lWjilERu/JWVPVG+4qx6ae8XMxTw2eFD3zeSAYmaNDSoW/ZfBjv9qNLEGXlauo6i0panzKgvTkF85OQlAZMarRpFyeLyax5eBlAQ6+FCxZPIiyNqiUiaL5IijQC10gChcs8dO2zGJdskA7qXwWsWzAl+JIeghJWmEFNdIpkqPMESqZldIgryKvG3ytJdx0UUmllEqwr0WpiLEvmVYyywifCV0mcKVwKNICGJQ1VGuJIVIoTF4KZZmLlp+7BULPCNCQM2hKS0vLmrMq3MooHRT1ZX/rD4yvaqyv4+v4Or6Or+Pr+Dr+QY+vyM7V0MUj4L9n/ESpFdNn8FogE7OQagN59cOJZKJGuDVKOCHzMBCngZR68e4oPJzaVbIRL4aDxhhcSQSO0cqOq6ixjDHkYlgntumZKUi6r81q/cRjVIyjwLQpilOmW5ycjabRmmJvIq6cWeGjYZ4jKSmiz1hlsZWjVpHGyI5+GoO0a8JISAZtapLqMUpzHkfGMaOKI29nMk0lLbOsFbPS5By405a2KDeGUc7B//Hxgco63tkt6TJwc7tlSJr3n5449hOpvNima3m72dE6TaMNXVtTN0a4FVF2b7HA8d12Q2U1lW1wVUXOhrYr6ESOZOVJ5fN1zmHqhmRELTPOAwEP1qCzQqlAnGSXfJ4HXNvRbV6TQ6LZfkszDQyXJ8z2gfrmzO1bQTbiOHO+nBj7kcNh5HIZCbmhHyNzblCuhLEWEp/RmZvvfsXv3z9wugxEZfAxMKV5Nfyy2nF//4rff3iP1lbanjFijKYxjtZqVEHtmtax77Y0FiqVeHO/YdO0aFeBdmy2e+pWWnmhuCwfLz266Wiahv3tnSQeV10JSJ3KdegwlePT0yPGWPb7DZRgz3EY1kTmeZ7JShHKzlelVFphmstl4Ha7WVVA09gzhYmUEraSFklVicPvdnPL89PDi69JCUX0YaRuW0m6V5Fp7tnU+5UvB9BtGupGwl3rxjGPE1VleXj4yOs376hqvUYgzPMI1uDqhqqpianj9PTENE20Vct+f8tcIj7mKWLbEWdrMoZLP/PwdGTbhcIxepk7+r6ncoph8hxOR9rNljdv3uBsTd1obHlfw3jAdR3T2ENMdJuNIArGgDbELMGPILyOaTgzjSN+mknakBJUFtq2Q7bOL+2VaehJKnG7v2HIGm1r3MK9wqxIQabwwAZRCPmsITuiysSsmMq58uOJm01HY2ZuWlBBYXKmMhW1daJEdYKYOVtjjeEyzByOA9w07LeGxtWkpAleuIcA3k+cek/tHF3T0lY153PPw/kZbVLhxhRFWlWTs8WHgdmPhGnEWIXONdZaiTUwi2romrtSkrpjwsdIROZSuReFfxm1tGqMlhggpV88YFaC7dJiQjg3Cydn+VXSn6uNvkR2lpbTly2bL7k+sbS1Vq+2CHpVhwqSsjoSXwVyXpv9Can45Xq4HktL6to7Ry2iGK0FTC6oYi7k4+u1dJX0rCRmUaXpLCci6+u/t6h2EwpNIsFq9qvX8yd/CH4GCPvZ8bXYuRrq6uZ/+ZnAfcB60V27Y35pKLh4MmWkoHnpvS7RBwtcJxdaLI+bQ2CYJvw4oLIoBl7+TMJqXaDHTCbKBBDGFVpeIMOURBFhrcU4S8qSdp5DxPu45hzFmJnmiRzFnE8hnA0xIjNwJTOMMTL5GZQT5nT01E1H5YSrEnNmukjvf+gDISRCyChlcQ461TH7gJ8mGqPYFOjaVYr+csLais1mI861KYEP9FOQVPVxLO8vsNtXJBeYIzz0gf4yYeuGXdvStFJAvXt1x5s3O+LUo3RC5YRRIqN+Pp5pqz3drimfJxxOE6dLoLKOJeYjhJl217LZbKgKt6aqGlIs5xGNNjucDszjJC3E7BlLlpirZCJFa0wj5nRNc0u129FOryB78riQIkcmP3I5n4g+4IeR0+nA1E+ch37l1IxejP6cq0VZ9Krl9T/7JVVlCSFw6M9czvL3D88njE3sXt+JlNpL6vHdzYbX969ksSuZRDEHVE74MDH2E9Xmhjff/ZJut5VrZOo5L2nuBGL5XI2r2N7eUnct1nRYU/H88LTyC1zX8fHpRPCJb769J/qRpnIEI7luS9E/TJ66rqmqhhg9Oc8oFPM84lyN9xE/FA7K5DG6ZfYXLuNIxlC5lss4cW9ucFVDKDyYpurEQdw45jnStS1aWzadvK+23awmcfubV2Sg3W6ltassddOiLzMYw+2re4azFLJNU5OVtJdi9IVsqvBhYu9u6dqtJLWDfJ5jQNeOdt9R1y3aOirX4MOwWjA4V8nCh6JuG26MFeNHLS2CMI8Uz0x0CkyXI6QZPwV0ivhxECFCVZHz/HLfhhE/K8LsySTGfkJbEQFsb/Zordgs3K2pY+yPWKe5nI7YOlG1xZx0IeRfSX9DkO9DStQ5ksKIJuCngcOxFDvTSPSBykq+Uts0WKXZ1I6qLrEXusSGWMWmbaldSx8Mj6cLWMftjXBt5smvPLOsIHtx/Z7Oo5CqG8eWjvPliJ9mpiVixBiMVajkibE4/cYENmAwqOIULU+sSWaxRJDMq8X1eeWoIJ9TZFEiqSuOjbRdNGZtrUjRsxCLC00iA0QWyeOySSHl8qP08n3O6/pzvTathY26Knwyq1v/QmAGIU/ntPBRRcEkhY75vMBZjs1LW1xBiT8yVxL0ZbxEVbxI2RWLOOfz8bl7cuZFgL88z8uxIqnnxdk5ZxYtvy5S//ILok5E/dO/93Pja7Hz3zk+/9CWr1eEKSUV9HqhliJHZ5ZbC1hcKRVTkpwjiYqQxadSisZZXCHt1NZiXXFZVoYUAjORaZrkwtGfs/oXfpEpHj7WgGkUMU3MZSK2zqC0Fdl6erH7Bk2MGZ3N2vvXOtM1Rl5ngpAT1iZqW6GSISS15kI1TcMwjIzjSCYTBo9TkJVm023YNnklaV9CwlQ1Tjk616JN4nQZeJ4iMUocwa5Ir63SdK5lnCVaQCnF3X1DV2ludi1dKaDqSmNNZPfqFlcb6rrm+emJD+8f6IfEw8N7NrdSmN3c7GjqmpwCx+MTxjhcVZESPD1+YuwHVOG23N+9wVQOZ1sqJ86ztWtQ7QaVRd7rS7TEPAcOhyeUMuxv79h0u9JvF/J3fxkZBjkH2/aG12++55tvLX1/5On5AXdzJPmZez9hl7gIHaUoVVkcrj3UVYszIs3+08qIdwqgojiODmEkzBMhejZ1h8aRs+J0PHM8SwHzfDqSsuK7737Bn/7T71Zn527zimkeCDlgCrIy9gGta75594ab+1fkHDmdTtBGTpdHns9H7u7EPff9wyPjOPOrX3zP6XSidhrvwRrFrFgjBURWpsUF2BhiUszTzDjOaCLTLC6+yBWND5mUDcfjgbubHfM803USR1J3G1JxOW82W4bLgMagnRGESxmsqwgoqqpaEZimbpn8TOWMTMLKYOuaptuSk8LZmkuS81XXjnojBdPz00eclrDL2jr83KNIaxQGiHOyUgrdG7bbLW1dUTcOG3PhUYCjArQgItmwvelYvEfmeSROR0KZC8bzgW23Yb4MjOOI5TU5zuQwEZURdKrcC0Pfo1UmzhGVE6f+xGa7R+uauq7xpQgG2O/3/Hg80J/OWNNy9+5GUGKtaCon5PZl9x1LlIQRywCVMpMXFVhIiXGU57S6JpCoXYVSvUTXlIw4pW2Rvsv78oCxiabeYpuawSdO54EQYdNu0UROp3Gd4yqtqV3FEGYenw8YK++hShUxzuiS62eNxhjEeTwoSFaykKPCZw+IczOAVhYVjYDkVlxktFJUVhNQlH0HoSzGMcRVui0b2YKYwFoUJB0LKiK/iyzqJVkjEnm1+FiKgFjm8qUYXhGlwstcjr0ecS1uEtfk5nIwioxKGWOEg7m6u6e8cmC+VB4vURCCwCwozhXJOQnfJutc1opSzOkl0+sKBSpfKWqxBYFbpOVL6ZOX3RJ6NVWWzK5SpKGWPNr1uK9qrP8L4/ry+SwSAv2Ti+sPjdWae/l+8R8oHj0mLlWpZk6iq5OCRYoPayqsCVgrO2AQhVVVYP+sNMEnvJ/F5yIEQs6rainnTOMqCb9TVhaSxV9BW5qmFFCuIofIXHmmaSYURnwklJtPsdxbquwAYvFGSTkwDJ7F0AqkyAG5QZxRGCMwOipTVw22eHOM00vWVBc9IxNgOA0jngQxU1sIWaFsB1qKqP1+RxxHXt/vuN3v2LSOu7tblI6cTwdC8QtRJsvkHx1Q4WfIqmK3vy/I1GX9LM/nM1plbm9vuLltMMaRk+Z87plPWXbOVo798P5Hbm5vqaqZp3Gmcg3tdkNVSY5UjBFTL6hCjW1apskznUfSmDCVo2kadFTUzrEpiFFKicNFfEC0deA6dq9aFBE/9MTi3WOtJSfNOMzkoKmqikvfE+ZnyBE9KrqiKjkcjhyfD5iqoq5bbm9fcT6NTClIu6Db88s33wLwz+/21FWFVTCPE+fzmctl4NNvH+jHiaZr6XZ3APzqF3fUdUvTtAznC6fLCWU05+HM4Xjm1dtXfHgvpn7H84l//uf/Qq7JSRW4v8bHEaMdxi2IWcUwXKSlpKXdOo7juqOuG32FrEK7bRjjhLGB7a4mZY/WFeM4sb3Zk0rrt6rEFPDSP3P35h3eFxTGOiFnayWBm+WatXWFSYrhcmGz2eBToO4qyEgqe1E4DcPEcBm5vb3FYIjBE6YBny/UacuHDx/XMNIQEjc5YzYKpfZsNhtu7/a0VUVMijAv8QuaYRjRVoqHtm15fn6Wgmw8czmeqDbd+vdzlOeepokYZnQYmadzsah4yS8KMdP3I1UlMmtnEloHcggQI4+PT+RSoO86aSvNc2DoJ14b8X7SWktmWjFZXIZzFdHPgLTGhmEihpGmdWtRFFLkfnOLSlHEFDnjnMWniE0Jow2qqEOHmEgh0jUKozXbpubYw8eHA9PGc3d3R12qjefDgYuCrm5om4q2cgzjhXnsaVyFt5ZpLojo1NNgqZSRyI2YwJmCpk+iHirFhrWgnJHWVkFHtDIiXrj2x0myMSULwqOyWHUktViCiBoSip8MZs2XkwJCFQSIEt1yrS5iTTRfeLcL0vNznm5JpavHfo7orKqoQk/AyDwV/HJMUZNd1QqrIeCijlp9eZbOxtXfFxnWWsi8mBTmn7Sxrl+/dDRk269/sq6+qMuS+rz4Wt/n1fc6R3T64/pYXwnKX8fX8XV8HV/H1/F1/IMeX5Gdq6FUBv3zCM6XPcef+53Oi2JOFfDvxbxNMtgUFIRGSVcDY8QkLlhHsg7XNKg8oa6QHWckJmJJMtcGbDKQc5FHX8GbKZGMQSmHLs6gVRTPE63VupPSWuNVJGexlU/BS7vAapzWJBWvIEVIMQlnwhiiL87LSZUEX722BKqmYXdzh7aWuq7F5dd79Or7sFudhpM2TNMknIKcmSZps+ncUt1UZGO5uRF5cOUMVme+edPRtTVYRwgJpTW2aemMSI5F+pzwUVpoxiTauuFmu+GbN3s0ajXfCyEyztIKNNpgtKFqBA159803iPzyJT3ZhwlF5v7NPSlaphhIsy9+IYH+UQwA67p9ISjaRDTy/o7nmSVuZCpE3hg9unY4YyAHrLb4mLCqptnsX9xNteJ4PNB0hlwCD1MYGabIMIhH0yLR3u5apmR5eP/I6XRBa8PNzZ5vvnvHL75/gzUVc/FFevx0xCnHftcRY+bTw5n//H/8n4zDwKtXr/j1zZ77e0F2NjsJmHw6fMSZindvv2UaRs7Thdube3783Xv64tvy5//TP+Pw/IhzFqu0BJFmMaxsm45Urq1xEO6JWnbFKZXWVMfYn4TQWYipaU7EKXA6ndhtWlIS7yalFE/HA8oaXEHXhmGgbTdMo1g7NE1HzoKIGJ0Lr6wgRkTQhqapOR/OEjAZEgojQZh1TdN05fPKfHx4ous68dq5jEQfIXls5Tk8PrHZyDVrrWWeJpyrmOdREKKcUDrTNQ2qcGImP/P8/Ew2jmM/8Prda3F/niPBw+PjM65g9zFGIaT7zDgnTuczrzcdc5iojRJUqqRqK20ZxpGq2ZCCx1pNnCfGnIlR8Tf/9b+x38p909h9IbIqxhAZ5plaV9LaKS2PNcW6tFZtNuLAnQJjf2GeDux2O7pOWs+f3n9k2O2wxtBPmratyQay0RxPA3vT0NQLWVbiRVKUVmdMif1+j9KGD48PjCHx+rV4Hd0bw8fHR/ppwllN11R0m1f0vcTHOOfYNtIm9dOFNHlGNYl82hgctTjRm46czcoz07bCmQqjLVFD8Ms1GYiJtY0VkxEunTbyc0rIpxK/naxeSLTyNazREFHnleKgvqQgpBfn7c+4oH9AM7Mco5QCI+jLaux35bMTohgtprC0tV5IyPmKHCMJAXF9vJCElwaTrGhZveAjS1zET/17Fin6cpw8en1kymJbXqTnAHo1rBTMR6kkfK4VdlIvz3D1+pXKP+HZ/qHxtdi5GguLHL6ADHlJiQWB019cJV+OSyqjclwzUpbnXJ53iYUAMXMzRmGtpPum4FFhQzIQosLajC3FjjaIEksBMYrluJVeZYzSL07FtGnhAQBgIs5UVNGQgvhnhkJoDiEQSiJ1DJm+n5lHD86iakVk8aIAZw2Na7B6IsaMM5bVhyFlxnm8OjeK3WZDfbsVd+QYaUp7xTnHVf2EyhE/ig9Lzobn80XaYJXiu3dvaRvHriywt7s9Nzc3WCuOwTEnxtmTwoSxF2yxktda46OYg+UcUSlz6S9M2rDrttRdh+uE0zBNE22U9ls/DjhXYatKsnKSoq5bPn36JOfLz+ja0laO6EdSBFdZFBZra9rNnrqVAiJF6KeR7XbHPE8cDgdRtVgLKpQJUJdz0hKzJqUsydgoTuOZOHs5L2WGrbcdu92Ow7MUE5XV3N7es9lEnh4PjH7GbUrqeez59rtX/PqffA9ZYbWmcg05Ky7HE9EnqkJQ3u22nPsLv/v42xI7EvnuF3fc3v4J97d37HbyHgA+/u5v6LqOzX6PnyM/fvwAKO5e3fDb3/6W83Dhu19Je+zTxx9RSnGzkwWq6zoeHh64v71BO4svLRyN4ng4s9vUWAfTNIrTco4Y5zBKlDoAcwpM40hlKprKUTtp+zi34XweuBxP7O5l8U4hkqwDrRj6CWsa2rZjnsK6wCz3Yi7nyBUuw+J9ZUrB6qdpNSBMKbDdNTw/P7LdbtEofvPxg3zoZpI8qaU9lRLaOeq6XXOFfJiKmWCzehKNsycC8zjz/Hwko+WzPjxRGcM4B06FfO6sQduaWNLQxzmRomYaRjbbSNW4lWNVdx1zjORkGMcLOouiTaXINEYePz2suWHD4EnZMgbP6fGZ3eueXXa0u+1nap3la4hxVfPEGIh+YhgGrFGr2/PH94Hj6ZG3r9+QVZJ2jLYYW3E4HQnxxH4n57htdSkKZ1AWH6BxFa/evmHOmoeHByjk4fv9nrvtnuPzM+Mo14sKM0olaqNISovMCcjRShs+BWKcMFAiG4Q7k1LGmsL3sy1V06KMKZtKj58jOSwGsGVOjxki4k+FJaUo4pYy9+ovFt+cX3g5pLK850xOWXLr4iIuSWJouBQN5fGJzzOpls9Aa1VyFc1Kkg5ZHMCXTdryN3PMJF0KoFJkLYXRdbRRunr+hQ+6cGtyzqgrF/6Vf6NMEXdckY3Vyxqa4SUJPS5tqKWdt/TF+Nnxwj3SKw5x3ciK5b8/Znwtdr4YSxV9bVSk/kBp/XOFUVJaQhpzQU2yLtVwICu97g7QiqgNQakSjudITcucPUZ7tBEXSXn+r+BnyAABAABJREFUSNZGbLVzKmiM8A60NbgQ8Cl+9pqSSuTg5G+GwDjOhCLbBVBlQpxDZJqk8o9ZjMZsvWPbbtfFoNnUKKWoNIzjSCxS1xhhCgFLJJZdcpoT4xlQgdpa6rbBVQ3H+QJKYbOiL1EJPiSmSfKyNpuWrVXscsfNfst3b1/TdhLUJ6/XEVUgFlOwHCPbds+pv4CCc0EqTocHKpd4dStoxDTN+OS4TCPH/kc225q2X2ShmtPZEwM0VcurV1uOxzNV4br4ENjf3AJgbYVSmXEUUmeKoJKoh87PBz4mqFvZ/bu6Y7u7pSmBj/vNlvMwCJ+qkTwlVQhRMUaUkUnHB9nd1npDskHIxwchxvaPB85PJza7LXNIfPz4gFKZbtPQdBW3mzerQZvBSDBi9oSQJHTSZ0LOtNtX9MNpvV7HOKAM1M0WrWbCPHL/7T27u3uMMRyGy7ojbJstBsPp+Ym+77nZ7anrhuF0RKfMfr/l48f3ANzfbrm7u8MZzXZ7yw8fP6CMQ1tHTKwFlJ9mNp2B7Ol7Qb6cq+kvJ9rOkWYJhoVim68i1mWsTew2jinKREssqsFCZjZWgVpMMDXeN2IMqCIpeVKOq4Nx2zqUhpgmdltR9DRdx/PzM0Zljs8Dza4gOyQmP3E6nLi9/af0/QPONjw/PTLFxOE0UI2yIGx3N8xTIispWIxRtF2HqRzee6yRQsPHzGZ7y+PvPvD4fCKEwH6/43R4ApVpmnblxtm6Y3/zio8fP6KNxdqKyQdcVlL4Xc0BVd3SRtFvBi879TBPJB94eHgi+Hnd0Az9REgKZVt88JzPPfvdPVoLR89Y4VMBhAAxZTG2M5rZzwSVGEfZMK0qM+WYhxGdMq9vd/R9T920WFfjmpaH5xOxFAZTimyNodETPmSqWoJS23bLL7//FUZZni8HmWNOR2qlcY1lHmae/TO3tx0xeiGJK/Wy2BuN0blYYBSeUJDgUYxizomk5Fix5IuYbIV4rGxx5FakGFZkQiMLeooBlRcJ9hWv83o9IH5e7LAc8sLJuRa4wEqFWT9Ha+1nEnEodiAxrgTzzzbY+ecDRnMU00QBZ8SaYXE+LkdcPWZBfZZCSKIl0orA8DnJ9XqU92qu/v7ymkSptiBPUhjmfCU9zwXLzoUDlPMak4ReobX1eTX6J8XlHxpfi52roZQkuUqVegX1yW/X78vRn8OIfM5m13m5YuXaT5hSeZfkYJUKiVhaWpUyBF0ckFWNwa/3h1/+ujZkb5fLDqtAWUVrHD4tyIomxEIczpFxHJiDZ/SeeQ5rAKRJIt8MIaBjorIGZxwxWkJI9JcZ56SAqSqRb3ovaIMUOzOpyE+79sVdNZVkiykm4jQRlWbfiJLKoPAk7LZIOH2GzYaoxdbeKk3TNOw2W7TWjPPEWByUaxzaVpxPF07HC8Mw0HUDVVOTUGuR2s+ev/nhAz8+nNh3G3abhpt9RVN3sjBfevpJ2k2kiLOJTeN4eHzkcHii224E0Xn6JLt7K0Tam5t72maD1Y6qqfHjxBQS1jqqVqFDYLo8ATBdnjk8/IBzNTd3t1RVgzEWrSxhKujPVXHabjp2uz0+wDwFbrPEh/h5YrgTJCf6aQ18dc7x7ptXBJ/EK6hqiFeTafSB2U9igJ0Tl2HEz1HUZFXF3f0bzsVOP02ZT6f3/O43v+duf8Mvfv0Lbm9vWfJ79l0riivgcDjI9eI0r16/gWx5Op3pSkr1w8MDb968AeCbt29EkVc1HPuBaR642e7ISaMx1F233jNaicvr6Xjk7kYypLSyQjYNgVi8llxW1LVEKWinJQV+OpM0TGGkVlfXYcgM84zRjmk4sts0XHqDwhHnKCq3VWZc4ihComock9dCSE4Bt+nw6UV2HWdPmjw6ZsJ4QetEvXU0vuWHHz4w95FBiUxdW8M0X/ju+2/oupbL5UKlDfNlou22nPvSykwG5QxzgNEHxpB5VXfEdOL50wPjkKg6ucDnWQqUutlzOk5k4xhD4r69RZsGH+cVhTLKYrKQ9pVNEkVTOcZx4nA+STFYstfmMaGtZbdvMZVms9+AM1RVJ+3lpNZU634YMcaQ4kwiMQeRdc/jgFUvwYz7m5qHk+ccAzddR5UTMYHJol5rbcXQy2Itm7seTIUzmUY11FaK3bqu+Ue//p73D3IvHp4eCYzU1sLGMfYDnx4GNp2gl8P5jCuE4MYZci6bwZjxUdpVZIWloqndioorNDpnNKGkiAtZeAqBaWJtD8qGUZOUwSgtfHfymkIudIGX+TjnvIZ7Jq1esq8QZGmNYCg5iTkLNWEJAp3n9Fm4KAj9WSn1gnYYvd5LClC2CET4svhRkF8Kpy+TzI16Wd+MMVfoTAT10roqh8gXHVFL0XL1+8RVEbJYoxSllk4vaQRKqTVZQK/nJxLyAjRkTBbg7JoIvRRNf+z4SlD+Or6Or+Pr+Dq+jq/jH/T4iuz8d4y/T35+nZ+1pGz9xHTw6nvpm+rPzAVzFk+BFCKqwHaGSIyZ2tniVVCq9FLZJvUilc8pkXIErHg6aEvjHE5nvHlpY0UCIYHKkkLcVK74nMx4HzlfLlwucuwwXnDO4b0QiHPOJYW9SKJjWn125jjjp1kyuKokskeTadoWsqZVEkAH4HPZWWTYbDa0XU3btmAUYZpxjSUW0u00ey59z/kyMPmZwU98/N2DGP9Zx6aTlsCvvnvHL769w5qKsReztcs4YO0GGwPb7RYzymt9eHjiw4dnuq6j2W3FM8Q6tNY0rpP2nS4tlDlwmE4iH9eCqJnKYVxNZYWEuexoh/Ol9PiFuJ3iTNaBnCX09Xh6XhGeYRg4n4/UdUvd7nnz+h03r+7YbDbYpqXa7Mq1YjHG4H2k73s0YW0zijv0vH4/XAa0UjS3tzgrieyn04Vjf+Hhhx+pncUtpN88c7tt2f/5r6ltQ7uTpPK2kR39f/2vf8Pz8zMA3377LVXV0HUVKkUgo7Ln/fuPhJD4X/7lv1iJ2Q8PH8Us8sby+9//yHa7Q6tKwlv3d+JoDLhK+GSJIER2q0hBnMK990LgrvJ6DjZBlzaCYp4S0wA5zWLMR6Qrkv7hcsC1HXVdEWfLOI4kHNtNyzwOZUdc/J76LIToYWJ/e1c4Nh5rDfMswbPLrrrb3nEZR3Y3ex6eHmnbmufjwGZb46pE0p4S4cTvfvxEu634vh+4c46kDe32Ff/b//a/86d/ersaRp6GI5vNDaZyKBxPzyfevv2GaBv+9//2O6bjmX/8y+8BuFEN/RBIWROT3N9aWVTSVK4jpEQo1+E4nemnHjMn/Cgti9gH0jzQmlxIz4UTVtfEnDFK8+runl23oa0brFboukLrl9bjNA40TcM0jOToSX6itQ7vxSDPOtl5d03DOAUMGVcZtNnyfL6AbVDG0Ww6CUwDUNKmnMcJKpEtt52DLP5DTbfh9e19mQ8zw+UZYqB1Ftc2zFPP+XjCWJljz17amXWuqDtpA+lKM0+hGGkakYxT7AgQxEdpTShzElmjMqv54OIg7X3Ee3Gk1ihSEg+bkArv5mqeN+oL25KSI5VzhJwF4V04OzGSQ1x5jaZ0D7JZuDUvvClMIUUXInEWbGltdxLtVTdNJOO5rBlqkdEvtig/I+9ensZ8+Ts+H7IeLd2MxQXw84OlHVa6IFmCQqNaAmA/f85Fdo4S0rrip2voVYLl1WP+/vG12LkaC4J3HfaZufrsVPrswlgY99fEqVyIXV+qtyLy/5cfzFLsyHGSZhy9mHbpJaDNKGL0GCX+OABWJ/HbiOEz5vtCgramIagMS/BaUjSVWpVQY9SQMlZBZQ3WaFQOKCJaZUbF6lmifEapKH4ZmnJGEtpoKqex9YunQtW0onRJU1nAWyHszl4ciMt7BOEV1a6hqiomn2mSkWTry8A8TsVrpVzQKaFTpqsNu+0tzVsxhUtI2vFUJrc5RZJKYplvKpxuMDrx8dOFYfyIMVomUaCylv3tjsrWtE1N295Sdxu89/SnMykr2laKqCobxtnTdVucgZAyVbNl9gGjLM5WVIX/sGvvSRHGcWb04hlz7gfatsNYx15ZxtJKa3e3dDf3TNOMpiQs5wA5kD1rKnTUnhwt0zAT58AwXfDe0zQdfd9jTV4NIy9nMZyruobtdst2s8fVFXudUGnCDyN9aR88PHwE4Pb+jlff3aArx/nc8zd//RustXzz7hV/9mf/SK6ZIXG5XEgh4OPMx48PfPjwgV//+pf8yT/6hhA8v/vtb5Yrm9vblg8/fGDbduSs+M3vf8fd/hZ0Xq9Dox3KZUY/UTeN8NC0pHOnPNJPw8I1xVjH6emRGDN+DjRNQ86ZttlQN47D4WlVBZ5OJ25ei7+LczUKW1oCIxC49M/cv5WW2+VypoowzRPz3GKMJKLXdcOpvwj3uLQanHNs2w6l4OFwZDoeOR6P3N++IgbF6COX4kczh4juYBx77KvXTFNEuYrtfk8/9WthZmxG68R+W3P/asuH97/nz/7Jn+Bz5jx5soHzLNd34w1zCGy6HT/E91z6kapupcjxE0MYsSViJKaZjx8/SDQD4v/kqo4f3v+I1Q1V1ayfQ9tucEaMKW9ruScbV63Qf45wrS5IKRHiDDEQwoRxmmQ1T09HbrYlaDcXcUfwxBypmopqFp+XJRFdlwLdVh0JWaCn2XO8nNnudlSNJUT1mVnim9t7DjrRn49M4wWjNNZpnHFcxgshBlKZEI/9SJtbCftNIgrxyTNHXzyEXhZ2XYoCnTUqJ7TKWJ0IOmNUxJT52OiMJxF9ZCEGSJcslWLnpWXig/jJqNKCWWgLupgK5qtiJ0ZPLnFDywZYKVH0amFVr4aDuRQW4vL8xXqlFKTwOb1i+fnyeeYsNcX1eqbUi3szP/0dfOGLk3X5g8trWo69+htfDpXW1/hz3KKU0lWB9eIHJAVTWXOX36dMNIGo/E//zs+Mr8XO1fiywl1+dm2G9PkvP/siF+byQZcL8MtA1mvVkjyn7NgXRCEDIWfJWypyU220VFRaY6uqUIESWXlUNuRCNJPnMzitcbYRR+aQ8Xki5CA91/IeKlPhdCXchII4BD+Ji3lEZMzlJlRGSQGmwGoppowxuKamqqpCHCuLQXEgjmSUMjR1R1XVhGlmnGfG4FmmAq0Usx9IIVPta4Z54vl0ZLgcisT25eTVtbi+VqZCJYW2DY0V19wY43qnTdPAh4+/5+nxkdPpRA4ZZzSVtVir6C8XFsrOzc0N+70QsZOSfLB5HtEZ2roi+JnxfCU9TzOHw5Gm6UhRkeIEWROT5tQHjgfhaqQE2jrqqiUiMR111bFpO7RxhDaQCkG5aRpsJYaLfhLy8+V84HI6o7RZzRqzEpK0qxzWGObpRNtU6OzZNhbXNStZsa4rrH3FNHuMcSQ/83wcGH3P6fBM3488fhSVmU+RP//zP+fduzcoY7lcLoTg+cUvfkHbCs/kt7//AMAPv/2Bu9s9d3c7Pvz4O2Y/8vrVhm5T8/z8zIcfPrDb3gDw6ptv+O1vfi9ImjH89offo7WYIYqhm7zWtm7QCVK60Gw2hFR2ekocqkcu+GIQVzkxsDuezsRsmCI4KwqREDT9JTDtChpqHP15QHPg5v6umA926+Q5z4HTQS6E/e6WFDPO1cSYMUaTtabZtIx+IsQZWxcnb63IJqDJ7LqW8/HC88OJjbshZc3pMqELUd1gcabCTzPzPFI1LafLmdvbW7ZdRSpGhSZpCJG6qti2LXVjGE4XpsvIzfaG6HuqQtJua4fKEe0sGM2lH0E/s7nZ020cp8uJthM0UKXM4fEZrRX3d3e4TceU4KkP3Oxa6naH9wUFGnt2ux2urbHWYFThaWRHDBHtxEgQYLuVzZc4IGfmOQoHZ7NnnkS2DuJynFMmeIMfFUY5dtua56cjwYnRpNJLNlZLu90KcjnOHA89bXvk26bDOsM0zlwucznW4JSlrWpy8kxjj1Wauu5QiHXBXN4Xccb7SYxO60o2FLHEAlkthn8LEVgpSKDIxKK5NkrhtGJUL6ICSRQPkFRRxYlNxyrLTnE1dsxpIdnKr3KOGCVZVSplYgqrGiuGWRCiHD5bJ7SryFoj0vYv1iitIec1CmMpfuLPFBpLEbG8toX7khdLYvUCs6yIzxVK9XPro7ynn0da8pfPxVV3YwEFluO/LMQAki7Fp/BmdcF0rondNhtsfomw+LvG12LnD4yf/2D/OLhMHm/K8WF9vkWqCbJ4KmswOZOxuOCoXE2sgkwyYZIbCiCLi6kxy1fZ/UcMlTKFvCYTZ5aeFjEnopdWwBQHITZiWALdVOVwzhF0Zh5G5uDJaYFSc2lVyQ4tFGmhMUKgVk6hjKFpW2ljCXsagMoJGVdp2eWkIERlgP1+Q0teZccpiXdPiDM+TBhrMUZaCjFGjv15vWGslYVyUY+M01kcXq0ixxeouFKO1zevqJRhUztijLSbZr1xp2liWqodIzEP0zTRdg3zEJimSYqv2hb705cdvXGQcyCMZ/rLxFMMKJxY6jctm50EZl4uPZex59Qf2O9v2e464uz59PE3aC0weFvJgvgwenJl2HQ7XKUgJpqmkl32HImlgPn4+MDpdManzP3da6q2odluaZoOnWEcLiuypBrF4+MDl+HI6XDmfD5TmYqgPI+PzxjjJEAS+PN//Gd88803VFZcsttuR0yBw9Mjj0+fxPeoXLOvXu9o61pUQjlzs9uy3+/59PTM4fnEr37xHXd3IjV/OBwLoRoeH59ISBGB0UzBryRapTI+BAm1zQFraoIOLFRIYxymeEOprEk5MwdR75yfTvzi3R0+KCAwTjOns0Q1fPvmFZdLz5BnNtuI7RqCTwQ/UzWOruvW3LXdHsiprBuRy2Wk23UYXdF2O+Y5FD8pqDqzFpCbesfz+IxF8bvf/RbX1Li6YgqyeG03e5xWtG1LJqDw3N3vmPoJZywGuQY+fHygqkQUEUJko2qi9/SnI6SZxjjui7pws7FMYZbkJqOZQ8bMkcPTA29e3eHHiRTlOqjbHfv9LU9Pn+iHkTe2Bj3RdVsulwtdtyH4omIsNhHf7r8lpknypJSIEkKIKGVWZMVpkeBrDf08QBaic1c5zO0dx+dHQBy5tYV5Hph9S1VHmk1Lt2sZQ8Rovba85hjYOEtXb7BmZnYNT6czVfPM7e09Kgem0vqdxsw89OK9ZWqCjozzBUhlc5DXdr1XitkHBhXRCmpXo3WSeTGAzdXqZaWAlKUIS2U+VUpjjCrzTvEH80GCVbMoUlOSeXcpGlR6yW9abEteMqsiRcolm8mcXoqd6KUAyi+FSzaWMEeUBute1o9UCiIhM0eyFnpARkjVKYk0Ha6EM/nFB+czyfkqbsirU/TPtbauv8r4PLB0ef4vi5+fG39n62nx0blabz9Tml0dGqJaFX1/3/hKUP46vo6v4+v4Or6Or+Mf9PiK7PwR41oi93MVadafw3fXx31ZIV+bQhljxHUZg3OSnUROaJNIMyt8v5hNiWuxRlmNUU4SYJUihbAiACF4VJRdyOQjcZadWfQJKo0upOc8zwQ8Ccl0saYCHQkkMSLTIvkDqCqNtZq2qcTzobhAbzYb2VnkRC4ktVh28LMP1HVNVpFpFh+OrCyVq7FVCTX0QbJnYhCJ8cWLL839PW1VE8K8erwsbRxBRoRwe3p+5vlwImfFPMkuo2kadvuO7c0t1mkOT084V1PXDWjNTmvmkgeU/IyzFhUCw3hGo7i9uRGJeJzpLyPnXlAgrTxd62ibCqc1m8qSTSuE0uOR49ORwqXm/v4198V1N6UgLT8niJyfBvq+X9sHrgbx6vkBjKbrOlKE3z48Mc2R3U7aQtrV3L1u+fH3P/C//v/+v5Ajf/KrX/PNN+8Is8eneb22nK2Z5xlVWd68+YZf/7rDaUPvR0KYSxikfAbWaYLvyUmIwQnJUzo8PdL3PVXT8s03wm1RGT6+/x1PH37P7c0GZys+fnrP3/7te959+ws2uzsmL5/XMAz84z/7E37z17+lHwduX92ijGWz6fj973/g7VtBgKL3QlxvNqRRHG6VUrRtTcpyDVeNIIwpZ47ngcFHjBXjQa0rptGjDSQy52K+N9/JTrvuGmY/Ei+JbquJweDqCoUhhLHcM4mm7VBKctFSRN67a5jnGe8zuVhGTH1it3mNH3py8hyentEExsuRm+4bNJF5EnTp9a9/QX98EvPMGKjIbFq37tqPR2l7nkePcolhGsURvKp4fHzk4fFZ0Kg8rfdcs90xDme8n9jf3nI5jlS+QuEYx5lhGKiQ81VvHLubO+Z5Jsyese/xlwv4gY2zcmwx/MzFp2f14VrmLQNaWVKOL2nqWcu9aOS9aOMYejF1bJsd9UaMQIfpiZw8ymjhldka2yQ2uzv84ST8tNL3b9qaME3Um5rc1KANVgl/zGmZG4OXe7HvezZ1x+XUo5yirmrGsedwOKGsoqsb3JI9R2a8eMnkU+LY61yHyp6YMtOciEsOVOUFTzRC245R8qtSBK2EAiwHekhesrWygSgGrynGMk9rzILAXIeDyp0s3MUkWuqcAql4lOVYeDzLf0qhUwDrIEVyfMmmEhNiRdIFuVl4OwsXhvjFWqWIueRYlc93dUe+WqIWw8PrVWvhfOYMqGs050U+viA7IIjMl+jQ9XWllFqNE6+fC3gJHL0my67H5J98r0wCFfhjxtdi54vxc0aBy5D4BPWifFrZe1fHfMFEX2IiVP78w198TCJgkiMbSE0g5UjG4wkrlJrjvPY2U0oCUxslKdZrvMXiFRKgOG4qXYL8TEZlK33+ZYRIRMh5xhqygjCJtwHGYskYvRQ1jt2mEYWQtSglHBNdiePpPHt8WBQgPTmDTwFnK6wVgz6nE2nOJBLWLiRrxbaryTmvE+3zYeD5KNb6t/tbVGnN+BggV+TgOR4mfvP7j/zw4WMJ6tSi4kB8UO7vdux3HXVjhN8ye7btXorJCJtGWjiyCER0A0PMDNNE/3CGmDDGY7VBh7kc22NUg7WJ4D0heKKPaG2pK4OfRs5PMhkfPr5HuYam6bBWirSqqdlsdtTtpvBNFn8RS+0a9rf3okRKCY1hv78lpUws0h7vZx4fPqLjxJ/9+nsgUVWG8+nAMAzMQdx7QQrpV/dv0ARQnuHyzCUlzoOovh7e/57bomzp9juGYWK/v4WseHx85PHhE9bBr3/5S7Kp+G//9a8B+C//+T+TvOfd/YZ5nDDG8PR44vb1Le++e8vxfCAWntV3331H3/cM44ntZof3nu/evON8PtO2DcMo/kG1rVEYckykJOGs/XDhzd0NPnhs5bBaPq9PH5+JOdE0Na/vb6mtwlWZpANhlkiIZUE6XXqcE+7C7CP4CfSIVpZpqqiqiiLC4XB4wLhX1NWGrCWMMUSNsZqYDVVTrx4z0zjx+q7jeTiTdWZzs+dyekKRqdTMm7uGx4t4GMWU0LbicBqwTUtTg8UxxYBHYVxbJgNLP8xrbEpVtfz4/oEPH47lnp65TCXY0mt+eH+gqg032zseH0e4DCS1Z44zWSvG4p1z6yzb/Q3eT3x8/57j+czkZz58+Mimack5YZXEKlRVhXMVWjkq16GVFYdnrUkJLuPAMC1p7qIyMspidE1g4tQ/c5l6Rj+xv38tr3UcmaeENpYpeIZ5oBobdnXLpu0IKa4tHKM01oippkxBCqKibVqeD490vlt5S5eT5/HhPXVdM/eJUUNbt8zjyPPxmbEa2W6l4PLB4Gfxf4n9jDY1pqppt7uVjzIVkjYl8DTHjLIS55BCLm2hxAuVubjfZwhRwpNzNtK6ypqU4pL8QC48SZWvNsMsohb1E+9fKVQKjUBpKZbihDKaGPNKTM7KlgJDoZUm5bWMKddUeOGaLpQWZUpb3qxriYhAyq+VtPDkNSxF2pXXTs4/bY2V86GUBiWt2GXpvF5DIy+ttM/fa+ElLedWAfGFPvBz4zNFc8yYP9Jq52uxczX+UAbJUgmnLwqgF5vt8vg/gP5c83WWClcXYlnOGYxBOUA1JB8IxhAL8iPPLyQ6ZyUHKMZyMRqDVhrj7MqIx2tyQUMsESqISTMRiTlQNjHYJARCrzLWij16tJL3YlImTx7FIonUoGuysihT4YxGKynUhKCYCGVHP09CyE0q4HVg1xmqTuMqCyimJOoNKAaK1hBSxCpHJOPahugnfvzxR/7Pv/7bdfHctB2vXt3hjCyIj4+P5OAZvBdiX+EibTcNPnqZmFWFbWtCgg9PT3SbHVprtoUUqZ2lcZrj4czj84mU4HZ3i3YROKNUpNvLsR1AmhkvZ5ypiFFhKstmsyFFTVdvGVY5+cT5dOR4OWCtpuu25NCgw8w0HslJ4YpN/667od3sJNsKiQIJIRFDpHYNdbHeVzlQ1ZZE5vHxkcl7Aoq716+5M4a2fjHUu5wObDYtUY0cnz8JH8YnnDJ0uubtL/8Ju7IY6EbzfD4x+8gwDGgH7969wVWGD58eeTo88+N74WB8+nSiqxwhRX71zXecT5I/9fb7d8Q4MwyBN2/eyXUwzzw/PmGt5nI58e7b70gpcTw+C8+r3Btd3dBfJvw04xpFCJlY7A1S1kSlsYU7NnpJ1dbKkP3M6/2W43Dk1atXTGnA5Zed7zAMuOqG8+C5r8VWoK4FKQiXzLf7bwllqZmmUVRceaapO/p+RCmDtZYYM01jQJdinokUO7rNjt/+7r/hw4BSUNcGnQO7tuXN/XcA/Ne//h3/y7/8c/7mh/fknLnd7uiPB2zlGLxnLAqr775/w8f3H7BO8er+jnkWA8lP5ydub+5p645pIdxqw+F0oZ1aNq0i5sDH52d+Ee8l800p5pKV58NI00ocDdpC1TAOnucpcxxO3HQOV/h0u22H1pqu2aC1Zpo8VRMxBpTOwqsr6LGzlqrd4FxNZWvGQRF6yWYbp5GmlQJqv73h4zCTMGAMPohC0dUzzWbL+dKvuWen88QWhbVJCOdJeHJVVZFpOR9PNI1sktqm5nh4pB/PNPUGn0ClhK0a7OgYhgmioGZ1La9xmia0tcJvyWCUw1mLMY5hcfOOEZ89zgFB3HlFni0GrrYgCLVzZXadJaFcZ0QjIcVHzi8GgDl5KIqtRbq+qFmVBqPMWvCxIh6Jou1FZUXO9sVp+AvuTMoRo5eCRK2mfVn05XIsPz9+lpeaPkd1PnNM5gWhkdew/Duvf+UzJdbVOriIbZahr7hMSmuuM7eUekGojFLFzVpUaaI0uy6iZI74Y8bXYudqLP4d11WrWI+XULT1yC/IWsuxRq/wXFIi7UMbckqoRQlVJk0V5UNTKROLZ42/QuNyztg1LsKii+NyIpJTQKWAMw0aUa1kW3aJyTGFobysRi6MlMmzSJUX3Xcy4mSqyOgkJp4SWyBKj9lAKKjCmBL6MqFMjbJKbm4SOSSMcTQNhBI6qitZdFOOWAWbrqatFHXb4VzFMI0r2VM5R1U5dDQlfiISY2SchZyax5FpKA6vz08Mxye01WhjaNrSjsgWYztp0yEKq66xdF23fj5NU6O1AV1RuUaUFsDpeGC6nAl+wupMSIGYj9RNzabqyNFjF/Va0zCHQD94mbRCFlfpYPCl/WNqmeS///aX5BToT2eenp4Y+4moLcoqttsN1lZ0xReobhqU0VgthFOVNbOaURaMFcgepBBP2nD36hXGGB4ePpJjolaZprIop5nHMsE34P0J11W8ffsNXb3HZIeqLG2zYwyB81mOnQ+ysM7eMw4D1kRmH/jw+ycOx5HfvP+wEsqrGn7x/T1/9iffcDo+kTW8evMts/c8PR355t2vZKEBjsdHjsczc1D8o1//Kdv9hnEcGEfP7W1HXQI7pzAxMzKlma65Zx6n1V05+IlttyEmec7tfsfz8cR+d8unxwfevfuWcBo5HjxKKe5u9pxLFIZykHUWyfL332BjRJVcJusaQtC4ShAjH0b8FGicQWldrsEzdefExXmcqJuCMI4DU7dFK5jmQH/qGfoeZypCskzzxJs7uQ4+ffrEFGYufY9yFSHB4+XEt5tvMX5k6+R9DsrSn2fOF1FEZRJJZ6JKVBvHTdNiS/tZk8tiK0rObnvLw8MTOhucqlB0xELA1yicszijIAXmfgAfMWg0gcZC4+R5u23LOAcCM7XdMEw9bbpFZYOfA/OU8YXM7ExEK4fWBtu05JPkWh0OR4JXnAtJ/O03t2zHGwkYxtM0DYMP+Odn3tQNm67FT1Lw9WPPeZhpmy0pOsKU2G8rNIbdzSvmkDiPgnQ5lWiNYppnssq02xvmEFBoqroVYn+5932M1LVDa1FIVrZa53ntKjKsGWUqKDISwaBKrIEir5uIxRuqsg5yJCUJ/ExK4XNiTopQVIZrApRS5fESEkqOUsSsGGSSdh4QcyaVoFBQaGxRTOmymVOsAcMpSwDxWhRoFAqVlBQ/vDgNS3erKMBQRc3782PZ8C/o0hKbJP82a7tJzs/qxnNVfBUSd0qrCAFYka31+dAoLOhFHba0uZZCTdbIXJCoBBIMWh67vKb/HtHQ12LnanxpXvSToT6vcn+Osb78ZKl1QC7VpLJI6JbHLD3NRQ6YRP6dYsDPkeSTqLIAoieSCaWlknPGmozTTqBdIxb8IDsZbUswm5YLNnnJxskqr7uIjCenjKkqMFYkmTmtuTaVtVRLNparVt6Js3XJyfFkBKKutF1hyJwSxiTC3KNRTGOgP59wtef2/jW127B003ISGWiNJfnEpZfQzGH2eB8JxtEXXsXhfIanM9bAtu2oqwpIaJXYbzt2OykeWlfTGIvDkkvQXcyQs5H0+MrhR1kQ52kSL5x+5nSSCIqmq7nd7zgZ2G833O4FAWmrPU2nub9zYBJhnjhfnlCAj1BVHUtfRCmNtQ1dqxguYxHKJZKX7KlN22IWVVxSDJeeULxr1uuoTGqHZ5ngjbMYo+kvJ8Z5YLNvadsNHx8fGfqJV3c7uqVImBPaOlKoUU2HnzPD1BM1/Ob0O6qufpk00eQE58OJ//Jf/gvRj7y5f0sIgefHI8NpWCetrtW8e3PHPHrGIbK72ePnzHk68/r1a0Ls13ui29Scz2e225bdfgNEUgrUdSVhr2WBSSnR1TtyuBCmQIyRqmoEls8WVxli8QQySuOMJWXP5fzE5k9+xc1dQ/CR9+/fc//qhk1RmU3DwH6zZzQTp9PAmzdviGHk9evXzEHSvetKrpkY8xqCWrmWqrJMo8ir267h4eEBZ+XcbtotvZ+Yp0BA89v3T0z9zNu7V4wenp5HqlLI/cm3v+Tw40fe3dzz6mZPbR3zKHwz29Skcn/rbBnGmfcfP/DNd9+SdUI/POCS4lV3g0GCOwF8mHj79hUxa4Z5ots03N7u6fuz5G05R7HZYZozTVV2+jHw8On3WNNxGQdqLencSxslFuk96MKbciglIY8xeomHKBul2Q9cLpm2bTFGqvKq6crj/XpcSont3Q3xKTOOsbToKryPfPz0ie+++W4NpB3HkXGYscZLt0Urns8nXFNzR8X9dstzUUNpBRaF95ExjuTxQre5YZ48KkvkzFKgxCg8sCW53toSDKo1qFQW7eVeSCQvgZ9ZLdecINLrZhVKcroW3zSStI9zIsUEWYz9XoqCcn5zRqcMKpdiazEhvaY2SDjni7/M8vOinrrKx8omk1RCl2wroVZI4VWaQ2uxQ1lnludZzQX5fIg54cu/l9ck4wu+DPEndcZ1Z+Oas3ONBqmi7CXr0jJJ5blf/IOUKpQRJUWiJLHLZvizNbcc98eaCn5VY30dX8fX8XV8HV/H1/EPenxFdq7GzzlG/tzPfo4V/uX36+MKbGlYwip/WoWmHPBB2gnee2ISm/yVwV7sxXOKLMw3VWvmGDDBEPULxGqrGhWFG5S1IYdINrPspFVDXtLJsy5RDHptK8GLYWBlzEvqeSukZO0kgmKeJ3EGTcW620hQKECbrJAMTdmlJCH+Po4TkxGOy1R4AufjuZynEgY3e56enogxlr+t6Gp53truBOJMkZwjwfdoErbS1FXHbis7RK0VujLoylFVDdPkiX7m3D9jlLhVD0Fg9jCL4upyOqO1Zb/vCNnTDycGnRnngcNJ2j1d94ytDM7WRDJ+FC8SowQ6fzofmcNL8J6fBnKKOGfYbCs2O2mr+Xyh76P0moDkK5RTVMZisha3Xy3xBnMaceW8Dv2ZH374wNPjoSQey/WRo2e320FKPD8KYjUMA2GaMU0lEQ9WyW43J+5e72jralWvPT/1PHx65vnwCDGx3+85np5xzqCZuLtRtJWc2z/501/x8P4D83gW7xNl6PuBd98KR8XP48tONinxGNq/IkXwwRf+VZLXHptyTxlCFBXe+fiMOHMLImkrIc4v99flcsGoTJhHqtpSVXJ9piSJ26Boys+yN/i5p3KOFCf6ywGlFFYbxjzgbEtdSeu3v0xUjaYfpd0UYyaHjEEUdM7Wq9NwzJTdP1zGiTFkPjyfuX33PTl7DlPP1Asa+T//i3/J2J9p64phmBg6j1KGeQ5UbbPe35d5YCbw+HzEuJraOYbzQGsV+87IeSs8t6fHA01VcX9/z/v3D7Rty36/J+dM3/eYZidRLQiqEYKgFiF6zn3PZmtBGaJWXIaZbVc4YSqTVUBlDQGyi0Q/ketmnQcW1GwYMsM4oI3CaIvSlqwsdV1LzE3hDJ2PR15//2vmKKTV82mk3Uq79jKOPJ2PvN7flHtGSWxISuy7ipjhEmbO/Ym2NjSukuscmIYR3e2405aHT79lGk5MU2a3u8HYJGIGltaToLvWWtAKV1dY4+T7lEk5rorPFKKgOhlCcTJOSkQegsir9TnRiUpVoCLGJBSRHEGRSjt+4bAIN5MoyjCdtZC+QQjDMcKCnmgxyMzlMcIVLWrf8r8yi09bQVGUoGAJPkNTrseqgOIzCvM6ltZVoqjEXh75WWrA34egLKjOEqa9cGs+M9YtnKC8Pt+XFO1FCJS/QH5U4UGpzzosRumfGPf+ofG12Pli/F3tqz8kPf/MlrtI+jKRxYZqyTX5sk22GELJpCQJ5PK9F95LKWx00uhCpFc2CbxMIs6eURmyctRrEVVuziyQadKl52sspHlNek5BHDkFvs/oJKZ9XdfinCuGzYtPP7iqJsTI7GeGoccYVy6ySJyn9Ry0bUdVN1TJYowlpYStHK+NZrfr8CmQR4GI5+GZ4+FMQmSvztaSS1Vs7I2G1yVFe7dpSUBI0gb4+PEj2Yuyy8+Rhwch0XrvyVYmPq01OSSUSjTWkTDFiXNp1Tl2rzry/R1KSxtxngO73U4yulJkLnLX4CdUTqQQiSkyTzPhEqiqisPpSEppLXb6vidHT2Udbeeoqxsulwv73S2ukiiPVcWaNSpZXN1itHC7sk3Y2pJjR7749bi7uzu+/fYbjDH8/sffMY8e5yrG04U4S5EA0G4a6vsbXn1zL1ygnFFJ4+fED7/9yLnv17yraRiorGHT1nz79obf//DI4XBk29UoIq/2DW9LrMJ4PDKPI7e399y/eU1Midv7V3IODgfmqV8XxrrZ0LY1VeV4en7g7ds3PD4+EoLn/v71Wjx03YYYE9M0MQwXdtsOYwzGKJSqShyBtPf22y1PHx9p25ZNt+N4vnC6yHu/uZFFMxTSpHGaYbyw3ewxKMZxRBvDjx/e8/rda/r+wv5WyNQpwdDP3N7eEpMvi2NDToacFPubLYfDAyCFJMay391CTGz3t/yXv/4tj8eJtrMMPmHKOTj3J755c4NGMccLw1TLvZQUfvSkaRErGEBznmeeDs+8utnx9tUNh8cPKJV49fqG8SIFetNWWKXZ7lqUes2ljwxTYpg0/Ri424k1hTyvljiRusWHzOl4odvcgXWSXB4ir25v5fOqTIkbKWagXj6TphNLdT+NbIoztLcW7z2Hw0HsJdCM80xIogYN5eIOlwu3AfY396R54jBNjPPEZrvD5szDpyfuClG+qhv6aSLnjKsrWlthSpv5PJzRmy2mFAV1XQvR2dW8fvWODx8+cOzPhJTZbzdSgBWzQrRBGYsp7s8pJUxlVvFHShJbs87JC1k4QU7Cm0opr0UGyHxutMEpg9IWa4K0wrzwVPwcVj7LdYyDKC1TeXK90hiuhS6iUNJr0aCUIpf2lVIvnBe+2Ixff12LoC836l/IvZfxhzbrst5JgaGkOiEpf/UY/ROOq9AnPidTL3//M4L1ImFf2n1XFYu0yDRKJXJeDGOvXtP1a9WJrP84OdbXYufvGVI0XF20f0d1u37gSjqmqdDE5HfLBfdyvIRFlv8LISxm2fn6FMiLlFiBy1kCKEtdPIeEjx6XxQdD6asLK/siLSw3lAHtNCq5VWEltvdJohcyQBIEoLIoNGOYyQthOoAPIkv0PgMG5yqMdvLa52HdpeYk7spCQFXMIeHqDVYhslaj0Rs5J+HmjsbUgr6EzOg9VVWx2TSiCPHjKqMd50H64Fr4R2TDFCKMkeDndfKqbIXLmTx4TOXKjRMYhhlXb6iqGru69yratiMEKTa7esf+VtO2kqVT1zWkUpjNI34eGIaBaZqpCrl04QEAq/z+8fGRj+8/MI2eMCcOjz/iasdhM9Dt91TVgC9SeWstylWAxmpH5RrGKIGrrm6u3FVnpuHM5Xik6zr2uw2HdGDqz8xxYHu7X4vjaZipXcPlGNjvO2bvOR6PxBwIs+fjp/ekQjatK8P337zh6fHMb3/zAbTm7u6W6Cd01lRVw+PHh3IOZt6+/QZtG07Hke3thst54PncY7Rju7tf4y3mecQYy/PzI3XdEqMnhBmlhVgZfAkCtS3JweFwKDynPd57jHMoFRnHiRQLD6jdrllybbfj48Mj1jo2jfgKhRDQRW6osjh1xyox+UDXOtyu5tPHJ+7fvMb7sHodVa7hcHlimEd0MFSuoVauqJBGjDF0nSzK4xiI8UW04JzBVIZhvNA1W3Z1vVobxNOZ6rX4CTnXsdvcchxOhAzn85HbG5Fo53Hg9f4WjeV87rnpLN9+c8fHT1tQif3NDc6V3LXKUTnDOPW07YYpzoSYeTqeefVGPIsWR1w/jfiqBSzDmOnnyKenIwHNFDOawFRc2o1R1M6gdMZaK15bMa1+LXVdv6hDlSKnRD8MOGM5nc7048Q0jvicCAU1bKuOp6cnvvv2e+rNni4GUvA4Y1HWcHg+8XwUNPL+/l5ei7Y4V6OVpWmE3JtDYJrG1bsmBnEdnqdIiJKrVYWB0+EZSHRdJwhVub+atpX5ScgthBQlB1AZIXIshQkirEgpkQqhdvmcNQufRrIKQYAZaxXBGJlXdUCvi7ac18UOAiWI0AvqUYoXrV+gD6XJWcqhIq4CJYkQUui8cHaui6TlM7ken0U08Hm34ee6Fl8+z7qxL7mL63N8pqrKpea64gPlTEqf+95IkVNee5aug7KJlUWTNZnlMVF+rhbvtlx+XziogEovBOW08Hv+iPG12PljRi4ycf64ClKGRi6G9LMF0lLlXv+fUipKJkMMEIok0uREdlL0mM+q2IgxipTnNTAy50wscQ+ZWAIVRfZeN90LhBkDOQW8L+TiLOS+lEJh7Iu8HCDqhI8ZUya+xSDPGEWYwmfvL2RPmD21qtDaoJSkK1e1WeMv4pJ1VFW8fdvhw4SzNUOYmcbInATdzVV19U7ndZJoaidW99NEjhOX05lLURedkyIZCZK0BbGwLnK73bCpLVVleB7k2P4y8vT0RAqCqFRVVWINpIW33W5FeYEoNrQ2JNUy+4lxFHv60+WIczXOOTYlk+ibb96x3+744YcfmAaR7D4+HTlfRurzmf1+z7YrbTdjqGzGaE1SiWk+kfBUzuCMZwGdXWu47V4zjiO/++0PXPoDIETffbth191SNUUmv91SNS1KZdq64fn5KOGVVnxMNps9x+MBgNdvtqicefx0ZLupuXt7w/PzM1OvICpy8NzfyUK/2Tc42/LwPLDZ7jHa8fT0xO2be7abHdvtjRSiQM6e87lnGEfevHnH4+MjwzDx/fffAnolPeccOZ4P9GPPzW5LQsJQZf8r5NJlcZlHT9KKquuIVBxOM1pn7t++lkKKRFvM5EIQS//n4wFtDV3XSQFZWYbRk5LG+5eCM6PxQUjJqFo8Z7QmYSXHp3BYXd0ync+EKTDPgWkKNPWe0/n/z96f/Fq25Xle4Gc1uz3dbeya2bPXuXtEeGSSCqqyJoGQEAwAiQESghFMGCIxYoCQEJNACkUqc4D4E0gGiH+AScIkJ6mUSqpCVCWZQTQe7s/fe9Zcu/eeZverqcFv7X2O2fMMD7JKlJOyJdmzd+2es885++y91m99f99mZFMphkExQ/M+at68fyA3lvW14Yt6zaltiC7STiO7NPv2fcvNzRVfPr+jO5zod5a7u1t2N3cc247MauxKvtur3Vr8i7oOXyhiNBy7I7tVAUozTS4RhWHygaZr6Z1PvneGb9/cc2wG2s6hVpoxfbBh9FSZWFvYTHNsG6zJmfoJozOKPMcnhM1au6DSMpVMTMOICx5tC/ZPcm2FbMKcTgzDwHa3WwreqKA0Ga4oeUgE/Hq95eXdS7quIyrD6ANoIUFHNzC0HWFRpBnc5Jm85/HUMI4TQ9dT5Bld0543KiQycVYsth/xoyJmvgZlyFUXgpO2Wghp56ou/MwuiMoJcXFKi2OOlu/exwBxNmsc8f6MyGgFYQluDum6mn8nakzp3SaKsUrtq1TkL8VI+v+PEZxfNz5udamPpFlnJMqnYusczxCJEC8Rq7nTkXKullP0QwRJPlJCaIyWtukHy+Kvpg/Pop8YIzqGJCa+JCn/1U0FPxGUP41P49P4ND6NT+PT+Od6fEJ2LsYPIDw+6l/+mufPjpBykKVehxjxOEGH0nF9cuX0RHxUkgsXAy4EnHP044BLQYWWSPCS9mtyK1C+FeKd1oIGTfNu0svPCiP8nIA4NCiFsTrZW0HQCj8pvHZJ5i5clqgNRVFS22wx6utDjx8l1DEGj/KeMAa8MvRdRzBq2UlZMxt3JbfnGBlGT9tLbEJMEmQAH6bFw6VvO9abHavaYK3sYmRHlLbUUeTCMwHw6XjiafIc+5ZBaWwiT5ZFhrUaEwNFaSmLjDJp3Z2KTONI1w7zFwbjhPKBrCgpjCXaIAnrNsNoRZaga4NAzFopbm9ekuc5QxiYJofVRuIO5vBBN1CtKra7FXtG1tua9U52zeWmIjqPD8LBGPqJ40Gxf2oZgrz2Ohm8CeExtQ7ixDg69vt9SiYfBXmqN+y216gcioQWlWVJnhc0TcNp6mTzozRdP3A8HBi7nq+//BKArNQ8vH+DLmCXF5Q5XG1r/uLdE7vtmh/9+AXl7Fw7DBTVimLwvH98T1VatpsNu+0aow1t90Rzmn12DgSvWe+2tG3H+/fv0Vqz2ew4nZql9df1DagJY6KkbmcFY38iIHLw3NrlvHZdJ55EZcXYQtcFViuRpu62a5rm9IEt/e76hrdv3zJ0Pcq84HB44urmjuOhYbXacX8vye/r7Q1ZVvB0OGFtjsm8oJc6w4dAiBo129AqjTKa4/HIer2mORy43m549/DIU3uiVzAlpKAfA+7+iZvrK27KFU3fc/XsjqfHPQpLl+TkKq/5n//v/0+++PIVh/0DwXmqasXLz3/En/zxn9KcJlxynF6tVtisYDocmFxDWd0Qo6AgTd9SDz2rZMLo8UzDQD/2QszNcnwYmbSl9YFsMpxSy+nUOvRaUODBC8nXBUFPbF4SxoFTO/s4lfgQiN4xdA25NVgNTmuiyujnSbAb2e0iQ9ey3tyx3V4xji3NcU/wjrIuiIM8+Hhoubq6oopaQouNoe976rLCpyiL2ZpBa83YT4uEfBgGQhBrj3otSehGJx+rTExQ87xc5lyZ5/VynczzvrRI05v3jjOQb4kmEFmsiOV5RhBzayJKWfm3xAicjxOIKC9OzLI+OLmGFgFLch9GSNpyXI2O53s/GiE1R6UWzuWM9kT5EMtnQZ95QOeWV/qcBOk3XLTCEpl0ef7S7jpr0Jc16wfS9I8aHR9zd7h8rIrEKD5GCvsBMqQ+OsZsyHhJzZjPT+KILD8HNPGvWMZ8KnYuxmKo9E9pO803yOx/86v6pOeL5XyMQPJe4HzhzFydD1tZ0qQNisTdmTk74ppsdJDv2qRsLaXF52EY8cxtLHBIQnlupR1j1HyxsvjogEIbQ9QFfYxilJfaN3mekxvp2wMwRZzz4BWZMXgXCFFytOYbXKVLKXhQZHgnERDTNHFqe4YpTbg2X2BgFSPeS6bTMAwcjg2r1Ybr62tWdYXRF8VhcMTg8ToyhcAwtPR9i/KObV2xu5Ji5/r6miKzjOMoXCDvQUkBGUeBsW1Zpy9GoXNHbixBKcbJM3SB3gXyzBHjhM2Fs+NdJBiFjpJfVYzSNlFK0U8j/eCZ7/7gJyIj601Jlu8Y+4nKFORZhckkxXhp44TA2D8y9Pdk5Yoqy5n6R9woig6rE+G3KhiHgaFtRGHnJo4HaQHsH5/47NUXvLjdLNfxu/dvef/unujltfaPT7RTx6qs+PLLrykrafec+oGuF1+k7WbFIRVTn32+4+uvviC4nvfvnwCwZcGbN284tiN9O7BePeeLL77C2Iw3795zPHY8PAhRvKwLyrKkLHO+/faXnNqGV69eYYyo/WY7/RCckLe3W7TJcVPER4OOAWsLCG7JJ/NE6rJgt95wOD0wuoHPrl6gdGDoDujg2ScTxqrcUHgIXtG1E+PoWa+uaU4D9Vom25Du52GY6Echu4fgCHFE61riVpRimoalZdP1LVlhOQ0dq90VYwhMk9zLj09HCJGrKzEVPD4+UK5X3O627K5q8tyw3mx52p8Yh45TaqfWm1uO3cT9/c+4u96KIzrw8tkt3/38WwbnloXWRyPTe5bJ9R0dZVlSVRXTJJukzU7ajnGCbmgZhgmtjLgRa43OLNFmNJPj2EkB0Q4DeaGZQmSYHHlWobXcR1mWYTLNsJdCtneOtu1o2oYQXTINDKiY/KCsFBpTCGRZRgiOaXRsNzuOJ8/YZwxjS6aL5Tr0EabJkxclfuqwWpyF+76Xwl/rZVEch54ufaaqrhi7nkM7okxEqygbnkTWt0YvbdDcZngfcd4Lz0OfqQMyd8a0gdSJtPzhOrD4B6kgxXpaqCWaRxOVbOYkGiHN81Ez+UhQIj6JwadCJBVF8UJd5BHPtGiFqzMXO1racVGRWmUs6qtFsgVLkSPqMT4sTC7GXENE9cPf/2WUi5mrNT/n/NAfnidpAc+RE6lISetfiCFlec18Jn/2BFoIyedmVZx5PLMHzwJEJF+48FdrY30qdi5H+OEX/YECS52/vA8ugMsLZP7/JLEL+ORaHFAX5kpGaYLWixQ8aoXRGVpbFDk6Zgsh0IeJ6ANKGYxzaDK0GgmpDx1CYBEReC+5NuX81Ypp3OJomT6DVwqdGSE4a70EiWpliREGL3wA+UgS7hlUJBq97GKsUugQcG4gpl3XiBRmubFoLfk6V9scT5VuxPMltxDaosKYjFPzxOPjO0Y3sN1c0aeQSBC0InpPWUCZ5zy/3nK73SwW8rOVfVDQ9YGuD4yD4/7de+E3OMd2u+Hl82e8vJHFyFqLpaAoJN9nnHr2+0diVJRVhRs9XXKDHZqWclOz3e7IqmwxYIvOo3LF2DYcjkLk7bsjRW7IMoNVmsxIr9oNLTFkOBd5eJCFrmsbtivLT776gojB5JnIZ6cJnZWoOO+UHMOQYfOMb79/hzU1ZVny2Rcvub29w2SWKcmTH96+5XTco6KjsAV9M5Jrw8uvX3Fze0tWrMm07P6HoWFbF7SHkv1TR9eMWDS3qxXt455mipK/BIyhI7rI5AZePr/j5fMXHI973ry9px0Gjo8Nm6trAF69eknUhqf372mOB7RSlCbDjyNllnP/9CjXm9ZMQyDfVRitGd1IcCOBgMkVLkSxkgY67zhOI89NRCtHmSvZ6EbFsR3Q2vCYzuvtb73C5IbBTbQ+4FBs1yXt4yPGXgtKlSbpzXaF6gasyem6Eao1h1NLXq3RUYi6sxLo8LSnXq3xUyS3itVqx7unN4zRMLmJKjMYK/fYem1RmUcZiRso85w80xS54XBwNImcW1Yrbq+u+N/en6gHDT5jOHRcP1/x1Ze3rCqNUnKdx6kjzwtW+QrfHnHtid2qpO8asixjdIBKqIYNtNNAe+qwxnCz27A/NjwNPZkCFfwy54m8XdOfeowZqFY7sAVRG3yUfLc5tuP9/sSpHSW7zGcMQI8Gqylzy3Ulj5t8JMshry1Nf6RaVZTVhmGYOJxatPEU1Yx0Rx5PJ57f3FJkOVpFrApM48hqtUZZg5pl9EBgoh86Nrm4krsYRE2mc0xWYRNvKaIIS9SCl+NmEFwgeuEABp8Uql4TYyp6o/DOgougHNqxhCijkPwsZYgElJVQZpYwzhytZ+K3YRg9Q9oY+RDPxN+okrXCjDJFlDZEM68tWnJStcfrgFX2vFFMBYpN5oF+Rm8WkYy6QDmlOAteYoG0Pm/eQ4hLUQVBjhPFksR8kLl13kzPQ8eZs5SKk3npS/EVZ7dneW8hBOxStKeiL2piiIQLIc9M4g7qbHJL9BILES+l5lre11+Rs/Sp2PkV4wfV7UfOyR9LyC91/vHjx6WiSMcfoH5LFW5MJgGTZkwXc5QU5/QlhqgIMeCcwk0RlVLGrVWLemAudrxzhNAT/UAeapwTwbXWGpuds7kCpNaTMOqNkQLGmPlCDYv6oMprCepM8iyfvBe0mj11Mtq0+7Ymp6pWaC2kXrnIYQzinEpUSxEn8mKVakGBWct8oixqVmVBYcWTBAA3EkPk8VEmddkxwhDATSwE5Wn0GCtKh6FvaU57tAkUlWJ7ZbDltCi8psYTnSLLMoo6J8ssRov/iZ8C0XmGUYqdrj+hM2iVRg09mZVUbq01OhWFVVLhRA99f6JrHdM0YK0oTGJQ+K6jOfXJFwZA4ZXh7cOTIDZpN7xdrbHlmVJ36ocE18PnL6+5ubrGucBqu8KNLU3X0yZPoBACudZoU+F9QJc5n9895+rZLaCJ00jTyGP3j4/87M9/Ttd1rNdb2jaw2654OjWpzWrokqX/FDVFlnOzveLq6oo//+U3nI4tV9sVbhgJKvDq1Us5F+uKtu05HJ6IMZJXFdW6oqxyTsdzoOQwDOx2uw921USNsQblB/zQMyOqRVayygzT6UhwniIzWO1RYcDqgNUZ2+R4rWKkTOexHwSZCZN4oWRZhrJW0Mo08jwnz0vev7tns71i7HtxJDaavu8lXRmwuSEvDPvDwLfffcdXP/kxf/LNO2xWgRupbEaRkI28Mrx/esRmDwSd8dv5mqLeEIMsqg8PUhzfvXxBiCNVpfGhZ5haTC4KrN1uQ3R+cceeBocyJTpXfHf/c5xzIocPnrJwHySXh2RnYfMMbQybzRX1/RO7KjD2ouBMNRRjnBjcQD+01NMKP3WppQI+5OD90qrebD3NUWH1ShAjq3DKUa62VHnFZlYgaUtZVmS24HDsmabAbrMjeE/X7EWmnRRxmc0Y+p7j8cjd9TXT2GKNqD2HoSfPDHNepzFGkB8jm5zMFtRFQZ5UXsZYbHLoNlqjoiOGSAwqOQxrIREHRQgeP7fV3USMszpVo7UlJvLrB7Lp1KLXF0WK1galFUoVGBMwqdjp1ATIAu10YJqE2B1USOhO+KBlpPTZGoN05QctBc0lQXlRYy1/krJrLqbS4+cR/GUx9LGyOFy8XkjHObejPrZWkZc/Q0c/eAxz8XM+7lmNFc5rZowsxI9FETefC8DP9IoPPyd+Lm4ETfxVIMWvGp8Iyp/Gp/FpfBqfxqfxafxzPT4hOxfjn+ah86tMly5JW5dwjpIHJHdhcPNjZ3n5RbUrXBe9VNxzdZwZgzMWnaTXTkH0koMyy/wkZXcizHDgBclumjy9iwzOp9RfsNbgg1keZ4yV9pqS6lhpRaYt1gjfyIWJOSI9M1Z61EqnHY3I2733DMNIPw4MySiQQh4jaEaG917cPmNkHNslqwbAZpo8K6UllhuyYpOgYY3OCsqiJCtTknfTMIwdbTfSPQjB0fuJ1aZmvarIy9lIbcK5FFJKz/UqZ7UuWdUbxnHi8PbE94MQU/M8pypK6lXJ6Ht539pS5BVZZuhS1g5AVdRkxnI67gnE9L4FlctXubQQklWAj05MHAnCyRmgH8LifNx33ZKftNusUQaGk+PUOpGwX23ZPb8hL9TCgZncQD9OHPYNWmv6seHq6orDd3ti0PTjgHfy3U7Jufn6qmazrelHIZPGaaQ5trTtiW+//R6QlsTx2FBmOU+HhtOpoawrxuNEXZfc3F2zuZEL/PTUcDx0aFvy+v6Rh6f33N5cATD2Az/+ydcLFylMgdfffpc8agqUNVS1+OEImimf//79O66/+hIJYOzp+14S38uKGCaccxKaC+Qmp8i3HE8dValps4ifHDFLqGE2YRMhYRhaNmtpna5XNWESC4Dg4Ztf/pzf+d1/YZHJv/7+nhefPV/aqof9I+urHYpImBxD21HvRPp9ODxJEC+OPNMcDg/81k++4u39e/xkyAnUKXMraM2TKng69nj/mt/5rZ+igN12xf1jXHaz3dAR0EzB000TPvGM3DCCn3kv8lgXPKd+IBrFU9NxOJyosoK8yNA2ww0jUwoCtUUu4bPVhsk5rFG8evUCkx/Jbcabp7f41D5wIaAygzV58njylOscTM44Thhznre2qxXNZs009mhtJQSz68mtpSgztloQzqyoybMS5wLOTUxTj7VXQuxebcQtPrVpyyKX9lQIdNNEmVX04wCLKIHFw0YphTUGoyyOsLRvrbWYXBCdud9SZGKtMU1eEraVxcUJMfNWC0oDM49SnqoiyeNKJW6lv+CSGGKEYEJCIsUAEJQgkuqc4SSGyXMLaCQEJa0jPfM/L0aI4uBsPvydVilcGp3WABYicmIop1fXoPzy3Etu5OXxls8xgyoX70LWJCXPibPU/IecHulWnA3/SKCLUiqhVh8iP3CZa3WWnSv1cb/jPOYcrZCQm9nN+cx3VDhUsu/99eNTsXMxPnZ9nP/t0lRw+bfL//9VNVK6Oeb02LnY+VXHn0lyC5RvM7K8RM9GS9ERlcWo2WBKEaPHuUhM4WghEddUFIJwjIFMWSm60uOnKSwqGGMk9oEoFvYmWpwBrSUAMHi/XGREUadolePxqKjwjEwu4oNENGx3woMJSJL1FCYGNxECS9FDFD8Zs6yICj+FpHyxhCgGbzEqVDA475gv0czWFNuKq+0VbXOgPR1omiNqmhgbqCqZYJUy+DhybE/kWcb62a14+HjPqe8pioJn2xsgOczmwtkZpoHj/kgfe3w+4cMoBmiJLLpZbcmKnHGUgsRayzQNuCCO18040qdWXpg8WsuEvN5W5HmJzguGQZRgZWXJs1REZQJlV1drXr64QWvD5B3v7h8I3ifiM7Sd5/vv3hGHiWe316ghcLrf0wwjxmQYm1HkctNnAe7uXuBj4PF9x+pqy/b2lqfmxPF0oHn/nu+++Q6AwzhhbU7U0vrabCuGoWOzLvns8y/ox46+2cv35R15pvj5L75ncBMvnq24u7nhYb/n+u459WqHSbyOqDL2x4FnN1uGYeBqs6UqV0z9xBQHnvbC2QnBoQ00TYuupaizRjOOPdpEmm5YDOVD1Oi84N27dxAi6+01NrPsDw3eawmlTenkh+MTq90Or4RQPvQdXVewWlf82V/8nO2b12glbZnVakPf99zd3fH111/y9u09WW5wbqQqCjbbFUWKzKjzguawxxpFzkilPT9+dcPUH3GjbBxsagtMEbb1iuPxiF7VyR19xFrNer3GJF5J2wzsDw1Ph5a6KGm7nslHDocDXddxfX29FIddNzB2HcVmg48KHw315groGZ3DFvlCuHXDAFphjGW93tC2DTc3NzSdE+ftcWBokjJxl+MmhY8aHw3DFBimwGZV0A0T+DOvorSWVV1zCg5rLdpH6qpA+RFwi7HkertDq5y+74UnE0e6/kRRVOy21xyPRxzSzi1Li7YZ3kHfj1S7mswWUqTHkBzVU1s/BPDigaO1pJ/PBXSmNZe+dyEAWpNlWsxap1G+h6DSRkbPezoRiHgv315Ifjg+pE3hefFWWnK3ow9idOdk4p0XYmUtanYI1ooYR3wA7w0+hsUvJkYlxzmv/HAhfrlsGc0t3vnfwkxMTn+HVHDoJYH8vNboi+dEIirM8RFSpM3lhk7nVimFCnNx8mEL6wOy8/K25/cprytr0LmNpRBOlqjO1AfHXXisF1/aTKB24aLllc6PAAapWAsRE8CmpPlfNz4VO79ifCCHm5VKiKpq/j2kXiK/gqfD+Uv8uNiZx8dqLACtLdbkZNmItwo/nl8vRi824kF4HaMf5cJMxVJI/BqrTXJCFWWV9xPTENAG2WbMVXIUNrvsGkQi7r0n4pIagbPCCiERKy0qsWEUW3etJWICky+T8TA5xnGk63rcFFLOVSl9Z6XJMkumbDp/Aec8ymZyvmKg6xqR0k+etjsuE7dY35coA8FHosnxMWMaB9phxCenY2MMNsu5e/ZM4hqqCgiS03N9w7pekcxo6fueyTnatqXpjvRdJ6nuKmBMxFglqfJAWZTYosRmgRA8bdexf3oQjoSJEp+RirhqVVOXueB2JoitAD4l2ztCYIlAGFSGCpFxCPT3DePoiFa+I2s1Qy8F7/1TwzBMXK9zompRumIYO7a7K6pqhXcRO+9qdSRmniqv2F1fczic+H/9P/4X2qanH0cO7cD9kxRmdVmxq9dsSk9m4O1Dy+rmht/9az9hvz/y9vUbVpUUstE5qqImryaM13z11VcMw4jNCq6fPwdtWW+vAHj9+o3EhXiNtTlX17e4ENGZRXu/pLn3Q8c0Sqpx13VobYiJyB78SHPqCRIbz/Vuxy+/fQQ0x1NPlhvqquR0ek+RlRilGBLHK2hDP41gJMLkdGyWSfknP/mRSMqT9b0UrHKdbTYbvPc8Pj2xqVc8PXWUuTj6yvWVcTocyYzi8PieZ3cveTjt+e0ffcnPfvYzNGZJ8i7rmuPbdynZXTMNDW2XoU3B3e1zuoSGfv/mHcf9ieC1bDxyi84iT8cDk5twfqSqdjKvqJamabGFKLDaZqIsS5wXlGG1WqXYBxiDl0JYaaqilg1AUWDzjP2h4XZ3zWkvyKGJUnhmuSGqQDtOlIn0X2SG6JHMJkAbS5YXhCCcm2kh01hcZDlXMShMbuQeNIlWPE3U1Yb19pp2GBnaMyqT5xmtG2n7nixr2G62OD8S/EgIcYkYCUGO41wgrwtxsU55V1lm5Wd1ZmhEpQmRpL7zRO+JLgpoES3zDK6CLKQx5Vrh57ystCDPERNqSgt5RtQSR0MIRK2ScMOckRvlyULEB7HS8EGUuQGZxwW5mknFUdzwzRkBEbl3Sjy/4OBc/K+4Cl8UIf80o8BLIu+8iZfnn8nHYvYXzkzkxfxvJnlf8Hti2qyf36689kyAvux+pNeMREGgCMsxPxb5zBERSuirCzdqUS2nx0lCgSFcfNd/2fhU7FyMGM8qqw9P/lzUfOiGHGL8wTEunpSe8xGyk74qkaMHguIM61uLt5ZxUh9cAN7LDSrYaiRE8E4maJXk2YskMBOkxShNcBMxuCQhFxLdLGc3HrJcMnliJJH0THKolBDR+YayJidGlSYYxzgOWJsttZNSGpdaDdPocZMQ4pZdgooYH4gxEHwgpMlEZ3K/aW9TFth4Pt/eY5kWBMQYhVGO6BXRO0x0WB0YY5o8kqJit71id7OhyDLevX3P49t7tDUSrmpG+v6wTJo6aNkxGoMpFJvNitzk+MnhvcOYjNglomGzx+s9MUYKa7GZIAYxRsgUWVakwkrQKR1Joa4Dh+OBY9MxjZI5ZIxZOHbT6Jm8o2t6hqHhardlVcnCPw0j3Un8VTId2T7fQvB044hvA3W9QZuCrKzQTAvp+fi+ZbuGVndSsLw74EdHWRU0TcvTcU+dJL9fvNiwqXKsFQ+fFy+v+fzVV7x5d89f/PnP2VQ569tn6XNVPB6O+KHl+vqaMIls/Pr5M5SKlPWKU8pwGoaBPM8panGXXm924p+iJVfplAjlkgkXyGxF051SbIFEkUzTQF6I3T+AnwaKosBXgTIvUQi5/Xjo6HNBTG5ur+T76lp0Usf03SBooTUorcmqAmNLUmIGj4+PvHz5nMfHPTdXO8qyRLctp65laAca1XB991werDVFUTD2Lffvn6jWVzzuG4oBVqsdCkObvKO++OIV96cTlR+lkDAaN/Qo5dF5cV6grEHnlqhUKroUNhratsFPjrGa8HXKJNIS2HnYP7KqKr6b3tG7CbzDVNIm7MYpzQU519c73OSJETJbgspo+omnU8PtzRW91JyMrmMKGpNH1ts19w9H+rHHuxQ4e9Ft0Lpkvd7y8P5+2TBMo6MsKkLQmFTs9H1PjOKCXKoVzkXaZsDolqpeU9UbDsk+YRwd67rGW08/tHSdpipyynrL2B/o+1bcrYEYAsMk1gwmEaetzsjzXFpZ2qBT200bIdxGH0RxFrUQlVMOoY7TslgHL8pV0vwUvbShQ5o/53aPV9L6MUaIvNGLXYg4Gge0UUu7yWoJ+fWZFDuD9+Ddgq7oi4VaBYWXqvIDVCcSxVfnolgJ5+zQ9J2ktYuztH057vkF5Bjz5KNEHD4jMD6tTgpBgQyyIVZKIy7T+sOiav5bffhzIH5AGraXxU5Uso4qiNGdZfAX9OGluJxRoERqDuGHRZ2O0sj6q4xPxc7FmE+oFL0fM9aZ4RDgw2r10vvIL7sE+TmkYD0VPix25mOcFVmGqCcwMbH09fIVxhgRgYNPvVmxdFd6VmaxBNUZBTE4IorJJeTIe+ErqIA1ssjZfKL0NVkuhZEU5DLRzhX33MYap34xuJKiRBCb0Um+kNZ6sagXHx1Rel3CrtM00fc9bnQXvCFRaw2TZFNNbiCGWY6p8B58mrh9mKQosXJTuykwBEW5WrOqa4pCUI08yzkdHe9Oe96+e40bJ/JcLyhaXli2a1k8s8KiM0tRlGRFRnDi63E8tvgwUpY5Nkm0x1ECDrMsR5UVxlRokxOCp8xzqqo4S6T7hrEd6bqOvh+YJp+S5cUALcaeIpfva7VaMXkgeHZ1yTbXhHHAdR1v3zfEJN+syxzlAt5NvLi94ebZNWVZ0o6e/cORzo0cn47pIhT7/jf7hmmaWOeG1bbmzf7EMEysy5IXz0S19NnzGvyA1orP7n6C04aHhz3fvX7P8dRR1yVZUuE8nh4Zxo7gRnabmuNhT5bnDF3H1e4G50balPjt3ETXtXz11edU1QprJUNJxYGmaRYkxVrLarUmxsjT4ZFhGMh210w4PJEsL8lSZMfj45GyMIRJUeVrxsExugmVZXRjZPAKm88ZDA6lNEPvef30xKtXr/BBFj3lI+tNzePD63SHGfK8JHg4nXpWqw3bTWBVr7HK8vT0xDjK54opFqBabShWW372i9fcvLjjT//sZ/wLf/1fxDnP8fgk12JRcHO1ZVVmVEWOyXKGYcDaKO2XQaqtXCvqIifPJA5GBTGh0xgxhzw0DIMgILqQhbzIM6qq4NS1HI9HbrcVdVnSnbrFhqFcS2zK5BwuOFngVcYwOR4e90QF1UpQu94PmH7ETYFMK7wbGfoUS+H9B+hBURRURU5RlrSdvJ7zfpnHTEImnJsYe48mkBUVIXqa9iReN0TquqZOrz+meSHLDbUzOD9y/3DPixcvmHyJ85ztMSKgTYq7kTw9beRa0lonfmFY5itN6kJFv2wSnZM5cVZeyUgclFmJFILMuUowIRVnBESKbB0M0WswXoq84AgugJJk+Xk+NlosEqyWNlvQhpjOkV7KC5Fjx6U9pYhapfOuU0VxWQTN/CHSdSm+QPOacrkNn4NOZwXULO2WH89r2vxvc/7i/NdyzoFztAZJln7JBUr/HubOhwwX5oLpIhpp6U19iMpcdlVm81mDWsRYgizpi8cqFsOgXzM+qbE+jU/j0/g0Po1P49P453p8QnY+Gpds8/nv8//P1Wv4oM0ULyC7GRKdk4cvkR35RfpLnf1mlgo5ihcE0ULMiCH9PqUsByIYMNYSo8dapJceWaj1MXpRLmiTFC6e4Jy0l6Ijy2Zmu0apAcjQeXLdjJFpGoTki0IvJDtp2YjpoQZVSdiom9BxjnZI3BqT4EUtvXqNoR8HuqGnm0aGcSJLuwOf/H+0SmiPUvjohH9iLZvNZiG8SgSGJi/EbFHF83fQnk6Ld8uhf+LYtzjnyEwkLzNQjqHvKMuSdVWTWUG38ixnvZJWVDs0+NFzPDQoMsqiwGizqAXyXJNnisJmQGAaOwJeEIEQOB0H+l6QlXdv3+OcY7tbs1pVVLUQLafJ0zQQw3mPEWMkTANVCbmGpj3xeOjoB8dpcKzW8vm1HVmtS3ZXLyjLmsE7vv35d9y/f8JHQz9MGCvX0W5T8/D0SJ0V3H32GeW64Pvv3qD0yBef3RJdx91W0C3cRNcNbLa37JvId2/fSBJ18Hz94x9Trwr+8Z/9OQCbeoUxivWmoKwsXdp5WWsxVvH23TtWK3Fxds5RVRX1esN6teHpeBSY3ksLa/Ly3C+++EJ2scHTti0xeopC/HKCgnK9IUuk+nrVEVzHoX/AVDVTmLjf7wnWooQ6z+t3T/OJ5Zk2bNdrDseeEDRPT09sdlt657l+9tly/242G7wT1K49DcSVZrvdMnmHtpayrhlbaSfqCM6PmLyimxwP+ydeffmKZ7dXPD6940c/+W261BtqTgeut1sehpEsKzh2I3lRkq/WYiY6phal9/z2F5+xqiyn7oTSjn2/Z5wC23VJdxq4/+4bAL78/AWrugZr2V5fkRU5+/2er17eYgKcji15VS7fS15mjNOEMZaxH3g6NRJR0o00r9/x6u5OTpcPhBBp+0kcpY8NarKc6hOZzfHak6X5avITqEhe5aijSV44A3125Pr6mnR7ib9RH1AIH7CqKqKPREYOTw/c3t6y3cr10jbCz8vznGnsmLqR49CR7Utur6442pz2JKT23Fgym6PQhDkgGESsMSezX/jE+OQPFv0EClyUKAznI9GzYOiC3AgNe07S1gRBy6NfkIvoIyi18O6sU2AVYb6vQ1jaU9qIZV+GxttInpR1nonI3LKZ54OIUAhI6eIfEpSJF+sSH0UzpDbaGem5aO0s6Ex6LZUUVmHW4i3YTFpLLkjJMT0moUJLUHlCVeS1Z/rHcpQfkJtBFMqR+TjnVhWoC8Ro5vOc39dC/QgfdlqUUkwEpr9iQPenYudiiN5gJg6fLcRniZ1XPtFmFDrGBR68bGOFi+dd/r0UQUvNk9jwWqODSTeukK2UJRHf0g2nNWqSxyud4UIykPKBEMG5eLEoi+V9772YERKZIgSjIGT4ON+QUYg1MUGlIVskg9Mk6gad+DJWWUyIGAvWGMYgE0ZeCZcHHaUfToJqrZAg53yrcRyZugnGgA1g0mPdIOTKzIqhYZhgHCaUEYfpsqyFAI10zEE6RWM/4YOia3ruH97x+PiITp/fWlGjFDajrDRGw6mPKC3yeWUNZHKsUUfUGFmv1xS2pLctJgYhVkdpfWXF2bF0Cp68KlFe4aKYMebrHVZHMfxLFvXXz67J85zdZoOLjugco4PgA1pldGOHTwqCcRzRNlKvKvzU0/WOboxMDjarnN1abtFndzuKouLUDuwPh8SNsZR5xel0IlfTktCeG8f1Z9fc3mzY1CvcpFDXGz67WScovyAmpV87KnS+5ek40jR7HvdP7DYrdrs1Y3NCMXCXksRPw8DhdOSrH31OjJ7bl884nVoihr5z9G1Hkclj++HE9dUtCotzsH86crXd8v7tO7pTsxggWmslKsB7+mFiU1d0bcvd9Q2naSTPy8VQr29OhKjxRcmgch5PB07Hge1qjdcjhoidV1oCTT9wfXtHMAVt0zP6wAoj9/DoFpO8PLcoAsPY4nXg2LdcbXfEYaB3HZmJ9JNb7uPMriTRvWm42tacjvf86OvP+H//k5/z2TBwe3sLQF2XmDKD/RO3Vzf4fpL8qOCIU8dp/0aurdzy6sUV2kSm8Yp+aPAjnA5HdvWWcrXi9I0srH/8p7/gpz/9KZu6xOgMlWXsD3sCjnxV4QaPTaq8zWoLTlHXG47HI0Wx4vT9A4+HI4OPDGNg+F5sGJ5tMl5c3+LGkf7YMLUjVo00+wfW2yuq9YYsm1vFBu8dyovxZj9JMp+fQHuzCDeM0nTTgB4GKgOTU1RlDkrRuJH96cBmI+3UfJrwbiDTAYVw6cJ04vDkud3t2F0953Evm4nOObSayDKIZNJWigqvNHlylV8aU1ozuZTV5+W4s2OxVpLVtHAyQ+KUeOEDKpC08aDhQt6sgpAVTQwyh3pPVBqtnYhIXESljUf0YJQlM5J7OAsfdNSoIG70fjFhnCMRZA2ZU9VDKih+0IdJHTeNOnNDZ06LPm/Gz47Ec6Uin3uuTvSyJhkUDuYCRwmlQZ4iuV7qogCLMRCJ6DC3zuQ9ZLOz/8VbFWPA+b3C7Izv0716Jj77xY5lLtjCzG8icWDDWbQSiR+YF/5l41OxczE+6CmeTQJwMfXRFyJOkuvFsxvx+RhhOdZf5bVm/svMKZl/N2dUAbj+3KP0zsl1750UZEFuzoWpHyIhhWWiFdoociVZQN7Hs8dNbjC59NgFVUlxEgRRv3iNSotnlhsh1frErZnETrwoSnEGVmHZCRmtJXJCgXOBvu8Yh4lu6OmHPrH10w0DZESqVBj1fsLkhsworNVM3QnXp+NmQujsgqBVfow8PT3x9P49MU7srnaALFxuFIm5zUtZ/OKeXGUoZWg7zyFJxGOMXF97yQQaPd5N2MIS48DpdMBEQx8SsqIgLw2ZVqxWW/KiFPWF0QTnIUBdyeI5e8MMQ0vvesIY6DtPe+pwvhe1iE3qn1z8eLLo0UpTGMN2ZbG2pKpz5twXPwVOQ0PbOYZ+QhuZFPMaXt69xPlhkb5vtjue3d1SbWqa04HX999S2JzgDId9SwhgEhepdxMxTuyblkwb6tJSZor9+19yvUsLcLqmH5+O3Dy7pSgqNpsNzWlkbBSbm5zTqWV7dc27d+IKfDq2/PZv/TXquuZ4bNBAczzxzTff8Oz6hh//+MeAxIAMw8A4Cpk1yzL64YTWkllVFuvF+v/+4cA47MlsSV1tmcZ3BBQ+bRyqur6YNCNDP5Hf5qzXNd988w27Z1c0bU+ZF1ibs9ns0mO1EECDohta+rFDo6jS4zSKfiaKI4GM/+RP/pz3xxPbumbVjry6vuH9sz37hzf86CsJWdXaMjiH1RavPVVZ0g0t1+aWP339mm9+/g6AH31+S5E5tltNpOLtu562H1AGpjjw7OqKF3dXAHz/5r3wAl0HZuJ6XfL+++/45Xffcvfs97itz8qxvFI03RFtcvI8xxjP6EYgsN2teHzaE7xwkXIFdWnw/UDcOPLaUtSWgObUdlSrGj1HVkRF146Mg8eNkjmnXCSaAIFzppNP93ji5nXtQLYtCIm8P04n1mtBdozNcH5Y5O1+GhmGAaU0Y9eyWW24uRGi/OHxIRUA6UUQ1ZTKzvPrpXfOjKBcql8XtESpRX0VQlgciKcgXEwTPTF6mXOT4lWlIM/ZP4bgCD6idECTETFnKbU5b5YkaPT8Z/GimXfAkRR+qZZiAlRyZv6wg3BGfYB4Rnnm1UhdhGOF2bV4eUxCsmZl7iWypGYeTyJGK0G05uiHmUdz6ZkT0lMFNWIRy3xQmyULFD93RZCwao281iXF+BK90qmbouIPqTkxRgwR82vW2nl8KnYuRrzwu1nq0lTtf1zsAASS6iGeL+j4a6rMj9tjl4WOUpKyHUyOVz3dvOOYby4vj8+0FtY+AY0UInN1HiZHUFGszpEU8qjnGzxe+Oycb1hpJWmJbyBgtQHOduNZZshshnKOKUYMBq9kcdCSUrfAx7PqYfISENg2HdM4omLAREkOnu9trQLBj0zeooIiILtSm+IgFj8ehJA3DhP744m+G+j7ET858jynzNdUqzwdM6KNePU8PD0yusCqKqhWa/pxpK7XpM4YZVFgraRpGwObbU2MnlMycouTwK8gCqv1uma9XlMV0vrqfUeYYOoHtLKcjomcOwgyNo0jp0HaN0MfyLOCfvJEFxaCsimEtLrfN+AM0+Rx0XOz26CUxqboAZlnPbkeCXrCRVjVK148v2NynvvHHpskz7uN5faq4LvXb3n77r0kPgfL07FhdKKOGTp5r34YsTYj1yaZKsLh4T03u5LKGqGspwnbZorVakVebDgcB969fidtC2uJUXFzc8Wf/dmfyfeFYbO9RmtN13XkueXt6zc0zYkXz57x9ddS7HSt2BhU1YpVXdN0LXVVMHrH1HeY62e4Sb6DX377ls26ojs1GNNRVCWnoaHpTnjv2Y6BEJOiL4g3lJhjOkJwknb+ckddi+fNbifFztv7h3NL2UX6vqM5tvz466/xkxj7jWlh2HcDv3z3xJ/f73k4NqxOE5nNefP2ib/+Wz/iu9dveXjaA/DVlz/m6Zffc7t9RpZpohLJtCfydNjz+l4KQx0cdzc1N893FEXB4alh6D3rciULUohcpXaPC+l+zA2nY8Nnuw2PtRSMPqTf61lEEWmaE1dXz1ittxxOJ5RV1GVO23fkmaa0c9RJztR3dLFHsaOwlrosMHXG8dAw9BWlncn6PZMb08bH048D0yDRFOtVj052DUoprLbnDZD2RB8xNjK1PQG1qA2vtjv6zjH04sUzTh2EEU1O1x5Y1TXPn4siToVIPxyYxkHoAErsDUwSNSslyCukYkepDzaVi2eN1UQUbkmljcQFQIkJJEmGr/gP5n0dRURtlQgPUJHgFEoZtPYXRQFgUjSHUotBoIpBpNUXy0VMT1B8pDq6TPWc/21pvZEKFJ2AmrSkXxCPYZLPs7TPP16jzhv0mHKxzg0xeZMLneOCjjEXH7Mox3BeHy9pHh9QPmYBT4yAW8J4L+nKIRnyRpM+HHOr7sNqRwjVmhA/hrx+9fiNJij/wR/8wVKBz39evny5/D7GyB/8wR/w6tUrqqriX/vX/jX+0T/6R/9/fMefxqfxaXwan8an8Wn8po3feGTnb/yNv8H/9D/9T8vP8w4M4O/8nb/Df/Vf/Vf8N//Nf8NPf/pT/vAP/5B/49/4N/jjP/5jNpvN/+7XumxjzRVoDIE5HG6JelgqfKl4P6wY/2rIDvBB62qRnxsxAxyVIB0ghnQz5KpCJAQPZg71nKvy8/GDicnBV8i8867GGL1AsVpLZz2EKJ44SmG0JcZJpI6JeAyk3Yq8v8JmqAuOjkCeenn94CPDMNL2bbL+DygFdV2zrkuCYiEzo4yEcGZiSujtHBwqUsXJeQk5BNq2l9DDpqNtW0JUrFcVdVFD9DSnhLLpiDGKtt0zOM92u+bu2ZUcJzO8eHG9QNxD2zGcBmymKQtL35zoOydxBUWBKiN5kupX5Yq8qugGx+F0n5xTfUJDVCJ3C6pgTEb0EtB4agYMJnGTDEWRsVrVC/m77x3ffPuIHyNlJS7Zu5sr8qLAjZ4p+SKFYSI4R9e17LYbilUprYCuZ3CO3W5HPpsKZo7v7p/45vsnjoeJygSKMmdVllxfVzRtT9PLeV0XObtVSZUPHA4HDs1AXRiqzIIbef7ZS36ReB2rquTZsxu8UvyTP/szrLI8f/Ul9fo6uddWqESq/+zzl4TgmKZI0+zJy4Ku6yjrimcvnnN9fQ3ANN6zXm05nU7cPXvO969/yXq9pe97xqlPfXudzpWQUVd1RZHXxPiAMhprDK4bUTbDDbKjzq3ldGrZ7/dkWcGLFy/4+bdviVFxdb1hci3rZNRXrWpcCBRlTZGP7J9aXGgYhkYkrwbGdL76vmd/6ng89Dhl6Z3i/aHn/bGjqAvKsub7ezHqu7p6jioKyAxt15CXBcf9E4/390xDv4T3/vzNA+3oWK/XZETWtsCFFuWgeWoJblruxevNlrEZeN33dN3A8enI1WaL0pr7t+/J84Iicazy9XaRdJd5wVR5dusd6+qJ5mjIlISryn2c8/6xYawVL4eJzER0dORZRfADbmxRMQXdhkBwE11/4nDaczidxCm9qAkmSsgmJG8YCMETo13mbj85LJFxnBh6QXbMzTVlUXNqDinwVuItMqMZp462PVFv5ZrZXd+g9oLAOz/INWDtQgu4REVilIaJD/K+5pldWZOchdXC2dGoC6NWce6V8JpZ95ymLQWCdiQkP7jE2dEQPDGaZY6RqAjhJGqTbEaUyPT1r1grLknG88/nttNZeh4WKbc8LiQOXkyw+WXHS8dk8sgPnYY/9JObz05M0Rxq4cd83LG4lK7PDs0LajNL2z869uVjls+3oPwX/zb/nZC2OSs1plYYF2udklyPH3yuXzV+44sda+0HaM48Yoz81//1f81/8V/8F/y7/+6/C8Df/bt/lxcvXvDf/Xf/Hf/Rf/Qf/e9+rbn4CCGkNhFLG4t4Lm5UIixHFT644NRHMNuvGpcXzSXMN/dxMaJsmsKv/gInH6VH7DxGnaFFw5nMjDLJgOnDC1S8GcLFz2Ic6L20ToKKWC09XK0MWsvl4ZxDzTeK0Wih9S2KA5cMukDaAG3bcmrFG0SnQilqKQx0MmUD2KzWkjZtRaEwJ5xPfhIoNBpMasT7qQEXKLMMXZTYQtp3XdfRdR0p1YHt1TXVasP17Quy3FOXBUUmipUYI3EaaFMB1TWtqEF84O2bR8ZOoPlVVaPLJBpIJO1pmmgH4ZUs5z2d78mLM7Jf+FqKqfc0p54YFbbMsVbjwsRqV+OmQHeU93A6tZQ2wxQGo6Eocm6uriWXJziOD0/y+UNPZmBVFygDbdsyjB5FLq21bUXTyMLx8Kbl1I68vj9gUNy8XLMuC1abmrbtOe6P1IUscnWlWa0tZaU4NHu8j7TNyFhbXn32Jff7jsNRPF5+/Fs/4e7ujn/ysz/Dec/VzQ3VeoW1hrquefv2DZOT9tjN7Y5+aMhtRp5p+r7j+uaKq2tp1Th39k8qy5rHxz3rVcl2e0WIirEb6BOJeHbH/uyzO/aHB66udqx3Vwy/+IZpDFw9f8bx+AuKKudwkhaSVSU2K3h6bHj2vODZi+e8fjjSjyNtN7Lb7Xj7Vnx21ptriSio1mitxYPnsaVte+qyoDkdUEnR0+zvWeU51nshG2tpC47O8+e/+I4XL14sTtY+DDy/2TCOI7FYJSfjNX0/8XQcCUYUcfu2wT2c2Hz7nh9/8RlPxxN9P6Y8uZ5gxMQPRLlpTc7kJWLiu8cT0zjy/GbDcGqxK8UqkX59inPxQXh4hdHcXa1onmr605HHR78UUcfe8TT1hGB5eDxRFVBVFQZF9J6+bRmrVJgUK/p+pGtHvFPijI2irtditJnmIjd5RjehR01WFhLTEKWVJwatfvEvOh73bLdX2L5HW5PayGmRJzAMHbqXeaNaVYzTGo/HH92iJEUpJh+TJ8tMrOXCyHRuicxeMuLpZWcysRL+nYqpJRU8qHDht5PmzWjRysim0ycn7qBlUQ4Kgl3mXhU1eEfUOhVPCq0UVmv8hW/OB2Ne+ZeKJW2nlV9KhVkIM/v5zIXAXLhxsX4E3AetpEXxpC7ijNLJWrbxZ8pqGvH8VNLa5c8FzAeGh2rOEVsevJCk1fIFeNkkp83Mh2yk9C7mwnUhQLN81uVdxXO22a8bv/HFzp/8yZ/w6tUriqLg93//9/mjP/ojfvKTn/Czn/2M169f82/+m//m8tiiKPhX/9V/lX/wD/7BX1rsDMOwmHQBi4vnfOJCCBcoztloMKTiZr4SQrpQZrOpH2SH/MrxUWV7+ZzgCdOIdyM+/Q1IlIKOonqaAsE5QvAEw5lQx7yT0Ji0k1AxoJIRn/SMIaSFQ5FLRa4kJyaEgAmQ2wxrxRBQp35+1GJwpbXGonBMuHFkDBDDQMAv7r1+cmLAFyZiFObTOAyMk9xw63pFXYiR2Kpai0JKqbSbS0iZNSl7asIkpKCoCvzkUNpjrJKC6nTC5IZiZVhXoth58eoFq/Uaa3MUju7UsO8afFBoBeM4EdP53l1f8fj4wLs37+i7kcIWrNey4BV5gUn27QB914k7qtYS8hlhmFopCIOYjKlUHPqoGceB9XpLtHLDDm0r6jRncM5TV7Ig7bZ3jOPI09MDNhNZaNO15Dbj1DSMzqdrdiJOs4JoIhpNURcEJfESD48H4f0AoR8Z2p7bdc7maiN8ERMZwgRG8/z2iq4RNVRmInmes29ObHZrTJEztg1ZXfJuf+DtvuX5K9lsXN9seHh4z7c/fwe+ZLu9pq5XxAjDMPJnf/7zxSSuLEu8n9i3J4qiICtKYoD1Wgrcx/2TnKsAo3cURcnoRpEUKykusywj0+dJ7u75M/pBgkpnAzmjFXVZYE3Oqe0XE8YJKHTGOEqsytV2y3q95u3be77+0ZdYm/PdL0TO/X95/orMWLRWYAL92NP1Dfv9I5m5XYJtAUye8fD9O0xpKYIhQ1EUOdoYmpDzv/zJX/A7X76Sz9YNrF6+4Dq/ojk2HI9HglccjgP7KfDdo3wHJkyUtuIXb54oVjvePHZYo9BFIK9zirrCJIWVV56sMuzKO9reEe2B9++P7HYr8lXBdmN5+eIKAKczXF5SFKUgG2Eks4rcBNaF4mZX41Ox002BYQz0IdKOnkPToUyNqQeiS9EqSZGGjUyT43jqcWhsXi2y8bKsaQYpYE7NwOQGgo+UlfDcpkHQuakX1U3fpMfaA6uVKL7yrJR5NzpmR2DnB8Ze7CXyPBcF3jQwZbPoIZ5jCtI8OP89E3ElwFPQ8Fk6LYhLIh5rg9caHSJea5QzRCZClA3gLMKIKggnRwViiPhJJV6bJqoJpS0mzTHeRwyiKBL+r5BqVRQ1mJ6RIyDoyKW8/LyLTvyfyx7CgtakokpH4RElJVW8cGEWBAqRnEdFjLOx64drUYyR8/J1KQ1nOWe/ysBvLmCWYmQ51oVYJ4lkZiQnqPDBy8fL4lAp4SldvJQgSYHk67y8clRxQbN+3fiNLnZ+//d/n//2v/1v+elPf8qbN2/4wz/8Q/7lf/lf5h/9o3/E69eyK3vx4sUHz3nx4gU///nP/9Lj/q2/9bf4L//L//IH/35Z7CxfXYIqg1cEPRc7H7axLs/1TOZcfv6YWHbxD2dpoKSh++R07L38Ie1+lXdEwPkou6KYIFd/KcO7eA0nOzlfKPQS7qkhuOX1rYbcJmdhFFEpkR5aQ17V0k5aEhgDBslFiRFciEwuMA4DbgoEHRi6MT00oKLGzLuzKEy2sqgoioq6KhaVmaA5EszXNA0BIWAba7He0/f9UpSaTFPWK4Zu5PHpnq5tWa/X3N7dkOc5PsjjHp7esz8c2O2uKQvDoRHHVmstcRKH5Hl/9DQcOB73ECVTqCoKNps1ZV4QVCT4wBQSCtQ1+CAFdbkpiDEyNoEsi3gnhOYiJa+P40RRWoiKx2PH1dUVxUZ28SqLrFcZLuUXeRcYo2cioJUgmc5n9O2IC3FRvBZ1gfIFbhhFwVLoFINh+e7b90LITNflerPixecvCdHRNyfKKkNFmKaezGSQB0IU9KHIcnw0rIqSqqhZjQM/2x95994xDA23r6652klL+PXr1zy8PzGNPde7GzabDc5NxOg5HAYeHt/xu7/7uwAMfcswdGQ6Q+cSbDtNnvV6yzRNPDw+ArDbXeGco+87JtehVaBeSaJ2XZcoZRbEyjtBI4u8BO2p6oy8uGFVVVxf33I8tkxJxquCJ99agpF7xk2Bzz77nNev/2e6rmP15ZdLK/bh4YkXz28wRjFOk7TzjkeuNmuOzYm6rChXUkwX7/a48Vu0j1SlRntRSIYgi9e7+3tKm9q/5hVfKmknOw3N6JlC5Lu33ws6mJRQ1aoiKng89nzz9omH/YEiN1SrnHW5YRhGXPpcq/WassxRBopVxu3NFffv37I/nrA//hynzkIKpSPbdD0bpRmjYnSeh0ODMpbnd7c8pAJ5ChGfaZS29F7x5v3AaXwgW12JfcU0cZy9hlyg60cOzQkXLVleEocOaxXGBnwrE8f+dMTqQGYsbuqZhcdam9QK97he7tvWao7HPeuqliia4PC+lJgXL228aZLzNXQN63pDVdSMY4ebBmQx1mgdEzf3h6i5gD8XKqUgwa2zklXp5BOvIjpOKBOIwUoe3wVSHmNARSl4vNdCijbZQgCOqMUhWKdIBrSCoNF4lAD4MhercF4TYoAlmkGKm8u2nL9EUJT7oKsQkWaXFAnS+vpYpBSTbGpRpGnx3TkjPh+jP8BFNyNpxj88Zvy4MUUq6liKNQWEhIz++iHfo3xZIRV/goZJFXW2ChDStZqD3n/t+I0mKP9b/9a/xb/37/17/N7v/R7/+r/+r/M//A//AyDtqnl8jKR8KLH71eM//8//c/b7/fLnm2+++f/9m/80Po1P49P4ND6NT+M3YvxGIzsfj9Vqxe/93u/xJ3/yJ/w7/86/A8hu87PPPlse8/bt2x+gPR+PoigW3sjl8F4yjGK8YLZESa1WISxIzsfIztzWuoQGL4Pc4IzwzJydD6R5zKiSk+DOcUARZvslgp+YpoFxGMRjJUJeWDJjBIEIYYEfZ+5ODIHotEB8KQzPX/Q2Z8KxtWL8RwBrM5TOBbKNauEt6ahwKVMmBkUwamk/ZTlMflyIjuJuLDLbuYccYyTLhYQ8Sy8BfBQSbz8O0rLSIjnPEmF5VWuyRKieponj44mmbbGm4NnzFVfbHVVheHo60CekREfN5qrktt5w6Bp01ORF5Pvvv6U5DFib06Wk5dVqxc3mWt6njqyqAu8dh+MjUwyUZYVLyFLXj+gsY1NVmMzSNA06s9gih+jYbreMoU/vQcjsSmlunt1yd3dH9EEyocKI9w6dzO+Oh0cMjptVuaCC43jAuZEwBYpERopRYUyg2KxxzvF08uyuntH1AzYr0fgliHR7I+0A7yfxAooBP4xMg8OHgfWmYJ28a45tT25qVKbox8CxORJVgc5zapsRJsWb74SgXOaWoWspK8XLz65RJvL67RtePr/jT//0z9mUNUVq5R2PR4ahY1NvcC6wLdZ475hcoBt6hhm1tJo8eQ0dDk/cPbslywzXNze4tyOnrsUn7kbXnlBKkRfZkv8UvadrWp5d3/C//vEfY7PZF6nAjQPr1YpuHDm1Hdvtjqoq6buRcRx59XkK90S8i6oyYIzFaIv3YsKmdMQzQZDPlRU5yhiU9uQZrNYFbd+IHDwGPr/ZYRJ/TY0ei6cuNGNRMq5rDseG90+PqKC4W6V7plQE7wnWk2WGaCP75sjzYYOrPM2hWdpold0yWYUqFVmWUVeWTV2CiRwPLesXN/RD4s/pntVqR2YNBsXUORQ5jYNximxWFXUp57HtTlit0Crn/rHh3b4j2pK37/fUWSTL4XEvaJzNe/oRySUzsCpqMj+Sq4DxEyq1yl3fUKxL8kyjjfDaApEss2hnmIKjG8UoMDSO+rRiu1qT24wYPMZIG8w5R56XC8F2HFp8UbNZremHPd71BO/RVjHzUXQ0y9xqtAR1huiltR+F/OqDT3ySs2hD5ud49sfBC1Kh/TLPz6ru6DwqegKp9UXAqByv4tJGk9BQndo/BqIY0+rUTtORxWNGxBlnH6AFZZnpE/FjFObcxgrpOYrwAbIl7/djt+U5nFrWq7MdSkArv7Tr5N/8BUlaX5J4ltdcgJY5E+vytZbPJetB4Lz2xUuuzTkRVP4TBXnTSj5nuGyTzYRyrQm4hZz968b/qYqdYRj4x//4H/Ov/Cv/Cj/+8Y95+fIl/+P/+D/yN//m3wTEjfbv//2/z9/+23/7n+n44gasZeJZCo0Em6UW14fFjvvgZzlIKm5IxNx50Sfxc5aiR5yZlVIS0pfaZ9M0EeJICOMCZ07TRNuODN1AmBzWamlPAahIps3i2ImX46AU+PmmceSFRSNBmADWBAkdzCw6GqzzaKMFQlaaLKnC5CXi8t4DAU3EWkPIMogabVeL6ZRSCucCzo0LH8m5gLEFGsU0DQl2hmEacaPA1FYpTKaYxlHa73mBtpqsmI3M5OK+ut6wWW3Z1CsIkf3piRAc65W81+vdFev1Ok2SPZOPPLUdxzayWa3QEcpUQGx3a7QRv6Kszinyim9/ec/+sWGzLbCI3TtAsIZ6k1MVWkiVIbJaVYQQWG9qUWcN6SYMGgrDbnfFarPDmIz7N2+ZvKMqS4zRvH8vih2VRawqmEbPOEx4H3l4GnFjz4uXV1xthANz//Y1NsvJVjue3j/gY+Bp/0BZ5qw3FUY71mtZPNtTT+sbVrUluolDPwCafohYY8h9TnMUIq9n4qpQjJOhaRvGpuPrz1+yb1pZ6KeOapscjEdJmt7Ua1ZFyfffv8bojNdv3zEMA89f3HBqngDhfq1WK4wxQqrXEYdHG88UJhIVCWNWjJPn/ftHrNWoGLA2Z5o8igJihk7W8uvNhnYY8Q7qrCLD8v2bJ3hZsStr8nxDUWbpvh049D3b22t022GiIzcTr17scNORvjmxXYm6R8JrNVrDpsxRYcKGgImOOA346BlSkrmJ0A0jU4iUKDarNbiJ7aYihIKf/s6GWTBqlGLqA+a6YL2NNEPDelPinOP+fcduLd/t17dX9Kc9w7piHI5sioqrvKJvO6aiJmolRTVwGk/YYFkXNbmxVHlFXa/oho6nrmPbD4xhDlktQCnGMOJd5NQf6YaWWmtym5MpjXdyzY7B0DgPDvrDE26cUGQ8Nj29Caw1lClsd6gCZbXhdrcmBkPURsja0eOCEPMBvFdkpiA3OV0fRFRhDJnVFLml73vClAjSXUe9aqmrE9vtjnEMQtg3SmIewgg++fz4nlN7ZLu5YrW+xrnANLZCKDaS+O1UKqaVAe3JjaHHEyf5vJMLiVQccckT55JEq2NaAXRyCg4QUytGRSEmq7TRVUSiVqAsXjmircHNQaAxtcqKVLQkLiWRXCvG1MoCUE7ciINKm9XFvFCKIPOBTEtch8O8y03FwVnLddmSkoJGXOYlkkghryFtvbltdsn1UUuUxVxUxeiWLtZcsAiB+LJgikKJ+BWbeaUUFkMM4uovb30OX01qsqhRSvxzZvNeCcaWwuuycPPz+vZXbFD9Rhc7/+l/+p/yb//b/zZfffUVb9++5Q//8A85HA78h//hf4hSiv/kP/lP+KM/+iN+53d+h9/5nd/hj/7oj6jrmv/gP/gP/pleL4RE/A1+MRVc+qIxSSrj+WIJpEL3AzZ4ZN5dhGDOZlL63AMF6Z8GAsRUXC1SRXmU954hSZm7yTGMjsF5QhhxXqGj9JdjEGKeTotHjKKoQkFQSZqHkgyYTC/OubmpsSaTiAokhTiXnApyk6ck9LR4WyM3nHZCoo8Ook7GhEmWPpNzvSf4Md004kzc9z1d98g0TR/IKkEcnTUebSTmQWuT3KMzlDkTDYusYLvdUhQ5RkkERXs60Q8H1ptisRrI84JpFCv8w2nku+9f45Xmxd1zNnVJ9BM2qR0kDX6gqtZU6xXjOOFcIM9zqlwWinmR0ybHmILD4USelazWW3rXY21O9OIO69IOI8+F/3K1e0Y/OvYP9+SFoiwriJqmaZeJILMFE4Fm7JmGER01lshqu0YrdSbyRsX66pamH4mxoKhqQghUVcnx1FBVJWWYydQtkUBZ5kxO3Je11igthexTM9F1cr199vwZx0PHME4pXuGG0+lE0zRc7zbsXtwuKKiLHc+e36J0wTgEHh8fuXv2guZ44LPPXlCW5WIVYOuSze01h6cjIYhxY39qOFUl2gd2icica8XT23se3r+jrizrlfChtBY37Dw3JNCOzXol6h4T6XxDfV0xvgm8b99TbwPP7izrnUQ1tE3P29dvqdcdL55tKUvhiv3Ob/8u371+g9Y5TZPk92uDD5Fx6slzyziOjGPP4+Mjmb6lix0PD1KcNr1n6HoKnbPKCgpjub3esl3lTFGUiZ+9EIJy0zSMvmMYO2xZYHQum3sDB9dhXLoXdzUmhw2Kpuk4HvdsNhsyqxn8QFWvcC7lkMWYeGxOEBLlqYtC0sfHiAuKISE7RaEprMH1Iz7t9vM8p16vGPuJvMywNvGh/IT3nmPTJh6fpnMj2SmQr0u8VQwpz0x1cH1Vkt1VNN1A03QoHXERTl1P2ybitYmYzDCFiWGaiD5gc+EGmixSFAV9LoXR6DqOp0d2ux1bttgsox8sUVlAiM06P5Nl+7ahyHLKsmQsa3n/RFRUCUkh3bdGQoCCwugcbSFMY1pQo/Al00IrBYOgPqT5zyhFjDMpdnbM9x8t7pEYIjoEiREKDrUcUwg/MTkRi1RdiMQhCn9nyfHCw2WREM8kXrWgxWkznSIxzgVLTNyYkGJ6znYF82P8IiP/IfUDLhCXD1Ahz+x4LDaK5vy5ZwBglsar5PScuJ1LvlhSy0kxJokEKIOPaX26eDshOrE0VImgHHUqchQ6IUtLQRflOwz/FOXyx+M3utj55S9/yb//7//73N/fc3d3x7/0L/1L/MN/+A/5+uuvAfjP/rP/jK7r+I//4/+Yx8dHfv/3f5+/9/f+3j+Txw7M6iqxB5+/wPkCjQFpCYUZglNLsRMvql3lBSmQqlzCz7TWUjwrtbDOZwQoxrPcPURBeLRXhNEThgTVTyMhjmgT0MouhYgKGoOTjJYLUpvVWSqwItYISS7GCXS2vP4UJ+IEyiRn0BgheoKf8E7jzLnYmRovOyRlmCt9Y5SEdCZCnEsQppv88nlOx4bT8Ujb9PSDqJHqolwQoyyzqBAZegeFQReGqs7JcomLyArZ4YPc7NZaKUhCpB9Ecm6tZbvdLd/5OARclJbb6dSQ5zlXN1fstmssHu8UY2qh5FlBXtZobXncNzw9PeG9x1qBs7uuWxC+PCs4tQNlWVLUldywDo6HI9qI+qgqxYdks9mitCyaTw8PbNcr8sLgxp4392+wpuR4atM5qPBKdobXt1c0+wNRO7KsxE2K+3tRCt7dXbM/NIQoAbI6K2jblm+/f8dqVbFe58yZP10fuL6+5nTqaJpBCL1IWOfT8ZFp6Lm93gHgfUbXeYLKmKYBnyv2x4bT6cTVdotRGV0jSNzu6gbnFU3TMk4tZWmpasPL3Su0towexmku2qUV1A0j11fPhGjc9kzfv+Pu7o51QjWM1jztH2hPDUpntE2P8oHalkz1miwraTspNOp6zXqr2V5d8f7tOzwVV9ef8fb1L+H5DVVR8JgQsxcvv+S7X77l/fsnfvzVCzbbCjd5CluRZzVD7yhLQcJOpwNbs2YYOtbrLatVxbGuaE4dw27idGo4tIkcOyo2Vc1YjOgQeHF7Qxxb2b0nh3KTkMNnz25wYWIKEzbkGKBUhrvdjsOpI0uIlfIBP424qLi62uKmFpMIvEop+uQUDLIh2+8feXZzjVUaFSVcsiyk9WtNuWQtGS3IQt81ks0WIkVVYU1OHzqKrKKuElG9KPDKUlpxAX5qOh4OR2youKpzsqxe5MyjE4RCvkOJk4hpoRzHnohUp5ttTVEUEqfi04LnPT5MqBixRlHkNt23gPdMQ8M0TVTViuPpgYgWubp36IQCWZvj3cTpcGRzdU1VbxnHkX7o0DpgtLlY0BWGjABYHfExkmUxZRwGUIGQirjgPWGSYkQl3xy5pWZEfvZ400nZOpOEXZKLy7whTsIXDvxqXldEiBLnXMIUT6EuFusYRfoeYySoRLCOOqEjfil+Zqm5ulA1zUWK9x6j9bKBnguQ+TFKnX8nba2lkcY5LuLDNthcTMULNrCQkM+1yg+oyjOhO3n3xMjScDqDCTqhTnOBJzv1EAROUMmhWroV5xbe+bjqA9HPXzZ+o4ud//6//+//0t8rpfiDP/gD/uAP/uD/mDf0aXwan8an8Wl8Gp/G/+nGb3Sx83/0+CAsbubsgPB1SNBd+hmlUkruh7DfQlBOfxbETUklqi60gvJcISc655hGCbns+oZh6BZUA7SkiSuDNmIgOO/awEjvczaXin6BMH1qB2AUudXkmfwBkZ4HhP8QlDiQaiM+C+M4EOPZ6XgIE9ZkZFmF0RlROyKBEKRv6v1ZDuhdwAdHcJJiPE0j49RjgCLLqIriDK+q+TWE8FzWFTbTRDcRtGHShi7tqEMUmD2k1zFao8uaqtiQV1vpiQOKEWMNKo7S3tqW1HVFrhVD3+PHCZN4S6MfCONE2/bs93u6rqPIrHBxdMBNI3M6b9+3FHVJva4p8oL2KK0eN00U65KsqCgSQbjrR0IQ/4+6smS5xk/iUDxNkwSZpnO73WYQPTebZxxPLcduZPBwXWwYxoYqkVivb7a0bU8/uJRyLxJpHyaurzes1jmnkxBIo/Y45Xl9/x3WiE9LRNLsT4c9t9c7yXwCfnk8Jp6CQRHJihxrLVlRokzOqRlYrQSxKsuatu9YbyrGceTLr16hlGZ3c83+qWG32yxWATblrJVlSVVVZEXO09P/xmq7YesmstSSmPxI0zRkWcZqvWV/PEmA56rEGEuelYvZpLYDIY6sNiXffz9yODzw/GpF86Dpjx2rssJEeX3fNHz92XPa04Fp6LB2y/G4J9tV1KsSjF4cfcuypmkauq7DOUddlzy7u+Hh/j3Oecpqw//255JQ/rRviEZTb3KmsSUrDC4YsWMIkfV6tbSijTE4HDqF6ObG0hwO1Nbyxc3N0h400VEWOc55nt/doJiIMfK0P9F2A+7YSFo4UKqauixpTyd8lM9Q5RmvXj7DasP1bkWWkKVx7JlCSTv0DGNAaYO2GToTuXie51TpPVxta9T+yK7OqKs1xka6diA4yaBD6zOwMcLgAs/qCq019w8PeO8ZxxGrWNLR67pmVef0/UjoJ/Byv3ddh1Y28YLCcr1o5Rn6jr5vub6+RdsKP4xoHKNz2LlV7yLWejofUEfLdndNWW1kDnUjJpf5bZ5oQ+K/aGPRQG4NRlmCduD8Iut3IZ7bTGqSuSYkCkJwy1wuoZTJHVrJmqATUXfBk9QZWQKdjAq98BdcRLkBQkAHc9nFSUOQI7145vgLZO+M2sWLNteZvDujO255znnJ8ReL0gWyw7klt3BtFsIzH65vl9bMHxGRF2PDpct0bo99PFQ440FcoEtLCzIq0DGh1bJGxPmYF6hdDOe59NeNT8XOxRDlUPqzuG3ORkzJajz9DD7BdOeTP5syKWWkuIkqwaXCeldKzUHpqX2lCMHjnYTojePI6CaapFbxs8LKWpSSC98kYrL3HpfMqUI8W3YDTM5jdSQzlhg0OjPkRUmRZeTZmfAbgnBktBHVk46ByY8CNbvI4mdvPDMZzthIxOODJ6gJ58B5vxCUJc3Xo7QnyxX1KgeEzCekbbPcBP3QY6yiXlWs1hV5JYTW4CQa4nh8t6huqmrFOA54Py2J5kVqiZVlyZRiAh4Pe9rTgRBc8mlRGCJjP9CcBlQ4m0DGoHh83NP3I1Yb9Lzke0/XeinQipnwKqZp0Ufev72n73tJQs9z8qzEOb+YU2ZZxmnfSKI3otgYx156+coQvOLLrz6XU6s0bhh4fHzk7bsnsixjvb1iCqIYurm5AiAvM4ZpxA+eqCPTMLFZl7Snnu26Eo+YRG55drvj9fffoa3BZOLcnGUFUztxtXtGWVS8fftW3mudczge8JPj6y8+p+88zmu0Lmm7CVXnFxEtgTLP6IaegGZVVQQMRVky+UcUnioRhE2hmIKcszzP6YeB7XbL3d0dhc3YrKWAevv6HafTievbG1bbmtevXxMzy6GXayAqyNLK1RwP5JXFTRPRWO7vH/i9v/4jfufrLxmmkX4a+dHXcl5P+wPPbmvcLk8tXTGp7IeGsswZx26J98jznKH3FIWl60eavpPia1VzPB7Jiw2nxO85Nj2myFmtdwyjolzVFNstLsDQj1xfZ9SlFL3GGHQwwqEpNIfmRNuN7A8nfPDc3NwBYM2EQbhKVZFxe73j2AyM4cgwBXKrWaVjrrThql7RTRNZuSLPLdvdmhAmNus1uVGLP5cLlrYb6PqRvh9Zbzasqoy6zFFBWm42ndvnuzUMLYUObCuLm3IGoygMS0GSZ0JUV8ajtVzn4yTih7ntH0LAzkVkUVAVGcGNTESxmpkcfdOLo/g0iXkSkBtNZKLvT7TdgbIsyYuK43GPjgrvPN6lQtp6CAXKRJpGU5QleVWSjSVhSLSAxajVQZpzggJS6LGyOV4Z8ZqZq9Og0CESJlEKxaSwmh3zP46hUMw8FU1UBq0MaSvKpatLjB4mmVeiC/J3GIkuCudxDpJe5nOfOI9nbsx8nHM7Sn9QhISFS7H0tC5+H5bfzWaKv8qi5fK11MXP8m9z8aSXx14+54OwzyXW4UOC9GXxo8L5GDoVjnL9nMNBpSCK54+gk4Jr/qg6JtXyp2Lnf/dYCFfxQ9LU5RASWPwAtZl7kwBR6YVYpS6+xDk/6vKwl0iST+iOG2VXp7Umz9IiozKxO/dh6W16F5M0z5Mwo+X9zZwiTOpzaiU8AisJ5fPjlFNgLLmRTKYQAsNwwgVPcBcJ6WR4F+W1tCh6pII3ZFna+aQb1pgMpXKGUZApHTVW2WWnME3T2d7bQFFVVHWNtmY5F82xoe97ejctu99x7Bn7gaouqLKSVb2hqmQX3XUdD/cij358fCRGybZyST3QTyOn/YGIJzcF40lujrbtmXonk5XW5FmJ1oFpcKhMo/OccUwLh3OoQ4PvPd3QE4Ni8gOrmzURzzCOZFbe69vXr2WCngaub7YMw8AURmyeY30QhdBs0/90ou1a9vsTq02NRE0cU+aWX3bpXllUVpCXAZvJzi5MjlV9w+5qQz9N1ClS4PjU4EYweUHfOTKbkthVhrKKPgby9NiowPmOMi+JwRLMSF5UDG5AqYKAoU/SqcKPVFVFQDEOLTFo6nVN27Y8e3aDxlAnHkzvBnGm1bLon04ndrsdWWXIigyXZqy/+OU3PB4PPH/xgogmswWjk+lu37Rsto6nvSjHqqKmax1alWT5hm6MGFvy45/+lF988y37/SNFmcz/ioJ26vns5gWgmLwUNX3fY0sYpoBP/CLv6zQvixP2fn9kuxZC8/vHN/h9t8ied7sNb94/8ezZc0IQldbt82umcaReVRAiJikjy6Kk7TuatpfC1wV+9v0bgpaYljkb6Wq3IfpAbqT42Gx2nNp7Jh8w1lLWOUUt53UiMkSPMqLCq+qSN2/ecDp1SC5TpOsFDc0pMFYK7KqqJEuuytluV4DHGkuRNj+ZsZwywzj2qDCRG7i6vSKGCWslZX2zkQK1HXvyTBxxNSKB11qT5zlGK2JCSvCBGBTezSKNiHORvm/JC42bzoTbLMuIafFq2gNFUVHUW8qyZmgnQoAhFTtKKSYlalWrNKfmwE3+jKpcEYLDuQkzL6RaL3NiCD4hMAqlRXCuMIvsWcXIFD0GhfOBMDpCdHgvCM/ZToRFRr1I1LUGbVDGErUUPgARjUoO9ThPGHvi5CBOmGhwJqCVfAcacRaO4WzgKiPARwXKLOVeip+loyCvNed8yftNhYY6O0cDPyhS5N8ulVmXiM/57/Njk8orCXjCBUJ0+fclP+hcxM2p8HOVMx9TeiLngkgUYQrhNqlwLm5UUDjO4p5fNz4VOxcjpi8sxLPHzTwE0lOixFIpH2uOaFjwXYiEpdqf/0X+u8ilgLnQiUtIp7RoHCFM5FraOqQLIgBOBRwjc5WstBeUgmSpn45rVBRZulLiKG7n/KuJ4MCrsyfB3EKbtMZF8cEYBpG3hwA6SxdiIbuh5TWM7F6CShbql/bNPjBOkzgjjz5xGs9SxGkalsVgtRJisU2EuTnnamh7vPdkZb5sVKaxp8wNq7KiKiqUMozjhFKB0+nEfLdUVUHbnojR4wY4nU60bS/KpdLSDp4h2d5ntmLC0fcDUXsyYylWhbgM24y2bReL+qIoaJqGafJsr3Y8PR6YnCjmMpOjMOzTovx4/8CLF8+5ub4CJbD9erdls95h7InD4UBuiuVcZkVOsaoxyvJ4LxLsMstQxi4tgbIs0dowDSNoyI2h3G6xVSYTbRg5NYIsHZ4aYlD0rRN0QWucm8iqmnEcKSpLXgpB+OHxwPZqh1EwRkeZWYYgz1MptkMlr6Msy7BZwbbc8nTs0SpSFyX3+0devviCN2/eybkDojcM3YTNCkY38bg/kpcZ1/mOceoJ6Zjv7h9ouhNFKdEOz29umTqJ4WjblqYf+F//5OcA/PXf/WvkVuOGkS9fPuPHX32Gcz3W7iiqnKKv+O61FL3/t//rv0g/9UAgM0Zcu7Vl//CIHQbyYrU4ee/3e5SKhLDi1Gn6YeDVy1uGviWzBWHwXO3kfNmspu0arA5sqlrI1FXFU9ey2W1xblxUKFZrpslT5DnT6LB5ybHt6buR3/3qM4ajKKHGQrFZ1/gkZrBaUWa57FWspsjMsqhGraGqKYtMyL/BkWUGbTKKckXEMCYFococRmmm2FPm0nIKAZ7f3aEQLySTkJ3gIjrLCONAPwWcFzR1tc6xRrFdl5T1LP3uCGGk645pHnEYAyptilyKuRmGAWMjkxtQOqDVPM8EQjejJUkAkOdoI3PrNPT0bUNertmtdzyOHd71S4HcTyNFjOS5QemJcTjRDzWreofzI72fZ03xCAtBi/o1KgknnXOhouzRlo2iMRibQxBFpDcSvCxqW3XJ2U2LsCAPWmtBjLRFaSsF1NxqUTLPx8kRxoE4DoRxACJGC6F8buFEZRIx158X+Yvi5gM0Jp4LoA/8bLz/p6qxWDpWH5GPL5GRuQD6CI05t7rCB88V1dTsshxJFjmygfzgfEkRsxRGyQdJWlWCHM1jBoXEAEaJXjieUZ5ZESYdsHOMx68bn4qdizEz5i+HfJnzRTWf8Hnh14mbM1f3MYmTUk80/lD/Pwe4hRDx3iUjQyfFSBCo0GpDMGa5IGL0iSWvcOkLVpm0h6yWZGA323EraUnN7TgdBBUax0DUjindhFZpNIZoFEM34qdBohT8bCp1hiEzG8lzxPTORNBaFsDE1xnGbomWcOPI0E8Ed1ZlGaWJRPp+xLmRVcrGKoqMLDNS5HnP09MT+/cHSX8PgTJO+GlGjAymkFiIKYDvnaSLR7m5Zzt/pRTeS9tm6Hr8qMl0KW3FSdCz+YYdfccYp0UtYbXGWo3NDEGJV9Bs1FeXFf3YUa1Khq5l6E8UlfAelMoYxmHZ0e52O7abFVVVcGwOFEVBVa8xtuB0vMdNsF3LQutjQBdrNrtrvvmLb1AqslpXPLu5xSnPqhaVWT8ONIeWTSUcHx8966s1YzQEr9k/PnB8lMKsGUZc6rZuqyuUVZS2EmRvhPfv9hS5fK6277m9vaVrjpiyEg8cF9BakVtFP5wg2RXUrUXpHG9gcJ7rqzs0lug0TdPx/t09z55Ja2ZwniKvJEogKP78L37GT370NdE5rFJkaTNw9/yWcm+4vb3mzfdvyaymH3tubm64y69BKR6O8rkeTi0vn10xjS1lseOv/daPeNoLl2YaI6fjQDnnuXnYVCWT6+mHcdmAZHnJ4dTxvN4u65G1mr/4+Z/zuz/96xxPR06nVgqh6CnLkvv714t6zIXI82dbMj1R1xVlZumaltVqgzGKvp9S8S2qIQIorWjaVJBrS9QTJi8YkiJPWUNRCkLmJ0eMGgsMbcfuumBoT+zWcn2Pw0R77NlsNstmJcaIMRaHQnuHSgVM17RM6xWbdYlSVvLrVE7wkSIvaU27tCjn/K8haI5TJHiFI7JZrbE6CAKYipjCKHIjUn2UoLzGGBZlUhpz63YcR4oyw1pLUBHvxQNL5sdZYRXQXqNMJDLRtAdsuWK33lGvKrzvzhJxZpm0GN1pE+jbjipfU1dryQ9MSlbxabGpnJGNJYnLGC9aKfMQbzSFzjJSTSTxO0sgaFqIfVzyBlNOtKwFCeEJS62jiM4TJkHt3dgKX04bET/F6bx+LOj8XAB4Zt+ZWY102a06ozsfIinee9mMz/vrxFua96QfIjZndOjS/G/+/bnA+pibKuvS7KUmz0uP0XOxRLq20lqpFLNiVC/F1Pxal4hVXOI9YgxElTLNUqbXfG4XH6C/YhvrNzou4tP4ND6NT+PT+DQ+jU/j/9vxCdm5GCqmP5yJxHCugHU0KWE1glGJuByTxwKgtFTnEfGzUSGR+xTRJ+Lc3C8NETxEJ3ZNHgXaorWBlCI8hXF+ZygsmoB3YI1B24i2EOMEaEolPX3hb00oIsEEpuhR3qb3ESBL6odcPHeCk5DTvpvoe0+0cXFPzpJqqSgK8rygsCW5yonBEr1mchPDMNH2vSg2gNiPBOfPvfL58yqkN25zQoIhR+fxhxOaQHvsOBwbDk3POAWqIpfIhkKen1c53ThI+rqNZJnU9CoaTJYvrswTkbqS5OyIYfKGrnMYneHGiI+Kws48oBGD4ebmhnEccOPIoR24uVlRl8meP7U6siynfxgoqhV+6lltVlSbgmgC49hSlCVGy3cQfaAoKlTUaITT1J0G9q6l71tur59R2vTYaBiDpxtH9seezkde3V5TbmvcFBYzuePjk5Cxqy1932MyUDpjPE388pe/5P7xCZPQkiqrKSKchobSGp7trmnbnqjgfTfy7v2Ruk5Ku/FEdndFryXMdOgjZb6hLAp8jIwh4lK8xt1thh8C98d78I7Jtbhhoioy3r9+S1lZTOKZuWZgu6koqxytAwqHNoJKGmWSkhAyBTfbHauqpqwy4Ww1LVlW8vnnn+OjYZOcoSFQlSVK5wQvqrfdbofW8OJmxy9//hdkuSAwresZBs/Vds3UD+zv31PXNbnNaNq3KPOKPoXXTgHaKaJsTmZHxrbj7dt33FxdC28u+IWv8nQ4UeRGAHUVefnyJX3fS0sJjzFqIdV3pwYXI34c8W7C9z2//dkVXVexWWXEKV2HUyRGQ2EsfpzoguL105HT5HCHE7ttRZ8I+M7B1O25u71GaU9UkdVqJY7AKlCUOVV5BcDbN+8Y+sCqrrDGMo0d09DTDT29F1NBY+R8HY8NZV5gtcGi0NZQKIOxYubmZ7d4QBmLC6B6OX8meCprUCpy6rol8TsEwzg4JjdRZDm2MDg3YbUmqpzJeVj8zM6t7gKFHzvGvmWsVuRFTVFMTKk9R3BEkwv3iYzoNAEv4cC7LfVqQ4u02KZpQGsxOdXeEKIIKnRQS2zE4lEWI1FHgkmp5FZDyGTe9NNiHuv9IC0b71FaE5RCW70EjopRXjoHid8Z8RAmtHNE7wQV0WBjtiBGXjtQF/iDEqRMUi0+FKHEpdsg8RdRi9GrTg7F6LNZokrom4/JVfqDjoNCqez8k5q4VGgZzqpj6XJM6ZE6PUIzxYhCo8PMaXWJo3peRJUWLpREdmiJ0dDi7n+Z0C5Cl8SbJSRPIAdojJL3Hmb1VVREPX2AJv5l41Ox88H4kGn+g98mJ8iPmeiXv1+Gmo/zIcy45FOFD19jdlkWNRILlwcgjJ6IIwa5AY1NURReehVyg82kQI+QdcAYIapJa0oW+niRGTOT82JQaBOpVxnBRKzOyLOSLLki25RVFWNkChNxEom8ZAxNtENDSItyhsZojTIC9TrnMcaSlRXa5jg/kqXz5PqOiMV56HpP2w+gI3khF3GWZxSVLHRFlolKwiqiUwQcJlMYmxGCW/gD4zhirBBduz7ipoG8rBm7Hh8lPyqkG1arjGdVjcLwcNwz9T3rTclmVTO6CWty1ttrAE6HA0VeUZYlD6cTw+AwWtOMHcVqTb4uCWmR04WYLjZdy7v7PXm55vau5vW7t5RlzmpTLwvi+/t3DFNPVa3w48iLZ3e8vHvF6XTguD9hkke8cyNZpuU6iIGqXPP+fs/rtw98+90bQhTeB0gbbehbmt6jM42PjmpVSv5Y9Oy25Xly0TV9N7EpKjIFzTSx2u4YhonMZtR1iU+T5oRl6Ce6caKqSlwIeGsZp0g7jjx//jI1dqHrG1BXTINc29dXd6zLLRAYxwk/89GCw9qcth9oW2kf6QjT0HM69qyvrnh2ewNAWVhCGMlzy+H4xLt377l9thYjwK3mR199wftHaSE1Ty15AVMoiUHzi198w+dffckw9pQmIwdOQ8oyU5ZNWXN4fEr8E8Xbdweq+pagamy5piqlnahMwfev36G0RSvDMAxst/K725s7YoycTk9yK6oJrQ1t1zIOHeM48qOvPqNpGnKjYZL76+nxHdebmsJo9vs97SjO3srq5PcZsbkURtPUggYXJ3RWgnOsNyX92DAMJ+rb68Us8Wm/F4PN6DBRYXNFlmmeDj3jMGIsZ/l9XrDdbHj98ITJNLXNKUorbXYCRWbERBQYxomua7BGURf52aJikByrLCkYvfeiZstzpjCixogbHSpotBbz1ZlcGkJIGxG7MCH7vqHoK9brLdq2KGPT1BmXtts8B7sw0Q0tdiopKnFUThOrmOxhpJBxDlD4IEaxZmkekZSzJpGYJ4ng8Y7oQ+LuJDd1IAYpND0pW0sZVDJinZVZMs/G5dgmyrRvgvBRdPAE787ZXEphYmAKkdTDSfyWubWkfuXatLSb0mM1fJCDeFZYzevb/InDD443m9zKqVMIi/VM3Zi5qDHMSeQxGQ0GXJRXkNMk53x+/YBPgiotppLGEKNwyGIEo+YoDmltKqXSMwKzg7WopC/fnxbe6D9NTfTR+FTsXA6tzv3Xi2vgUqL3cY/08mKZL8j0Q3oM6W+R7S1FiYKgpXesk18GwRCNwS07I3nyODpQEmJnM7MUVSGCVgat1fKGddRLpayUCCGVMUQfJFBxDmuLopzSGRiboVSBzmzKgpF4BJRcHm4Sl1GVFigXIsMw4YYgUuopLP1hXWnKvAAjF3LmhLsQLaLSalnQitxYlM44jT19iGw2G3JriH5iGgbxrfGJlOgmyrxgGgPW+GWim4Y+EZuF/6C1pjAVIHLQciVW+zrL2K5K1us1h8SpqCqFVRlv377lcDiwWtV89cWXZJmh6Xp2V9c0nSyIx6YTDs6x4e39E9bkDH1HjJHru1rQFjMXmYbDvqHrBk5tz4+ev6KfREr+9ddf8vDwwLfffi/fbd9xdbsFVbDeCJqR55a3b9/Stx13dxJ/sNmI6qssJcMrq1Z88/N79vsD17sr9s2RdSp28jzn/f1bqqpCR1mEsgz2Rwkv3STlDEAzDKxXNTYMHB7eMUwOVSsenp7YrHfUpiIvhN9zbD1+chhdcr25I+qSvm3xITBOA11/kAIcyKxCq4ALE4fDCdxE2xypCiNRIOk2qaqK47GhawfGyXE8Hnn1/I6qrJimgdxmXF2JcqzIjEzX0ePjyOg6/uRP31IUFdebNZvVlqurK0AI+V0z8WacKDLZcTdNw7u379ldbQjBCYcFsBncPXuG947j/p1YFtiAyTT9MFHVa3xCIO7u7mh7z5s377i+WvP09Mhnnz1nvz/inOPZs2fM5Ngit7RdhzWKfTvQdR27mzXbqw1qjIwphPMX373h7cOez26vmXzkcDjgXGRVySRvlCKZLVNXBX3T8Pj+DUUujsj7/ZHMWg6PB2Jwi4rT5Iamb6i7imw9S/DBEFlXBUHDcS+k9q7rqKqKqiqoy4IqV2QmMk4TwXuUKhb33MOxlfullMK073uGfiIrRFgxk+q7ppXNR9oo+cmnyABBjqdpOi+8ISZbBuFQoRTejYx9i1+tKestTYoiiQj/alaBam2lAAwTbXvCWktVrdO8qxnHAUIU2wsT8S4Qg4giYmBZwGdkVBkvXDScxD+oIEGUH837SouqS1mDtgaMlYLsImpHJU6JSgowpUWSq0nOzX5kXjOinx3yRTHmQiSEtJTHeA6eZlleFu5OqtQWMrIUSGdSsaxbpDGvAR+Tj+MFsWUmYCd7lfR6bp7o0egUT4MSNbA4P2uCFrTJp+tFC+da0B6liMGkdTCggkoF4RlomJGa2UF67l7I0qWX9wsS7RTjX42z86nY+WicL9Jf/5iPix0un7kUSCZdbJdkLxap4AcjVbXz42bpt89NylOR44YYif6sjDJGLYURixosYtApKsKDcqIi0+evPAaF91EM+jKD0RleQxjFIM1fmnsHN9cdkiA8BVTQZFos3+cCrCxLkZEamYR0lCwcxyRFh9bLZGjLUsjMMbJeldR1TmEMIUTaU0PT9sv5NToyKYUxmnHoyHKFczB0PePozqnQVZVIxZqQiNpt27LdbqiLUsJWUypzlVc8PuzJy5K7uxtevHghSMboub29xfvI2+/fy+tbxXZb8P3333M8tOR54Ngfefn8Gd0wcnh6XAzasiwjBsXhcGK7qSlzzdv396yLgkxnvP7+gdffi2ro9vaW3WZHURS8evmC7abgeHrEZqR8KNmll9Wa9+/fY/MVRM3pOBJCpKprvvjiC96+eb1cW845fAA/Slq0SgXPm7fvyfOSEM5RCc+u12zXFV0jbYqbzY6i2vDNt2/o+jeUTc7N1Q4QqX7fNbx69Rmjn3j7zXt+/vOf89f++u9K27FrF6uAm6sdwU1MIbJ/ek/bnjgdLavSsN2+RNuUC5WXPD2+IcsKlMlw7khRGNzUsd5c45zjdncFwJvvvme3KimKgn1jWa+u2Gxr+u7IPkzc3l5zOAnCt9vteP39N3TNgdtn13z++SueDg1Ph4b3x4bV9Wc8HLv0HiIvXl6xf3zPN2/e8dUXnxPDSJgaMhu5ud5Sr+Vz1esVz1884/7+nqbrub7+jDFZJMQAp2PHVUID+76n/f+w919PkjTrmR/4cxUiVclWnzwKGHAGHKql2V7x/zdb212SSwID4KhPdnd1l0oVwtVevB6R2d85MwB5OdZu1lZdVVmZkZER7q8/7yOOj4SQ6PsR7yO7fc8Xr1+xHZ6pammNjR6++/4tOmq0NiRl2R+3WF0zDAOjDmz3otzaLGr8MPL80dPWDTcvDYfjljQqDIYwhBOyi2F/PHBsD6xWC7TKjMPAse9Yry+oneMpioJwHHvatuVytZDYiRJ/wDTHRc2uFBv3j88Mw0DlLP0oZqgpyQJXFRk6CLJTWYczmimxW2HmhV8ed5JHqxxLJI8RdZfO+LGjPx5YLC9oioKwj6B1xGpT1IaIaEKJSWXXdayWcs029UooAWFEqYg2ChNFMEGy5IiYCwLKKBE5K2aLjxwN6FAQm7NjNQqsWHooZ8QLzThBdCZFFpRdpQZnIBiU1hIaWqTlyY+k0lbKdvJ5kzlwTvqeCpzMiSSty/dQEJ1S7MxIyAnBmeIoprpy8vU5yxFnGicZ97ma6kzirqb2ViEoZyngRIwixdFUFM/JSLkUqEBEkdXJXDfnCUGK8zHNxz/HbkwdFT5pWSmlsEoT07+NevyZoPx5fB6fx+fxeXwen8d/1eMzsnM2tJraP+oTTs05IiN+OycJ4qdeAnmufFUWcG6C4lAT52cygTohQ79shSllRLZaFZv8FEhZkaJCF7JZUL5IPidi39T6KqRllchGY7IqGstpp6ZPr6MleXf0YPKKhMaXStsafyKYqUQKkZgk4DFrgzUW64yQmetGjhfQVjx4stVU1mGMJYfIEA0w0K40k0F6LrD1eiGI0KJxOFfxuDvShyO9H9Hlc8g601ghsI6jRx2lVeF9xDk3S8SnaAKlDNkIUrYohmyumCE2RfY9DoHlRqDhm+WK1aIRfkQtkP/u+ZlYiM9GNbJL7gdpn4WAc47N5TUxKPrDSDO1hnZbbFWTcmC1WnJ/f0+33TMMnsf1BdvdE30hW642V7JrrRyrtWa3f8Y5y3q9QuFoSzq4UZCiBmUw1vHuw08oa/jNb35HXddsn5847qQ912cxRegLkqa15e1Pb/Hes7645O79Ry4uZOd7c3NDfzxw9/BIP4wk9qyurrBOczyM1BWoghT0g2e3P/L8/MxqteL7n9/y4fGJb/Y7bq4uUMrQF0O75botQaqRvj+SU+R4PPL8bPny62/FxgA4Ho+l9aBZrJYc98+8//DIxepCdowkXhSn4Z9/+Jnnp47DcWSxWBCTx/dHLlZL+v5I01TE0u8JOXB9fcWP332P9wO7w8BuH3jee/709h0vv/lvuLuXFs5mFbi+WXH/uOXYa+7uj3zx6pL9rueL16959/aOWGDNYRjYrJZcX11wHD3tckXfea6vLvEhst0+Ye11uccVicx+vycr8N5TeUsMgWHo2JWA1UWzxI+R9x8/sFqtaJcLfnr/kbpasNv2HBtP1UqL8rK6pK5HhuHIcBwY+oDvEj+++8BmtaH3R7pe0JrgPWM/EL0YZTZNRQwjMXqMUWhzinao2wZjFJcXS7yP5AgxK2xSOO3ohoFtsQAI44jVmhQnO4lEVTWyOzf2NBeRaVtH2wqimqNG60+de8/nVaAgtBmtFdYKqTaFEV2I2EBJLRcfGWuttMm0lnaUkjBSb+Ser6oGa+S6GMcOZy3WWgIJk4347Ezy5yT4gtKqhHVK+nvWSlpUyc3Hqkng9By/oW0FxoG2UJArKD4/OqNNJFkj5q5BSMcqCqlcpwkJiYWgLLQEWUomtEZ9utgULs2MIKWS4p4h5VRAuYmrU9Ya0ifn/q+tPVpNHJsy706S87JuzO7G5bfSn5paXdNnW5C8ae5OqrjwZyEvc0KVZA3NnBvznh8fJ3OgvzpCzPO9+a+Nz8XOL8Z8MUyJrVluvFKvwOyocOLvfGLqNH0wE0w3Pa5ciHGyitQZlRRRgS5EOYwj6YhxFTmGmU2vXShENlsIoELwm3xsQByVQeqaVJxUY6LEIGjEVrtciMDkw4MSo8ToB1EOGI11DmNE/wUQoxRuVinJxjIaZyxVbcXTx6a5jSQQugLtMLaicoZoIipVOFdLqnohNPoUWdiWEEQFUlWO/e7IbrdjGLpSzMnTGutAaY7HDmsNxgUgU1WWxaKdfVDqukZbaSMNPgr5zUjrzBaL+yrIsXYMPD/vxDiPxHG/xdUtzikOhwOQ5sVA0qYH/BixtsKaimq1YlG3PH54jyKRSvzA0PeEFFmtFqSUOBz2ONeyWF4RQiIksI28sYubTTGVLJND1sSYiDFxcXE1TzI+BY79IIqpwbPbP/LFm2+4vr7mD3/4E999/wMvX9wCcDzs0CaBlwWu73u64Ygic3W55u7jx5nwehh6Dl2HcUv2DweOo+e68Kdy2hNDUQoCY8gEDH6En99+5OP9ljEpxpgYY+D25nomXjvnCCGwP47Cs3IVMcB239F1Pbac1/V6SdOK47azmqura3740w+YLxteakcI4xzZ4ZyjHyMhZepK45xmvw08Px1YLBoxmyuPfXj8wLdffM1288yYMh8eH3naekZtGLPlH/75D6zaknvWbekPa4bjwHEYUE8HKqtJAW6uDU3TsN0ey/2lub254fb2lv/0T//C8dDjNqvi4SN+I7vd7pP5RGvxlMqxRhvY7na8/fjEz+/u5sddXVygiBy7joumRkxeIs3S4mOmKjEc15cX7IGf3nccx0RzOHD/dM+HxwfGlGjuLYtWOE4xZULKWJPxww5MwzAORQghaiRX+D3OCBl5s15yPIzsdke640h04kY+BI+ffHZqhzEOo5W4uhd/KlLCacNYyMFKKerG0taO4xgJPqJ1oqmqWYwxtS+U0G7QgHEObS2mtL9ikIyuadMSxwXBd+U5pG2WUWJamBRJJfrhxOFzTS08QS9iCGOEIqCsQyWFL9yTEAI5+KIsTagoWVYag3KWhGxmVNlMZKPFhNAYtKrEPT8L32huIWUlf68subS4slYlBV6MYSdz2oykp2sKkTdL0Zl1yR7MZ62leaedz9yOxZdniiL6pf/OL79OcUdzUZLF/gek+3a+eZ8+z1zWpKgkjT1D6USq078chag8/2lZFVUqKmd9IhpPyrB8KsL4pKUFk+FgVkYKvHS23ipxnf63jM/Fzi+GnlGHcyTnL3cgcHbRnH0/oULTb0R2ePb76cHpF1khSpG1IhkF2pCNnXkNJjpydqQ0FqJcgCkvxgvXYsp7OhHRxG67dJnRWIzVMxlP4ilGdJksYvSgNFZXkDJhFPKXHLfCD4IuURmctRhnMVqIJRGPKher1gpjLNZJJpK1FleJUWKMErUwZTipNJJjRuuIUZZjP/K025IGT+MsprYntQaZ7bHDOk3tatq2xVpNVUnQZFNiArQWG/rdbseu62iaEihZVVRWuEXHXm6eh6ctx73k8By7jhwTF05CPhNCwp74B+MYGH1g6As/SEWu6w2H3U7OX0rsC5n5cBgI+47fXr3AVBX1YkEMkhVlEmxWC9qlTJxD98xwCFyur/Ax0bZLlIpY07BaLei6obx+j9aiNnt4uOfiYs1XX79mGBIfP96htAQvAvjhQI6ZunYsmprd85PkpKmMMYZXL264vbkE4N27n+mPHc41XFze8sfvv+Py4TDHlRyPe0zhNCxWhqEP6Eqz7zv2/UBVFbuErBmOwxyZ0Y8Dl9dX7PcHFs2Su+NHlm0zq2OOg/A/VqslV1cXQMIYw/PuwMX1DR8ft/wGkW8bK/fJy1fXjEPCas1+f8RWS4bxnh9/esff/7d/g9MGV5yp7/f3/PHPf+Lq6orvfvgBHzR3TztCcng0P739mf/xP/xO7sXxiLOWuq7xfiQvFtw/7Vkul9w93rNZLdmV461qRwZWqxU3NzfCB7tYsd3tuH1xw353ELIqEl2itaKqKg6HDq0tKUceHne8/fDAj+8+AOCqzBdfv2bTLPh490HQx8rSjR3GKPnsSsCqVh5XGz7uDtw97/h6vMF7Qzdm8q5j2ey5vZVjNcVCYhgTzmp0yAydZN+l0YMLs9FcjKKwXG2WaCuLkA9eiiNnaVxFbuUe9wlSiDSVxMzEsjBqJcvYJECIRIypAJkXQ4rolPEms7CKunGkZOZ5S5yIFcY54SZSOBkxEsaBqvDMlsslXS8cIZQmzw72FqcmxVBB4saOul2WgicxDAOZjNUWrcQZ/tyAN6ZIDJJZqNP0LEVhNaHXiMWIEJSdzNcY2egpTconhZcu7w1tTkGspbAkS3Gcpg2wAZIQkVOK4kEJhMJX4WxjnVMqa0uReU+GflORcsY6jYUgnVNZG859VTgVZnIdFE7MvGeftHFSPE0Bq8IfFePckJgSN4SLZDOBcNK5qYLkZF0whEzUU9TEeeGFdAVKoTZxf07S9Mn0dzoHWuw94nmh9J8fn4udX4yJwT5L7HL+i2LnlwTlf2vq6vQ3n76ehBSShX2vSvWPlpYFSEWLcgIBRWlf+RQYBl9k5YGpGp6kpMYYjEriRaMKgkOaIb9EEPlgjMBIiqCtkJlTkAJoGEuhEUd5j6WFpp3BhIjP4pwadZ6thpwzgp7U0pKa3l/MI0OUJOFTNFYhKGpNd+x42m/xwWMqWNQSCno8yg5tHAKLhcM6Rdu2VG1DUy9wzlHXLZppl96zO245Ho8yufrMcnHJBK0eDwN3Hx4A2D5vWS5bhmHgOIhbchhHhmFA2wYfEvWiSH5TJI9ZFq6+4/qiJcSByio8iX3vUQUxOvQekme53mBMBjWUds6BZlHz4sUNuUwqx8ORrj9gsAw+lMDTQNu2DEM3S2ibqubl7QtUtmyfdty8uKZxlrc/v2XRVqBa6kVxo+1qxhi4vrwkjD2mxDqEMaNVzddffsVY2k0mJ/rjkV088Ktf/4a3H94xjkei7yFH2qaZM6QulxfsH3d8/PgRXdXYWrNateQwYpFYgKa0Gg59z3qVcbZmv9/jTEXXHXjz5lfkfEI/qqompcSHD/e8ePGCsRtxiwZbV4Qsba6JUJ5SYrVa0NY1+/2O6+tb3t/d87Q/8PNPj3z75WsulrJBeHl7zY/v3hPijtZd8MPzM32XOXqPNjUhZt4V8vnf/+1vOOx7mnqBVo5j51lvGurlghBGVusXpNmlVaB+ZzWvvniF914UTsbQFNXadH133cBxOPKrr7/B7HqG44GxICt17eaQ18Pxme5w5KuXLzlunwlhoG2XbMcd4+C5vWrxUTYIH+6f6IbI3eOBSKatW1brJYvlpbiZx8wwyj1eV0sq5/n4uEVpQ72s6buR7dMWg6FdCdIKUkQnn0irJZWtaNqKOHr2g4gEZNMg5/ax66WVZR1WG0mL94l1O7WyT4vPFIsjDgoF1cxiidFUFUOZO+fQ17opLc7Js0zjrBbn+YIqVG1FZjE/fwwisiBrJJrQzGraFOW5m3pFKFY53g+EFEga8W05k7+DtNLCUObUBCEXLEKfbDsSiPpSa8hGihzUXIDNcUFKQYKkjfy9dShXoXMstgLThhQCiaCK6gpFJAotoRQVnCH5p+qinGOTCwE4y6z6iRPy9H99RiQ+rXUnOc7J3+a0RS/+cH+h3FIFlUkwEbyVEd5GLDmHM6FbEWKW1p9CiOh5yu5KJ3SnnK6sU4ls4pNCbHouzkCChCepzw7Kn8fn8Xl8Hp/H5/F5fB6fkZ1PxykFdnKrVPokBT8nKsNUGecZCk5JYMR0VnmqNOsDSULaAYoBocpzvlTSWXYlhfwmJpwnCWEmYlTG1BXBe4YUCSky9D0xSrYTiIzWFBJgQnY21iSslgC+c4TKKEM2YEj4mMjBY624jRqlTyhQcfCsG9nIGCVEM4NBGUVdtUK8Qzxe6rop502hlRMnYB/FUExl2roQhH0ipMSx7zl2BzSZtqmojLSb+uDxUyvN5NK2qlguVxhjSzaWtEW2B0EKdrsdYRQYXxFoXUulFQSPz5GHh3uen2RHv1624rdy7GQ3GA3bvqe2DmU0q/WCqiq3iFaltTVgVBYInoyuHb4faFcrnJGdTGMT6/aGhdXc73ZkbfD+SAgjioAzzckRdwiYpPG9x6dANwzs9o/cXN5wPI4S/AlsNgbrYBh3GJtZX67xYaA2iRebFR9SoFbFZ4ctplmwXKxJ2mGrBRfXK9zxSK0SdeX48YcfALCVZnV5xT//8Y+8Gnq+/eoFKkaSM1S54Xk4MpTE79rVxJwYvOf15Q2vrq5Y1hW1gb4/4jS0Vvgiy3YhPjbGsjt2vLi95vn5mefnHS9fvsSPgizlFIgx83D/hGsc1mnWzYr37+8YxpG7h0cuLgUt+sd/+he+/PJrvv3Nb8kWmtby7TdvWLQVP/z4nt4nTPUtADcvXvN46Pn555+pqoZ+7OjSQBeyuGOnwHEoBoT9gexH6maFbiuetltev9iwbhuauuLYeV69egXAdrun6w7ECJW1tFWLcbUQ0hHu2scHub5ijHT7juPxSNs4yI5xHBiGjq9eXnKxkGvrD388MHae8TBw2HfYtiYrRVPVjP2IT5FNI+fg4/OWp+cDh/HIarEm5ggx0DaOvhe0oCvcMddYliuLHWoqY9AhYJTicXtgjHARNrNR3hAiWmeyl4T2sWl49gEJvK8I2eInBDtGmrqiaRaMY8CP0mYJcaTOmnUxwqyamkhBRZPIuj1hnoOcNkyTZ1U4OlZrXCHEZx2LrFlBirNLe1svsMtW0KgpODNJq0QrJ7yOOZs5kL0iaxExjCFCjMItG/0nFiNaa7I20vSvK8mzSomYcjEKnEjHhRRtElnZkodYJPXiXT/P3WRBeVTOKF2hTCS5jM4GlUfx2SnrhU7iyqOQFpdwU5TkXOWMyn72LU6YGeUxKOH2ABovy0068TMNFnH2md5vLmfGQ9az4zVZk418lifgqIhq5vbZ9POJnAwqZVIWaX5KkyDnlHtG0oAvpoLFH04bMR1U4YzYDCn5kkmWIUnauSQRqJnTeM6ezVoR/8L+5a+Pz8XO2Zh6jOJIfCoKJvjrrxG9fslm/wsS2C9f46wFJg6GfwnTKSMmVVP/VIRUGm0s2mh0SmLah3BZRu9nYllIkZQh+5EcJfBz1BmHRukzU0GES1A7UWD54CWxuBQQBjNf2MoJ8bdpKtpFjTYaU1VUlaOqFyhb0oIBayw5qdK3zsQ84MfA6AuPwJ0UaSEECT/sh1klEWNkjAF/GOjG4UR41Ya2qmnbBmsN2oipYIg9x27LYSs+JLvtgZwzrjIsly113YI2xARDv8OHbl48jTH4PoFWOGVQWmBiZRxNveDi4lImHiB5xfOuI2ZNXbXkpGirBevFhr4bWS8W6MlEizUvXtzg48h2+8TlzS3bFMFosoJj382GdkOILJsli8WKSmUOux0Pj0+8un2FtXAoCpisGyEy+8BysUYpw9P2yHJ9Cdrx9ulxJupd3Vzy/PhUFGqJ5Xol5zYHqtbRuIq68MHQhmbdMAzw/sMjv/ryFfunR7o08sW3b+D9e56engBobcWLFze8/3DPqy9ecXt9yfbxkcWyJYWR46Hn5rZMWjljK83F0nK5cqTsefnqhp9++JEvv3iN0ZMiLrJeLui7jnDsUTGX1mTN4dBzPHasltIe6gfP//d//0f+w3/8n1k0Sw77Hcv1hqfnA7/7za/58c9/5l9+/3v5bP/d73j15gs+3m959/GR/aBxtiUdnqgay8JWMEWMHDouN0ue9nsYFXHU+KAxrqVZtYRhmP2Orq8rfvjhB3JW4ilTOCUxRg67A9boQm4X9VV33HE87BmGQVqRL19yd3fH6D3XN1JA/eGP3xN8z/b5ka4/sN0+kZRDOYtzFpMjq6I2/PnugT4ENouWReO4udhw2O8ZvAeU+F+VqUdrQ7uoqWpN25Rw25QIKdKPnvDwKMZ28omxXq7QTpLJE6lwbqaJJaLL5qdxwm9S1hD6kUQkp0SKVtoyk0cNMv+oDEEhDsPJkJKoaOyZg7O10hLSthIFZ84lTiAL8RdmukAIgbptUMqUcFJNCrkEGE8b09O8GmIAOpRtWLYL/DCWInvk3I/OGofVqsg5pJWvlSIxos5ZMFqR1dQ4V2cLsNAFJPV8+m2aeZ/GGGK2WFcCkhNoFdHFiFMW81SaSMVbhrN1Jp/RK0qho1IuRrin9lLOuXwG52tRKj9LJ5+dbKT4mN9WJoaywU7xE/+b02Jgzp6z/KoktM/8phzn1y6PmEnFc3MslyikySOnuNoLoGDK15NI6ETOPqmhQThg+nOx839vTJycqSg5j4BQc3Hzqc32VAVL/3UyQjox3P+a+eAvVVznr28wRMxsvJSCFDDKGMkXUQqdFVZrcBXRpxnZkSDgLMm/KTMmL/b7WmNUJge5qKwThGZQ4nScvBDzslbiLqrVrESqKiPOqotG1C7KYJwrhl4aMDMKJIhUJsZRiIpFraFVOZcZfCEo931PDuWmCoHOj3JeBs84jng/zufFuIraVZjKMcaACiIBD2Gk78VYECATCd5jdI1Smb7vqaqK0Qf6LuBsi1PTBK8JBhbtBahIGIWQ3DQNy82G1Wo1F2nWiYLl5e0VQ5ksl8sFdV1zdSnFxP297Og3qwXGaH744Qe6PvC6XlC5EhGR9Zx2D8KVqNsKXRtWtubu7o79rmcoqc2zcm2U/r3VNZcvLtjuDjw9bfnmm69oFgusq+kKCnSxWfC6XbK5uuT5+ZkffvyRr776SmhgKpOJrFZS8PXec7HeUC9anrbPhNsrXr9+zT/96Q+0qxVfasP2SRbv/b6nqlusa3n7/o7ffvsrwjAyhoFXr15z7LaMBbEJ3lNbQ++PbK42+BH8wfP16y/YPz5hChdqGI+E6Lm8vOR5v6MfR9bjnpubS/b7Pb///R9Zb6TQ+PKrVxz/+Jb9oeOwPwo5duiAgdvr1xi+5tA/AvD2w1u++epbvvzqNe/vPnKxbok7RVs31K6ibWpSube7YcSNhtWqoa7h11+94uJyRQgBg6Ifw1zA1HVLzgpnK+qqRinFYRjJ0ZPiSGUdVUE5H+8f6LuB46GjchrvB+q2YX2xou8OVE7u++VyRdd7vnt7z/EYCEYTU+Bqsca7gRw8VbkXG2tQNnHx+hXBDzSV5kAgjEcW6xWt0yxKpp0YrhlSGElRk1Jk8HK/hCDz1OQavFkL/y1ERRxHKfpTom1q6moyCpR73CnNsq6ICmLysognQT2t1ujyvmIIhSQtUuqshU8SQmAc5Xd1IXM7J7JtYwwYKTKUTvMaK8EMp03SQjt0ZaWwS55YCLCTQjvOBYQoiEJIWJepqyWrdsHeJ3KYIivy6TWyOePSCEKhTYUio80MFxU35FLI5NPmWKsJhTkVOyeOiUYZK6Ram0kZQZ3LQh8mBCznIviQjMYpriVlMU4EeUrhr0jkRtbnEvEppOK0Bsl3ghTJuqOLKaFGMUW3KPL5YqYkwgPOSpnzzXxBnOSgynvOmaTjmUJMXlmpVIpRebZT2SPveULCUkpoM62x5ZWTKkXfyRVazqfCZ43/JOvrPz8+Fztnwygze+1whuwAZx8qzIz3ueL+65Wl/D6Vr2oufObn++RxxWG53HjmtI9gkpgnVYCZlCWwTyuMq6A5kaSlPSXfG63oxxGfMllrQo6zm6bVjuiTZOfEhIqGlBRKRdnFKDPLUuuqpa6buW00n4akCD4VuHli3ssuN6aiEkse5xzKVtLi84Hsw+lYK0c4CsKTtagvhihBopOaC2C9XFFVFWHwDMETBkF9YhT31toJUlBbyX3SVryKqqpijAJHhxyIKWLdjNWRo/gJpShQbNu2OOdYLTcSCVHyk0IIVFUlLrUh4CrLYt2SdUBbxaHbz+erahoennZ8uN+CNlhl0VkgeqsdulLsH5/lEGIQQrTWDMMwEyqH3tPUZ9b7XYd2FW27ZLFc8+H5mY8P93z59RfYylE5gzOneI+Xr18TFRyOPc9POy4vjtRVQ9cNuLplWfKcrqqK7W7Pl29e8MMPP3D//IypKtrFGqMs4zjyxWtBIN59vKO2C1CB58cHUII4/OH791xd3XB9dTujQN2hRyuLqxxN09Dvtzw+PvHqi9fo2hGLNFhFiYjYXFwzHA58//Nbmqbi1ZsL3n08sO1G/vzn7wH427/9HegaZRL/7//jH3n54pp//5sXfPX6JcPo+bt//+/48ac/ATB0R/b7LTmN/N3fvOLDw55I5ni0LBrJepu8a47dQMLz9Vdrvn5xyeXlJV98+xXJx1kl9P69KKcuLy+prGO5XBKR3y1I7Pd7vB9LtEKR6g8DWWmen3e8eHlJ9IHD8YjRmpuL1dz6ffnqhrcfdzwPI33IJO95cXPLerUkDR0kxbE4KLdK07YVzcYRi29NSuJz07iGxbLGmlzuW8OQA/EYGLQnKxjGjI8ZRCmO1ZPs2RAzxBDJIeKsZVE3+BgYvAgUfBzK3FHQ5ih2/1pJC77vA1p7Qc0QFRFRfLCUEoJqzoLA+BRxGZpfbPSmzaTWZo6BSAgCPtEDQhLlWF3XoEZpc6go7tPFF0aKOUihzI0xMXrZMDT1YlYujv1ARjYJsjksUvOibkpFrWV1nr2hNMX9WafinVY2yJ+kR5/k06KU1UQJN5RiwDVSGKVBJPaAi0loB6U4y/lUiM1P+4t1Q5WN9VywnVEuphGZ4iKmtWxCY+S3M7eiSNfls0ifkKcnV2P9aUJ2eb3puM7WRCXvWR4WS7Ey/yFTsZPQpSs1uTyf1ko5jslvqMjvS5twen2FntfMf218LnbOxim1VvFXT59K80Xy11pWAjuePvDpX0rpk++n8ZetrkRS6UyCXm4ua4hebpbpObTVWGeIKtGaGh+mVORAStIKMBZS9IRhRMVEyiNuUgkkmQRClIlBLpo4W7iLt5XsqFWp9lOC2HsiCjtkTBWxBnTtZt5SLoWW7EYSpvRcc/ASj0Kc1RqtqhiGgUjCNZX0fouKwBhD3VQs6skcrGIcAvvuyOADfuhROVLVSqTw9oyLpCuauqFqFijjGPqR47EnpgGlFK68rxxKmj2aPnpyiKzWC9pFjbGKIQ6zGgytuL3ecH//SCbimoYYPePo8UMg+oCrTrvUd3f39ENis1nO10pOShb+vqcbi8IIxThK8u/zViTvPo6MqefCrahLYfZ83GFcTW0dISe+//57KlczDB6VE7XRbIpZYrNcEXJg8FJ4qmL0ZlyN0pZ+CLNB3K9//YJ+CGyaBZeLDU+HHa+/eMPt7UustdjKcbsWHs7BD/T9yPXlFY/39+z3e2onqNm7d+/YbH7H44Mo3XZ7iY5Yri64XEtSu+s1oz+i1GqOanh4eMJWDf/7//EP/PrXv2a5WPPHHx64ePU3PA0P3D08sVrL5zX0id98+ysWdUPOif/1f/v/8cXN/5OvXr9ivL+ndhWvXrwGYL99xigxoiSNXF9bhqR53j1ze3WBVZq7Dz8DcLHeQErstns2F2sWbcPN5RUhCMHAXTTsdoIYHfZHts8PLJdLqsoRRkmJ3u129EPgw4cPfPHiCoDaad7ebaWANhWxDzzdP1Jbi9k0XJYF9/rygm4I7K3H1Ymn3ZZ64ahrx8vba2IYCF4Wg6fnA7e31xIFoyGMkWW7Aj9QO8tmuaAqRa8U3zVHLbwh7RwxenQxt0vez2jgOI6QFqgk9gSLpsYZzePzlufttlgRlNank2T3EFL5uyCoRdkoWlNa2rWWhdYabJaMKWUTxppZFj9tZowWbx2lDFbJxlMxWXKUttDZxrMbRmxVo6wjemllZQUqy1ymy+YrIXNK9IkcxRyVlKnrVnKlCodnGqI6VWRMQUImhEjmAABlLNoYMvK+yRMF4lQInAoLUZ7lIqtXSoOzWBslUys5mFqJMZDGSAgKnSJKeQQVmQqIv1wz5nWFX6xFnHcOTkUM6LkwOqEkJ+XxbPpXWkmzOeEn6ND84vK7Immf/YJmfs/Z+ZBXnIuiNG/mp4Lp9Lyp+PZMNiqTElIiJ848jJQC/Fms0X95fFZjfR6fx+fxeXwen8fn8V/1+IzsnA115l1wzqOZEZ3SJ52qW6WKV8C/guz88t/psemTCnwaBsW5A/YEpausII1oxHnUagM64oyZodAuRXH5rS3WaHRd0SXhoxh9ImFPrbWYIHgwRDQGTC6vlcqOCZKvCTqQRjEMi8hjXNXg6kgVm9mRd/JWCDEIvGgyJHeq+gvvCCAZ6duvF8viNHyUgMHSvmqXizmwUqIGnnnYPZOjuLheblYs2kp2bmV3llKiaRpWqzXOOcZxZBwDXSeOzE1T0x2Lw2vKKCxKJYx2NMsl1jghSXedcI7K+7m4WDN0R4xOVJVm2Vb0x45uf2CzukCZClfQpa6XFO+QE+vNUp7DgHM1AcVhCPQTzO4DS1tx3B94eH7CGIMicdjueLFaY5Tspp8e9zTLxGYpXJb39/e8fv2aMHqeHj6iyTP/IsZI3/d8vH9ktViyWa2prWOxWNG0C95/+MjdR2nLvHrzEkXk9uaSGAaGOLBYtCwWC5TSLDfruTX1t7/7Hf/pH/6R9XJD6gPv7z7w6tUrLq4vef/uPW9e3GKLy6zWI9tDR8xwdXWFf3vHq5dvqBvHYrFAl2iLfT+QD5K4/fH+kf/xf/yf+F//j38EEqu6wWrN3Ud5/c4nXlQVq0XF3/zqDffvfuD/9f/531j/L/8Ly2XL9vkjy1auw2AViYI2YIihY71wfPXqGqeFSH97Le25cRzpx4g+ehIHXr18Te1qlrUjxBHvPYvlSwCen59JeU1KCavEifenn39kGAb6MdMdB+4+Crr14voWH99x7IOQgv3I7ukZc3khbclCAWldxapqUEFjc6Q3jtpVLJoG29R03YFdkDbW1ve4caBJhnHoGIfAq1evqKnQShFCwBcUKPpU+CEG33dURkzjYhrpPYw+zmosrTVOG1IGZy1NZQUldRq/EwFEVeaYFC37/RE/RoZRvKaMUWhnC2dGJq/KueKvA7UV8jKqID0l5mFCdqy1OOukdTXvwRNgJCJHSyTENGIKeO8x1qCUEWf6lDFGk+OJyKu1/ItK5ogUA4kDKIOtLS0LuoMcpE8j1ipUVqLAmrxkMmStibPbr5F/Srgvel4qJoQknSgPSNI3WWO0JuNL60tLKLOKxesMdEpEMxAGjcsjPiRsAp+moOf0F2uFKsjVROKe15lPli/h1IgJ4LT+qMKBMWcOypqs0+mZM5DjjOxI2+xTgrKwO9L8nJN5obQcT2tNUoJ8CTlaTA9zjifU6syG8S+pHtPzRCRYu/w4azTmM0H5/844JyfnT5jg5YP+BVdn+jDiTAf7V4qbnMUcizMeztm/0888KYWZDKa13CgqnVpoRmmZAHJCR07tKWfRPkJKqJSx1lI7i8kJPxPYEKlgUsSQxAK1kAeNEe6HVZqJx+uHkRRiuVdEhmmtRedxNlzUU5q6zsSYCN6LJbu2BC8XqtYaYxWmzPJGiTtsSqnA7BYbI1pZrDEYV1NqAobeC7cFIdE1lRHbeWUJvp9loXVTY6uKHCPJJ4hw2O4Io0dl6MZItqditakqXG2xlbwnZwxVVeFTZAyeqjgCa615OG6xds3aJhaLNWHoiVWFNtC4BleIodv9kUMhRqM1wyBOzpeXl4QghVfhT+JD4qqqRLlTCjKDYr/d0d94Ri/H+rTrWWWLe2OJfqAyFc8Pz9jfaI7HI9v9nuuXX8qxKkt/OKJiYr/dUmlF8ANKZaracTgc2O+l2DgeD+QcaReGb779gh9+fEfOsGzXjOPIcql5++OPALQvX/DFy1uedluqWjOOQiivqoqc4f7jE19+8S0AH//5P/HzT3d8/c2XfPfn77m8uuUf//H/5N/97d9QNTVfvJTi4f7dHfv9kYuLC+6envjD93/if/iP/45FU4N3vHm54bkURn/67vd88/VrFJFX1xv+5//+7/nHf/ln3t/9xLdfvCQFTyq7hPVmiY+B7jiwWKwwpubu4Z5l1aCVYrFcs1pJe+7d3QcOvSdlOAwjh+5YohHELTsrRcpSIK/X0pa0rmLRtDw9PYlBYrFAqOt6dhDOymCNfN80DQ8fP7DvOxZxSZ3VXERqVVFrS3Dgxx6LYd0saaqaZVujneZhK9YKUcm/9cWGtz/tOfYDIWWaugISVtlZwei9tNh8CAzjiDGKGBPjkEkEtFYsG1F5TWn1KQvJekoh12TqyuKsnrPfvPccO+HxpBzRZXNiyqZjVlCailja0spa2qrGuCguuVrP8900slZoW0mKd5TFd2q5GHNa/FJKkITrVlOjlQMlpOo8FSlnQ2uLtZCDnjdG+8OWZrGiahpCIc7GjNguhNKeQonrsQY4N+k7zR9KifIUThvJuVCg2Ieo02/mv8sapRVJK7QqBV9OVMoSMYSkRZQQMmHij6Y4P89pzZkch89F5aeWkhzvuW3KiWOasiqFSimUyPN7mQjJslydipdP22V5/noqUjRpIi6fEYezmu6JuR9WHm8KdeGXxoDnli9FxJINJ7WXHG/ImfHflhbxudj5ZMxOw8zyzVxiHXJKZzLA+Akf5/wSy8UhOOdPeToZcYWcbu6/VhSlVBw+YxTMp+ykjLUkHDl4ctQyEWkDJhWJeiIUh1VtLba2QhzO4hdU1zVWa7LvZ6mlUa7ciL74+zA7wTpX4bCncxAiKWUpeFRxKdWGHJMo0VImFg6KTwkKMqW1qCJS8iTEFbjW1Uy6zRbCMBLiKMeSNc7WOCvEXNs2M2LTFvWQPR5IJfPJWEXlCuI2eUoYiaXIGWzl6PuB474n+IR1YK0hlee0zs0eQs7WgqqohMLQ9T0qZXTx2en2R/bdkRwiy9UUVbHA1lIgOVvjy8R8//Cew7FHa01Kiv2uZ7lZSlFA5PHxnlDUYyopnKtYLS9oqyei94Ss8f3A/rBlexBuy7HvCuKluf9wJz5E3UiMmc1mw8fnLc97WRC/ePWS7VPPsm3EgbjvyMt23i+Pg/B5AJ6enjFGUwWxIlhtljw9PnB5sWG9WtMPA22RXX///fe8fvGaIUYyhu7QYZQgAtdXl9w/P2EKx6petPzh+z+zuV6hMyx04OWLWx4/PrOoV1Ql56huG7o+4LueX796yf39PXfvKv7+7/8ju6dnvn31mp/sRwAq6zgcjvj1JWnIvLy+YfHf/j3j2NHWDUPniwQb6lpiQ1LSUiiuNtxcGx4+PnJxfUnTuJk3MPolRiXquuX1qxu2T89snx4l86mpWC03HHeCrFxeXoIy+HEkZc8w9jxvD/go2Xd+HLm9vZbr4PGJED3ObTgcO0KEdrMiKUPUNUOJLVF6RNlMhWKlax66PUPwwl+xlkoZLldCKH8bHyE46ralXjUcuiM5e5qqJafAEDqWtlgrqMzuOPL0sOfxYUe+MZAMWllyTFxuVlwshTfknGOMI9oqlFWSYedlM7NcNLSVm5HDsaC7KQdOjvNniHFBB3wKJB+x1uKTFIKLbIlZiVNwSvgSiOt0QFlDVWXIjhQTWcVCpxEkIJZsLq2tuK/nEassTjv65EUwEWNRiZYChoRWFmUERUkpEXMo6OeANTV1K9diSonQd+Qom8lpgyuf0TlUIgpsNXF6ZhQn/+LrVGgwh0BrZSAJAVuEFBU5njbLlohLmTokgq2JMQsnMEtM0KQOTiWzK+QkiP+ZW/JE8p4/kwkZ0icidc4S2aAAXQp5OQfyWcYUigSc4kgthUecQABA5xNBWc51LoplVRCfc5HNxME5SeZloyyiHFUQbBmhfHIT4jNJ+3/JexXpucn/tmrnc7HzizFJ5iaCtxQvn6Ixcq7lAvqL35PJKs1FUsxpRoSIaUbrJuXVRMqNUVQQ05Zfa4srqops65JWHNGZYrcdcErgy5TTfBNoRDKucxQfC63JWQz4EnbOGwGRERrMTAAzRlMpQXViOOVCmTR5YZTdn1YwhWtaC1nCL0FaKBlRWcUopDJjDE1TU9e1EKeLhHOIAZ8ktVYbR9vKJF1bh3OObE+Szto1eB/R45GqbqibmrppyTHhQ5rziKabzzkpAvtu5BhG6qrCVQKlT4aRYfRkM4rKDEPKGVPXeEpBq5h3J/04oFOkXbZcbC4wRpQfCUNlG6y1HPfSvnjaPTP0YtKWvCdaTVtfU1lL6BOtszyPQhBumgZdZagCNzfX7Ld7hq6DZNhtO3ZlkSVlum5gt+14uN8xdL2cT5VYLVpeXl2Si1zdDx1N5QgqUq8WHN9/ZKMr+WzGgLMwHqWI+vn7O7755ht636GypbEtj7sH+uOBpja0reX2xQUAP/34ln3XcXVxzWqV+PnuLX2ILOqGWC94fHjiu+++A+C3v/0tl8s1P/7wjhcvX1N1Gp8cw3EvyFIvaM033/wKn/+M1gbnIn/3735DzBVxjCxax9dff8mPD1LsUMJFjTO82z6hFby8vmSzeEMcRlaLNYd+K59X39H3vXA/c+L+/p6rqxusW1DXCxaLpRiYAe7FDV+9eU1OElypVaDrd/IZ947N8nJuJzpT401iSIlx6MgJfn7c83j/xG+/fMl4OKBfSiDroRgKbpZr+kNk99yz2ixZtgtW7QJVCs7j9rG0Yiydl+t5GANWaUw2slAX5LRqNOO4J3RLruslnXlGxShBnKpiLOggQAiJw74TI8LdFt1KllVdaeq65fZ6gyuKMIXYVzhboUIiGTcjoxZDWzfzIlM7TxhHlHZC8vUI2oohKnAFKTFYvMrEQh42wLJucSnhkyflPJuG9inRxMzooxyTzqQoc2nymRzTjF4kgsQ8GEWXM22zJmElAkJJBI4p7RatrfjLaIX28r3KWoKTfcB3R5q1zDur1YojgsbEyewvZrSWEM+Z4lv+n5UixSSFQNZzTIg+W+T1pHSKhfYg9GlpHSlBg+wkWy9rTlSGaB19FdDRo5NGE0nKEkPZqKliKqiMzFNlXlcIeqW1Om2slQELOYcTDUNpEhGDnYN+ddagfJGCa2l/ZUFdcqQkuZdiBebNv3C6JQ8954CeXuOsCFHT30yoW/ldKscUOYXHTmHagprlOSZkVijPyJ14zYX0OS7i8/g8Po/P4/P4PD6Pz+MzsnM+xFQqfgKVnfNppu+nnuEvfzf/3dn3SfokhdzFp22sma8TCjqUhFA3u2cWGFKJJN4XGFAnIZtNRn2Jk/mhLTvAkCXRuKoqUoiMacQ6Ry6oSvKhEPoMpJM8/pdBpwDW1SLLL31zYzSuEkPBFKIEfM69dyFE5mJQaFxDUzc0y5bKOmLOhIJAjFk4BaZyGMBm4QRUlbS6fAxzQvpQfHW0UiwWCxrnyDkz+JFEwhW5q7TIJPn4cfvMfn+k0qoY/RkOuz2uKudKafECyeKuXNctF/WGYRjRWVM3TlynAW0Si9WSthIjwbaqedg9S5vNBXzwPBbvnLEbMFahciFyO4nMUFh2ew80rFo5X3VdY7TjsB9wbQv9yFB2RU/7A0N5/85aNIpd33EYRsbgefn6lRDDteF53/HmjbRPuiHy+PTMq1cvyi7PCCfIj6wsbNYrCi+U58Mjyn3N8fGAzpmmFXKq9754/iTWa2mhKPOBfpBk881qyccHy8Pde+qmwmjNixcv+PBBjBX92LFaL/j99z+jqgVGJxZ1w5//dM+bN9+yf5Zz1R3v+J/+49/xw4/fEaO4PS83NxgM2+0Tq9WGX339NQA//vCW4SuPUpZff/UF3333Jw67HbXRXN5ekIKnLlEk9/f3aJWpXMN6pfH3O3xoaZqKn+4+8Le/uyAGQdeiH9hcrnG2oWpqtHPsd08sWkdTOXIY0CXuOaTA027L/nnH5eYCnxzHoPl4GNns9jglQZMAtjIMZJ7HQBcT/RgJzzvWayE4T9yeIXhCDBzDkZAtGc12u6X57ddol0iHMCOXyjketnvyDz/z4uYKXbWEnNEl7DXGOO+At4eeh+c9dw9PbLd7kla8uLqiaRYs25r1anmKH8gBoqYq7sU+dIz+SMojxlis0+QwtQ9SSWOXOWAsXl6Vkzni3H1++qoxhShb3JILkXXinqTiQv3JXJujBEIWlOIUuCw2HEZHbIwYXeMqERbkmFBKnxgrxZBOKYMxJflbBZRVE3BDX+ajtm5oFitU3jOOIlOXllhpF5XzarSSKAlGQeLTFABa2pJnDJ3ZIDgXGoRKgj6RUVoTwgmVz0W+bwpvsI7yniOenCM+QJrQ/hxlfmUiUsvcHHIiZQnunPg1uiAjUUnLXyNcTzTCqSrHGoo5oaAuhpxjMWvMRfKdZnfseUyE9LM1T0sa6yd8rF+eF1XaWvL85YmQpznnJecMuiA5UU+PObUNjYqoszbcf2l8LnZ+Mf46sfh0E37KsUlzO6o8mMhZS2vi6EzFTpK21vTYlAOcFUwT2dcYUyDCcnMnjTYOlKinck4YNbVsMtZplJlg2+KybKRPPrkcz0TofLpYtdZYJRd/COoX712j9XlrSIBLMVwshxVGQoR45jlkjEGjsUZRWUfT1CyXS0ztZIIvviQAWWuss6XVJjeoMQZX2lfd0DMMsnAMw0AII4vFgsWihSiOrSGOVLWjLQRL55xEMhyPPD09YZVmtVqyWiyk0Kpr6qYUhMOIH/vi1uxp22VxPA3kFDCqnluUMgFlKWKUKH38GCFrQsoc9we2e1k8q7ahbYQ7JH5Hkv4efOJ5d2C/P84RCLUV08Ht45aXX76h7490o0dpixqFGA5we3tL342Q9axi2ayWDN5LuybD7iCtIcuS/jCI9b4y1FaKl3EM9P2IcZqrkrj984d7Bu+x1tE2FX23Z7Nq+fjxIzc3LySxvLQvQ4Tf//FP/Lf/4d/TjYnbqws+fPhAJvHq5WvGh4f5s314fOLFqzf8+f0D7z/c8as3V+Q0cnt9wXZ3z8tXUpj9+MMT3aHnN9/+Dd/9+BPDGLl2Du89m4s179695Zvy2EYp+uHIMHQs25rXN1fcPz7w/q7De8/N9RUqysKxbpb8+O49zo2McaRdLQl9R0qJ+4ctP97ds7ByLw79Eb3Y8+J6QVs3VMbSd3vW6zXj2LPfP4nXC+BHTXd45un5kWW7YLlec3l5wY9vf+Z+d2Bh9XzNWiMqSp89ysL6Zsl+vxduk95wLK3Eo89oawkpY+sGa4fCndO0bc2Hx0hXnjMqy/Ohp4+eMStMSlwoM/Pggk88PBWl2xD56cM9j9ueYYjwuKNtGi6amkVd0VQOnaYIhiixKVY2VmHweC8xCc6VrLpUWtU+oMk4pyTawWii96Qozse6SLBSCpJdnpm5fdK2mNrfGjulEZTIB+/FX0ahpXWVEinL+5qTC7IYrGoVMT6gMVxU11RWk6OZOTByEBCJQsfMotLSWDDTfMfs+q1IVK6hbhvh/2Qviq8k3KQ5GiyNkBQx+tJeyxgUSosIY3LmlucsX+clQorRyfFYna01Sou7jzNCOK6dIVWWpBxGZbrBE8oTxSgcT6FLyBmUNem04T6ZIRdvNnNqEU2bbdIpl0olJQTiQjpO6aTqOicW/+fGCQSYOEqf8rnOk9jj1HaboytOj52Oe4qFmIo2Mb1V87EoIGZD/szZ+b8+/nMqqnOl1F8tdvIZWkOc+TlCalZzsZNTmjkzqexiVBLVg1GAymUnkwV1meSTxpCNEIpT2RFJaknGKIV1DlMM7awSyShJgR/JxdHVOk1MapYZai07FKMqlIPkE9EHUojEMkFNF1kMWmhi5R7WSRPjSMqaRBYJ5VR1l5tYa0vTNNRNi3WOmBJd10FMolJCggKNMfP5dHpy71TzLm+6OaqqYr1es2gqIHPsO3IWtVnbtjSFRCtIlxz3crlk2bS0jcNpsV5frZbzcx53R46Hft5l39zIrjzGgWEo6pVy46VU+EhGJodxFEPBZrGCnNkfei4uLgG4WG3wfuSw2xMB7STgMqqRQ79jpOfi4gUATVVx9B1df6DSitY5rIHKGRa1o4vC2bnabLj397y/e8tqteI6LVk2jrE/4gfPetXyUOTk14sFKSUen+65uX7BzcsX5JDYrJbstztQFq2LsWJW3N8/UxtN2yaub1+QUmBN4v7hPZvlirs74cxcbi747s8/8O7+A//ud7/DXWqOfcfj046QMre3t0yiwJ/fvuXyxQ3ffPWCDz+/Q5FpbMWidex3z/ggi/fvfvfvuX96pFoarq5u6bojx+ORm5srhuGRm9s1d2/fAXBz8xpsDSnzeP+RxWLB/vgMWO4+3tN1ntsbUVgZ21JVC96+/0A3joTwwOvblxyOI+8f9jwcf89//x/+FoCn5yOmPnC5HjFa0yyXOOfo+p6mdsRxmCW34/ZAnTUrWzMOR1ZVxd999ZKf//h7joeAqWu2u3H+zC5Mxeura64WllV1gTGKoRs5HEd8LCuJqrFVQ+q2WKdpasNy4YghYLVBYXl4KKjhOGKcpXI1VdOiUsSHRO8VXiWediPbo1wzD4cj9487+hCxTmYMnTOLhWXdOhqXP9k1h5BFdZasWExEMTi1VlDWyWCzHw5YZVC1zDXWVoQhcIyexiqqPPGAJOAzliDjpIr7ulFoPTnVlw2V0mQlG4QwhlmSngqvMYeTyiqGKWdOOD1DL0rGuq5RxpFyOEUTZOENBh9FwapSIW/kkuqTSsQPdPsDsYo0lZCWU0ok3xNCROUwF1E6GnKUYk7ItYYEqL+ymgqfR4oFnSc9kxQUOWaSPiMSW0GkjLE4pWlsBbUETffaYfPIWNye+zQSsjjgpyjrjiooiM5wHvo1o2eJmfSbhXlc5oDyvpRmIquqSZhTHLr1LyTnn1iz8GmxMXdH5u9PaykTUXkqulLhEZ0p6NKUy5XPnzPPUSD5zARRGTUXgP/a+FzsnI0cT1DpX2tj/bLgSeVDnUPOciZR0JxS8UfOCMpJFFnT85JCgVinSU+yP3QGlJ4ZaykpJMRWnYom0qw4OPerqG0txxEyta4JxSFV2RKuNy3eKKwxs9Q5ORh7QTDFf0HNMnkpmgJOS0ZO1EIENEqJhwSQ0wTFKrTVuKqmaltMbQlEhkHQk6qqsKXVYK072c4robAJ+hTn8z9FIFTWsGxqchIkI+QkQYzG0lT1bOWecmaMkaw11xeXRQEV8DEKHF9buoNM2vtjR3cs+T3OoUs8wtPTFqWE6B3KZzuOIzFkmlrULPvuwBgDC61JcURrxfWrF6fraPS8K+1BrTVJBaL3+DiyWq3YXElrSKPonnshwwbPN1+8oR+OEBWr1XKGgo1VDMGz3e3RWvPy9paL9Yq+HyVKwEdMOWeHw4H1xYbt85HbF5qXr665v/vAarHAMHD//EzXy4K4aNfsdwfM5Yr/8x/+gf/H//w/cLFZoZ3lsN3RG4uZLhqr2VysOHYDWNntf/XVVzw8/Cf2uyNvXl1zfXlVjtcShpHfffWGJgWa2vDi9qWEv/aeDw+PADxud1xfX7LfbzFKEWNmuz9yfX3NzfUrrKp5fpad9/v37/kP//6/xyboR49xlqZZiAuzq7h//Ail7bhoWtCa47Fj20eennbc3W+5ffkFhwhp1/H7P4qk/tdfvWT/9ER/eYF7+QLnHMvLa77785/5zddviAn2XcnGajKuanHLTLNaMOaRRev43W+/5X/7xz+x7QfePctjbb3EtS2rZYsxUhSY4kh7OBzYrC/l2np6xGjLomlprMXXmkWt8UPPdmuIY6Q/yDlIPrBwIklf1q3soq3ladehleXjc8fHR3n9g/f0IYpnDgFnMnUN69ZiVMDkOLfcUshlAxbJKssuGodSkIui8LAfyjyHhAFraSWPfiTkTAqBLjKjTE1VS0s7Sjs/AcroEpNRiK5uQgymuUSCVcmi+sw5E1IkZOY2mFJKkE+lMFraV8fjUYQZVlq286ItazsxeVISxFgb5PkpHZtJYRQTQ3eEEGhWK5q2IuWRPoZ5kyg3rbR1tDYFGTESHqokIJR8ytDKhInJe6baohxfJuc0FwUaQcaykRa71IxOVLnWkZQjnKHtMY+ErEg6n9pRSpevZxt2df6akKb4iCiy82n9SmeoyV+ohSfS8Oy+zOlx+vRak1u8dDQ+pUNMKi/JSPy0bTXHrGYAU85ZPCuq1KkneDq5Qsz+TFD+PD6Pz+Pz+Dw+j8/j8/iM7HwyUjqZXE39x3PS3OSV85/j7KSUiMjj9YTm5FJ1/4L4rCaXzZTntgsFvdGzp8AJ8dHKzv9i9sSYCSljVJozvaAgK0p6wlZp2SHkTCj+IzlOkr9CetVakJ0kKEMsba/p/yB+CiSRlKOM+DoUjg1azflLANqJM+okL5/COn0QSWJdNZiJRB2CcJhSnjPJptOQC39H6YmLJEBX34l5mDEGW1fU1uKqSojGMPNvGldhjbjKJqNxtXCXDocD+xmO90AihMxmvcZqQ9cdORwOwjMyTiSowNj5Ei5q8THQjz3OaYxNdMOBzcWCuhCftaqI1lG1NSFFjFM4oxiHSIpweXlBXbXzZ2uriourKxKZxXrFF198wfZ5z3KxFJdbICTZ/SQyXd9Tt0tsVeOS5uP9n1GZmQPy3U9v+c3vfgvjKC66OrHZbEhppHKKnCKrhchtd4ePVKuWlAL9OHB395GLiyusFanvMHQzugaJy8sN//z9z1z/+IFvv7zFacubr19x9/aOi82Cq8vLcn1pjNI0rePq6oYQFFW94IuvvyLGyLogW7vtR24uW24uNny4/8jTdk+1uuDt3QM3Fw1N0/Ci+NYc90cenx+pmpqsDMMw0DQNi8WC9x+fORw6XMkSG/oOP4w07ZL324/s+46n+x3rV6+xleGw63j7QdpzX7y6RaXE0InZ4lXd0jYN4xDYbTuctvSFM1PVLd4PDF3PatWQY2Y8dmTv+frNC77/6Wd0aVX70NFUBqMTw25H3S7QWTMMnu2wpylWC1pDjiONtTgFl6slN6Ulejgc6LuOXPKTnFbUbcXFYkFjJZRWa8SELniGpIjl8zrs94JQWjBZ0TpDYzXOKhSBrt/S9/K+ghcSr3MOW2nx8HJa8vVy4ND3DCXAV2sF2goZGU2VIY4lpchHulHuY+cMJIUxEqYpfl7qNFflScAs1xaYs98JcVVhCuJ0eqhz1TznmYJYhxDo+x5bTBLHcr50hqQm7mQBcZQqyIwQaWfbDm1ISZCkcezF6duuhcMUPGlyOI3MbR2Vc6EVgFaTLNuc5nnO14csmV/SzSHlX7aDCmqFElqA0hhlMSYyKif850JyGowiKk3MgjqdrzcCJJ2I3hNhXRCYyZTPfGqLglwjsbTVRJ7+ixaU/Gc+1tPvBJWfzf4mjuon/kP69Pdn6+DpuU5B1tPf5vJcM7ajJr7rmVnhWYLBvzY+FztnI+VASqeo+enr1FY5cXfCJxDfebEzBc9N7PiUxQk5zWSwM9LVDI1OF4cp8GBEaT1fAGhbVD013gxEOnyIxBxpSkTB7Fmu5cLTTvx/TIk/IIRPlFbKirOnNq7c+BmnFC6dH+uJuDYVQEoxx2qImqyorsqE4ZwR5UaKhGEghVI0GU3dNDhtZhWKj1LsGFVabCqJmZfK5BBRJFwpdpTOQows6iZtRbFgKgdKk8tzTs7E9aJFRbHPt66irmv67sjd3QcOeykKrLWs1gui96wXS4iZbuhBS1CiUmc3bApUrkKrzPawR+nMsvjcHFJisViILwlQN44+iS+SdRpnNQtXk0e5MTer9Zy87ozF6kSzrDFG0Y8HNpvV3ApYBlkQMUCWIq9tlwx+xLga40V51g897VIKiO1+R0zizhxCxClPpdVJuUegbeS8NlaRxo7N9Zrh6oqn5y37w1EmbqNR1swhlMfDgfVyRT8O/P6Pf+DV5QrbNnz5+o1wNvqBm5I+f3m1pjvsGf2Ry8tLPj4+8/PdvSiIdOBXv/oVAD9+/xO77ZHbb1/j6op+/J62dhy7PZUJJD/OReTtzSVY8XIZx5GqceQcefnylm7M7HYHHu5FDfa73/yWu32P0hVfvHrFw/OWIWh+fH/ParFk+/TMoXhD/eGHn/i7X7/hx7cfubi5ZbXZ4LSmspqf3t3x61//Gjcsyq1o2O+OJCLBDxwOHWPoCckzpo6b2zWjl+fthx2vX1yyWDr6bmT78AzasN3tOAyeqhVPoE2rcRYWixZjDP2QWC6XhVOS0cbMpF+TI6vlgs2yonYatWgga5KWVm1VVQyD8HtijBIZk6E2UnyG0dMfOmzxnun7sdw3Gefq4hhd5iMr951S4n01anlsCCPByaaoqixNpal0RncBz/iJmjOphDXiAF9pWwjLCrSRltlMF4jo0jLLhfyilEIZg7aZU2NIPgNjxLVdayAbshJlk4nCWwxToGVMKJNl41PcXpSV2ANnLEpp4rTQZpiJLAoxQqwq3FUtgcWl2EsRYpCg46m1JmGYJ7XYTG1AeDA5jcJ/IRdujRxNPKt1tNLCzyxfp3lWRSkG6srik5ybNjhSCsSkhOeZhFCsVBK+ktIzcXcqF+JEu8ianMOpNTURiLOos7QSbqfRet7cn5RUf1n0aKbWlezfp1/NxYm8evn5p67ZiXwqrsqJzxOvaFoX/6KWOeN25jxzkv618bnYORuTFHxCcQBiiqQi3fslZ6dIo2aFU0qJpOUDTOdE51xM6lI6sdvPPsTMLyXfUvnP32uFtgZtK+mBI0nZVmWStYQk/d7pscpW5JRQYyKkKDsjJTeesbIYmSwFxRA8TptSyCi0M6iUinJBXt8PpVAiiD08JR0eTYpTUnnZHahMCp6+35OI4hCaM3W1pHI1KSXGKXMLRcowAQdai9lWSnKu9JmpIOUcGedotBSFWkuC8OgjcWYSi2N0pStGFVG6Em5QVhy6I13fUzWiLtqs1jijiN6jdaYfhPdQVwuqqimo3lhe3aM1DH5kt9uxWi2wThYUlS1jl3CFf6Ba4R3EnGhtDVGSj7vDHqOgbRyqFKlD31FpGLoDWi0IBpyzWJcYu8jFZiXvKwY2i5YYI5eXG5zRVJVFpZq2bdl1x7l33SxaPt7f0TSO43HHF7dX7Lc7lLOYqqZdtbPb8qKqWC5XXC7XhKvAdtfx9ucPbC5rFouGcTgwFmku2XLsei7WK/aHZ96/fw+3N9y0N/zqV9/w/Y93HIfieN1WqNEQu4FhOLK6rNnvdoxxATFji5T6xatb3r7/QO9Hbm5e0neJbBzHwyN+iMQQZpVZu1xTtwsqV0j42pCTYhg837y5wWkvfCIg5MzrNze8f3tHjePm4oofH0f+5fs7rtdLUtIsi5ncOAR+envH69trfnz7kardkMLAer3m/vGZmBWLgoTlBL5I8nOIrNqGw8GzXl3w/d09rmqo3IRqRpQfqIxml+CnD/csFg0hB/qQ2RYeTlu1OBupasNqtSA/yTW373oe7rcom0uCOaAz69WCi80Co2AMYihoq5YQdqQ4oOaU6CSk1OBBOUJO9L1nvz/itLgNd92k8tJcbjTGLgVRjQFrDUaDtZoa6PtpUcy4ysymogYwpsUY8HU1b7yV1RhnyCnhrMYZJcRmDBkxZ50z7UIiTiullswmgxV1l7KYSsMZMVU2AxMi42YD0BhLLE1BljOKrBPO1mWOk82UMYJQC0JU3Hsn7mDKlD0vOSsq12CrBX5CwUIgBc8YB6kQUkZnTSyLvkr5JNFOSrhHmALlpGI6KKnuVp+UrPJmzLzJmp5DqYzV4IymLSaQsRE39pCiOEL7UobkUvSc8WiCko2zEKxPhGhR96Z5051zEkPcInARDmpB989k49OYBCQTAnOeci4ikzD//5fE5hPJWL47/b6sjWpC+OWHWuuzNbWcKqmO527FvzY+FztnQ+IaPi12/ioxefKCiOmTKlV+dpIT5pRAJWJKhcCrUWXHIciPFBjmVPUAzK2b6bm1zrJgu4SxFVkZ+qRozRR2mCmbX6yadg4GpQMxiL+BD/Lzicicozgh+2Hg6EcaJw7HqrTMpgsMwNaaGEYMrlRiGiKFpa+ETzZLWIMgUUmLugtNVdVYZ0g50g9+Rnas0litUSGhnBb5qQpEHzBEnJpyaSYbc4O2Cl1Xpd1mC+KU5sKxqqxkVFkFoyi/jDElDDRTVQsuL2ThWtQNKmuCDaQ8kEOg6wbWiyXGKI7HIzlNyFKLQbF7fmLoepZtTYqaMA6S2aXivENcpqXESVixWTdKM6TAvh+onUMpO6NAPiYwJeQwW+KocdYQvCfmNKtl2nbNol3zfOhYtA0XVytcZQjjyHq94nG3nc/VsmkZh8BzN7JoFsTbiKsN26dnXr36klW9JntRbnVhRPmeujG8vL0Ao7l/eM/VxbeEfYci4so8d8gdWkf+/bdf8v79R477Ax+1o25W3N5e88WrS54f5XmruOZmueGnw56YEj//+Weurq7QBJq2Zt8VdM3V3Nxe8fB4x3JR8eL2modjx7u7j1RfvuRivebjgxRm43jgxWKN1okQe3bbIxebBcuqZXfccbFZcVliRd69u6NqVyyWGx4enlgul9S143DoeT4exWOptCXaVUPykeE4cmDPD3/+AWwixEi7XDAMHRdLKTr92HO5WdJ3kE1FVTdcXmQ+PD5hbMV2u+c3X0nbbWlEpt11A/vjyP3Dnm7MtO0NXXhmHLoybywwymCCYl0v2ekt3g90456n/Ufa9nImvS5dy7pe0hgL2QsykCImWHSyDGNiLI8NWRNT5nkQlWdlM/tOyPCNc+xjZijeOTpHlqoCW6Gdo4qJ2lZ4PEY7KhvnaImD01TWUVmFSgFjNUaDWbZ47/Fl7rTWQhB1EUpyoLAZZUJpZymSL3Nd1IwpoXVEJ4VSGR8D1kyblfyJICNn+XuDlYVRSfGgUsZYR9PIzeC9JxMkk89IJM0khsiFFD07807KUC1ScrK0j1WKaK1wZZOkgqHvs2Qcp0gi4NOZejSeFuCSsCXZgRogkLUEWEo7LZ6hJEWppMv6MiPqDmcMyfbzmtDmlhQ1sVKooElRk5SHHEWnq5htUCaX/kRGo1FFdaUR1+M4SSg5zbWyQKnZ821SrKlJPZfzXFhOERNTe2q2OpmI2hkmQvocOjqh5tPfqjg/VGIqMgmPlFmqCGfKulqOV1RbcS7I/rXxmaD8eXwen8fn8Xl8Hp/Hf9XjM7JzNlIKc2LrOWdnInudEspDaUPlua84P8d5AChZYLYsfjvnnjznCevnJD2pcj+FNqfHTfDshLiA9NT1eUP7bOSci2ePQKFTAjFIvguUVlCBfEPwmIlEqOxU4qOVvJdU5I1T223iCU07LpCdrNGR5EQCavSJrDz0I3H0M/E6mYlEp8kxQk6EMJJTnHdin8gnlZoD9KwRoz5B407wqHOOygnyM0nyx3FkHAUx2mw2LBcl/LAyEEBpTUxCWNZZnqM/9my3e9qmBJAWRMz3nqHrCaPHa8V+fyDGTE5x9tnIRJxRLNuaw+FAjC3gcJVhsVhgxWENAKPAW4epRZY7jD1N1qicGPZHltdyrJXVrBY1bVVRGctmvcZox7F/FIM1rXHlGJ3WbK4vef/xA+PQ8+HxievLDbYeGcOArQzVWfjh4XAgobm8viVYy8/v3/L4vGVZNXT9EVdk/etFQ3SZTMXV1RVVU7E/bPn5Q6ZqDCkOLEvye+cP5D5yc7Xmj394ZNGs+MO/fIfTlq+//ortxztAvJCuVhe83e758e4dr159SaXherXg/v4Di8WC1UpQlY8fHxh6T123VKbi48M7ri42hJy4ubnh7u6OZTFrXF+u+e77n1kuNqSc6ccB5wzOCvSttZnduZ+Pe8y6pQ8e02kewxNVW7gRtwvJ4yrt38GPtLXDWUvX9wyjXGcXywVXC4dNFQ8P0nZbvnlDUoGf73bcbTu6MeO85/JiTWVW2HJerUsYZzj6kZgUMUgOWt9F9l3kOO6YDIzadYV1Ces0wyDIha1qopb3sR86+lHaLT4GQXMVDFoQ5FCciL3RODShoBrWgquU3BPI7txai8YUGbRwmACcrwofB0gJk0VWDxHnanI+5RwZK/NV1sx+VsYYtJFsJ18QEB8Kn+XMfVfsLxJRxcJn/AVZViYnlP7UABXyPOeI8zKkKMiDtROqkwtXNs/Py5TcnTU+h4IEJfFZUuM8B+hCpI454uMonJyzNUNnPc9xWcvsnsr50BiU0hLGmk/zwCfva8rNmv4VArJRmmpC5nOGWs25XKGc21jsU/KZE7W0gyRnSk0oTuZkg3LWocpq8o6THKz4Ce8GmDsTxeU/K+bMrYmoPL32xE8V3xQ4a4VNmVjTsZx71U0ClbLYFBRo6pZw9nmV93FuIvlfGJ+LnbMRUyAluQhzmHgKef7wYg6ftLM06ZOL/C+8CcqNJ7//BcGL6UM7pcZOF2Iu/gu/tF0/v8l1CWWbCqDzx6gkk8NMSC3qpRT+8qKwVhKBrRInyqmQs/rUxqLwh4RsDWIEJtCsvDdNnJQKOYFTpNLmMjUCYY+RYRg4N4+KURXYUxKPKQZWldM4t8BWdm55qaCYTBcB7FyghXliBjEf1FpcbJVSYpLoAyon2qaibVtMIQdba8GIxXpM4H2gbhzOWJ6OPf0QaNvJ58aI4sVHVNR0WzE17I4e54QEfvJoEpNIq5WoaFISM7e6wQfo+yP1FMCYMyopKtOgdWIYOkKQQu7Qd1yU6yXYTLVpWR+XuMpQKQMhkkLgcDjMiwhIEdfUltcvb/De8/jxnraqudxs6PsjKDcXEE3T8Pj0zOADN1XDRV3zq5eveHraYq8tz8dx9mK5HHq+/fob9v2A9yPLZcNXb17x/c/fc986LpcNP/z0EwDtxZoheG42S15cXfL23SOvX77g//znP6GqlkUtx3r37md26yOb9QVPhy373SPr1RX1omZpW8J45Op6XT5zRdM05JC5ub5g//zI9nDky8svMRYur654+/Z9eWzNol3zL7//My/evOHly9c87UaG3UGCD1VmLITTSENTOSptCCky7A9cV5c4Z1k3tRQi3Xa+ZqZFO4SI90echsZpfvvVS3b7k8/Nx4dnXt5ec7/d8fH5QAgRa+B6VRFq8Y6Sm1nI/4fDnv1+z+ADaUw87XuOXcC4xKIWXkntFEYluu6ALCDiWZK0wsfIcRw4lBah0gqjLZkkyhujpNBtLG3dSmFf5g3baNbrlrquCH4g5EilHUo7SbdOAVuuWWu1uHzHYkRYpgljnOyb4qkoUcXPa+poCLk3E0iMPjCOhRsZMhjh88jGzs3zavSJs/3dXJBkncGUQmPi2xiPCuLsXE4ukOciIMZ01or5tP1xCqnUslCnhFIy58eQP9lQWSvJ8ckHmYMyM88lq1MEhPe+vB8rbTst9/zJfy198vq5KKSUyfPvp7XEouZjV6UrNv1uDLUo0qK8XjgTKanyPsNUOEwMnLnAOJ2DqSU0p71PnjxlUzrxU2fdRgpk4mlZy7rwUjUz8QlmWsjczspqfo5PPwN5tLx22VonBWetqhMBWpHxc4vtXxufi52zcUJu0oxqnCM6OceZkDxV5b9EgQRtOC9+/m0fxLkEcZLenYjPmRjlpkpp6ndryKf/T2kwKgmHBibLbul/G+NI5gyFShNakcgRUS1kxEgwyQ1hym4pzP1a2R0JkjAVWEV6PjPkpZ8eY6Rqa6qqxvvI4SDZVtMiD5JWG0LAVI6qqvDZU1mHbSuZTLSSxF4g60jOGq0mdMvKDiaLi7Ix0k83xgg6NJ+7hC0k6fV6IrZOk1Zd7N4HxkGKhYv1JXZWljlcMUAMIRC8JytNXVUMvT9ZqKPE2baaPsuMdW7+TGPOjGMkK0cIR56etlxdSLFhCmpnrcVW8jchBJnUtGIoZO5GLXDOsb5cUzvLOPZURhRjXdcx+GEmvx97zbJdsFm1HLaJISmeH/fc3lxilebD/RY7L1AG5yx//NOfuLzc0LYtm82KDx8fOB6PGKX5UNx7U1jRLp+5uVqjdOTHt+/4m7/5G379zZc83z+wDSvGXialf/nzP/H3f//33I87LtYrYvqZql6wuVzyD//8T7x5KbyWm8srPt4/cffhga+//AId5dq/uLjg/Yd3VFcXcyHbLFqWy5pulOJuuV7x+PjEF198TUbjXMt6cwXAd9/9IBw0a/iXP/2Zm9vXfP3qDbuHLU/DEVTGFUXaoq65WK4wWYqCpDOdH7GVJWZJdfeFbDkMPW3dljk7k+LIWJQ4m6Vj1Zw+9+9/vOP+6YHl+oL8+IgzicpqKmfResQVhRXBMnQDXd/z8PyEUop+CDwdRsasuWlaloWUZyZVXQriQqwN2jpBC6wRHpKaUENHU8k9rnXCOcOirVgtazbLJSkVdBNoW8fFeo2zmnFIQp8tc5As4PNtK/dlPs0l0//dTBw/xQaE0QO2iA/K/RAltiaExFg2STEmqmJaqpQgsjFGtDKz+CD5CeVNZF0WdZOKeELmI6Uz0SSapikHC9GP8xx+mhMVs7HhJ3tAXTZgJStqfo8nK45Ra+q6FpJ07cgl28woKWgmxAgon81cXpBDxuc080emYkLmjXLAyJx/eu0p0ZxZnTpZhuQkhOqxkQLcx4APiZROeYUaJe7DZEIGsshZZjTlTDQjx6Egn5OKAcwn69k5GpZKwS28mzQXUemMCyTvQUshiZoz2ablMX4CAkz/O0eGzlTA+awYKrEZ/5bxudg5G1P1Lw7I5zdyKXYKSjMjPaS/ctNPN8hfKVvh7MI+qa/k+1OWyDTOF+z5/wqMs7IQZ1ElGGNQZfVSGLQSElrM8j4mmFImHLkyQkrUzkGKhBTwIUAW5ZncHPmT45uO+VyuKOik4LTaFEWDMkXG2rBarFCm4nDo6HzAKo1uTZkAYXvYMwwDi9JWEomoLsWLkYl2Qr2MRcGnWV+lnWatPRGvs+Tr5Cy7O2vtXEBMf2ddydGylSgqyrlp25bVakXf99R1jXaWtpGiZL/fk1Iv59spUbFojdEykfgYaLKcA+89GFuKX0NKcOwDKMvgI9vtjqYqZEeVcbXFNBXO1bS1nAujFKumxpQbubE1nsDCteL7Meyc4WUAADQaSURBVPaMtSxkVWXJmRm5G8dQJuYK7Sw2ax53Ww7dkbqyaBK7Z0Eqbq4u6Q5Hko98fPuBF69fcPv6DT+8f0+MAac0iyk1NDm+/+4tKmVWyw2H4x0/fP9n/pu/+1uubxz3j88M5b5Z1Bd8/6e3fPOrVwwPjywvrvl4d8ftxRW1Ujx+FIl4pRsuV5f89NNb/uGf/8Tf/d3fMQx3RXpt+HD3jCtqGeccWkuBV1WV2ArYig9393zx5UvIivVaPq/LyzXPT080TcW4PfBPf/oBbe5IKTNGkWJXhRRpksePmWa5QuNxWuEqC0bz+LQjxsjmUtClMHrGYWDserrhiPcDq8WaplkQIhwPPVdFQdddHXk+HInjgW/e3OD7gYvlgso6jG6YZEs+Bp53HYfuiNKWRWtJY2TsjpgMfhgJJYIhL2RxFATTooiMY2B3OHDY95AyVUE1jFJU1oi/lTW0lWZROdZtw3q5IOaELW3HVdvQuJYUPQSKsEIcmJ0RT51p8xNjIkWFtULSneayyV9LlYs2BAnTzDmT4y9lyaa4Sp8Q4UQu065sKBXni2VGTZtIThtL/BRgPLXLMtGEongqWXlJVH0pJXIhv2ptT8RkdY4aCLId46dIuuxtJ1FBsR9RLa5ytEbmjJxUUXlp1FnhkIuQRYJKJcrCaFnylVYS0wAiyVdCvJ2UW+dtNp3PKANGo6ylKX/rUy7FjmwgQ4r4WLzVCvaR1fSe0sn1BOZO2kR7UKWNnpO05M+pFjn9Yl2bChwScwk35V2dE4dniV5RtyrFJ+4r09OVnwsNJJZ2mXRGdP6U3iH5kOrTLLT/wvhc7JyNc2QnTxfKeVuKE8Lzy9bVaZz576ipTVM4+ep0+06oyPxXn9xYp7+dhjbln7YY42QxztK2sZWb+RrS8zaCDERVIExNip5IIIdJ6unnbC2jFP7s/YMiqVMqs3IlbC0VBUOWyh+tUUZj1dSThYjBuYamXaGMpe9H+n6UIq1tJUen7OaGMTD6SJUiiUxT4OETJ0kgaJCJ4ZyvlFNGK4uqpnA4+YtYCkNr7dzSmnZ0k3pgaoGRM2mMVKZCN7IjVsqSUqaua9ZVhStIlDGm/F5TNTXjOKKMFJVD8HTjSJME2vG+7GKwwqfIEMaAaywxZYYx0h2lyHKVIauEayTmo2parC5KB1uR1Ak1NFbNLbtxODB8vEdbIxwSfSoi9bLl2A0lNHXFGDy7x5G7d3d88eo1Kie2jw8AjEbTLhc0VUMIge3TA69eveBX337Nn//8Z5SuWJaFfvRwOAz80w8/cHt5wcsXN+yft/z043tevX7D9bXhp5+ljbTrOy4uLuj6nrapOPYdQ0zUo+fq8pJlKUp22wea2tAuK366e2B3HHj79i2bzYZXL665e/+e+8dHAF6/eI2tHNEH+rHj8vKS4eMjMUbev3/P5cVmzm9ar1biY6IrvnvYc4ye7eEZpQzOQGWgLp5AlXUc+wOurmiWwkciePwwsD/2jCGwXMk5WK8v2D5tZdFMmu3zgFY169WCYTcQo6Ay03Xw6sUN3kcen5/58vWXNJWGmAlJzd4l2WiyVnQh4YZA5aByjsopUsrs9z16IcXxNQpX12TizFXrho6390+8v3+SIn/K1FMJg7TOlnVFWzvqytJWNW1tCQrxqQJWiyXWVHT9IAt7zozjSIhiWmh1NaOsU/scJlRVyZ4nR5TSs0w+54xxcv/FJGiw0RTZsSDHJb8Xa3JpLypEQi6eW9N7nFpi53OkKJbKXIsgPtrKOQvFE6gyFqeF+5NTnIsLqR+Kz8+kBPoFBUHQc316rTIfG60xSjEMEthaty1VUxO8zJ8q69mTJ/pBrD/8FMQcy7nToD6d55PQyWZl64R+zNyXgprLN4JyVyaRq8yChE+i4ByDF2PEMn+H4vsWlSZnZoXn3L044+WonATxKQXbxMdJ5wXZ/CEUhE8rwDDJxrMOc1E1DT0ZLc7F7ulzLE81/WAuduR9p8IfEs7p9N4pz27UKdz0Xxuf1Vifx+fxeXwen8fn8Xn8Vz0+IztnI6YoxORf8HBSYaCfOyfDp+SxaeiJVjUx6vWpbSX94gmKPXeGPHE/pnHu3wPC+8hFdWOMwViHQxLPnXOYSSlQWP45KzEh1AlyxCthrM39zjy1W4Q8Z50mGYfKopJQ2hDypC6wZMSaXJ2/Vy3eOBhLKqW51TWukVbL8dBzPB4JSdNuVrRte3J6hnn3pIq6oa6buS0nkLNlSptGqROBuyBfcj5l5+jH0+7MVc2MAs1tyYISCZlb3oP3Hqwou7ROZCJjimS0xBA0LUMJUo3eY5KQM11l0M4UvkvF/tgL6dKf4HulEsEnnHOl5aaJw0A39AXqLzullPE+icqLUYzUrHRRfRxJ0/uKI0YJgXAMnt3+yH77xDfffMOqbqkqRyhE4nEIjMbTdyOXVxucVizqinc/vaO2NWH0sxrru+9/omoWvLxe0nuPHeB42HG9WfDUtnx43KLKNLHZrPjp/Tt++vmR1WrF3377ml999SVj73l+euTl9Zqvv5Aw1PfPf+SHtz/zxesradmtEvvjgQ9Pz3y53OC9kGhfv35N748s1y2bQ0VlFT9//Mj9bscXX77gxYsrPnwoLa/qiWq9pK1ruiHg+4FF40h5IIyW46GjnFb2XU9GsdpcslqtyA87qhJTUleapjIsloLsaJN4cb1huWzoUkAbuNhs6PYHtgdRbs2RAspgjLRh4h62uyMpJRZNSz9GukFaCAD7fuDh2PPy5pabqyvaWrPZrAghMex6huLg3NSukMqlNXfoE8ZJKOoQPDlFCYMEgrA8UMowhkGMPbViNwaeugGVFZWbEsMDikCtLeu2YtW2VFWDskaMShW0lZyDpmlmlCTnNLe7jVE4q6mMRNVM971JwtGoXYWaOTqBEDKqLnOeVbjsGGNppwNWTanXFEM/ub+tkfclKI3hbJo5tf6nVsoZcs7k6q6KEZ06GQpCcZG2Fu/9qfXFydlelEfnyM7U85e/NYgC1egT4pwm00LrZsJwXdfUVuG9Zxj8zO+JFCWrSmRdks8LXyhn/Qm/JyXkMyCVDOhcDAlLK0udksCntcAaQVUCdWm/ZYZB+JHeCNIbk5/PBZx4MvO68wlaU1pPk1GfSKNAC9pzIsgoUGFG+XMGVfyBVDTlfZ2cjueW1hz1UHipE1hzRpyalFeTMeIMPKmJznF6rqAgfG5j/V8fwXv8hPDNBc5JoTS1qH5ZiJwXO7G0TJSS/mrWkk6eS8qtPlMlMEkt51Fu6sLxOufsxLME7UlS7ZSaiwN7VuyELNfsOVt/4v1MELepKlIIKHVSF0TRaIqSyUguC0Ao1vIpgVXmhEGq0ltTBl2UJVXTYp3jOHqGY8c4Boxxxf5cMmYmeBXAVo6qqXFVRVVVVJW8n5gK7FgmGKP0iauTPlXAhRBmGfEcJzE/VkwdJ86O2LHLeQ3JY02xXc9SnGaVwEKtanmusshowFnNerVmzFHIieU8jGNgs7lkuZQCIidRo2mt8UnaAFVVsT92HI8HUcKU99X1A1kHYlaEkKhcQ62LqVb0EloEdIctKitUhjBGQsrsj6MQozU4NFfriV90JFU1MUuBUTtL1Vbk3vL9jz9T1w5Xi0R7tbnkxx/fYbPjYvEFOUd2uy2h11xebnjsPHcfpOX125c3vHx5y8djT98F7p861sstN+sVftjxvPVc32wA+M23r/n97//E09MTr16+pB8Hbm9vifme7e5h5mkdDge+/uYrxn6gaVoWy4arizUfP37ku+9+4He/+jVtK0XB89Oeqt2xbEfaxYb+8I4QPOvVgqoyHLvn2b3YOth3A8d+z+XCsbaZ6GXhu1nXrBrHsiicXlxdslpbvnhzzeO2Iw4dLGvWl2uSSnRdx+FQUs/rSqTQxoHRkuLedRy6nn4Y8FPeG5DIPPcRf//Eb19fsV7WYCLGWIaHyIf7JwCuLxqctVwtW7rR8/5xTzQ9u70U0bYKZF3P1/vQj2gji0XdNOgxcgyBIWZ0CjPPTKOodGbV1FxvLlgsapq6QmnheFmnqQsBv6otwzAQgseHQdqmStPUjsY4nDkVEQ45bzl6qsZhTcU4DsSY8CWeRe5FQ9QZqyxRpSJ6cBjjULY4KZfFLwZpp+esSDGjynxjjJ4LmzmCYfpeKabq1ighKCedwWjGkmmXvWJZLcFYso+M4zjPDRM5+BT3U+ZLpaWwMnq2uNBnFhpGC6cwG+HoxKwYQ1G8GhFATJuZGJJsELVCJeZW3Empm89cpAs3B8khjIBJsriLs/FJUk+xCFHTnKcNyTWs2iSfQyHbA/RxKE7vZbNeVGOSz/Hp+iPFX3mJfJKl5ynq6BOSzURUL+thmj6b+MmaqJREhEytLSl+SnvsFMleXkiXYociHpGmp5oLPYXOp01v1vmzg/L/rREDOQsyEtO0W0mcipxT5PwniM55z9MoiUkoWkuVhKmulSxUUxiKUWpGfc6re4CopQ957jZpsyLrClPJrUAesRRVlrYoW3xTovBbdMrENBLGyDCMDH1P8H62G5d2tCXkhLZWbMqDBOC5aiEOmxPzPw7ElEFpAhpnGrJShFwmGWtwhXDrak3OA+O+43joyGjsusHkxNAfIQX6wqvwY8/F5gpnLM5UIl21rvT3NcbYk6IpITeGVsQo7rYhBMn7CQE/5VLVZpYHe192HkljdYXKAYuSIg1w5jTJ+fJZOWNwlUXpRPRhdiF1zmDrC+rFgnzoqesEJtMNA+uVZb1ezgu4MQajEq5SDL1B6ZZF3XDYHlEJatfMaEli4HAcuV2sGIcAcaA2NSoltGrmnKVDL4jQcYwsmyWVNRIu2svCtFjaWcabc+T5+ZHlpiaGkX1KKAxGN+y7I1FX5OLFcrW65sE90YWRnz584De/esPj046hqTHG8Ppiw/Akaqzuec+Xr17jasvbu/fcLFtWdcsQxCNJh8jwKMTnL68u8bevSAG0qVitVny4e8ft5pIYE3UhiScUH++fePniNeuNEMr/u7/7LXcfL/np/oGr7ZZXL0RhtX14oq0MfhzYbu9xzhL8yM8/vuXVzTVXmzX7TjxuSInkRw67PVYpVqsFPZ0Q1KOmpp5zjS4vrnnxckHTWK7VgqfHHTmOuNqyWDYMY8ehL1wgv0JFwzgOHPuO3nesXIsOA4lMH+LMdbvYXDFwwGpYr1qW7YL9sENrRVNppgSIwQdSNizalu2QeL+LdH7AqEytYKkrKiUFhsqBFEd0TrT1AmcgjAMpxFKc23n375xmVVdcbFpuLles24baGVSlQIsac8pgU0oxdp7uGFCpRuHRxmB1fbbBKgujNmQsKdrCsQOlT3xAPfNSY8nCS0g6iuToKeMKr9CdGXJk2QCebs+ibBKPMmBevLWR7KmTE/JpLp7sMKYCxvcdx+JB5YEUIuBlPtfqFKCJbKgwElFhrUMZjbaV5OQVvqS8hnB5rJGNVsqR6E88H11c7afzKn5EwvmZVaumINIhzAVEypMTvEQ2SFEgfEiFma1OAHRIkCBljdKauij7Ul0RYkU/NjMq3ZolO38k5kJ+jlm814y4LJ/4MtNOX+wNZmwqZyyO4D3JnIojNfnrlM9iVk1Nc/b0wJyL95AUbkopKecU6Dxt4ic07gQqZC1YXlLFiiVNsRGnja7+xdr5Xxqfi52zIYtoyW36xFRwSiyfDJdOfzNXyExM8gnZOVdanQqkXyqczsfcHhPu/Lz7t9ZKQaOUKKeUQhPQKWDKTaimylgrdCwJxHHEh5EUPDkKNJqmbFElN7BDE2PGaSEc51JEOFujyg0ksGSYiXVJSX5TLhlZ2op0HOS27PuO/ngkDB5lHSomfEFeBn9ku5XFc0oRryoJ6jyHn3UhP8/nsMC/qSA5YRQy5GTiWFWlRVHXpBwYh0DOlF1kOf9JCkWdTxNRDCdJqjPSopIU+CSJ1sOU9GxZLKTNlipBgnwMaG1Zry642FycTbgaoxNNo/DhSO0MRgnhz1pL3TiaVs7X6HuaymKUYgyBMHqWq5ph8EyqEZB2l9al7TWMgjQZy/PzM1pr1uv13O5xdQVZ8/S4Zb3e8MPbd9xe37A/bFk0FTkccK4tj1VcXqyEbE3i/v6e9bLF1oZQcq6W6wsAno571jc3vLi44nq1YXc4stpcYA28e/uep+fHOeATFXjxxUt+//ufeXrcc/VijX1+wmonu7xpYsyZw+HAR33Hi1dvcAZuri64vb7k8m7D4bBjV5Ker17f0K5W7Pd7clLcP9xT1y3dkPjj2498oxvqRgrO7dMzMULfBba7HkXFqoZhGOiSp1VBVEdAiCOufkFW4NqKZW6pnKXrJPG81hWphKGO/cgwDAyj52m/4/Gwo64dl0rRj4mUNGMnT1y3C24vNePQUzmF1ZCD4mG3ZX88si7Eb+894zjinCuKmpFDd6RyhuVyQVsUVCDEZR8Drl4w5EzXjRxHiQmonBFCbiEdG+NZbZa8fnHD1dUVbV1axGoyoDvlDE2KIWcUypb7WmumnKbzeWtCiZUu9ylhbnsppfDhtBgpq8vuXRZs8eJxBVX4VIQxd5DUZOz6aSixmcQKOZXaQe4JrU/S6hzGgtac5lwxN5VQ29gnYo6zHFxZM4cYa63JRcGpi7JMF2WoUqe5iSgydB/i3B4T76VxVsq5YkKpdIUfI8H7uYWVi/Q+Ta855wqe2njnxrEZXxSyJ7PCGEXUoVNB2q3CIHllTdOw8IHOCyrcDwN61IUkLW01SWOHnBJRn6EwRZY/oVxTq2vEz4rk6XOmRGqIhO7086zPSN18uu7piQB+RulQSs3tsXR2HcV0VjCmQppOJ9k+gE9JCNj/hvGZoPx5fB6fx+fxeXwen8d/1eMzsnM2YoxMdJLJyOk8LkKLpWWx3T4zspq4NpN08mz855CcX0rN5fsiVZfmLmrqEZeEXjlIBSkTk0dFjbUU4uB0DLoQu5LsnrOW3r21xb3z9JrTji3nXMLr4uxwqkyeIWbxvxCSrzFu3qlNu7+JNwTCexq7nr4/CvqSEzkFsu+JMbI7PDMO0ppZL65nKH2SnIvkUHhACnPqZyc5tTHJMc5ERgS+n5AlYwzeR0KIGCcBhLkQEyUWIs1uz94LkdBYeQ+VNSidCGMxcIyyuwSoXC07UijSecXhcETbina5QClNCIJembIzNSi0gRgDPojM/PpyzaJxs1+GUrBoajQZhfTlQwgch16CEAu8a1xNDIHoE3kcUSpijGMYBpxzTMaRAJqB9WZJyJ4hjPQh8t3b9zjtcWZDSoG2XpVrPuAqaRfcXF9yd/+B69sb8SBxmSEHLl8KsjPeDQz7J5p6ARmuLjZ8vHvPb377LS9f3fBP//wnHh6E3/PNVzdYq0kO/vTD97x489/x6sVLtts9VtuZ/2iMI+wT797e0azWpLQi+o6L5ZpvXr1kOHY8HSQIdP+85fLqBXazQg0dKni6sWd50fL0fOB++8QXy1sAmkWD0mBrS//oJfF7yDi3xFlFipqqLbwKH4ijxyeJCVgs1gxjYPCRoDzOGXxp0QxjL67UT3setkd2PYwftqhqQ/SeSmuZJ4C2UmL/EGVX2vmEj4rDcWB3GFBKJpv1xQKtA2LtI8ijRoIum8ZysXKsFievobpqMEa4Yvu+p+9HdFSsbcV6tWDVnJCdl1drXlxfsV62MJFs0zB7zJgz3y9toK6F72ZdQRkKXy8UewjKFSY78EQICrKgwVP7eeKLxphQOUqLQhu0qVBaC3/lrAU1v/5kVlgQnRzFvd6qYnA6WbUoJTJ1mFH0KUVb2u96Jr4KZ8+TkqAeozFA8QMqyPLMd9TSErLWEssxmiKZTunEQ8kBUozEOJBCEFPWnMnRk3LG55PRXd02aHMmuihzUYyRyQp2XiEM0vIp87Ka0CtVFZ5wPFEbEA5QjhGtQEWNyjIf166irRuWbeH79T1uGBi8J8VERtp8kUm2f8I8UirhnnHinU0nfepqzAsIzMjNyWVZocgTsnfuyaNK+2oihcP8dfLWgU/XxZkvhCaV4FL5+afPm/K/Ddn5XOycDbkpTooEKCd/Knx+2R9UE4fnBHH+sn31y+9/WeScj/nGn4qos7/NcXJyjjOz3RiD0cVCXJ2KnZgiOUOKipQkuVYmHDVfMEHFGbZmykGJwlBRpgJl5sTvWI4JpbG2IiohYltnUcW0LBTIdDgeGfqOGDw5SG4Q3pNtoh96hv2Rdi15U6u2oaqljeWcQ5ti065FLeLTydL/pGIokLi2Qowu7b5ZKZHSzIFSnCYYa2UBiFFgbYC+HyRGwkpcgFGZ47GnP/ZCuE6KqpL2waJusJUREmcxCOu6js26pqlqYoizEshYIdF1cShwrCg0lsuWdtkUaF4+r7apWBQVjtcy0QhHQDPuA8qdPIdiyCQfGEOaXaJHnwkxcNFesF4VOD4/smwdRx/Q1rJZLfj53UdGp/GPO1Z1ReEy42yirUWtslotedw+8/79B75+85rgE2McZz+aX715xTgGslF8fNzy5ssv8GHk/d1P/OpXvyKnkcdHaVHunnZc3r7ixYsbvv/+R467Pau2ZXA9MWa6kvi9XK756os3NE1DjJHn7ZbDfsth3/Hmi1cEbahLPllO4m2yWqzJ1zdo4xgHySar3BbfD/jiX6QyhCHx4vol97uB5+MD2SaS8Swbx9X/v71zj7GrrPr/93n29VzmzPQydKhteeursSihxIJJqwgBnQRFwb+IQUMimlQuoWmMAfkD9A/aqGkqwVaJlz/4mRQTqfEPNQwKRUI0UNqXCu/P5BfpRRg6vc3Mue3L8zzr/eN59j5neuHl5f2Vua1PMmlnn33OPOesvc9ee63vWqvuoxLF7pjQyFONQPqQlEMSwfclvECC8gzSE6i5hjB53oUmWyWVdBWU9tDppsjVOOpxiKGBapkaypUd8+Cjim6SIzdtTLcznJhsoVrxUXOpzKTdQSWKoXKDahDhA8ND8E+cgecTltVrGKzXyjSt9DwEUQjSBiq3FXfGKPiBTXevGKhisFbMc9NYMtTAQCOCH8iye7DuWmcgQC/dLoQVA0dxkbaxwlkhpLs4U1+KQbsbQG3HRSgrejWFjqaYUwVAaYNABgi8qEwH9dIafbP6pB35QEUzOycPsJ3aJSBlL6UrROmkFQIfcussnJ1CtFr0+IHwEEUR0ACyXJVOTnG+Fd+nRS8hjwSgbXEDDMHotNRilU1eTVG5a/0w+/6sw1RohpRS9mawGrrjLIMyBkYY259I9F0zSPZdA+w5L4pKLOOuScUlw0iXQdKQhiCcfT0I+NJDJYyQxvbmqxZXbL+zLEOmNIzOyxtse33rr8bqqzB21wVAljOzyloq6lWuSdFLeRG5ho+u705vX2frogKtECobK00opgWUN7zo69Ij+zQ81Kues7boPfe/Y8E4O7t27cIPfvADjI+P42Mf+xh27tyJa6+99n/0GoYUtC5yvf3OTk/4aZ2Q3oBKIURPoFxejC8c0ekvvS5ev1daWVyke83Ei32KeTxaZyA3sDPyfXieRP8gTqvut1EdpZT14I22Le6kHZEAwMZEtIbn2riT1iiHbAYBvCCc8R5t4yhb/VCIggEn1tOmbKKVJgl0lsPkCoBrNgaNtJuj025BCIGBAatViKIKAj8qOyZ7noQQdkyEMUCep6VjEkjXQh527osdburav6NXVmk/A2Ofn2XwZADp+ZDSh0o18ixHN3UXRAnbKdcJ/7rdFFOTLYAIkbRfnEXEKAxDQEpkWQdhGELrLqLIXkScJfts3rvTiCJbeq6yHHFsHaYsU2WEzfd9SEJZ7eN5HqJqBWi2yy95+54ADfe5ZArtTgdRFLkqEDu3bPgSK+T1PWW/2HPrsC4ZGsDx48eR5ECzkyKLM9Rdl9+RxhJICEw3u2hPt7DqkhU4fPgwjmrCJZcMwxMpTGptUF0+hCDJ0e52sXzpECZPn8LwikvQ7bSQdxI06hWozEbtTk9NIqrV8cFVl6AzOYHm5GksHbwMIhCYbk45oSjw5rEzqH5kHdb824fQ7HbxHwdfQxiGMCaEf3oaQ4MDIPeaWin4UmB6+jS8IIQfhchMglo1RmYIJ7IEp6dtFKjRaCAxwNRUE4O1JTh+sg0B+6Vbq1YxsmwYvu8cmDRDqoFGWEUt9J2GCwiqPowOYJSG8zXQ1MBUewqGbCVOpnLkRuBMq4uu0uhkGcJSxxtiWRijElSQZDk60110UgU/ClGJPNSqVjcVyhBZpmB8gSTrwveA4aEqKoGPoThEHHi948yzx1oObStuhEQQVlCr2RLzJUMxBl0USPghBhoVBJXIRnh9H6QBLTNbNixCKNU7b4QQkIHVq0D3RtHYqO1MDUZx7tuGnuREy9o2SywFr0UzVc/+3w3ItPoLu195pghACidIPev1Pc+NXBA9Z6d0fNCbC1hET3qfU++70/d9eGGIWhTBS6y2pnB4CgenuGGy35sGKlcwWgPawOis1CX1IglFB3e3BmnbYxgAxeBWleVWc+TJ8rMkzzVvpZkX9+K9ldWzxkZ5io7KRL1LTdF4kIxx8w89wPPgBbbsO5AeKk43VA1DdKMQcWqPs1SjNwaE+jpT9/0B2/Kj6GitrTPqbvKKdRY6Ju2iXkIAQrjmrf036kSucaGEvXW2jTWtv2tmvP/+CuLyWqlnamh7A2GdKHtGRdmFWRDOzpNPPoktW7Zg165d+OQnP4mf/vSnuOmmm/D6669jzZo17/p1jNEgLWcYvV9oJURh5MI453dsZlRslc+xHqzsKzU/n0NEZOM2/QehPfA1DOWuDD6D58Ktvmc7ehYrUrBD64hsmbsUgNTCpsVkAOlOgEBISCgolUGSjQABtkeNbbtuIMuQqSwPZjtuwTomRdWDhoJ2M5xMnpUqaPseCKQ0OmkHaZqisXw5KlU3FyqI4IfFCAA3LReANhJZqqyj4z6DIPacg1DcaVp7edKWfKq+1uRKZVBKQwofMrRRljxR6HRsCqKYYRX6PkI326bb6qLdbKHbSRA7B8cPA8jC8fQkslzD832EQWRHCDQGEMdxeSL2C6yJbBdm7Z6eywBBEMHzXe8PWaQaAjSbTeTaOp8DAwMuxA1UKhUEXu8ULYTUQggkWQY/DG3JPBEylaM2YMu+M5UiTzM0BmIYLeD5AnEYQRgJCQ/tJIeisHzNOA6R5YQ8z1Dx6lg+NIijE6dQqQ+gFsdlei7LBSrVBjpJhoHYR6fTwcnxE4jjGCdPTOMDK0dwPJsEAHQ6BkePjGPNpcNY9+//jmaSIM0T1KsDaDc7ODVtxdTNdguv/ed/4sqrYgzWB9GoxzhybByn/FMYXPYxdDq9oamhi85JKZElXdQqFURBA0ZrxKFENfYxccZOU49iHwO1ACfePo6Jqa4ts1YBhLDjNYaWNLC0bj+vE8cn0E1bMHIAYVi1aRmjIDwPrVbqptm7u3947jgS8PwQShPSXCOIQnRVBup1hkLUkVg6UAFBIOlqdLsKngQGqzVUK14ZWfI9gjJtdNMONLQ9/lSKeuSjUQkQeRKVotoxjqCNhKclfCkRhz7i0EclFKjEIYYHh+AVM7ckIYhC2yKFNEAC2olp4Y6jYvaaMb6LaovSwT7b2endUHiQUkAI7c5HO43aRlk8qKI8WXo2DeTm9RXpcmMIRtgRD+UFjWyrCxIC8Gx0Vnh2OniRBiooSsELB0hKCUGiFPsaY9zNmf2bvkuvGUhEYYSKF/VaUfh++f1uxwQZmCyH0gl0rsrOx6BewYikwD7H630+1kkpWl0QZP/3UZIjJ+NS9pFLO9ub0UKs7BZQ/lsIs0kIFDMZyfSV35ezs1y0iTREYNPjUgABPATOOaz4IaphhFoYIvET5Mqmk0qhOfqcnTJ1VhR1uMfEufPQyhJ1W3PuLpCFQ6jQ78RQX5QIbrxE8Rr918Fi3mFR5VWuq+8xKfq2u0jRu2FBCJR37NiBO++8E1//+tdx+eWXY+fOnVi9ejV2794920tjGIZhGGaWmfeRnSzLsH//ftx///0zto+OjuLFF18873PSNEXqUhkAMD1te4OQVtDyXC1NgShL/4pIT59HXOLNiOz05rlcWLgs+x6zfQXOiigRACHgCwkICSMk/OLH9+0MGRR3J7ntNSEMwjCE0NrmPJUdjlnsR+7uwSgFkAct3DRe15DPhhuL92nDsIUnLwD4ngctbKm+hIBxze+M0u4O0AC+DSsnSYIkT+GHMRpDQ2VDuzAuIjvSioq1HaZnYCciG6CcQG7L/z0IGDcPxcAOLiX0OqPazy1Xuc2ju7vJNLNrsD1rDCLf/v0oCiE9wvR0BycnTiHLMtQrVURhxTYx7NNiFWuIosjpiiSCIEQYRjDKhbOdQNjOLbIRJ+mEnoGMEYY+jOszIfvunonITToXqFQqMFmG0PdQDSrnRI2ktAdEENi7S53bcvWsGvZaFYRV5HmOuBKClIamCPVqDSJJEQUhkkRAOhXp9HQLS+p1xBUfWhNON8+gvmQQS/McralJDC9dg+aUtW2r1UKWJYAkNDtNDDVqOHVqCifPdDAw0AC9fRwDgzaVNtlqI1cJzkxNotGoI4oCJN0uiAjVMMK06+9CBEycOIOJ42fgywAfuHQlppptTJw8gYmJE/i31avRcW0LVKYRDwikiRXwJ90MeZbDlx5i6aMqAzRCq1fJp9vwwghDA3W8daaFNDeAMfA8G12QUmKgZiM7/rCPU91JGG0bR0qyOrdcaXS6Ap1OBzWXx0rTDIY8dNMcaZoh8ELkXgZfevB8AUCXjSg9T9hZTUpDGekCngaVKEYcibK3iIJGM8ncbCVgSRyg5tdRCdwgW88vtWNxXC2bf2pfwpcxoqgCYxRq1QoGahGMsXf7mSH4XghfxBBSgMgDdAKnObbaEXd8FXOdjM4hZQ7pjuEwdFHXPl1HMfATXmTPPfJAOrdBGvKt9g4o01Zn6xSLGVFCmLIZqVUTKqt58awOsCjB7i/DLiijTi7CY2sxCj1frxJDEgBPWEG2B0AK+J60peraSgPKBqWuR5LReTkp3XbkKKL9pWK2XANgtWROsQIiwOvT3hC5AaTaNvsD3He2mxCvhIGXFx1tNGDsbCoJciXpvblcVlFR5LF62tJC4Fv8nWJdoRNeV+IYdZWjm9u2CVrbwgxDVgDe/72OYgaA66FTTkY3EuiTXNiokJud2Hf9snodt7Z+LZIgALK3XvQJvgllPLQ/ckQzL5llP6LicNAAjFBQi0Wzc/LkSWitsWLFihnbV6xYgbfffvu8z9m2bRu++93vnrO9002g1Pk/kiJ9UAjr4E62s4XEssj/9rVWt/0g3Eld6OoukPqyQwuKEKN9zA4Rtp0ites3kCkDTxgQcquhQVFhpMqDWZCB0ARhJMjYHL8phnsae6EkbX+0sG23hSF4fgDfl8hd47kktyepURoaGrlzLowkJGmGAKLsQ9JOEqRJCg1CEMcgpaCSDCL0UalU4AVxqabXJKFShSxNoHRmhXPGQAvbgTgIPXgujWNIwY4rtdVQeZZACul0VsXgTUBIgnF9kaQkiMz2E+l0uvA9YStrtP0MPC0xeWoSbx37F6Ynp1Gv1hBFFSRpVvb6qFasY5RkObQh6DxDrhTSzNkn1YARIJhyoJ4hYysScgNpfGijEXoBTKaQ6wSZShGVmgKBVBtrT9+zvZ5Il1+uxfA7oQWMNuhmKTqdLoI4glK9lGcnyXB6ctIeA0bjzHQTfhSiNd1CFA2gXq9jupNASoNGPUSa2n21ClGpNBAEHpI0QStVSJFi2fAw3n7zTTSnphG5dMub42+hsaSBwBPIVY5Wt4NuniNVOarCYKrVxIlTJ90agNOnJhGGVZBIkaouTp6ehO+H8GQAcvm9OKwhyxNMT0+jnbVtj53hIZBJQHkHrebpcvwBINFqd6zuKmkjDH1MtToQRBgaqCGFBLk0bbvdRDProtVOEEQCupXA83z4nkSeKUw325hq2AaEXiQQyRjdLEErTSEINk1KEt0EOD7RBMHqhqpRFZ1MYWq6iVa3C+ERIk+4BoA2nRJJlwZFhIwM2kkbk90cQnrwpYYSCoYq6HTtOXOq3cHpVge1wINHPlRHIQoC+F4MEYZISaHlzlvKbTM5XYjwfYkgDqAEQL5NTyinO8whIOG7zrbW2dPKVoSRVlAm72lcXEVR2k1A0PCFgDYK1ThEXKlA9I3M8EKrCfGM7YBrh1II5EqDSJdT1wkCKtdlH5piNEzR4VcID6JoXCq17YElbOrLipDJaRJNWVVpz3EJ6SnXi0uVehnP892FW5S9awqhsgcBaB+50pBBCJ3nVieldN9nQLZy1PVWM1pDeFbTZ1QvpW6nljvdiZS2eha2Qku4VCDpXnoJgsomgcY5I34Uuu8Y1+gPgFIpSJleo8XihlcYkNOtSFM4kvY7omj9ZwxBKgWR57YiTvSaMGqymqo4jBBHMboqR5YbKG0dq/I7hgRI6J7uxvVds+t2//bfyJcLdWsrHJbi8yiudSjSbnayfXkNdY9ZB6kPKWbcwAIoxefF3ytQRGU/ngsFKQrmvbNTcLbz0C/8PZsHHngAW7duLX9/4403cNVVV+G7u/7PRV0jw1xcDr7H5/3fd3jsH+/xNQsOv8v9/v6//Dv/Q/76/97fvzeDf87i32aYhUmz2cTg4OAFH5/3zs7y5cvhed45UZyJiYlzoj0FURTZdITjsssuAwAcPXr0HT8sZm4xPT2N1atX49ixY2g0GrO9HOZdwnabn7Dd5icL3W5EhGaziZUrV77jfvPe2QnDEBs2bMDY2Bi+9KUvldvHxsZwyy23vKvXKMKzg4ODC/JgWOg0Gg222zyE7TY/YbvNTxay3d5NkGLeOzsAsHXrVnz1q1/F1VdfjY0bN+Lxxx/H0aNHsXnz5tleGsMwDMMws8yCcHZuu+02nDp1Ct/73vcwPj6OK664Ar///e/L9BTDMAzDMIuXBeHsAMBdd92Fu+666z09N4oiPPTQQzN0PMzch+02P2G7zU/YbvMTtptF0H9Xr8UwDMMwDDOPWRAdlBmGYRiGYS4EOzsMwzAMwyxo2NlhGIZhGGZBw84OwzAMwzALGnZ2AOzatQtr165FHMfYsGED/vKXv8z2khY1zz//PL7whS9g5cqVEELgt7/97YzHiQgPP/wwVq5ciUqlguuvvx6vvfbajH3SNMW9996L5cuXo1ar4Ytf/CL+9a9/vY/vYnGxbds2XHPNNRgYGMAll1yCW2+9Ff/4x8xRE2y3ucfu3btx5ZVXlg3nNm7ciD/84Q/l42yz+cG2bdsghMCWLVvKbWy7mSx6Z+fJJ5/Eli1b8OCDD+LAgQO49tprcdNNN+Ho0aOzvbRFS7vdxvr16/HYY4+d9/Hvf//72LFjBx577DG89NJLGBkZwWc/+1k0m81yny1btmDv3r3Ys2cPXnjhBbRaLdx8881uaCjz/5t9+/bh7rvvxl//+leMjY1BKYXR0VG02+1yH7bb3GPVqlXYvn07Xn75Zbz88su44YYbcMstt5QXRbbZ3Oell17C448/jiuvvHLGdrbdWdAi5xOf+ARt3rx5xrZ169bR/fffP0srYvoBQHv37i1/N8bQyMgIbd++vdyWJAkNDg7ST37yEyIimpycpCAIaM+ePeU+b775Jkkp6Y9//OP7tvbFzMTEBAGgffv2ERHbbT6xZMkS+tnPfsY2mwc0m0368Ic/TGNjY3TdddfRfffdR0R8vp2PRR3ZybIM+/fvx+jo6Izto6OjePHFF2dpVcw78cYbb+Dtt9+eYbMoinDdddeVNtu/fz/yPJ+xz8qVK3HFFVewXd8npqamAABLly4FwHabD2itsWfPHrTbbWzcuJFtNg+4++678fnPfx6f+cxnZmxn253Lgumg/F44efIktNbnTEdfsWLFOVPUmblBYZfz2ezIkSPlPmEYYsmSJefsw3a9+BARtm7dik996lO44oorALDd5jKHDh3Cxo0bkSQJ6vU69u7di49+9KPlBY9tNjfZs2cPXnnlFbz00kvnPMbn27ksamenQAgx43ciOmcbM7d4LzZju74/3HPPPXj11VfxwgsvnPMY223u8ZGPfAQHDx7E5OQkfvOb3+COO+7Avn37ysfZZnOPY8eO4b777sPTTz+NOI4vuB/brseiTmMtX74cnued48VOTEyc4xEzc4ORkREAeEebjYyMIMsynDlz5oL7MBeHe++9F7/73e/w7LPPYtWqVeV2ttvcJQxDfOhDH8LVV1+Nbdu2Yf369fjRj37ENpvD7N+/HxMTE9iwYQN834fv+9i3bx8effRR+L5ffvZsux6L2tkJwxAbNmzA2NjYjO1jY2PYtGnTLK2KeSfWrl2LkZGRGTbLsgz79u0rbbZhwwYEQTBjn/Hxcfz9739nu14kiAj33HMPnnrqKfz5z3/G2rVrZzzOdps/EBHSNGWbzWFuvPFGHDp0CAcPHix/rr76atx+++04ePAgPvjBD7LtzmZ2dNFzhz179lAQBPTzn/+cXn/9ddqyZQvVajU6fPjwbC9t0dJsNunAgQN04MABAkA7duygAwcO0JEjR4iIaPv27TQ4OEhPPfUUHTp0iL785S/TpZdeStPT0+VrbN68mVatWkXPPPMMvfLKK3TDDTfQ+vXrSSk1W29rQfPNb36TBgcH6bnnnqPx8fHyp9PplPuw3eYeDzzwAD3//PP0xhtv0Kuvvkrf+c53SEpJTz/9NBGxzeYT/dVYRGy7s1n0zg4R0Y9//GO67LLLKAxD+vjHP16WyzKzw7PPPksAzvm54447iMiWVT700EM0MjJCURTRpz/9aTp06NCM1+h2u3TPPffQ0qVLqVKp0M0330xHjx6dhXezODifvQDQL3/5y3Ifttvc42tf+1r53Tc8PEw33nhj6egQsc3mE2c7O2y7mQgiotmJKTEMwzAMw1x8FrVmh2EYhmGYhQ87OwzDMAzDLGjY2WEYhmEYZkHDzg7DMAzDMAsadnYYhmEYhlnQsLPDMAzDMMyChp0dhmEYhmEWNOzsMAzDMAyzoGFnh2GYRcHhw4chhIAQAldddVW5/eGHHy6379y5c9bWxzDMxYOdHYZhFhXPPPMM/vSnP5W/f+tb38L4+PiMKe0Mwyws/NleAMMwzPvJsmXLsGzZsvL3er2Oer0Oz/NmcVUMw1xMOLLDMMy848SJExgZGcEjjzxSbvvb3/6GMAzx9NNPz+LKGIaZi3Bkh2GYecfw8DB+8Ytf4NZbb8Xo6CjWrVuHr3zlK7jrrrswOjo628tjGGaOwc4OwzDzks997nP4xje+gdtvvx3XXHMN4jjG9u3bZ3tZDMPMQTiNxTDMvOWHP/whlFL49a9/jV/96leI43i2l8QwzByEnR2GYeYt//znP/HWW2/BGIMjR47M9nIYhpmjcBqLYZh5SZZluP3223Hbbbdh3bp1uPPOO3Ho0CGsWLFitpfGMMwcgyM7DMPMSx588EFMTU3h0Ucfxbe//W1cfvnluPPOO2d7WQzDzEHY2WEYZt7x3HPPYefOnXjiiSfQaDQgpcQTTzyBF154Abt3757t5TEMM8fgNBbDMPOO66+/Hnmez9i2Zs0aTE5Ozs6CGIaZ03Bkh2GYRcWmTZuwadOm8vdHHnkE9XodR48encVVMQxzMRFERLO9CIZhmIuNUgqHDx8GAERRhNWrVwMATp8+jdOnTwOwzQoHBwdna4kMw1wk2NlhGIZhGGZBw2kshmEYhmEWNOzsMAzDMAyzoGFnh2EYhmGYBQ07OwzDMAzDLGjY2WEYhmEYZkHDzg7DMAzDMAsadnYYhmEYhlnQsLPDMAzDMMyC5r8AsY3Cl4PeWYkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -179,23 +162,23 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "de3f5949", + "execution_count": 7, + "id": "00a6f00a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKMUlEQVR4nO3de5BcdZ3//1ffu2eme+5XMgnhGjAEEPjGUWTR5EsSUEH5bQlGRGWhdBNLQPlivMGiZVzXWl0sxNpaF9SCdWVXcGWRNYAE0RAhEkOAjUk2kEAyuU1mem59P78/2LSZQ+a8P8QkMxOej6qpInPefPp8zuecM+/p6X51yPM8TwAAAKgKT/QOAAAATDY0SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD7Rid6ByaBSqWj79u1Kp9MKhUITvTsAAMCB53kaHBxUV1eXwuHD+5wPDZKk7du3q7u7e6J3AwAAHIJt27Zp2rRph3VMGiRJ6XRaknTtu09TPBoZt66lqc4cq6au1qyJJ2sCtycSDo+TbjZrUqm0WRONJ82aUHj8Y1KtMSukw5HZXimVzJpyuehQU7Yfy6uYNV7FrikWCvb+lOx9tg5gsZg3h3BZy1LR3l+F7N/UCgV7TqWSvQ4uZ1fFWM9S2T5volH7dhiJxRzGsY9NJGbXuFxTLudNIR98XpTK9nnjhe1519Y3mDUtze1mTTpj3/+SCfu+5XKOWpdvuWLftEoONUPDI2bNlpdeNmv++MJ6syZXsO9JJ50yy6yZ/ZY5gduTqeCfY5Ikh3toqehwnwioGcnldN0Xbqn+HD+caJCk6p/V4tGIErHxf4Ak4/bhcqlJJIJvNolE3ByjJpkwa1Ip+yYSm2INUtmpQbL312Wcw9Yghe2jUy45PDVsHMBC2D7ATg2Sy7PUDj98Ig5/ri5FDk+DVDYarVLZHiMadWh+4pOsQYrYVWEFn6OlksN5HrHnnTpM961ah/tWMpkya45ag1S2ayoO94mkw/GLx+yfL2WXx4o7rFUq+BinjO2SnBqkosMvJqWAJy72OxIvj+FF2gAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD7kIB0gGg0HZpiEHGLMK2U79yE/EhwalqxtNceIRO08kVDEXl6XmkjEzqCQQ8ZRxSHUrlIJzrPxPIeAR4dQQJdE+mLeHscz9teV55AXYmU3RVzyRFzynxyyXyqy521lE0lSySFMsuwQJOcZ151L7lVRo2aNIvaJE3bIU0qlHbJ+UvY17rLm8VBw5k2sYu9vxeECLxXtY7x7716zplCyg0obGxrNmphD1k/EWKuww70v5HDtugSMptN2QGZ9fcauCdvnTTxh12zfuT1weyLmkttk1yQcMq2CsgFDDhlJh4pnkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxI0j5AKpVQIjb+IQnJTkwtjA6bNcm65uCCkEO6dcwhLTVup/WGQiGzxkopdh0n7JD6q3LwOJXK4dmXfC5n1rik6JbKDmnRDgnikr3PVlx5uWynHbskdlccanKjdup0fiTvMI69Dp7nkOxtnBfFvMMaOKRk53P2nMIO6cGZop2IPBQdNGskO706GgquSSTtlOdEbdqscbm+s4NZs2ZgcMhhnOBPI5CklhbjPiupPhO8DpGofV26fNJA1KGmttZO0j6ue7pZU1/fZNY0NbWZNQoFXw8uqfy5vH29FB2S04Ou71GHa/JQ8QwSAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACAD0naBwhFIoHpyfmcnfgZdkhxLg8OBG6vrXdJXrZ7W4dAZMkOeHWaU6ViJ0pXHBKlXZKyLaGwQ6q3Q2ry6Iidil52mJPTOVG2U2k9I8ndqziMUbSTq4uD+8waOaR2hzx73plMyh4nbK9VqRK8PyWXlHGzQhrI2ufE5pdfNWtm1drzTtXYycqVin1sKoXgc7Q4YidXhyr2eR5L2+udStjp/hWHTxLY199v1gw7zKupsSF4e1OrOUYyZa+Twy1ARYdk6nzRrgk73P9iMfvGn0jWBm53+cQCl6sqHLb3JRTwSQPDI3aq/6HiGSQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfkrQPEA2HFI2Mn9iZG82bYxTyduJsJB6ciFyXsx+nVLKTq8sO6dbRsH0KOAQiK+yQdlwJOdR4wcev4HBsXFKpXRJeYzH72ORH7bTe0WG7prG50ayJRoL3OW8ktEtSuWynzsZkp23Ho3b6bdwhaTeWcolyt9chHKsJ3F5xOIkrDr8vphvsZOVHfv+cWZMdtdfhknkXmjWJVMKsKReD078ro7vNMbzSiFnjct4k0i1mTa5gp+mXCvanGgwP9Nnj5IPnNTJsJ6c3NNrnRCRmr9PQoH2fGBzImjUxh2TqmprglGxJikRjgdvjcTsVPeRwz3dJ5A4HjOPys+dQ8QwSAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACAD0naB6hUPFXK46cVD4/Y6a1hhxTTeDw4xbRihzyrXLbTZisOA1XKdtq257mM45Be7dmPZU0+noibQ4wO2Ym+2f49Zs3g3p1mTSRmp8lmmu2k3WjEXs/yyN7A7WEjhVySKmW7Jlyx08qTNcHJ1ZKUSNk1ydo6syaaajBryl7wrSwcS5ljFMt2ou/Wba+aNR0FOxE5kbdTz9eu/q1Zc/6755k1NZmGwO37hu0k7eF+e39djnG81j63XH5vj0TsmtpaOy06Gg1e80rZ3t99fbvMmkLJvocODtvXpksy9ahDSvtAf79ZEzWStF0SrOMO90eHDzWQF1Dk8vPpUPEMEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgM+ENkjLly/Xeeedp3Q6rba2Nl122WXasGHDmJoLL7xQoVBozNcnPvGJMTVbt27VJZdcopqaGrW1temmm25SqeSQywMAAHAQExoUuXLlSi1ZskTnnXeeSqWSPv/5z+uiiy7SCy+8MCbk69prr9Vtt91W/XfNASF15XJZl1xyiTo6OvTb3/5WO3bs0Ec+8hHFYjF97WtfO6rzAQAAx4YJbZAefvjhMf++++671dbWpjVr1uiCCy6ofr+mpkYdHR0HHeOXv/ylXnjhBT3yyCNqb2/XWWedpa985Su6+eabdeuttyoet5OX9yuMDCoUGz8JO5VKmGPki3Yab94IlK6pzZhjyH4YlUp2MqtXcXgS0XNI7XZIaC4X7STycjE4ubaYHzHHKObtJNn8UL9Zk6xNmzVxh7ToTEO9/VgRO/07XNMYuD0/Yh+bkX12ynOxbK9TLmsnDA/u3GHW1Le1mzXpVvtkr23sCtzuReyE+8KQPacNL7xo1oQcrpfpCTv9N9f7klmz9qknzZr/c8H5gdtbOoOPnSTVJO05JRyul2TKTlYu5+zHqq2171vlkv3jLWScWsm4fc8fLdj3vsFh+55Ul2k2a5paDv5z8EDZfXay98iIvT81xv0kHrfXMhoJTuOWpLDDtTlRJtVrkAYGXouzb2pqGvP9e+65Ry0tLZo9e7aWLVumkQMWbtWqVTrjjDPU3v6nG+2CBQuUzWb1/PPPH/Rx8vm8stnsmC8AAID9Js1nsVUqFV1//fV6xzveodmzZ1e//6EPfUgzZsxQV1eX1q1bp5tvvlkbNmzQT3/6U0lSb2/vmOZIUvXfvb29B32s5cuX62/+5m+O0EwAAMBUN2kapCVLlmj9+vV68smxTxlfd9111f8+44wz1NnZqXnz5mnz5s068cQTD+mxli1bphtvvLH672w2q+7u7kPbcQAAcMyZFH9iW7p0qR588EH96le/0rRp0wJr586dK0natGmTJKmjo0M7d4791PX9/x7vdUuJREKZTGbMFwAAwH4T2iB5nqelS5fq/vvv12OPPaaZM2ea/8/atWslSZ2dnZKknp4ePffcc9q1608vTFuxYoUymYxOP/30I7LfAADg2Dahf2JbsmSJ7r33Xv3sZz9TOp2uvmaovr5eqVRKmzdv1r333quLL75Yzc3NWrdunW644QZdcMEFmjNnjiTpoosu0umnn66rrrpK3/jGN9Tb26svfvGLWrJkiRIJ+x0IAAAAfhP6DNKdd96pgYEBXXjhhers7Kx+/eu//qskKR6P65FHHtFFF12kWbNm6TOf+Ywuv/xy/fznP6+OEYlE9OCDDyoSiainp0cf/vCH9ZGPfGRMbhIAAMAbMaHPIHlecBZId3e3Vq5caY4zY8YMPfTQQ4drtwAAwJvcpHiRNgAAwGQyad7mPxkMj+ZUKo6f6hmL2qmgXshOF62vD05EjjkklMYdEl5jMXt/VTFivSWVHRK5i7lhs6aUt2uK+eBE6aH+veYY+3a+atYU8vacWmecZNbEEw5r5XCVVRw+O3Bwb3AytVexE4jDMYfk7yY7fT4StdOtS0X7GKdqas2aRMROuI6Fgs+tfMme05qnVps16194zqxJOCRpZxxeHlkfshOGh179o1mzfmVwIvJbzjvVHGNg3z6zptxn1zR329dLKGYncsdc0pcr9jk6OBScLF8u22sZT9SZNc2tdkp2bdquCYft5zTyI3ZafsXhXlHxgh/LbQyHe5LD8zSh0Pg1ISsO/c/AM0gAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+JGkfoLamVonY+AmteYf05UjUTuxtaOkM3J5IOMTsGp9jJ0mlQsGsKeYHzZr84B6zppAfNWsqFbsfr5SDE6VHR4JTgSUpXtdk1nSefJxZk6qrN2tiDonmDkulunRwurok1dQEp2BXCvZalot2mvnA3l12zT77sV56qdesOW3WdLMmkbBvU7mB4PT0hx9dY46x/n/seZ/cYCdBt9XZSdDDZfukiNdlzBoFJAzv90r/QOD2+s0bzTGiSXveo3l7TqGKfU8q5O1rvFBwuN+U7U8J6N0VnP6dSreaY0w/vsusaWqwx0mm7PPGc/jkg7q0fd8azvabNbFY8L2t7NkJ1uWSQ5J22OG8CaixPtP1z8EzSAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD40SAAAAD4kaR8gEk8qEhv/kGSSKXOMomfXVErBidxexU4frZRdahxSa0ezZs3wUL9ZUy7bvXZ+NGc/Vl9w+rLLvBvb7ZTsaMxep3A4ZtZ4ZTtdvVgJTgeXpNHQ+Anu1ccqBqdX79u+yRxjIDtk1oyM2udNIm7fOk6ZNdOsSTqExucGdts1I8HnViVrj9GZdjiHY/Y5kU3V2o/VYqcmt0+zE5pdMoQ79wSnjOccktMbW+105qKRgi9JsZidyB0K2edWqWinOIci9lp1TDslcHumyb6XtLYGfzKCJKVq7PtNKOSQTO1wjDMOSdq5Ufs+YO1PJOywTg5p5pGyPU44YFeOYJA2zyABAAD40SABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD4kKR9gHKxqLLGT2oORe1k1tr6jF2TDq6Jx+144ZDshNJCwU5LLVcckk5TDfY4w8NmTSlv709dJvix6lo6zDGSNXVmTdQhETkWs9OtoxG7RmU7IbeQs49fbrAvcHuyxk4pjsft34m8ih1Nu69vwKx5+eUdZs0pJ7SaNaGCfWxG9gXvT2utvQZFh5T21iZ7nLYuex3q0vatt7bGLFG0psWsCWW3Bm4fcljvISOpXJIiMXuH9zmkdqeb7QTxaMy+R0aTTWZNffOM4H2pt49vImHvSzjscN159r24VLKTtMNRe3+SSXutrGDvaNS+9znN26wITssmSRsAAOAookECAADwoUECAADwoUECAADwoUECAADwoUECAADwoUECAADwoUECAADwoUECAADwIUn7AOF4QuHY+Ick7JCanHJJcTYSucvlojlGqZA1a4p5hwTikVG7JmunJmd326nJSYdk6kjaSL91iE0t5UfMmnDIXqdixU7+roTtZGUXkYj9u0qmqS1w+1A2OGlbkkqVvFkzOtJv1qQydkrxiS12SrZXss8/F6P54GvGC9nHtyZiX3f1Kfv8q4na4ySjcbMmU1dr1iQy9WbNHi84fXkob88pOmqnPCfSdjr94MCgWZPNbjRr0m3HmzU1jXYKdiyRDtw+Olowxxgasu8TTqn8UfvH8YhDonn/gL0/xZK95laStktKdixun+dh2ffQcMB9Nmjbn4tnkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxI0j5AXbpOyfj4h2So306vjjok5EaM4M/iiJ1cXcz3mzWlUnCCriQND9jjDO/ZbtbEHFLG42k72ba+qTFwu1e0U7IjsQazJqyKQ409p0rJTtrNF+z0aq9sp55nrdRph0TZ0VF7X2pq7HTmYslOVi7mHVKI99nrGS3YycCjxeBk4IFRh7ToqMM5HLN/p0zG7HVIOYyTCEj1ryrY6enWJwCU7UOjsJH+L0k1NQmzplCwz/Oyw3mT699p1ozUTTNripU9gdtHR+2k9+GhfrMmFrXXO1VrJ6cXivZ9K9tv//wIyb4PpGuTgdszDinu0bB9TYWsyG5JnsMnKBwJE/oM0vLly3XeeecpnU6rra1Nl112mTZs2DCmJpfLacmSJWpublZdXZ0uv/xy7dw59uLYunWrLrnkEtXU1KitrU033XSTU3MAAABwMBPaIK1cuVJLlizRU089pRUrVqhYLOqiiy7S8PCffsu44YYb9POf/1z33XefVq5cqe3bt+sDH/hAdXu5XNYll1yiQqGg3/72t/rBD36gu+++W1/+8pcnYkoAAOAYMKF/Ynv44YfH/Pvuu+9WW1ub1qxZowsuuEADAwP6/ve/r3vvvVfvfve7JUl33XWXTjvtND311FN629vepl/+8pd64YUX9Mgjj6i9vV1nnXWWvvKVr+jmm2/WrbfeqvhBPiwvn88rn//TU4zZrP2nMwAA8OYxqV6kPTDw2t9Om5pe+6TwNWvWqFgsav78+dWaWbNmafr06Vq1apUkadWqVTrjjDPU3t5erVmwYIGy2ayef/75gz7O8uXLVV9fX/3q7u4+UlMCAABT0KRpkCqViq6//nq94x3v0OzZsyVJvb29isfjamhoGFPb3t6u3t7eas2BzdH+7fu3HcyyZcs0MDBQ/dq2bdthng0AAJjKJs272JYsWaL169frySefPOKPlUgklEjY77gAAABvTpPiGaSlS5fqwQcf1K9+9StNm/ant2Z2dHSoUCiov79/TP3OnTvV0dFRrfG/q23/v/fXAAAAvBET2iB5nqelS5fq/vvv12OPPaaZM2eO2X7OOecoFovp0UcfrX5vw4YN2rp1q3p6eiRJPT09eu6557Rr165qzYoVK5TJZHT66acfnYkAAIBjyoT+iW3JkiW699579bOf/UzpdLr6mqH6+nqlUinV19frmmuu0Y033qimpiZlMhl96lOfUk9Pj972trdJki666CKdfvrpuuqqq/SNb3xDvb29+uIXv6glS5bwZzQAAHBIJrRBuvPOOyVJF1544Zjv33XXXfroRz8qSfrWt76lcDisyy+/XPl8XgsWLNB3v/vdam0kEtGDDz6oT37yk+rp6VFtba2uvvpq3XbbbW94f8KRiMKR8Q9J7CCRAX7xuJ04mx/eHbi95JA2G4naS1cs2mnH+WE74qCmrs6saew83qxJpeyk2HKpGLi95JAWXcjZcxrpc0hFT6XNmlzOIWnX4Rg7BJErYhSlHNapYJ8SirqErHp2om/eIRF51OEcDY/a+/M/O4KvmVqHO11zq50MnK63zwlrnV6rsZ+8jyVTZo0Xsh+rpr4hcHsmbd9vEnH7l82wZ69lMmEvRNnhPlsu2unqfa8e/F3MBwrXtAduL5fsxOncqH38Cnl7nFgyOLlaksIR++eLdQ+VJM9hrfr2Bj9WKuVwflbsBGwr6V2SQgFJ2oW8fQ8+VBPaILnEhyeTSd1xxx264447xq2ZMWOGHnroocO5awAA4E1sUrxIGwAAYDKhQQIAAPChQQIAAPChQQIAAPChQQIAAPChQQIAAPChQQIAAPChQQIAAPCZ0KDIyaZUqqgUHj8hOJa0k6BLRTtVtZwbCNwec1gVL1xj1oxm95o1ldygWZOefqJZE3NI9h4csPenMNQfuL1UtNOZKw5JshXZ6a35vn1mTSxmJ3tnB+3U30zaXs9SJDhhON/XZ45Rl7HP4WjcTvSNhu2Q10rZXqtQ2P4dbbBgp3ZPaw5O9U1G7f2tb7DXIJm2k7RTNfbxizskSscd1qFYzJk1pXLw3HM5O+W5LWYfv1LBTjQOhe0k6FTUPidGHX50RUP2dVcqWOPY94lK2Z63V7HvSUWHdYhE7URzz7OPX6Fo78+OHdsCt5crdhp3JtNg1ijk8jzN+OffqMNxO1Q8gwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDgwQAAOBDkvYBQqHXvsZTKNjJwMW8nd5aGA5O0vZSdeYYoUrJrBnet8esqXNI/XVJ5O59+X/MmtxQ8LwlqZAPTnhNOCR2R5PBqcqS1NzWYNbEEnbqb8mzk7Qbm+zHCoftxF6Fgx8rnnBJ2bXTbyvFEbNmYNROcPYcUtoro3by/EDWfqx0NPh6aJ3eYo6RyNgp2ZGEfb1EEnZaechhuYtG4r4keVH7sQaHgtdzdNROIq6rs+9JmYYmsyY75JC27XCN53bbKfeVkn2/LuWD0+dLUfucqHh20nvYuHYlKRSy08o9h3T6fNEep1Cy99nLB19Tr7y00RwjkbSvl4pcjs34z+XkC3Yq+KHiGSQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfGiQAAAAfkrQPMDw0qFJs/EMSi9qpoIWcnUJcrgQnnUaidiLyyLCdQFzM26mrww7JrLGUncza1tlp1niVZrOmNNwfuD07aKcqD+fstOi9e4ITdCUpEo+bNS0drWZNoWin1lYcErkT8eDLNRKy09XLBfu8qQSk1lb3xT4lNJyzE25zRsqzJJUL9ryKQRH4ksKJjDlGrMZOgq7IIYlcLgns9jlRzNup0wP99npGEsFp0JGYfV+TQ9px765+s6YhY69DQ5O9DslUg1nzytaXzZpSIThFPOSQVJ5wSO6Xw/VSKdmJ5vmcff8rl+wHi4TtH/0x47wo5u1rd8jhUxhczr9Eavxz2PMcDu4h4hkkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAH5K0D7Ctd5/i0ci427sdUpNTSTtFN5EKTmcNR8bfh/0G9/aaNcM5O5n1uFNOMGvap59s1ihip05bqbWSVBjpD9wezdrpwqFdW82axtYWs0YOidJ5h2OcSNrJ6LmcPa9SKThR2iH4W8efcLxZE44FJy9LUnbvLrNm5za7Zjhnp+DuG7HT3s85d07g9sbWDnOMUKzGrCmN7jNr8mX7vPHC9n0iO2yfW4PDdrJyujF47omGQXOMn/92nVkTqbXnNDxqr3eNZ49z2YXnmTWnveUMs2bry/8TuH3PoL0GkWS9WRMK2/f0YtGetxwSsJN19jg1mUazprauIXB7PG4nYIeNhHtJTvfZSGT8OY3mctJPHrYf5xDwDBIAAIAPDRIAAIAPDRIAAIAPDRIAAIAPDRIAAICP07vYbr/99jc88Mc+9jGl0/a7YQAAACYbpwbp+uuv17Rp0xRxePu5JG3btk3vec97aJAAAMCU5JyD9Mwzz6itrc2plsYIAABMZU6vQbrllltUV1fnPOjnP/95NTU1HfJOAQAATCSnZ5BuueWWNzTosmXLDmlnJlptIhaYpC2HUFCXFOxkbXBi7+A+h7TeQnCqsiSddLqdJDv95NPMGpc/rXoOB6ecSDmME9yze/s2m2M0ttupycWCnc5cyg/ZNXYwsCqevVbRqP27SmdrQ+D2dJ39zO3u3XvNmlyuz6xR2Z5TWXa09+ZddoJ4Mm7/cpZuCU6Eb3A4Jwb77WPjRe19KZWKZs1ozj7/GtJ2UnHJIak4ZqR2t3cfZ45RrrfnlBsZMWtqGuy/QiQcfm//z1//3qy5+v/rMmtOPOXMwO2pnTvMMYZDGbOmLm0n98diDlH4DqnTcYdxkkk7NT5pfOJDLGondlcq9g2yWLSvhUJ+/ETz4VH7HnKoeBcbAACAj1OD9Na3vlX7HJ7V2O/888/Xq6++esg7BQAAMJGcGqS1a9fqD3/4g9atW+f0tXbtWuUDnhLb74knntB73/tedXV1KRQK6YEHHhiz/aMf/ahCodCYr4ULF46p6evr0+LFi5XJZNTQ0KBrrrlGQ0P2n0YAAADG4/wutnnz5snzHF5wISnk8gm+koaHh3XmmWfq4x//uD7wgQ8ctGbhwoW66667qv9OJMZ+MvrixYu1Y8cOrVixQsViUR/72Md03XXX6d5773XaBwAAAD+nBmnLli1veOBp06aZNYsWLdKiRYsCaxKJhDo6Dv4CyxdffFEPP/ywnn76aZ177rmSpO985zu6+OKL9c1vflNdXfaL9AAAAPycGqQZM2Yc6f0Y1+OPP662tjY1Njbq3e9+t7761a+qublZkrRq1So1NDRUmyNJmj9/vsLhsFavXq33v//9Bx0zn8+P+RNgNps9spMAAABTyqR+F9vChQv1wx/+UI8++qj+9m//VitXrtSiRYtULpclSb29va8Lr4xGo2pqalJvb++44y5fvlz19fXVr+7u7iM6DwAAMLU4vwZpIlxxxRXV/z7jjDM0Z84cnXjiiXr88cc1b968Qx532bJluvHGG6v/zmazNEkAAKBqUj+D5HfCCSeopaVFmzZtkiR1dHRo165dY2pKpZL6+vrGfd2S9NrrmjKZzJgvAACA/Sb1M0h+r7zyivbu3avOzk5JUk9Pj/r7+7VmzRqdc845kqTHHntMlUpFc+fOfcPj5wqlwOTPRNJO0Q3H7PTbaDw4xTQSs2MKuqbbz3g1tjok5DqkmCaidgJ22eENjsVKxazJDQfnbcXjdk8/NGwn+haLdhK0S4L46JCd4trUYKfWTptmr9Xvn98QuH1Lr5362z9sJyLv7rNrikWHxHizQiqW7HU470Q7BTteF5zQHIokArdLUjhsv/vWk50eXCjb53nFs8cJhe3bc9ThDp4zUve9mH1sduy1z/Mn1+02a9rr7WtzwTvtdP/jT7LfBLRhw0tmzZyzg5O0m1vsc68x2W7WZBockrSjdgJ2OOzygfEO57HDO9LLpXLgdpdPIxgdGTZrBh1eAzw0NDj+Y+Ry5v9/qN7wM0hXX321nnjiicPy4ENDQ1q7dq3Wrl0r6bV3y61du1Zbt27V0NCQbrrpJj311FN66aWX9Oijj+rSSy/VSSedpAULFkiSTjvtNC1cuFDXXnutfve73+k3v/mNli5dqiuuuIJ3sAEAgEP2hhukgYEBzZ8/XyeffLK+9rWv/VmJ2c8884zOPvtsnX322ZKkG2+8UWeffba+/OUvKxKJaN26dXrf+96nU045Rddcc43OOecc/frXvx6ThXTPPfdo1qxZmjdvni6++GKdf/75+sd//MdD3icAAIA3/Ce2Bx54QLt379aPfvQj/eAHP9Att9yi+fPn65prrtGll16qWMx+6ni/Cy+8MPCpvv/6r/8yx2hqaiIUEgAAHFaH9CLt1tZW3XjjjfrDH/6g1atX66STTtJVV12lrq4u3XDDDdq4cePh3k8AAICj5s96F9v+j/hYsWKFIpGILr74Yj333HM6/fTT9a1vfetw7SMAAMBR9YYbpGKxqH//93/Xe97zHs2YMUP33Xefrr/+em3fvl0/+MEP9Mgjj+gnP/mJbrvttiOxvwAAAEfcG34NUmdnpyqViq688kr97ne/01lnnfW6mne9611qaGg4DLsHAABw9L3hBulb3/qW/vIv/1LJ5PgpJw0NDYf0AbcAAACTwRtukK666qojsR8AAACTxpRK0j7S9g4OKRYZ/2VZXcW8OUaqbKehlgPSuiW31N/GluDkYEnyPDvRt5CzE3IjYTt1NZaw06JLDqnducE9wWM4pBTnBoPTuCVJEXudhrP2sema1mnWNLbZaby/XL3KrDnxpOCPxDmzs9UcI+dwftbV2jXr1tj5Z9t215s1O17ZZNak6tJmTTRRG7i94tkvtywU7QTxikMa/GjeHieZtONQ4kk7wb4+ZicrD4wEX3exij1G36B979vXb8+74HAP2LXHTkaeNaPJrHl1Y59Zc8pIcIpzJWznwYcckqtLxeBUakkql+1j43IPLeTttco5pE+PDAenYI8M2QnYg/uC7+eSNNC3y6wZGRo/gT3v8KkIh2pKfRYbAADA0UCDBAAA4EODBAAA4EODBAAA4EODBAAA4EODBAAA4EODBAAA4EODBAAA4EODBAAA4EOS9gHqUknFouOnyo4OD5pjJGIOCbnR4MPev8tOKY7LTkttaGw0ayLx4ARiSco7pG17stN4iwV7n2NGenBxaMAcI5Gwk6C9sH3qN3ecYNZ0OyRp//g/V5g1p72l2azJGcnoj6/ebo4xOGKnop8xMzixW5JOOdU+t3K5IXt/6hrMmpYW+9hYCnk7gXhk2D7Pi559nufsQGnVOqSVK2TXhEL2ehaN9PkWh6Tympi9LzPa7GthaDQ4nVlyS4se2tdr1gz020nPWzc9F7h92LM/1SDZZqdkp9L2tRAK2c9XjAzZx69vz26zZmCvnXBdMtK2QxV7nUKefWxKJfuCKQWcwsUSSdoAAABHDQ0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACAD0naB5h99ruUDEhh3vnqBnOM4VE7LbpcDK7Z1msnoW57dYdZM63dTiBub28xa+qb28ya4Kze/60xkqAlKZVKBm7PD9kJsMmUnWZe19hq1rR2zDBr/rhpk/1YaTt9OZK0k4pf3ROcxvuHzXYSdC5nr0EiZaer16Ycktxr7fTg/sF9Zk2zQ5J2qRicplsqOyQZh+11yufsZODa2uA0eEkqFOwU4mhAqv9+nuwU4WSiJnB7qWifN//33HeaNXv2PGHWZPN2anJu2F6rXQU7QXx4yB6nUAkep/24aeYYfYURe19G7OciPM/+cdzfb3+SwKuv2p/EsGe3fR+tSQWfN3U1dsp4qsa+l8TDIbMmFrBM4aJDdP0h4hkkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAH5K0D/CWOeepNiA9dHeXnaq6feuLZs1IX3DS6Ukn2AnOQ9msWfPfL9tp2xu32andZ88aNmvSTXbadqap3awZzQYnKxdydmptU7u9TplGe39rEvbl8cJGO7X2+OPTZo0qdppsfbozcHsktM0cozFtJ3b39dspzyPDdopufsROeW5tsJN262rsZOpKMWdst8+bQsn+fTEcsWtKZTttuy5lr0M4ZKeeexX7seLx4GOczdrpzI2ZOrPmI/NmmzV/3LbdrNk3HLyWkvTKHvv+d1L3cWZNy7RZgdvjdfXmGDUFew2iSYd7gGd/AoD9SFLNQINZE3L4+VEMBZ/rpYid9K6YfZ7HEva9JBzwWCGHVPpDxTNIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPjRIAAAAPiRpH6CmplY1NeMnaU+bfoI5RjRmH9L/yQ8Fbk/KTq6Ox1rMmllJO/1266s7zZrnN9lp0WedYScix4b2mjX79gQnezc0N5pjJGsyZk1djb2/xcKoWVPIFx3GsVOy6xzOGy8anDg7Z/ZZ5hg7X7HXMlcKTjOXpO077bUczdqJyBfPPdesiUYdEntLwddUpZw3hwiHPbumbKdbp+sb7HEqdrJ3cdROuA5H7PM4kQw+b1IBnx6wXyxmr0HZSDOXpDknzzRrkvXBifGSVLGXQVGHFGeFgtd8cMS+ByQc0rYTtfY9yavYz1cUCvbEa2vtc6Km1k6nz40GXzPlsn3v82Tvb8Th3heNjl9T9uzr9lDxDBIAAIAPDRIAAIAPDRIAAIAPDRIAAIAPDRIAAIDPhDZITzzxhN773veqq6tLoVBIDzzwwJjtnufpy1/+sjo7O5VKpTR//nxt3LhxTE1fX58WL16sTCajhoYGXXPNNRoaCn5HCwAAQJAJbZCGh4d15pln6o477jjo9m984xu6/fbb9b3vfU+rV69WbW2tFixYoFzuT28nXbx4sZ5//nmtWLFCDz74oJ544gldd911R2sKAADgGDShOUiLFi3SokWLDrrN8zx9+9vf1he/+EVdeumlkqQf/vCHam9v1wMPPKArrrhCL774oh5++GE9/fTTOvfc1/JUvvOd7+jiiy/WN7/5TXV1dR107Hw+r3z+TxkP2Wz2MM8MAABMZZP2NUhbtmxRb2+v5s+fX/1efX295s6dq1WrVkmSVq1apYaGhmpzJEnz589XOBzW6tWrxx17+fLlqq+vr351d3cfuYkAAIApZ9Imaff29kqS2tvbx3y/vb29uq23t1dtbW1jtkejUTU1NVVrDmbZsmW68cYbq//OZrPq7u5WOCSFA0KPvaCN/6uxsdmsSacbArcPBez7fomknZaaTMTMmhlddiL3rj39Zs1/b9hi1rQ32om9iXBw8mrFIclYDsGqQ/07zJpC3k5fro3YCcOrfm+nV7/jHHtew5XgZzqbk2VzjM2lQbMmWrRfw7e3z74WLjnvbLNmZnerWTOy72WzJtHaFrg95HDt1tTY6cJe2OWWaa9DqWCn5ZfjwQnYkhRy+BU3YqRFZ9L2vcQlbXtn2Z73yJD9bH2ifppZUyzY53E+Zz9WoVgI3B6qDT6vJCkke52KDgnYqtg3LpfQ6JhDMnW6ziFtOxE8r4TDz5eUwycWxBN24nk44LqLOhzaQzVpG6QjKZFIKGEsPgAAePOatH9i6+jokCTt3Dn2s8J27txZ3dbR0aFdu3aN2V4qldTX11etAQAAeKMmbYM0c+ZMdXR06NFHH61+L5vNavXq1erp6ZEk9fT0qL+/X2vWrKnWPPbYY6pUKpo7d+5R32cAAHBsmNA/sQ0NDWnTpk3Vf2/ZskVr165VU1OTpk+fruuvv15f/epXdfLJJ2vmzJn60pe+pK6uLl122WWSpNNOO00LFy7Utddeq+9973sqFotaunSprrjiinHfwQYAAGCZ0AbpmWee0bve9a7qv/e/cPrqq6/W3Xffrf/3//6fhoeHdd1116m/v1/nn3++Hn74YSWTyer/c88992jp0qWaN2+ewuGwLr/8ct1+++1HfS4AAODYMaEN0oUXXigv4GX5oVBIt912m2677bZxa5qamnTvvfceid0DAABvUpP2NUgAAAAThQYJAADAhwYJAADA500ZFDmeaCyqaEAKacQh6TRvB/ZKCo7+rEun7REqJbMmGbGXNxG104OtJF5Jen6jnVo7MDRi1tSngtNZB3J2Wm9Tv51S3NLSYO9Lk50yPvv0mWaN90c76vUP63eZNTWp4NTu/Kid/P1/2uzk77qa48ya2aecYtZ0d9uJyCMDdmr8qy9vNmvq6oLnlW62P06oYJ9aGh0dNWuKRXug3b27zZpER4NZ09pl573t2rszuCDkkDJeW2fWZAfsdOvG5iazJhy1k5W9iJ3snc/ZxzgeTwZuHy3Z10s+G5zGLUnhkH0PKJfs8ybnkO5fKdo/GzJ19npWKsH7Ewnbz6/EYvbxc/mR6QXsS9C2PxfPIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPjQIAEAAPiQpH2AcCSsSGT8nrHi0E9GovYhjcYSgdvjNcHbJalUtPdlNG8nqhYLObMmGrGzTs97q52sXCzb4zQ3NQRuDzmkeqtopx0nU3aCeDhup812zmg1azpmnGDWVDw7DXZocChwe6FYNMcoleyaWodjU3R4rHLFXu+iQ+qvy7yKxeCE4ZTDnEIl+9zasmmjWROvsc+bUiQ4wVmSNm162axJppvNmle2vhS4vaXDThnPZgfMmrJnp0XnPTtZ2eW8KRfstPxQxU6djsaDk72H++17yfCwXSOH666Us+/FIYdk6rJDanfEYRwrBTvk8PPQJSW7XLbvfSFv/JEqDgnkh4pnkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxI0j5AKBxSKCBJOxy2D1ciaSfk1je1B27P9w2aY9Qm7PTQQqnPrEml7NTu+saMWVN2ScgNxc2aoaGRwO2VUsEco7kxbdZkh+xk4ErZfqxi2T4nWtqnmTUuYbD7+oLXs7bOPvfKDg+0+Y8vmjVd044za3JF+9yKxO19HinaycC7du0L3N7UEXxeSVI4WW/W7O0LfhxJao7XmDX9g3Zqskoxs2T33n6z5tUdewK3d8040RxjeMQ+fkXZaxlN2PeSokNK9tBg1n6smL0/XsV4jiBvP86+XXaStpe3U71Lo/a8Uw328YvWOqxD1L5fywiWd0n/d0nSVsihKmBfyhU7jf9Q8QwSAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACADw0SAACAD0nar2PEhxpCDqmgI7ngVNWBfXZ6a7rOIQG7odGsicfsdOt8wU6UjkbtcUqFollTU1MbuL2/z070HRiw047TdXVmjSJ2knEpZ6eev7z5BbMmFLKTbQu54OOXSNiXc+8rL5s1sYidXJ3P2+dEJG4n3MYc0o5TtcHnhCTlCsGPtXfATimuj9opxbsG7fTgmkZ73uGovVaNDa1mzb4hex1e6Q9Oep7jcF26HL9YXZNZ4zmk6buk5RccEuGbW4I/sUCSRoxE84aUnYoe7rbvJTt699rjOPw0jiTse1I44NMgqjz7Gq+Ugms8h5+VLknanlOS9vg1lbLDxxAcIp5BAgAA8KFBAgAA8KFBAgAA8KFBAgAA8KFBAgAA8KFBAgAA8KFBAgAA8KFBAgAA8KFBAgAA8CFJ+wCFXE758Pg9Y6VsJ+QWHVJgE8ngZODhITu1tjBip20nk3ZqbXubnX4bcUjbHjASaSVJnktKefAxLjsk6BYdglmHBu3jl0qlzJqKQ1bs4MCQWZMbthO546ng9PThwX5zjGLOTiKXw3pXQvatI++Q0FxxuAONluyU8bCx6JWAJN79hofscyIes3+nTCTtdPC+/n6zZlB22nE0bq9VbSY4UX/3nj324yTstOjalJ3ynKqxk6lzeftekq6zxynmghPEJWm0L3jNY2H73Ovs7DZrhvL2z47hEYeU7LDDzS1snzflUvCnOUgy07YrDvdzlyRtlyovoKZctO8zh4pnkAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHxokAAAAHwmdYN06623KhQKjfmaNWtWdXsul9OSJUvU3Nysuro6XX755dq5c+cE7jEAADgWTOoGSZLe8pa3aMeOHdWvJ598srrthhtu0M9//nPdd999WrlypbZv364PfOADE7i3AADgWDDpk7Sj0ag6Ojpe9/2BgQF9//vf17333qt3v/vdkqS77rpLp512mp566im97W1ve8OPlR0cVKk0fuJpsWinj4YDkrj3Kxnj9O8bMMeoS9jpo+k6O2U3FLHTW0Mhu6ZcshOaE3F7HCudtbGx3hyj4JDEmxu108pdJBJ2om8s5ZAePGrvc8ULTvVNJOxzL1S2k4FDLknaFTutN+6QKF0p2Sm4yUyLWVMqGuefw3m+devLZs1QziG1N2zfVnfs6jdrujvteXsOj9WUDk7uX7N+oznGCdPttOiUQ3K/S5p+JhO8v5IUjzkkaRfsczQWMa6ZEftenNtnX1Mph/0dkv0pAeWyXaOAn2H7eRV7HM9I0ra2v8YlJdvhExYCkvCLb+Yk7Y0bN6qrq0snnHCCFi9erK1bt0qS1qxZo2KxqPnz51drZ82apenTp2vVqlWBY+bzeWWz2TFfAAAA+03qBmnu3Lm6++679fDDD+vOO+/Uli1b9M53vlODg4Pq7e1VPB5XQ0PDmP+nvb1dvb29geMuX75c9fX11a/ubvu3IwAA8OYxqf/EtmjRoup/z5kzR3PnztWMGTP0k5/8xOmDRMezbNky3XjjjdV/Z7NZmiQAAFA1qZ9B8mtoaNApp5yiTZs2qaOjQ4VCQf2+T8XeuXPnQV+zdKBEIqFMJjPmCwAAYL8p1SANDQ1p8+bN6uzs1DnnnKNYLKZHH320un3Dhg3aunWrenp6JnAvAQDAVDep/8T22c9+Vu9973s1Y8YMbd++XbfccosikYiuvPJK1dfX65prrtGNN96opqYmZTIZfepTn1JPT88hvYMNAABgv0ndIL3yyiu68sortXfvXrW2tur888/XU089pdbWVknSt771LYXDYV1++eXK5/NasGCBvvvd707wXgMAgKluUjdIP/7xjwO3J5NJ3XHHHbrjjjuO0h4BAIA3gyn1GiQAAICjYVI/g3S0FQolRSPjp5CWSg7JoV7BLMkO9AdujyUcliVsJ6GGHJJO+/ftM2sSSftdfp5DmulIwU54DUeCU1XTdXbK7r6+frOmmLf3t1y0j3E4ZKfoJlwiKZqbzZLR0eAE9uyofe4VSna6dUsmbdYkkvacstlBsyYWsxOuW/73T+pBIpXRwO07d+0yxxhw2N/TTz3JrIla6cySZnTZ6+0FpAfvV5tKmDWN9cHXb27YTotOxO05FXNDZk2/lXguKRI5zqyJN9jnX9QhEV6J4GsmP+hyn7Cvu2i2zx6nbK9lueySku1Q45KC7QXf/zyHVHSHEidB4+SL9nwPFc8gAQAA+NAgAQAA+NAgAQAA+NAgAQAA+NAgAQAA+NAgAQAA+NAgAQAA+NAgAQAA+NAgAQAA+JCkfYBkIqFUcvw001LJ7idHR+1Uz3iqLnB7LFFjjjE0YCezhnfaNclkvVnTPq3JrOmeYScM79mz06wZNFLGJTtdePqMGfa+OCQr796116wpVez0YJfU6bq0nV7thY3U6XBwmrQklUeC07gl6eUd9nkzq84+b7L9WbMm5TCOF7Kvu8JoLnD7+j9uNcc4e/apZk0mY+/vnt32eb5jt32MKw5hx7mSnfTckA5On0+ng+9HkjTkkooetnc409hg1qTr7PtfNGYnwnsOydT5UPA+R9Nt9r4k7eMXdTh+JYck8kLJTvd3S8m2a6xxXJK0Ky5R2k6J3OPf9wskaQMAABw9NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+NEgAAAA+JGkfIBR+7Ws8pZKdQpwvBCf6SpKVGxqL2wmwyZiRqiypf8+AWVNfEzFrBmP2ONGwQ1p0bcasKZeC01sLeTs5eHTEXoPaWju5On5c3KzZ02cnIucLdvpt38vbzZraTPDxq3GYUyhiz6m5pcWs6XNIyS47REFXcnb6d0N9g1nTlA7e5+ER+7zp6mg1a/5740tmzciQnYhckwpOt5akQskhlT9i/477yo7dgdu7WuzzZjhnH79Ywk63TqcbzBp59o+lcNi+R+YcPtUgYnxqQaVi32c9h3TrTMtMsybt7TBrtjt8AkC57JC2LZck7eCfVC5J2oetJuATFFzSxQ8VzyABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD40CABAAD4kKR9gMFsn8rF8dNgR0YGzTHyuRGzJho2EkojdkpsR6ed+jsUs5NtQ3k7bTa/z06LrrS2mzXJ2uDUWknq6Aje52KpYI4xPGyvwdDAPrNGDmmzra3NZk2hYCewx+N2ormVyB1zSFXel7NTxstl+5xoaW4ya3J5e63qG+3j5znsz4bNLwVu3/zqHnOM47o6zJpS2U6UHnA4/9qa6u3HGrbPv3Wb7QT29rrg8yIetRPuwzX2PSmRtFOn7c8RkEaG7WMcCtnnRDhk/3hLpIJrShF7TsUh+5qKlcdPgt7vhPbjzJpBh3PrlZ12IrfnHY4kbXOIw5akHaRIkjYAAMDRQ4MEAADgQ4MEAADgQ4MEAADgQ4MEAADgQ4MEAADgQ4MEAADgQ4MEAADgQ4MEAADgQ5L2Afb17VQuOX5ibNkhxTkSsQ9pyAhVratvMMeojdrpzKWsvb9FhxDSUNROwN63N2vWFGSnyU7r7grel7w972is1qxJxOyE3L17dpk1FTuQViMj9j7XJONmzehwf+D2nTvtlF2H3dXIiD2OS/ptNGanLw9kh8ya2ho7ET5XDp5ZrUMSdKlsXwzFgp3gnErY94BtO3abNU0NabOmXLH3+dRTTgrcnnT4KZCI20UVh+s7FLbvJRX7EGska99v4g6fJBAOByfYu5zD0Rr72s0P2esUHrWvztOOO96s2bbbvm/t6us3a1QJvsYrDqnoLnHbTjnaAUUl49r/c/AMEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA9BkfpT6F3OCCF0C4p0SF405PL244yWi/Y4RTtxrehQE/HsmmjB3p+ww7xGcsFrkHcIiqw4hOc5HWOHOUUckiJzDuGC4bAdsmetZ7Fkz9slUi3vkB6adzhvSl5wCJ8keVGH8yZij1M4DMcm57DeLvMuODxWsWSvRMFhHVxC8szzz+GkMDID/3cY+xyOePZ1V3E4NhH7oVSu2EVWUGTE5dg41BQd7lthh4TMcsjl3Do8581UC4p0Ca99o0LekRh1innllVfU3d090bsBAAAOwbZt2zRt2rTDOiYNkqRKpaLt27crnU4rZH0OyBSQzWbV3d2tbdu2KZPJTPTuHHbH8vyY29R1LM+PuU1dx/L89s/thRde0Kmnnqpw+PC+aog/sUkKh8OHvfOcDDKZzDF3QRzoWJ4fc5u6juX5Mbep61ie33HHHXfYmyOJF2kDAAC8Dg0SAACADw3SMSiRSOiWW25RIpGY6F05Io7l+TG3qetYnh9zm7qO5fkd6bnxIm0AAAAfnkECAADwoUECAADwoUECAADwoUECAADwoUGawm699VaFQqExX7Nmzapuz+VyWrJkiZqbm1VXV6fLL79cO3funMA9Ht8TTzyh9773verq6lIoFNIDDzwwZrvnefryl7+szs5OpVIpzZ8/Xxs3bhxT09fXp8WLFyuTyaihoUHXXHONhoaGjuIsDs6a20c/+tHXrePChQvH1EzWuS1fvlznnXee0um02tradNlll2nDhg1jalzOw61bt+qSSy5RTU2N2tradNNNN6lUsj+b6khzmd+FF174uvX7xCc+MaZmMs7vzjvv1Jw5c6oBgj09PfrFL35R3T6V182a21Rds4P5+te/rlAopOuvv776vam8dn4Hm99RWz8PU9Ytt9ziveUtb/F27NhR/dq9e3d1+yc+8Qmvu7vbe/TRR71nnnnGe9vb3ua9/e1vn8A9Ht9DDz3kfeELX/B++tOfepK8+++/f8z2r3/96159fb33wAMPeH/4wx+8973vfd7MmTO90dHRas3ChQu9M88803vqqae8X//6195JJ53kXXnllUd5Jq9nze3qq6/2Fi5cOGYd+/r6xtRM1rktWLDAu+uuu7z169d7a9eu9S6++GJv+vTp3tDQULXGOg9LpZI3e/Zsb/78+d6zzz7rPfTQQ15LS4u3bNmyiZjSGC7z+4u/+Avv2muvHbN+AwMD1e2TdX7/8R//4f3nf/6n98c//tHbsGGD9/nPf96LxWLe+vXrPc+b2utmzW2qrpnf7373O+/444/35syZ433605+ufn8qr92Bxpvf0Vo/GqQp7JZbbvHOPPPMg27r7+/3YrGYd99991W/9+KLL3qSvFWrVh2lPTw0/iaiUql4HR0d3t/93d9Vv9ff3+8lEgnvX/7lXzzP87wXXnjBk+Q9/fTT1Zpf/OIXXigU8l599dWjtu+W8RqkSy+9dNz/Z6rMzfM8b9euXZ4kb+XKlZ7nuZ2HDz30kBcOh73e3t5qzZ133ullMhkvn88f3QkY/PPzvNdu1gfevP2m0vwaGxu9f/qnfzrm1s3z/jQ3zzs21mxwcNA7+eSTvRUrVoyZz7GyduPNz/OO3vrxJ7YpbuPGjerq6tIJJ5ygxYsXa+vWrZKkNWvWqFgsav78+dXaWbNmafr06Vq1atVE7e4h2bJli3p7e8fMpb6+XnPnzq3OZdWqVWpoaNC5555brZk/f77C4bBWr1591Pf5jXr88cfV1tamU089VZ/85Ce1d+/e6rapNLeBgQFJUlNTkyS383DVqlU644wz1N7eXq1ZsGCBstmsnn/++aO49zb//Pa755571NLSotmzZ2vZsmUaGRmpbpsK8yuXy/rxj3+s4eFh9fT0HFPr5p/bflN9zZYsWaJLLrlkzBpJx841N9789jsa68eH1U5hc+fO1d13361TTz1VO3bs0N/8zd/one98p9avX6/e3l7F43E1NDSM+X/a29vV29s7MTt8iPbv74En+/5/79/W29urtra2Mduj0aiampom/XwXLlyoD3zgA5o5c6Y2b96sz3/+81q0aJFWrVqlSCQyZeZWqVR0/fXX6x3veIdmz54tSU7nYW9v70HXdv+2yeJg85OkD33oQ5oxY4a6urq0bt063XzzzdqwYYN++tOfSprc83vuuefU09OjXC6nuro63X///Tr99NO1du3aKb9u481NmtprJkk//vGP9fvf/15PP/3067YdC9dc0Pyko7d+NEhT2KJFi6r/PWfOHM2dO1czZszQT37yE6VSqQncM7wRV1xxRfW/zzjjDM2ZM0cnnniiHn/8cc2bN28C9+yNWbJkidavX68nn3xyonfliBhvftddd131v8844wx1dnZq3rx52rx5s0488cSjvZtvyKmnnqq1a9dqYGBA//Zv/6arr75aK1eunOjdOizGm9vpp58+pdds27Zt+vSnP60VK1YomUxO9O4cdi7zO1rrx5/YjiENDQ065ZRTtGnTJnV0dKhQKKi/v39Mzc6dO9XR0TExO3iI9u+v/10YB86lo6NDu3btGrO9VCqpr69vys33hBNOUEtLizZt2iRpasxt6dKlevDBB/WrX/1K06ZNq37f5Tzs6Og46Nru3zYZjDe/g5k7d64kjVm/yTq/eDyuk046Seecc46WL1+uM888U//wD/9wTKzbeHM7mKm0ZmvWrNGuXbv01re+VdFoVNFoVCtXrtTtt9+uaDSq9vb2Kb121vzK5fLr/p8jtX40SMeQoaEhbd68WZ2dnTrnnHMUi8X06KOPVrdv2LBBW7duHfN3+Klg5syZ6ujoGDOXbDar1atXV+fS09Oj/v5+rVmzplrz2GOPqVKpVC+eqeKVV17R3r171dnZKWlyz83zPC1dulT333+/HnvsMc2cOXPMdpfzsKenR88999yYJnDFihXKZDLVP4lMFGt+B7N27VpJGrN+k3V+fpVKRfl8fsqv28Hsn9vBTKU1mzdvnp577jmtXbu2+nXuuedq8eLF1f+eymtnzS8Sibzu/zli6/fGX1uOyeIzn/mM9/jjj3tbtmzxfvOb33jz58/3WlpavF27dnme99pbPadPn+499thj3jPPPOP19PR4PT09E7zXBzc4OOg9++yz3rPPPutJ8v7+7//ee/bZZ72XX37Z87zX3ubf0NDg/exnP/PWrVvnXXrppQd9m//ZZ5/trV692nvyySe9k08+eVK8FT5oboODg95nP/tZb9WqVd6WLVu8Rx55xHvrW9/qnXzyyV4ul6uOMVnn9slPftKrr6/3Hn/88TFvuR0ZGanWWOfh/rfkXnTRRd7atWu9hx9+2GttbZ0Ubzm25rdp0ybvtttu85555hlvy5Yt3s9+9jPvhBNO8C644ILqGJN1fp/73Oe8lStXelu2bPHWrVvnfe5zn/NCoZD3y1/+0vO8qb1uQXObyms2Hv+7uqby2h3MgfM7mutHgzSFffCDH/Q6Ozu9eDzuHXfccd4HP/hBb9OmTdXto6Oj3l//9V97jY2NXk1Njff+97/f27FjxwTu8fh+9atfeZJe93X11Vd7nvfaW/2/9KUvee3t7V4ikfDmzZvnbdiwYcwYe/fu9a688kqvrq7Oy2Qy3sc+9jFvcHBwAmYzVtDcRkZGvIsuushrbW31YrGYN2PGDO/aa68d8/ZUz5u8czvYvCR5d911V7XG5Tx86aWXvEWLFnmpVMpraWnxPvOZz3jFYvEoz+b1rPlt3brVu+CCC7ympiYvkUh4J510knfTTTeNyWTxvMk5v49//OPejBkzvHg87rW2tnrz5s2rNkeeN7XXLWhuU3nNxuNvkKby2h3MgfM7musX8jzPc3++CQAA4NjHa5AAAAB8aJAAAAB8aJAAAAB8aJAAAAB8aJAAAAB8aJAAAAB8aJAAAAB8aJAAAAB8aJAAvCm89NJLCoVCCoVCOuuss6rfv/XWW6vf//a3vz1h+wdgcqFBAvCm8sgjj4z5IM/Pfvaz2rFjh6ZNmzaBewVgsolO9A4AwNHU3Nys5ubm6r/r6upUV1d30E8JB/DmxTNIAKac3bt3q6OjQ1/72teq3/vtb3+reDw+5tkhADhUPIMEYMppbW3VP//zP+uyyy7TRRddpFNPPVVXXXWVli5dqnnz5k307gE4BtAgAZiSLr74Yl177bVavHixzj33XNXW1mr58uUTvVsAjhH8iQ3AlPXNb35TpVJJ9913n+655x4lEomJ3iUAxwgaJABT1ubNm7V9+3ZVKhW99NJLE707AI4h/IkNwJRUKBT04Q9/WB/84Ad16qmn6q/+6q/03HPPqa2tbaJ3DcAxgGeQAExJX/jCFzQwMKDbb79dN998s0455RR9/OMfn+jdAnCMoEECMOU8/vjj+va3v60f/ehHymQyCofD+tGPfqRf//rXuvPOOyd69wAcA/gTG4Ap58ILL1SxWBzzveOPP14DAwMTtEcAjjU8gwTgTeXtb3+73v72t1f//bWvfU11dXXaunXrBO4VgMkm5HmeN9E7AQBHWqlUqr7TLZFIqLu7W5LU19envr4+Sa8FUNbX10/ULgKYRGiQAAAAfPgTGwAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgA8NEgAAgM//D+U7Svbiy5ruAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XnMZdlZHo6+ezzTd76hqrqGdjdtExxuglFyAxKShRhiYuPIVwogjBIJYYRy0Y2NYowVyUQREN1g4ShxFBOQIiFjTBhEwAIJBDZhkmVZgH9xwMmFH4OHdnd1V1fVN51xj/eP9Tzvetc+p9tlgtOmWK9Utb9zzjp7r2mvs9fzPu/zJn3f9xItWrRo0aJFi/aQWvpiVyBatGjRokWLFu1zafFhJ1q0aNGiRYv2UFt82IkWLVq0aNGiPdQWH3aiRYsWLVq0aA+1xYedaNGiRYsWLdpDbfFhJ1q0aNGiRYv2UFt82IkWLVq0aNGiPdSWv9gV+Hywruvk6aeflvl8LkmSvNjViRYtWrRo0aI9gPV9L5eXl/Loo49Kmj4/fhMfdkTk6aeflscff/zFrka0aNGiRYsW7S9gTz75pDz22GPP+3l82BGR+XwuIiLf9f/6f8psXIqIyHKx1s+71olM55lDfSbjwh1nUxERyTLfjV3XBucuisx9N3ffSRL/5FlODlyZ0n22Wa9ERKSutlomEXe+FN/Lc1e/JBu510WhZfPM/Z3m7rMU9cpSvJ9mWjZF2SxH/YoxyiRBm93F+rDuCn6Zp+i+w0dJUEa/Y564u7bFV/AdoGnDo4h7ag+PHT7Qk/k6pK69RenatF27fuy6xh35XXMCX9+UF/T15DU7XttdK8d1xtOJll0ul7gWxgunafA66U2b8CfPm2RsSof3fT21r1h3foaxnUxmWna9ugy/I2Hf2b8ztDfD3GubDqdvfFnUp0W72VVZgvlu5rJOhZ5tc9/xfSg71vXhPOjNfOK84XnabjD+xhLUh/dh2zY4uu82rW8T5wv7JsG9keB1WZamfmwMy7oO0HvZbiLZxamrX8q2JL7v/bxGW2Qw7835kufRte+F87+3bwZt4hxpO46p7zP2Iydh39fhecXMPdQvx89EVWF9MvdcMXbzr8SRO2uuI6NypGVL/F3gWKIf89ydP838+sTWFaX7zPedOxa5X/dSvYVTlA2PKGW/rlfgdGpb027MS7teivj7IVifcMKafc0T6vy19577rMF5msZdp6oqERHZbv26v1ytguNi4e7t5WKhZbYrt+ZUmw3qUKMB7BCz3qP9PdqUYQ2bHLhxOzk+0bLHV45FRGR+cCgiItOpKzMeu/WOYyIikvEanMPoj47zyN6uvPfQJ1xX7Pzk93pdj3j/o6y5l7mWbTYb+a7/77/V3/Hns/iwI37y/vknPyXXTtygXzu5qp/3jZtMCX4IMsGE6d3rMvOTP8WNm+CYF/hRydwimqW+bJLipsJEvHpyRURE1pullqnxAMRFJNOHlBLn94tJioU7K0fBZzkefjLzwMEbmQsEb84MC05hztvgJuL6qouKXznMw87gV4+T3xTNkhHO58p0g4eezLoSkyQoqz+Mw4cfEel0YXHH2bG7WevaLSZVXZuybXAt/eHxV5a2D38sug59pj/olZZ95JqbNws89PCGbuoG39n99dL24wbP8EMb3PxYENu2DtrP8crNen586Nq7xiI4fFB07QwfSouRG4s246LiT9i3fGDJ9NsiImm6+7DDIWPd+y4ct87+Nuvf7rx8GLE/DDJ4sC7RUP6Y2LL8kUyw8CZ4gG8a12dm2PUHpsAmoeXERKVGmW9To21BbVGHAufvzEquDzf4Ph8mE3u/64N1p+/YtibBg1H4HX2Q4UOa6ftu8EPrHxDxw2B+cPibznula5PgtZ2mvDfY3rZhm3yZER6WS/Sn3o9oi+lO3SyWOF9Z4CEVr7Pc/xzl+iDEE/BBM3ywtfVJtR91p+UvLuEc9u0NXwdfwzo3fMixfdTgewUfiAdlOvGFOU76EI61Ic+x7pm5wvu01zHFJG7tZMZmrsa9oc8X4UNv8B7ql2JgSozfZDLWsgdTt4mf40Fohg3VeOQedpLCPETpBhUPubgH+4TrjDFdu/FyuHEVkU74UMN1Aw9IDTd9uxu31XqNOrwwBSUSlKNFixYtWrRoD7XFh51o0aJFixYt2kNt0Y1lLEt6WV2eiYjIne1G33/k2nUR8f7NFvDhBmWS3vuwc0B8WeLgwQaujzZxLo802wNr45mzWjv3w/TwWMuMRu7ahD5zdWMB5s08xyBRiJcuLvrC6ff28OMupA4DtNjW3kWTFuH3yQlJLP44cF8NAcU0gCrBa6D7Qf3nu9yNdOCr9xg6IVHr8grdYiv052jkINqxgck3+Mz66n3teb6Qf6R+fsCnlgqyWDh34/RgivOHfKG28tcZoq0e8kabbGdhyNRto64O+P1rP08zQNE53Jh1tQkvIB4WJ+zM+iUK2VuX187X8Zp+PD/v9fs7bkbC0dbdGLZJ29/ZseC56R8LeRSBe4h/kh+V061F16Tpe1xrOO4sa/k9TRu6mdncNsGY2lOQq0MuTIZ+7q2rL+TskNeSDFwMQbuDb/j3UzPvU3V1hV/NOcaWC4TPmoR8CbrxUBc72EnoSmnIZTEuJHI/WIYu4wTrXGp8iAnGLgffcCuubA43qWfheLc9xynTNYx8JzumGB8ZTNTA4CpFO7mecs5lhi/EdY7uwKF7pNvTR6lZWwW1EQlHcdfJokQv97+Z05n2FY/kX+4jdoXXYvVay9XStQvzEm6srnVjYNf7Bn93cAM3oGs0DX7DzGNDj/pptdT7zHEy1R1wMvUXw85lzkO6QTl5U86OXc5eu48QuMcishMtWrRo0aJFe6gtIjvG2jaVhLsWE3Fwcf+O+7x2BNArj1wTEY/oNI1n0bcgkpVtiF5kyuz3O4AuCXckPciCi4tzLTOdOdLy7PAE53fvczcndkdC4nAaEvX8ZsA+Z5NQR3QlfOoO9khEcnAeRqwEUUM70TKDaCdj+g520UoSTrnr8rvrTp/6BwTiPZs47kqHO5wNohVKExkynTnm/mpFhIcE4N0olxxj15DcmAzbKtJhB3t54Y6H8yNXF5RdNSt/2jYkM3KD1tVA7wp/W3LXwh1003IHRtK0ry7RpNnMRfm12Im1NmKNiAsuyp0ziZ/9HhRo2NlaxvLTB6jXDjnaEkD3kJbd6fwJ2wEpVFEfZYeb7+lu0E3QpgojGO3OXOd3F84VIhFd4+ee33mC8DsgSQZ3k6I+4TE3aGIyIG9mJDODhJsEKCWbOeh7HgPIAMiAfono155oLJwhJ9meaxAQYzv/fYAiiLRArUelJ7OSSNxoxCOQQuzI7dwjIlJV7h5JlcTOPtq9qfOc6xvXsl1kSzJGwOXBWfYFBfhgA8H50uDo6jOca6znAG0Ui7QMAin0gv7aPiAhRPKIKnVmLeecyApG4fJ6/tr5ACHx6DcOmW9/xjYMfhN6jFtT+9+wCh6LFYItWLgrsF6XHoPj71qahr9zJEBbxExRekXnd0nxQwK+IoTaym5QUiQtvHfjhSwiO9GiRYsWLVq0h9riw060aNGiRYsW7aG26MYytu1aKQCtFoYuRwJVDVLr2bMO8juEENPk4EjL1pWL+aeYXAGyKcnDaWFhbWoThDB2Y5iPm40TkSKcPZtfwZfdd2oDu2eApvu+wncATUsIXYp4twiPyQDyt+4MPhJTZIxtsxAlIW66oLw4HVwMezhk7NcdnR1z3gbtU/B2R0vB+jN4Xr4OXR5bQzpvWtfuKTQl+BldXq7OcPUAvs7UzUaoelfzoYN2xsXpqYiIHEGgiy4QEZE1tJNYPe+aI+nYkzoLzJsKnxFu9/3iz0ttF8LQFD1cXPjz9erqozsn1GSxBMi6DQUyFaofvHbnleAzHlvVqrEEbbqd3GvVODFjS8ib7eScUBegubYS3pXLHGp0WF9f0tBFwQPGlO4W45pMB6TtPtvVWaENad09XFZ2N9lRwC8lkZ6fwv1i3Q7JgGStZGs2xJ/XhzmErgp1AVs3Xsd5xO/ChaKEdV8HuuCa1s2nSeLco6VxY3EdIrE71WADdyxsUATqU0E0NRe4w3uSh+39hL4fuo52vfeSsWxKdzv7yswRambhGlxzLSl4x/rBfFcX0JCMvMcBp981bhed5qgfyfZsY6CDBjcQjwxIsSKyRSjKSF0oko9t+4caVCVcPwXGMkn97xLv+w2Iyv3S/QZVOYNjDEFdidMhkZrEaruWZ0pmxvfpShNvnKppOiCkp8FXgvY9KGITkZ1o0aJFixYt2kNtEdkxdmU2kekYqsMmvJIKonqEXHbLEOTWk7vmR47ErKG9JH5R7tqE+GmINVEVhiCaa1PFtt46xGjR3xMRkdncKTxPkHJCRKSB3HgPomuH87Uai2pRJeyQSYBNwudeGyKvQMngUbwzaEWfEO3Bkz52HQ3q0lv9+24IAwzQJLPZ4q5FQ0W5CxrG2Zo3vRJtEn7H7FprkFhbjM8IKMjBge9PpoCgemc7IPfZ0HOtEA4kbJ6eOYTn+OhYS7ZU9gVRU8ndPNrdIHZr+ahEHdAUEi1bSwB173HnPCmcVEIx8jvx7UBdeVin3KRLkCZUzt7Zv1ryJecLuwFHhuTWprOUOJ9nQdlhqhURH8LKFCoFdqQ2RFzTjnCnx7DaZvd8ROM4n7jD1wjsbncnTgXdFGkpOOM6g6qpcrSGleP93qR+ScLdfkdUgSk8jBy2pvXgbngHefVt8uoMSs03/+/l8nvyNdeBULDalclIfKaqeom2+XWk6ba4NAMyOAZQjDfkUSLWDKAggkD0ThIfQNB1SIEA1eYR0boOKWEMwtFDTT4jMqaokG0xER2iKjziUzP3dNwH0hNeusMimvt6VwyU7T8niqTrPsPAQ1F0tGWgaJ+FStUiXv24wW8Wybxtz98R35/8fjbCeZi6owhfi3jCb4f2V0y/wvo2u/cyU+h49Ib1t2gVZVnQj0RrLKKlAT1p8J1Uz2vRX6Lcu/f5PovITrRo0aJFixbtobb4sBMtWrRo0aJFe6gturGMnRwdyvGh018ZjQ0ESDIXk3sCSstINDRKsiSHElIvx44AS+h3u/VZa4VwIMmng4SGIuIT1w4SdhK6ywyZdQQFXZLwCK2ne0jH1KBo1QXQBNfJQiEP1CskklrPlKoKM1EdoNRCSY6+j7yODs83dGvtEn8Ja2oCQ7oFA7os6xXqrhCq78T4nbSP3MvNwrl3mBhTROQILskFPttuCNm7zy23UVWB9fyAlCsQls8vtOwcLq2LC/devSYpmv1gdFHY3gqET8zFvIRmyca4UqhbBFfiEi6rQyQIFRFpkGFZM6OrTwauD0OOJxFRk5lq23iw7jZC9N7J475Ed4HfV2nCQrgS6eoI3Fh0g1HjaOvqUCH5qk0WS8VXzU5ON7AOhu2jkPC644Ywrk4mEvUfDVSXM1sHEHSZEJNtMW3ymkFUg6bOlrOi8/c9SfB5DvcLk2WS1GpuPnXa8j5nYtVhgeAF7wl+WXAd+5NAty3WvYHbUcSvI0O9lVExCc8v/r5hr1VQ+C6RdHhb+/uzxdpYwLVHgn/TurlSmnEqMGe51ijxN7EuFPxBJWZ1Z5IcbVtNvbJwHaH1e1zn/tblfRS6zdy1Q7elul9Juk72uHzoostd+0vjkuZvC9eItC6C+ls6BN1UIwRk5IU7j9IOTFmfhZ6uU62VDI39Rjc13cvDIARBzax5V92uInc2IDirvtIeEvd6413FL2QR2YkWLVq0aNGiPdQWkR1jo9FYRhP3BDw2yE7JHFPcmTB/FFVDzW6Yf/NYQ8V2MnG769nhNVPWfbZdObQn3ReuiC0Dc20V+RRHVz9LaiTJsihZJsxlZTd4qY/xc22S8GglWgNysfjn80AdWUNjuWMCsbTdDWnOgZ7UNQm6A6THWD9AqTgIzP/UGLJcNwiVTmWwMzOIGZVD2b8MM69Way1TAwWZzB3al4Hkt1y48crM+Xwun7ANqhprdh+L5FJEPOJyiTJbXNuG/2p4dkWSoHtNFVOLRFUIm/c5xtyXF5dLLXN4fCQiImcIjfdIjjuxRTMYntrWu7tf99rUk2q9RO1UqXhXc6Af7Gzb9Ro1MGjFgPDLcWf9ejOfiHImeq8I6h3mdnL1Y3gyw8rxvgSXcd9nOPUAgVFlXnPvMT9Tl4Qh7F2guUDCPL7OcPp9eclSIBtAilLUJR/kiHJ/D8i2A/Rq331F3ijvA1WZziwCx6CDEAXrDVImqgaN0GMgEUS9LBiWo50bEPOzAeK8XJ779mP9KTIS0t37Smru/H1f4poN10RFK/xgFkVI9GYLvCyHCdPGbe3XuT4oG/SnKoWH50uyfWTmMG/cULU+yI2l/QlUbRAqLiIyGlfB+YoCytQg0lul4zEQIaJBZemQN6I/FjFRGRIl0LP+9GTsIu87iumwsGyo6N0g2iIzkguKZDJwhnOQhOU9aujbKiI70aJFixYtWrRo8WEnWrRo0aJFi/ZwW3RjGcuSTiqo27Zbr4fTjklQJpwdCKwoNCoiklNnAq4vqlmmUE/dLu/5soWDFGeHTjOHyQ+rrUka2RNTpTYBVVJDAqiI18OgC426MHRH9BYC1MRwvBA/kB1Td9WQR2zg3E6h2f0naq0eDLVjCibuoyYPybO2f8MK8jqE6m2iRbaXri0mPSSSbkmyGTWISHRWHNrAsJX75vLsTERExlOnW3NyciwiIueGdJwOiN1DRV572jXcliS8Tg9mpoUi66VNGhq6YipoKRUoXY49rK3jTnVlVVT2c3mDPp/O3DUXF5f4BPU249RkcEHiO1VFIjCbtuui4vc9ZL3rQlHtJWoFNVS3NUrHVIrGnEjJZZdwjK1t0c6sgXuo2XXfcjqp63SHqG1Ix/iMxNEMrpCGKsyGv0z3UkuNq31+Ma4TGV2eruyI89J7HaRvqDyN+V4P9bAsMT88fTL4IDHjlOoyQpc5iNBw0SatHQOuEWGiTuvG0jtK3S7uPC061OqVUe19qAq8xHzfmGALVbaGi4PqwHVL3SZfzxHI+qMCbkzVRTNaPMoNpn4Lg0JIarbuJtQhCd/wXH677unq4tqLDqY7K3ChDhdX1e+hG8uqDbtjjvbncFG1jS8zojYOld6LUBV/NJ5oWapek+DMZK4cg8yqQnMi0dWpVIIBpcD83Q0iNIZ6ViI+GKbdUWbfXSMS8ytjz2eXk0Tdwrvf32cR2YkWLVq0aNGiPdQWkR1jeZHp02JV+V0GEReGnBNMYD4oKQyyM0h1z6dO5lfqGv8U2taOmFlv3flLhI4fHF3XMtyJ8Pt8KiZ5NjHPq8kIOwQNcXVHkvpsXhWGFat6r+5A9jxl9+GOZJgHad+3/K5oXwiiBPUiKkKybd951dV6SwVqtE2f9IF0GEItd4wlVIDZRzIku4pIr4q0gvOiqJER0BB+jP/y0iEy7McjkH1FRNYgFycSohW97HYWx3CN0PAO4foHDBE3u0ESprmRJdJTIVzdEgKnM4cULpfroN6Jufji8gJ1PxYRkQJE/K3JCUartyTXux0ie5qoVW+2WUqC5+6NqtOKnBnEgOgXiM81yNe9IfOyXRr27rfmOInZiXPwmLtsgCrVrUEMNPwZ9wj6qOmJDvi5pxIJRfhaz2vU0JX4SsIvUNbU3HMM62YTSiJFlIjo/L2skgpEKZnDTAMKLEmWKAVfc1dNwqovSmIzlY55z/S5p+xqfVGdBkgUURsbia35/YhoKJ88RE7dmV09R7g/17g/STpP7HzSpgzJ8c8fxMA5x6CNwqgC671cYA3HseD93xnVes4N4f1DRD9E20RMmLuGu4eyHG0wTsOahwEUAUk6GaiCC39XTIi4yhwQGU2D960q8ghrK99TBWWMqUWV0kFbFFXB54Fyvqq+h8e2DdcBET/PuwFR2VqqysnhcZgjTsT3TbYnV9k+i8hOtGjRokWLFu2htviwEy1atGjRokV7qC26sYzlRaYwdmb4j11D+BpQMlxRnljm4bga5GXq63R6hD5EQMKkhoJzX7UVyKYG+hvNnMbLdAwSK8iCJBv3BlMmukqNgqE+QkgMo8YB9QsAQ/MkNsmjhBC319ex5OjwvM8j3xqYCidTk4iEUANLUvdIFVRJYu6o6+ONiTWV70mNErxWgq25turBqH/DnJHERMXQ3ZEk4c3GE4mPjpxLazSao17ORdWs6IbY1U5qoQ9BvZGze0775vDIKx7TJbkBcV51nADvb4wuEKs+A+H54mKx2yT08QUSlB5dceT4piYB0rt8qALMdhZUuq1AarZERbrMmFiTblvqA5kJRX0idXF1dElWpgxcBwqTh2a1rXhNQvJNP1Cb3XoXnapg8x5RwjII31NP6kzgZqJmCt0tTY3zZX6e1iRZdyQfQxfH6kvRJZEP9VV295z0aHBctAhdsgGcz4/Qn6r1RZVxb12DxLfUYEEbW6gZi9GvodtKVaFL1MWQjqmu3GNM6dqnK6jtrG4T7mW6OHAve2kf3yYdXrp46Bai9tEeTaY6AQEabqypIZtzTVE3a0dFdqp3+16iVpAflzAYJDXjru6rQZJkdS9bvTK6G/XLWHsw2LVxj3mqQLj2WH0ln2wTLlMlSVPx2qoiI8imCN1XHOMsGNP9riO6VrvCuPE0cMCZJyzvkpmVyqHuLP7WmHajdzLvb8aB/kbbn3Qn7wYr7LOI7ESLFi1atGjRHmqLyI6xXlJP3Cp3UYt08JSd5+HTvIgPm65b7P4RRt5W3FH4wgz74wMuyYJN4xUh0y1CLZkrBsjB7MAdc0Oo5M6BKEiPnU6B3UVqdxmKEHDXwnwqDI/1bZKGJGYZmHnC38dAtiWD74ZktmH8excQX0GoTBhO6XbrDD0myuLK4Dxo2xb9yH6dTGZatto6RKQBGpQMwkvt3zv5k7ghMSHyp/eeExGRKXLPHBxfcR9gV3xx30sOqFIu2r1dY7cNFOv0/l0tewzkRb9LpV4gPSRwioisFgxpd+efzRxKQWK1iCEiYtxXlw6lIRp0fuqvrUgBxwPbuBLztlpbVIkh55wrQEEhuWBDRqmcXYyotguiuiXCo/xo6sdMxKviNpYk2ZOA79pWpiDSasi0QZWAaKzXRHjc+aZj7PzNznl6CDSVKACQEiozJ8EOHygYiOO8r6rKj09SMjY83OHy5rDk0/UaudqIThasA+arJRJrCG4SnIe5ouw9whubBOqkZUgvicu+Dg0+KxKOJdSnTYh8MmaOJUoggPANFMyGnvMzEru5Sc8GJF8REYrq9oPgCKILliS8VSK2q98UKvOtQf8WuDe4RhQY7zFzRhkyb47vDfM0MTdYiDNS3kCh4qBEmI8QRw2OCBH4FzKSo4Owd0VNiHKnwevUYBnsa02xmPSDo7+WB7lDZCcbHG1hIm8e0N9FdrwCc6gkHdpQKXkXwR+ez+bzeyGLyE60aNGiRYsW7aG2+LATLVq0aNGiRXuoLbqxjLVdIhXcI0z+KeJdRUrCAmza7iHzKukQiqQjEIvbghCeB+R4Xn+EW8vA2RRrzYATkvC8gQrveOwvXkIPJUdCPMLsCdWX+10njYeDoWsC10VqEgIy6SbJra3qt3jzLqnwfMPr2Y+U+DwgM/emrCrm9q7dNVxqhJYnhlDabN24VEwMp8lY4Vo0uiglXCjZ1PU1iatWD0a1I3aS3e02keTvS7iMNht3raMrLvHr1Ue8dtK9Z59x9SWBFKTQ7RrE2olXRb5/17mVTq6ciIjIFK6uDsTP7dboAtF9t1oFdZrNPeF5uTh312ZfbZwrqkB/jo0i8+X5fTYOR/edEdyBbeo7oKZWygDqrvXm8PWkK6qq3LWp5lqYxJo1CLMFEgOOkcCQCSAtpzcv2CckR7prFSW1X4zfBfN9VlB9ljo+7qXVpCGZlYq8dPFQz6g2rjSvQeNOcAn34GrjXX3rGu5KXhv3Jc/fG02aFH07GsFl2DARKNwuY79GMAEsycJsS4NEw5khqqpLRtc3usV2lZmp+8K68N6wSuQFkyQr6R56U1wHjT+81oSNXVCG8yHd46zwt1pivundz/az6dyNC10rZ+fn/kSoRom+GHWFrUqQ1LjFossx9X0FMq9xv/hEmvoOKjX067iruP+fx2+1N8Fm6L5qzBzx68cggCQl+dqsZV24hvk4Eq651t1E91UYiOMTKu/zebmDUj30HHvGlO4sJpG1CZrpghsEjAx123AiEfGBLZ/JIrITLVq0aNGiRXuoLSI7xjbbRnd+29ST+soCOyfyX6kOS8VOQ2osSJKESuho4nYbfLK2RM0GpGXmCtK8T0FIL4mfeMIFc49kzsqQs3qE4HUJiZo4ZrvD7EMjQ2IdFYCVRCsiNXYX3BWSWGqVNEnWfT4Oc6CgqyS+MPRQd44PQNgjybUywr85+nxycOA+AzFzi9Bpq169AsGXBMoxlITz1pBEF/geVVwHIZNWHZZD1gHBaHDNzdOfEhGRg/mRlr1264aIiJw+50jN66VDAYjEbNe+UVQ+vXfXlT0+BsIDdMGGtDeJ28kTgSNqYxGDA4S1b5auDWsoKi8uXF9NcF4RkRG2QpsNwuhr90ZdubYx346ISAPUh/moqBY8H7vd8OWlSSSF8S8yqs0CrTGk+AKInaq3tiS8AmUpbdg3lJ6B/myx6yeSN5568mmGz1rIEBTIe8cw8u3W15OEVKITVGIGaKuKsCKGXJy4a50vXZ9tGl+GMgGTUZgjKkco+njkgw0OQI7m7rzIw3vPWoFx0FB+hr1jbvcGruqAwPH+T1RyAoRtE3pOxInh9MLzGRSgqUiUX6L9qGcJ9Kvy66hXJEa/KhwSEmuDvwdAyRZrZWGQ99n0IGj/XQQLNGbHT7K2jIh+I+Qe47M29xzVn3PMsQLh6U3HsG0/BllHpDnMH5YMCLbWhsvbEMVxf4cK5Ay5b0yYdY33WsoTEAVh2H/u298OUE/OK6J2lizc7yzAA5QmQHZ2mhe0Mvw4PI8nahskn4EySfgdWmqvzcCePb9v+ywiO9GiRYsWLVq0h9riw060aNGiRYsW7aG26May1onUgLH73MPkGclcSehmosvH6jlQv0QT7A2TEtYeWtww+WJPqBoJLEsPk46mIPEVDtYmGXM8cdCtTfZWUP2ZsB4TIypkaUjHCv1R8yDUhwiEcVR1FO1vmHjQEBVRDyXNUYOGrikDRw5daOpIUzeemLLUsRi4vgakZhGRag2CLtw37Csm2CQJWcQrEjdwZzDppU2WSpfPGnoyG7gm1M0YKJ4ySeCANIgi9+/e0bKXF851dPPRR0VEZAVXJ8s0tYH+cZ4Jypzed6ThQ7RpPPLjv+5JLofbBUq/9eZCy1w0ri1jnG82c/Nqeel0gC5Pl1p2VMJt0THpLEmocIGtL7VsAbXiLfSlVOEa708mvp4rEKjTNCSAWiKtJgJULSp3TarCthuThBM36PLctZME7wJkazv3stK5MTrcK0paZ7JcA+F3aEtWuL5KWlcnJXHbQAK6q0AKnqEO50tDUFblbTcuJUn26JuSiWDFrxe8L8eodw9iembuvW6Q1JNkY07BxCRYpf4Xybbq3qEr2WhHtUx8jPFp0bblqZ9PWcr1CWOJ8VaXTO7HXXWJBqq4dF30VhdmoCrNtWc6ceM2HvnABLqk799zc3hLhWujLl+ifkUWEpNXS2hTmT7iOlzWOY5wF5W4t4tdYjrdtpzTqmqc7eIJfvkL3fiJdSVxiQGdoGHCWkMdoCI83VjqDupZNxNkA/dl2xY4L9oC33FqXVdeXj6s9553k8Fn/p3n113zHr4B+dj8rdpRerY95xvoAX0mi8hOtGjRokWLFu2htojsGJvOJjIpGEJqPiCBUsLdO0mOlgjXVCCZgqia6RM/w2DNEzRRDzyYkjRHcp+Iz5ulO1wJ0RobXkgUgCGjSR9esw/ylDRBWZ8PxdW3E7vLCBUvlUhtCcpNiCqU2Dm3Gq7uiZ/Kl+VGZEcAs9/5S68pYV0CLh3RFXxrgx0Zo39JQhYROTo+xmduF7hCKH9l8ijx7xLfO0T4N1WH10ufG0t34m24W+sG+WBERFYI/37qk26XfeslLxERkUe/4AkREXnmqae17BZKuj1ybc1mDtFbXLpzjMYGBYTKbrVh/iOgF5UZJ4QGr2vW3dVzjtxeRJ1cW9yYMcdUtSGpm0rfvk1rtGk2d31UjN3Oe7uFirdBSq9MnLr0FsTiXnbD3ntFBAV1CJGY0cyP5QY7+T4FasOcSAjXFrNr17RxmDgkBbcct8wjexvKEeA8DAMnwbY27S+m7jwLjHte4liYhQRrwAVCosdYa+Yz1+7lws+n+ZFTSGeusgRzkMEMmVmgFHlhWeY7Qth+beQJypGbP4zy1zBooit2g48j5S7qDdXgDfKoCe4muCbGGShQYtAvhkRz/jCvn+b3MyHIw/x7JOoTvb5ceFTx8uISdXd1KbFmjg1CPhkzBxYlIojSAtEzhPemIAoyXMMYmGLGvQDZXNFJnK8Hyt6ZNg3y8A1zRDUGKW4VIUeZhsiOQekwFzQnoBKUnVlkp0CbGLJP1Wr9XTLjNJTa4G8Bw8rtmtt7mG6v7eETa/uTPV8dgkpD0MYu9/to7S9kEdmJFi1atGjRoj3UFpEdY/P5gUzHRGIMuqDh3wgrxo5/BW4F8zS5Mqro5Q54Wt8X4pdo1lrsJpF0xubP6uGP7RljnZHDQKFAu3Pg0zqfxImCoKgNQSWqMohA16dtk/eHuxbNftsS4TKQDHcpDXckbdDGwuTw4oaD3JRG+xd1MY/zzxfKvpNdeM973JEk6E/mjhIRWSEMeIQd8/EJ0IaNR3YWQDkWl8yr43a25LlYJOL8zO3WN0BiGDKqnKN2F4FjaPinP/UJV4erToDwsSe+QMsy5PzizIkLrsG/mR84JKY1/B7mBpIUofLgZ8ymHq2ottwNAu4Cwrc6Q2j7lRtaln1RkZuDeUDRRssXypBbqxfmMHOvixH4NAsj8IZ5eTDjd7Dj7ey9AVFCIDkb7OTZ3rXpzxyh16McHB3yx3C+xohJ1kBrmFOsK9155shl1pn9H+uwJNqlmdEd6pJZPgqOJ8hltgB/aHzuy5AfcQHEsbp/6uqHOXLt3CM7L80eFxGR2dxdK8W1JkDZUoPstAgXL4BkELVqsGaMD461LDk2/IwZ3EtwuFoTxpslnCuuz4gyF6WfT5zXJZATirFSgoE500R8rqZMQRugyVhrbN/3WDdGZt0QEVlgHtlQ8RwnLCCbYAVhaSvcl1twvVrUT7PS10b3gGKknGJEbZVH44ty7Spa8s9CFL0zSOFQlI+zvcXvB2UBgu+Tq4Pr2N8aSp8QeeS62bM/TVkiOnWGvGRA1zzCY+b9gAuTaY45rP8GItGh7EO0ph+gTIEN3+x3P/M8zmHhB8Vxdi0iO9GiRYsWLVq0h9riw060aNGiRYsW7aG26MYytlmvRFqEWxpU0+t8hoxaQnZF7qHKboCyKZG4ZX4mD1USkmQerSJHTpaxCcFsqZQMCLEn7EjCnXGhIZzUv8fzUN3VhOAmIb0rcAdJqI5MqFqVL+l+MwQ4DSMn7Eo3zh74lZApw7wLQPQVIPXQLTj4g+42CV66OlNtV5WY6TocMKJFpAdkvIay7/rCuapKEyJ9fM25JEj4vQSx9PTUhbhmBvplmDrVes/uuzLVug76wdarRl6iFm6du3cQer71rqnjK8ciInI4d+TlizPn+thC1XhqFI+p5J2RoI2Q3LrybpwRXG8lwsqrtXO39HA3LM48OfrgyLW/KF0dLu5BSZxyCq0/bwHybppi/Deur5rKjeXEzJWmhasPrsS2R5h56vuebiYSNRmDyvmfGfJpC/dvgfBsDb3FOXJDTB8jrxddPglgfJ0zxj00K1y7R5B52MIdRrXkm3B9iogs4VbZwOVTTqd47fvoHIT2e2ucB9NxQwX1E++am5+6eh6euDpkDHFOQ+VjEZEcodIF2qnEerQxs+TTlmrouAdHIaF4PDH9inVkJHBxNe68uSWdDqQ22H8k31IdW0QkTUjiRVn2Pb5TGrcg3SsV3ZjbkDJApXoRkRxzmusKieXLpSfb1w0VokEcH/jDO+NC1Rq3QwYt12BTFuu6hnIPjpkJU88Qlp4MCMr8jbDrHt23zDlH8nlnfGj9QFIkG+TEsnOPybuSbHCkREpAJB6Gj1MagK8s6T5UQVY5gcEZAqPMSRq8dOWH671+8Bd3X2lV/7fPEC1atGjRokWL9nlsEdkxtl4vZbsmudcI5pEAlw7xBIRZj3efGVsVgwpzmqy3/mm7AnrCTS/RmpEV62NW4Zwh3QwrDUMHXa34ZM8QR/e+fya2w02BL+4UeRK+toJ5gyf8we7FWbjLoFgZiWph6DnC8ykMh0uxjeOJFwzjjoYkSZJNPYnbkBoHuwKGfSuR2op2Db7DHVNzYQnKDkUZQcDsylW3k+eu6wwCfyIid28/KyIiORCTq9cc2XiL8T69d1fLVluSg7mrxI4ObVpeejJv0gMpwI776jVXB6I264WvQ4ow6rLEOKHLK5NAbLU5c/WkzEEa5jtKDDS5eM5lZ6dg3Bz5vS6Zl8yICrYM76YAH5AHhquvTEh/UzPHFEL6rzsybjbyhG8SicmF5W6aGZKns7mWHYEwrAR93K/cKdt8QiRtcjdNdDHHhRoj+snvjyH2N2UeJMoqmJ34FEgO0U4ipZW5R04hYFcxlBfnOwN5dP3cPS27JaqCMX3pEy8VES/emZaGSFwwaMFdazQh0oF7z6DJrZAMS5FGd/6c60jiUcWcQQbMDM7w7d63qdqEucYUpUYf5VacFWhMARJ0xjxVODaGdM4AAt5raUJ5AnzXEH85TkuIVVJksDUCiUTl2ScqaLcHKfPijGEUB/O/tQZNZ3h33xHh4dzA/DLjn+WhxgbXHs7F2goGYs7WOl/RDiuUSIHN2p2IYooUIixtAAHaRzFZHtlWe95hCixKeeT4/UjM74j2Ucq2hcKR+/JoDYNOkj0vdnAcz1j2b+2LXX8Bi8hOtGjRokWLFu2htviwEy1atGjRokV7qC26sYyNRmMZAQJvK0MkBnzZkHzVh4TdysClqqdCzwnebwGPW/XJMaFEatrgvJUllgGuHRWAYamlQLVgAynryRV9DRWPrVQx4cd0QEKzarPDskZTNfyOqU8LeLyVOvhOku665jq0mzA7210ZDQ1qcFDFt4Qyb0XConELKhl8AJT65lvXXJizzKtE+/Zz3Cu42y7Pz1AXB1UfXz3Rsh2IpPefc3o1zzz5KdTXlb1x66aWXSFfEvNc0Y3V7yFAUoGYeZo6aPNM5s61Mj/yJNnVmXM71ah3Af2ZtvZtok7N8syRN1PmVsMlC6PFRCh+s3RutXPk7sqhZ9OY/FQd/k4LQOkDL6PNEVQmcLeNHfHX68EcaBlP+odaM2D9Evo9I+PqzEHEpXuMqrgFtVpmxi0KiJ8uA9VOofqucaWNpnTFuT6jxg3J95b4vIE7ZzR29b68dCe+Z/JIdZir10fMXQZXB1w9djG+je9t//B/uXpiWB679ZiIiMyNlgzzZVHZOVe1dbqWfVkS05lbqsW8qtZn7jsbnxuNNw7LUFHbkrgF6xr1pQoQ/Edok1VQLko3vqMJtIMyV5bk47XRuOItUNBtnzH4Avnvtn593sIt3DZ0edHnI8YGxFnm9KLOjAkySTVfFOuCtaFRX5KWbaQPyzB/3MCVLiKS0p2q7hysf7j/rRtPc2DhvMzZ1tj1Ce3dov+YuywB87fPbDAMfsOQ76umsn9GN5bVa2Mz6c5z1mous8SUDZW3qfHE34xwJeYY7Kin7dhOiT2uqs+WshyRnWjRokWLFi3aQ20R2TGWZYmGZGalQSJ65p7BEzhyDVUIq91sjVIlntI1BI+CygjBrAwJjRl4R3jmTDOEwxr1YqIVDHtNQcLTcM3C5BNiuKeqYoKMlioDWssmA8TFk9EYD+j7ZZil3L8fpCcffDbY8RgyZ1WFcs3FIPuzDQNl3pftmogBQl2xc5wdejSAaqPMd8Xs54pwmbDNTrOTM4y6Dl6771GJuA/Ov105pOPsng/THgOluHrdIThXr7qw7efuOOLy05/8hJYlKnHrJS7r+Rbk3cXFmYj4HaqrTximSvSrvuvIwYXJes8Q6c2FQ5fO77hrjmce/SnHjmS8Xbid+ObckbC5i1u3vu81RBhvZZgz25VDHZLchylzyIiyTKZhniqLmBTIz5QC2WywI+22HlVIQNafIGdXOTpmrXBBLSpdx9xArISrN0nstUH/eG/M5iAUJww9x+di7j1chNII3G0Tid2s/XmJEKyQ3+rePdevpybX2Bj32KMMmwYK9NzCzdOrBik6QP/dW7m2/d5H/0BEfD62v/nFX6xlD4+OXR1IBtZceED4AokIN6cpXdDyfgLKUqd+TLdQK95gvFsicEY5vKmBqrCvSWYdO/RmbM7HW2u1ArE9QR0kDFsX8YgOAx4qIDkMxbY5omgagk1UyXzGNYCoD3P4adZys+YSeQgU4iUM2tD3uL7xPm3D9X9jAjMSbSevFYZ9dyY4gOgkEc0V0MWtDXCh8rzm3ArJweZW1t8RKrsT4WyxprWGSE25k6ZBPw7CylvTsT6DOcjLGhXD7xgNFxZV1Ge3P32Wcxz7ITYUjGpw+EwWkZ1o0aJFixYt2kNt8WEnWrRo0aJFi/ZQW3RjGeu6RFoSKg2xrq2gg0CyKN03QNQCLQkStsgvo24Nk+CZHi/gtqI2hQC6DRLiMbcjSGfU+CihFpsZYh31cPokJD7bJG80BQOJ32uZfnD05t1WdFEFUqo49IMyvf04ME2IyQR4G0LN/rwpIPgCrh+epwbRdnHp3QT8FrVODqE+TDLzeuHdJArjwz1Isl9nyOYd1V8J9TJhH8q0JnHfGuTlu3eeEhGR+dyRl6/ecK6qK1cf0bIXF849cPvTjsRMt8CtlziV5F48pLy+dOetkQCUhMW6cvVfX9zRspwLYyR1pLtos/LtzkHwvfrS/4eIiFzec9/fXDqydG/alIGsT4Iu3QPHN5yLLjduLKHrFG7gKZSKS7jZ1kbrh96AKVw1SQadHKOgTPeqqm1jLm+p5m3mfZLBraLzERA9SecTo3gLQm0Dd2ACrR8mt7T3fUOov4fi8TgLzjEe+zqcQ117vXQummehUZTDzSMichPutevo1zGSpB50uLZxsx5jDlw9dJ/dh+v8zz7+CRERKU0yzi/+4r8ZvEf3gKouZ/5+ohe9xPjQXZKSjGxcqG1/JiIiNdz12yXuuTOfsHR2BJdkQbVmd9ysNqiL14HqU+faE9RrNHUk+9HIHVPjbiPBdwNXNN0ubFuQqBnjzvWup6vKEql1mWNZCcqECYXDAJR0IDyT7FHz1fmKVUj1wOx5mVgzDecaXYCV0YPaVqG7zmvwmLUxDTXYVNGdysomKGCoAq0BJXSXmfve5ytNg9fqs7LePWYc0LPTfcXv+vZbEkVwPmPqQlS38gvQkNWL9WB+rIjsRIsWLVq0aNEeaovIjrF8PJYDhr8aIjEVbXvsrqjCypDh1BDX+BRM9KfgUzd2PtxJiohkCOElUbMouNO1iblCsjHVfG0+Lhp3ZVRobVtcO6NyqUGgiPr0IakxfGzXVgWv/Gal33mz3ym0ByHSsw7OyxwxdjfEHccaO2Qk5inQjwcHh1qUG+Pt1u08L05P+YmIeDVaEZGD+XUREdngvBcXTr12dekVZJmjqqMyKVVSqWpqSH2UKtgy59a5Q2IYrj09ONKyjzz+EhER+cIv+kIRETm779SV7z3jkJ7DYx/Sfv3Rl6Btrr6Xp47wvEFoc5ZY1ALoFIFHqlmP/FwZA02RzpU9vn7D9c0TX+Tqv/ZI2foCqs+AFysgGksoAc9KP1cO5g4poCJx34Ekjv4tDbrIENkl8pGNpq5vGJrsCkEVFvmYSHyVHKq7pe/PGuPN0F2GXBelq5MNK9aw9IwkVoT01uE9LeJDegvMmxb3v4ZTG4I+SeyXCOlfnTuE55pBVW4AGUJEu2T4/qgEuXnj514GxfBRSrTO1eFpkPs/8alPaNmrV1xfEIEY454omEcs9e2n4q+qn2dUAHavJ1OvTJ12bm5QgoBDYHOtkZhKFC2lbDeIueuVQUqxOM4Oj11diExwvTKoUt0xqED2mkVXPHKNMc1CQm1QeSUUU6aAhGKzhnMRT6m6HBKorYwGQ9i9EjveB46QmzB1no+/DauNm/9bJV/b4Ajmo1KYxbXQXFuRG5XcQPuVjG2087OQbKxBG7hmayRHUvz2KZk75fnwHVM2AQLZKm6CdUkRHjOArLsCsLsKyCQ4Pz+eY39P9oW3P79FZCdatGjRokWL9lBbfNiJFi1atGjRoj3U9qK6sd7+9rfLL/zCL8gf/dEfyWQykVe+8pXyQz/0Q/LFRkPiDW94g7znPe8JvvcVX/EV8uEPf1hfb7dbeetb3yo//dM/Lev1Wl71qlfJj/zIj8hjjz32WdXn8t4dSSsHiY9HU31/AjLfwcGxiIhsoPR5DlJqXXnCXkkJjRFcU1DQzeHG6sQqdZb8A8eB4rF42LIEiZWquArNB0htmGmN0GyiOjMW8INGg8KvxF9BzgtOHIKK+yHGoeZBF740bVJtCtUDAQyrELNRhR5K/JAsDOh3bWBSkg2ZjHN+OA++vFp6ou7yfuiiOThwY3xy4jVpFnBFXNy/g9fO1dVsmKTQJjcN28S+buHWoWtNROTuM06fhy6eAySaPIIqctN7OP/+3Sddmalz8Txyw7m1mqtwa50/p2W3yzPXD4CzSVClwixq6j7jVGmX+K5zm0yNIvMMfbKFgnID2D1PSPL1bpftxvVVvXFlqflD18LiwicNZWLS6XyO86PPzH1UgPxMt5rqpBTuO5O5dwfnI7irAP2TOK7EfzPtqfdTQIlb8B2S5DMzT6m9wndS1bFxh9qorNONdXp6JiIi64Wr99x4m5HDUsbUeMG1Rpg7WeHvrC0I+IKpwNZeh3LyU0Zl/MlPuTmSY/04hovmAP1rCe8FkkMySSTXiA6ui9Z40DsEBRwhqe1mOkJb/fxkMkoSidVlDM2gJLXrXYFrj1HfgSK7Gads4Erya9euiyrNByrwQne11euC4joDEHA+9fQYd9PQXUUNpUwV7w2RekCozXPqlEGTxqxldItuqJlDzSxdO3znU3In1YSdSLCaWooD6ss1h+NM96pdcznOpApQD4iuOjPwaQp3bQKaBsskDBowVcB7XcLv4Hqq5m+ShmoAQRKW6Z/faWUasGu8xF8FnZ3f/u3flje+8Y3y4Q9/WD7wgQ9I0zTy6le/WpbmR0lE5Ou//uvl9u3b+u9XfuVXgs/f/OY3y/ve9z75mZ/5GfngBz8oi8VCXve61wWcimjRokWLFi3aX097UZGdX/3VXw1ev/vd75br16/LRz7yEfmqr/oqfX80GsnNmzeHXxcRF/L5Yz/2Y/Le975Xvu7rvk5ERH7yJ39SHn/8cfn1X/91ec1rXrPzne12q0/ZIiIXUDkdF7kkLfMzGdVVqmHiibzCk3gOsvDVRzyCNEb4JwmAFXbVq0u3a12v/S5bQ1vxaEoFTKtMO5u53X4OQi4VarlzygLlT+Y5ca+zlE/QJLvZcM0wfFxVPfeRjwfv9IramN1QH+68dnZr/Z5rD/JRdXvYiEP1ZuYC03OYXWuN/qzWmvCIlRMRkaz0fTUD6sO+WeMB++L+M/7aIFkeAu155FE3zpcgH997xisoX5w5pKjFDnkE5KAAKnhoECMihTmIw5pjDehCaUKaywI7p8rNm+X9Fb7rdscnV3xIe3sFO3CEtrcIr89G/jbfbB3C0qOeBSUMgBhUFx4pYi6xLmH+IJSF8q2YvD8dyLtjIFAdCL/MkWY3HptLhxDVa3c/zU9cKPvWbHK4C+NGlqrY4zmkF6ZGvVio6Et1bRBfSca0cwSICfMRkWxMcnNpFKlJAOVco9J1UzGXkT/van2Jerpx2mL9GJtQ9jwJ8xHxnsmwK570vqzSPak8DtRmgjYeFX6OPP2sI623IAd/AVR2E3GyB5NDT+IfY96knb+bRUT6lrt4LWrQH0gZUFE78e3OUJ8pUECfl4ux3v6eY8wHQ8yJyJBQbNP8aa4mymno+zjuQWI4XzWXoVFtF2H7FPZ239lZt/xFMs1LOMLbRHwM8TdVKENEfJAEUb+6NqRrIMFEVVpd2ngO3/l5xpxgbr4XWPcLM5+0/4gi9QNpDKPeTLRT5UPaUA3cov6dksOptgyEK+P5ffs7krd7nmfgGTBzZSeUvx8gPPimiPn1eQHQR8PUHwAYEvk84+xQq+LKlSvB+7/1W78l169fl7/5N/+m/NN/+k/lzh2vLfKRj3xE6rqWV7/61freo48+Kq94xSvkQx/60N7rvP3tb5ejoyP99/jjj38OWhMtWrRo0aJF+3ywz5uHnb7v5S1veYt85Vd+pbziFa/Q91/72tfKf/kv/0V+4zd+Q/7dv/t38nu/93vy9//+31dk5plnnpGyLOXk5CQ4340bN+SZZ56Rffa2t71Nzs/P9d+TTz75uWtYtGjRokWLFu1Ftc8bnZ03velN8gd/8AfywQ9+MHj/W77lW/TvV7ziFfLlX/7l8sQTT8gv//Ivyzd+4zc+7/n6vt+rdCni3GKj0Wjn/STrJc8AhRv4lcnXSMJrGsClgLXvg7gpIjIG3JhAQydBEsFs5twmeeGhxdU5dRbcgxs1H8ZjA1Uq5BfqgVQZkvwVlsyc8w93bZ5jTx90JC9LCFl6vQmrvvl8DLB+5y+VUCD8TGzaJtjsQjKvJgvdp96shF9+pwnOIUYXRQbJ7hSOBWTbLHzfN+2d4DtUBx7PvNbLaOIQRiow30VSzxa6Oyc3r2nZJ17uSPVbjM8Gas3sZ6txpGRzaKcQki+pyRQg6iDmwuXF120NLaFnntWydH9ODpxrq0dy0uX5bS2T1W5cG7jF2g0TzDpNor7xbtaaiW/Rbdu1+4PKt03tK3p2120s5keur67dci6U9ZlT0F1f+ntku3JlVkioKh30Z0xS1w3gf7qDFH3vmADV68GsV67OhydOFyaF6y8hWdTqzIyoZUVtK9dnnHFURxYRqUhAJvkUrr7VJlwPRETuP+fm0zkSqy4wZ8ZGZHpFtxe6bYSxLJg8M8iZ6Opew62eYF7lCCC4aojPHQi5lxduTpxPL9A2V98T486g22mCYIscbvcRjq0d/5aufiYLRfWDe9nVi4TvAuteA3ehdUxPDtyYpZinKd161OopDEGXvomG2kahOrZ1edN1rGuEUB/GXzvBTx01c7pOZYFdPxi3IDXMSET2OjsDN4z4NYuuqYauH6qvm7UsVa2cLDwP3YN2nhZ0X4FQDlfauPATKqGbFS7Yiu47EJ9touYe7qSONABNgIw+y8xa3nFdDtdnTZpsEyq3bEtIbehT0hhMNoDB+XziV9OfQyF/esP6YUkRn2z0wezzAtn5ru/6LvmlX/ol+c3f/M3PGEF169YteeKJJ+RP/uRPRETk5s2bUlWVnKqAnLM7d+7IjRs3Pmd1jhYtWrRo0aL91bAXFdnp+16+67u+S973vvfJb/3Wb8nLXvayz/ide/fuyZNPPim3bt0SEZEv+7Ivk6Io5AMf+IC8/vWvFxGR27dvy8c+9jF5xzve8VnVJ5FeEjx1t4awtd64J+YNQ40RF5hj92EVRZlrabs9ExGRJb5b4XzcWYqIzA+c6+3mLfeAN8buqA+UjoEM8Yleyb14Qm/t8yrD/0LFT+bGsTuSZJDnRUl+mvdrX96S8K/E7Bw6JQyHpGMiJ71BYHy4+0DVNAlfu/bx++GurW+5QzHEupY7D6rhYjfDsjbvFQmECAnfgmBamZBe5uMZzRz58uiaI8lfvYEH8sSP08XS7aapGHp07UhERA6Pr6Jt/larIF0g2P1xR59o6KjZiSv/EagVwraJcI0MdFAhvHZ19iTq796fHHkEakS0577L4XV5CtSH5EkTTk/C+2oBBBIoy8VzDq0pZp74miK/0ac/5ZCme/ccanOV/DvDIlwvXRtyyCgg5ZyUvQlTZh6um67/xrxWBgQB6sginrxfADEjQZmb/yw3u0sctxsQvdHneeG+W3W+/QQTtpg3lC5Y3HcSBE9+8tNa9t69MxERuXvpyqwwF0/96eRZolS4Aa6huX8DpOuxDRHHvcDduxI/AbNNDGLwSO7qd4ocfqf3XP1qItIrP6e5vWXb8sz1a8J8eva+Z7AF0MAt7o3NwssIdCD+TnHPtbkr0yoJ1/f9dJDXj/IZDElPzd57W1OOAgR3Kv3ivBZrJtpJ9Ifz1qIKXoiYZFuE/zMfoUWrWq4b7tpd0wfftTm3/DWToA2phqsbxCQnPBEij9r3JjCFiI4GpuTMPWbgPyoac41s2G4cDONbkRy2k4g5URsbbKBk4yQ4asBCALyHKJC+rwxwWzY87g8np8fh+QROhr9C+0Jp9tuL+rDzxje+UX7qp35KfvEXf1Hm87lybI6OjmQymchisZDv//7vl2/6pm+SW7duySc+8Qn53u/9Xrl27Zp8wzd8g5b9ju/4Dvme7/keuXr1qly5ckXe+ta3ypd+6ZdqdFa0aNGiRYsW7a+vvagPOz/6oz8qIiJf8zVfE7z/7ne/W97whjdIlmXyh3/4h/ITP/ETcnZ2Jrdu3ZKv/dqvlZ/92Z+V+dz77N/5zndKnufy+te/XkUFf/zHfzwIy44WLVq0aNGi/fW0F92N9UI2mUzk137t1z7jecbjsbzrXe+Sd73rXf9b9WnaVBoQrgKNAurqSJg0j24SC62VIAWOAKkncENtoUNiWYgdyIenzzlEqwCUPjs80jLzYwezTqYOth9BoyVT15RRvqS+ThYqfiYK4VoIMHRfkYTnicW76pseHiUUaqBfdcH0wUdKGux2IVVeI3kBN5Z3QQ30dQZkZFeGUDcSYhJKB1nSumhqEEi3cCltoEnTmGSMDVxdK+jWnN9zWjqz2859cXjtupY9hMbNwZFzu5Rw0dBlRR0bEZEREkKWBfRLyjA5Y117t8Pm0rkkWpDg+xqJOjtHJLVwbwJtjgSqxR1cqme374svRGKuu3Y5dm6m86VzZ6UGFG63dMm6ft1WdLtRL8aXPUQ05AH0i7bQ82mEejt+TGfHbn6PJq7sAbSCiqknKJMMTK2XMWB9Jkastr6Peii95iDqUneEfb41CSZZ9wl0quoG2lk8bn09t1vqlUC/Card9++5/rw4O9eyd++CiA2XUQOsn64lEZFzrAHU2SlwzzSY73ngvmaSTFf3hskZmeTSJGPMcQ9kvZsTl0v3+h40vhqzlhXQmuLYFSVUx7G+2ESTDIZoQFqu1s71tzRuLArAHmKeF3ALkQCem0CQDOPSgFyfMCnrCK468dY0bDc1jUhqpTaR6auU7vpQB8fGVdh2iYjUDV187n6qjB4ONaGyhMRstIVupsy7WzMlPtPfjPuc2lTpLiWhgFtohPuUTOo08eflvUxNImr+MJGrK++OVO9WSoLSBEyi4oYJT/GdncAPQwcYlPEf7bqWSND233+B33T93dj9jfHnC7V3VAfuBWjI6QNSlD8vCMrRokWLFi1atGifK/u8CT3/fLBORGoQAKu13+FTDbNSZcowFHNaetLxbEJFWuQlArmt3GC3YMILuWNgiG+HR/XK5BxaLLGLwhP9DA/Hs6nbmY8mfudUIuydKqb+KX5f2ozwiTkZqFoG+6znUTG24eTdAO0ZEuIsQZmIi4a762fcvdnQTl6qC77bKhnZIHA1FT8ZrgykBKiNEoNFpCaiA9Ilw//b2u82uIsaU616gpw+IJlbEvvqktdAqDDGf4x8QvMD73YlqbwH0lRvEF7O8E2zBTk4cohJC9Rju3B1WJw5JKZaeXSBCFyJ8F/2VWVyTjGvG0OEU5BGxxPWz6B1Y+z+xyDoYxffNO4cnUFMSNIfoZ4Fwr9T5mAz8fRZStKl60fmMksSg8BgDhQplG+BQBaoZzHyZE6iKA3QGekw/pgaWe7vEd0h4l4rkFeLYyGZue9xvvt3Hbq2uHDo2ulzDuG7f3GmZZ+9dONwgbm2AqG2MnN5hXGf4R65cejaMIXcheG9KkJSoO5DNLQx854E1QMiEcitVnD+X/oxfe4p3HPMb4U2JtcdIjkx0gupEMlL8Zlbc86gIC4icnrq2tsilPvo2I1P07o5V5q1jLIcGQIxWiAbI4aOGxK/EpS51kpILM4CkjD/IqQRosAiIhXWYa7vnK8MGe9saiEuhZDyUJK4MMzaEp+JJrFeUMFXqQSzjrah4m+iNzpZ41YdOZRGyAfh8K4eqGdGpfNwzc0ag/qj35jvi/2qszMQMR4iLlQ1ToLXtjGK6+hXd5GeIf7yoMTisPSud+JBzxSRnWjRokWLFi3aQ23xYSdatGjRokWL9lBbdGMZSxJPVKsNqa8CLOp1dtyBSpu5Ib/Rs0F3SFUTPsU1RlZREq4taKWMRw4mns6OtcwEyssjuK1ykNyIF1qNHxKHSbBj/QiJ2+g0EvaUYNaG3+1aDw12VC1WF1VIEnZlQteWkrdV68bo7NBtxe/04XcSAz/3CXVGBoQ6dWtZEh6T70G9ta6D9617cAv1WxKU6UpME6N1gT4fz+GaAfxOnRAm4xQRyQjRg4CuiRxBat0k3pU0gnJyD+ibUDoTj/atcbetncug7dx7JeDt0QjzYuS1bqgds7qEGjLcOW1lXB4gydIlO5247yvZ2EDYLUn1SEx6cuSIxYlQ62Q3GeMYrr40cfOUysnW5UdCdg6l8Jwq0VY5Gt7eRpWUnTs3W9zDOXzf59DcKceuTzoqFE/cuCWGJEqCM6eNdwehXwxBvcX8IQmXujp377n+vX3/TMuu4famAPMKbhN/d4pMUvfh3zpyjXts4uoyQn8Wpo96zFX2KzWEeB8llRknJLds0G5q8JQ41rVRRb50379buTatz13i17x/wp33mk+7Q+0s4TVR/8Mj7xZcXmBdwnhxPVlCS+nZZ31y1xXqXMAN3ONLkwOQjsupbz+XFqoWw8WTtiHR1hQxSse7ejjqBIGbKYN+DYnAIVeWrn2cV8nQ1JvxV28bupAYrEIXGjRqzHlblQMekJfTkIQs4vV/SIpWd1ags+MOdEnlWE+bnEk+jcsL3xtmFfD6Zfa0Ku4VtlsYxGL7NSSXDwnLvXWJDfxYLLuXXqy+vn0fDi0SlKNFixYtWrRo0SKyY22cpZIg/M8q9LRUkISyJMOgc+zi7dN7RWKdEA0iYoJCW49wJPj+ZOx2NIfHLr3F/NDvroqS+ZPCXQvJszZcVXc0fBJneCFQCyIcIh492XmAxnWs6iwJpQzpVWXixrQFpNW2DpWTO5APWzE5rPowDxdz4xB5smqmvBaJfiQmy546NNgNE51rGTrL3GOtIQsOGk70a2QUrqmcPJo6xKDEOBXYFYrJp8OdJ8NeU/RfgZ1ZkpqdOIi9RINGI0gaoE5p78e0xp/bFZACEJKXW5eLyeYpSkFmZf3K8bF7bQj0JDESXauAcCkZe+aJ1CTTM+y5RH6uFjmTbPivtAzdduhSBeSgRJh9Z8JqaxLJF2fu/Bh3IjEiIhkQF6rYbi8RPo9d5Xhq1JvnUPhFvzIsnaTubOTVljOEsDfo4xrEWjRRlpc+7cyf/+mfi4jIveccqnT7Wdfnp5fu9YVR2+a05072pExw9H30hYcOnbmOnfcUaBrJt4VY1JeEZCAFuL+IVnQGBaDydkaVZU051AffcdfiWoDQ60tXzyf/3KluN2tPPj664pC88YHr6wb7dwZCiIhcu+HWKqJ8vIfZD5QrEBGpMO7TAyDOY5L3iZT6ceJa26jSb7imWYSCYd+pqiOH66CrH9FooF2Y/xp8YkLPa0WEQ6Izr1kYGQmiJ5mqQRNBCUPQRTzCqCgVw8v16M+risn0HuRhni7b3hbSCxkUyPMM616+W09eI8F32EchNsJrcU2jdgl/g+yv4wD9GaokGxRMkaIXAG12Q1Pwigjfnu88qEVkJ1q0aNGiRYv2UFtEdoy1fSsZBb7ME/R86nZk7SjMGMsn3z6xnAAcmzBHFJ9MO0NMGIF3cHTsdkdEdEZjvxNXsapBiDiPNrwy7UMfKHNE1epQNbshPY8E5+nAMjCUHeOHRk00zNwWgugZuo0ZvRMIvVnBMPKBNAOvClxhe1373WALYTSeoMPukFyOpvK7a2ahp1hjjTDwFcL3LXclLxlyjdxA6OfJ1PMGyNHhrkr5OMxOnltkB+H+KuCI+u/ziWeDMFrdmWJXaHziyWQa1KtrXIhwjX5pjVAixdp63NYjcL9SE/adA3EqwQEgF6pBeHrf+h1umoH7hRxJzC3GcHLb90QyC/CY2GcMB28CBM79vYA4HVG11NwbGTKhr1eO87MA92d+7AQIy5lHATgeFc47mjtEoiSfySAbRFibnhmi3fHuswgnv+uRnQtyc552+b7OEHp+BVyjlz5i6gBeW4I5PcJufZT5a48pJpgS0SF3jfetmSXdQEwtIWICZKe3iB6Tq5FTQrFOoBnmvCrahjnStm4e3Dl1457nXoAS9CudM0S/MjNOM4gRbjEPKarK9enaNTOX2ZQGqB/5M8xSbtAa5ShhzeK4tfsyb5OryJx4FNmzmdHJZ8E83ALl3m55NJIDeK8zchmuHxAObpCtEvOdfCvmWGOfpUE4OVD6AaIzRIfs35nyeXaRHR82jjxfKNvqeQ0HKA/P09BToOfw7dSA+EEeMRWeDXg/QwHHgYSJ+c3ZFR58AK5N//wvH0DGMLCI7ESLFi1atGjRHmqLDzvRokWLFi1atIfaohvL2KZKJAfUlhvHC2FL5utRtwtzGTW7JLxG/UAOApyC3Do98MRKqs2WgIL56GlVgRnaR/KxDEKwbTi5d18BFs5J6oILLciNhfOrGytU3wxcVIMwcroz2sZDv8yf06siKQmmTfBda4RxC4QOU5k4L40qNHKBEc7vlKgMF53JkURi6hY5fNZwX3Wpg5Y3Kx+C2yEsO8G1ZgirtuRDqteSLNiDdNgyP4+B831eHrymayoNIWAR7+pYrVz/MU/TGCHeNj9VgnlYM2yeeZ9QNxteStccSbwjtI3SAa7dzOsGkjSg73Lm5mVv3CMNcnRpGCnG4HIJ1WZD6lQiPeZYvXWuistTF9q8Wfuy9++7cXju1LmFjmZu3K9c9WNJtd4J3KFHV6+j3XCpGRdDU5NAypxwcPnAVZWZ/mTesS3mxuLM1fPpjz8tIiIff/KOln3mvqvf3Uv3HXCt5Wjq6nto3GOjjCH3cOdiamTGjUVXgua1wn1Ot1Nr7nvpWda1t8O1mGqrtS4fuNmrJlTFbRBy3hrZhwbzp8Y8WIu75roB8fvC99XVJVSxZxg7ulfNHKFUBd1Bl1ASH6q5i/h7g7xZKjNLzxx2xi2KazQt6tvwNdyPZs0liZv3Ddc7K2XQC6Uq0Nc8D/K/8SgiUiOIhOs63YA5XL+tcc1QIyGBq1hJ+ylzW3mXl7qmSD6mu2mfOrK6rcIwdUs2H0SR69rIwJncnK+lq4wuKa5X3a4ziKelPInmHtMcXruk46GCMmULWjNXdO16AW9WP3iP7rG9Dq8dpecXtojsRIsWLVq0aNEeaovIjrG8SKVA+F5iM3oz5LolOTYkwlUmn1JNUT7NZMwnfob8GrFChP1qki08v07GnvhIMSnNcs4cLHgyzwMSGgmv3AWEYYVJkO8KRz7ZD0jHvRHr6zSLOEXvcNwTyi6KRGF3LSQP2kzmKEsBxw1z47jddmJRkCTs+64heRA7NbPL8Dtn9x5Dx8dz5FMqDGJUMtSc+a7cZ5ZQ2A0yw/uM6+1OPX0m3xAh4863Mf1JVCLTnDsgYaKLLKG4JNpFQnEbImR153ek5WD3x3nQ1l7YjVIADbKoJyMiMsjBZMLzU+RY6nsK+yE31trN2+WlP2+SkrTPHDzuuEBepsWlr+ftZ9w4P3kPyM6BG9PchGlfuXKI9/z8FvH9yZ2+iMjB2JXtICbp84URgfUI5Bro3v07Tpzw0085YvL/+qT7zpOnHl1Yg3Q7Blm2xX36qVN3viulH6ebcyBR5YD4b6cIkQyGDHOu8L5MPQpQtSS2A50DqrgFEVxKP08TELI3QCRWEPTjsrQ1IpVboBUUP6wwtiP0/bbxFT69d+YuhWEpcI8k5tpEJ2/fdmVHuMcmYxCBTVBAAemCEwgXZpBEYIZ0S7ru8L1OEV0iMqEAp/sbiDPXCl3wLB4QCqEyUzjXQatKUeNFpaHnOC8KZ4URkRUgjRQjhUwHEZ3MrDm8h/MhMTl7fmSHa08yJBSbyhNx0YAHHPl7ICLSMHO7HrE2KOprSOwMqqHoXxquJ/vC39n3euS4WeIzUZ+OCByJ+RYp2vkjrF5i67kbpPNCFpGdaNGiRYsWLdpDbfFhJ1q0aNGiRYv2UFt0YxnLs0xywHBUzxTx6prNQMWXBNXc5hMisaojtOi6mOTBrYH+md4nRU4skkXpuhIRGUPrRTVeVMWSEKbNf0KY3B08aWwX5lOC8kClgNAidSlEvPuKOi4Ct1Zv812pgmYIY1IfJMmsa4ruBRIBwzxXtr6q8UNidkt9HQefb1e+P+kWpEIv4dwx3VkHR1qWea3Yr0qoNPl5MoxDiYHKyhBaLi35lFoxA5cktxNZQA5XHyLq2duiAaGYGkmJ9mMWnGNqyNzMOeWhergvjOeLU4QKxxeXTkMmV6VnP/cIGXcgom9A6r2A3sxyYbRJkCPoYH7syqqSsvv8zoV3O9xbu7+nU9dnj1xzbqjZgdGtAVF8AhK/EvSFJEyrdQKXKfKF0d22Xjg14Gbr58jFuWvDpz/tiMgf+3OnK/Mn95EHywhM3Zy7cT+eubps0MYLdOu59w7JJnPfv4Fxn9Olaty3OXVgODUy14YN7oOq9XNkA1fCGGM6P4TKOl0VRr2bhNnZhHotrt4ruPXqjXEF4h4Z090IV93J1L0+GPs5TXf9FppOPXPkbXyZyzPXCSu4NqkgT9X5Z0z+sDnGezJ1c3YEonef0QVk1wiSl0PNnJSaOmZ9UvLxQA3YulC4RO/k9ePrYM3hl6ggDLJw4eqbmjUiQXCFfpZzXYH+TuDGosJxqHnjdWysbhfdwSqHLbtGbTR+J/zNCSkOIRmawSHtnoAUulXVbU+SsP72GIxENcL2a+bYfu10LHFeUjvsOKlbjCcIz2tfac88gFyPLR8tWrRo0aJFi/ZQWkR2jK2rTmo+tRrUgiGMIzyZJ2TskWfbG2Ve7i64s8NTdounbmY2FxGZHR6LiMgUBMMxwtPzfHdYdLc+eDzt7Q5H8+lwh0MlVRQIQvxIIAuziEsXho6L+BDWDvl5ehA+bSZzzUqueZ3QfhLVDILUAMkherabydwoKJMEzbB3qM7WyFbemCzVPVVQVQ0aeXCwwy0rH3rO8clAgE2A4iQGVUs1IzLaQMYnmrg2ofd9j9xFDOlUpIs7J0P8xVaE5PUcyE5RgFhoCKCjUZgjx48pQnFNuC4zuDMvWb11CEy9OfdlQN49u+tCwlfI7zQF6lWa/FQMXd+izGbh+u/2bYeG3D/1iAkij+XwxI3PrZtXXFswlkczv8ucjZwK9NGxQ2JOcJzNTN/jpmPus07zqbFtPov8FuNajnzdRTxq19kAAhCzT08dwnN/idxIQGu/6Ko/xxTVoYov740ZxmdrxpQR25xiY+xaS5NjjuH+zFw9wnmqnqidzWWEuXGAkHYQ1TOgjIVZI4oslGW4AuRku3HIVtX4Nl0C7eJc6TsoiRfuu7PCqFgT3VYkG6HHJuP8EfKSkeDf4b7fVu1O+xkUQCSq6YAyQC276fatZahCy9DzUHrClQEyyoCMlEEhRr1XFex5D3OdRv07Pz/LPswPSOQpwxiUE58/boR8Xv7o+qZEf1i15ULRlUEgyYDULyJGKf/5kR32kSobMydYu6vwvoPscD3pGF7vz891s9tR4GZ2AfP7NMh39UIwi6LzKX9r0sH5/f2dEod5ANgmKihHixYtWrRo0aJJfNiJFi1atGjRoj3kFt1Yxvo+kYYKwIbdVmriR+hMEOajCq3RAqEAb1NBgwek2wzkMyZKFPFJ5KiHQP2WjUlKl8GNwzJFRpIbIEBTTxIfFfocIoC7shPevaLuKyYn9JAyXSbUsyA5uDFJKPueCQqpMxQmOewDiJZJM+FKSlgGCrBWvFmomOrO25J0CdfKeuNdU0z0STi4pGKr7EnKp5o0TEJJ9WEDfVMpmoQ6ur5IOjauhHRA3lN+HZOdGn0ltqmi5gk+qmsQ1GvfVx2SbSZQ5qXaLImLhSEhkkBOnZnt6sy9Xi60zBJujIszV3axxpj2II02vvOrgu5L1+d3n3Pnvf2sc1+dr7x2zvGJg/bVw4txOpw7eP8RuLVERAq4A8ZwC5MAmxv9EiYb3WzctabQuulTkkZtQkS4Njanrr7oKiZlXG78XD6HanNNDR24m774iqv4S674/lxAVfdy674/GzG5qfu8TD35dNu4EV/BfSMTd77aJiHFTTendtbIfXaIdh/OfAJgQvsTBCgcnTg3Y4/xPjBK7HRBnJ278RnDZVhOXZ/XGz/3ZmNXttoy6SyJv+jvpXd5Cta3rqEiL9zsxtXV4nyzg2nQD/fO3JhOjCL5GOvkARTj5wcgn+cgKu9JqKxKvNSHAoG8brx7SLV3dM2ifos3rzUWah31WFfHRm65hFR2p+sUtKjg+ikKP04T0BLo8uWxBDHZBpuoK2mYADgN1w68kM9k6l7vSBImQTk8inhSNF1pXDfaDPew0RkyKyAvFBwt6TjT5KCh28kHwNizkV7ACBq4H835ks5/070xlFC2rsnda7yQRWQnWrRo0aJFi/ZQW0R2jM0mE81XY3MuaTg2URaQ2xTxGfmn9y12xlvsGJkGh7uC1KAWqvzZhsTcziAmrbKjoczpM5cEdRHxT9nJQM1y+GSOi7prDfJedSSsGbKgho0DDeEOrLch9yQZcyfWDXZZhlmdaSeEisQtQ/xrj2y1QDZ4bIB6pbh2kdudUx7UkzloEiAJqSUfM5dTQXQJhFCDGPSoZ060RndkUHw1YcqKZDGcEjtRblbDccJ5dCeG/FQkwNsNnm5EOQcZ9o8+syRx/LltgUD0btdZJ34sCUZkCDFOQT6/uHTHeebRiku8t4Qi753n3LVP1+5C8wOPUj7+qEMRjoHkdIg5L4jWGKXnHMTECqzmAn1erzwClaB9Fe6FCsrH7I/Z1JNuNecSdtVE0ZbnDunZLC+0LNG6AvfVS06QG21C5NSE/WO7u8LYlvhOC2JxZzaUjxyCFFy5shMqU5vd9Xrr/j6euX6bjdwJpgeu7MgQf9cgEE+mKY7umqOJG9PWqCIT3D0+dn1PlOXy9A76xZB5kS9vRPI9Js0K+b8SgxRrAAGmzxYIUW8Qzekc4wDkusKcIaBzdGgI7wdQA6fURsacc7skXE/QRb2pRM81IwhJJtLOlySzW0tMSR/oQUkHm0eqB6LTI99ZXoRoTVl6ZGc0JhEZR6w5SkY24z/Mk6eqyCnRkN32D6ovoYoIFY5x/p7XSYKjiCdbZxgY5nnMO8xlo0jupTFCJGcoU2LrqdXdQWB2Q/qTYQKsIOw/HN+dfrDXDqv5GS0iO9GiRYsWLVq0h9riw060aNGiRYsW7aG26MYyVo5yhSib1qu5NmvnOqG+DDUwlKhqyLcqK4G3Rj26OKGLxegZUCuFujWAidPEDwuTx6knSghRknBmFG8HehuEIxV+NGquVENVtxVdaEy4aQm1THypKr4O3k2MayJJQn2ETBVQd+FMun/okmngMqRStXUhCsixTACqHQGX0vTQEzUJJasaMOB2uhBzozpbEkovqHhK4qslUodkRpIbE22jryaVnlm/hq/BZjWC3N4RSbVlvNFCfTYx7sEG49D21BDiePF6/rxUoFXNI4xtU/txWiydm6Fl0lm6neAWmU/93JtcneNa7jyP3ToWEZH12pGbx0ZDpCd0jgpVdFVBrykxbocWSsHUIKnRtrHRF5rgPuS4b6CnVOF4ef+ePx/cnuMJxhJ6RTX8TOxX107XbyczuJBQVtMhGh8i8yieHFDpOFS8Ho/8XEmp/4N+mEF12SZ1HV1zc66AC4G6XXQlHR5598jhIRMSu9eZuDEcQ723aa17BH0Nl1+WuP4Y5XVQXxFPtt9Ci2WxcONOsixVk0VEqg2SuEIpO6Hb3rjbOiY+JXGYiT8x3uXYl2U9t1Q/r3he93mS+f7MEt6roUJvR5eN2aZnOrzU9ApJsiJ23eQ1mNySrmNfzyTj+sH1JHRVlYUJMilDPZ2CKskDMrJtv3fNGFawhMTfbqh6v9dVw3ZyHYFbK9lN2EmXGTWeWL+idfVuTEBKqufR2gR1sB5Er96864qzddz3DvV8Avcd/1AXVejyCl1puGZ0Y0WLFi1atGjRokVkJ7CLu89JkYdPySJeFZN5ekooHSs5yzyhJ9hF5zWREuz0qQ5sytYg3dYgc5YIM53NTWjjbI46YJehJFnuGAy5qyWiI+FnQJA6q7as+ZNChIe5p6yCcjtQWebOqTcIlEZ06k4szG3TmPP1DXNtcYcHtAHkzr7xu0sh0kTCb8Lz47Jm55yDFEpCIfNUUQk5sygYTsBwVXSdkrzd99KgLSQs9wnrYsri71RQB1UvDVE2d153VGIirsn8XHa/R0I6ichpj/GBcvJq4UOFF6dPuWurIjPQi6lRL5459WLKBtRA15IE4eAWrcA9UGP8SYA9vuLmZBaMv7vWduVQn8ve1YvE19ogW8vNGerixukAJM/KhJ5XqEeeuHZzvo+Yu6n39WxByBYF/VyZ1dKFrXNui3gCNUnno8L1w+natfH0wiszFwiV5v05xf3JHfjEpJxiqPwBUACyRYvS1/NggnEeh7mQsgTjvrUK3yAzX0HIORC9tCMK5pXYW6DHZQaVZXTEGAhEb8jM6wWRMtemDVC6KVEHq/Sdcb6HIdJ5afbIuK8vIRFAzv5oMsF1/MCrcjpuNl47QV6x3KjL92h/CuIwkR3tTYuq8l7mG2SOGwhCUWnKXRDRASE/yT1ak+chMZk58vg6N/muNJSbZYgmMwghyAk4JN0O13Czlg/CvPshqVeMrMUA2di9jlmfNHgDcw/ITm9Qeo/kDM6jfGKzluk1eZ3BWOxBXXo9XbKnTBhqrtdSdN0U3oGBXtgishMtWrRo0aJFe6gtPuxEixYtWrRo0R5qi24sY42kktENY5Cxeg1tE5DvttDtUNJX6WFNJazB1SUguxV4rmwNsVBdJ4AUD+aObDubmkRzqr0SKvO2qlRsoMqMJNFQv8An+zSaLICfSQClGnQLN5YlfbHGtSbYhBk3TteGBN0epUhu3pfcsyUZkth3v+vyEe1j6BQRAiW8bVWMVWeHLEaQjtG/vWU1pkz2x/PAbVLY8zFpHsmm0KbAMdDQYAJQJVDSBYb6Wp6eksBDF52qWZsEoxsk8ySBuIMuTlvXwTlEREYTQPKqM0JNHg9RK4zNUVRXWrFTzwKuJLppOxBKlaBqiK/ryzNXdbTl8sy5sc6hpPv0Pe+iuXfp6nMCbZqXP3FDRESuXfGaLPAcyYpq4nChpnAhHh/5e4QuPhKxm/Ua7WbiQqN1gzLqXaKLZuXKTnLTJpB5G7jMDuji7pgY05CPcULq69BlnBu3YA6NmxyfzSbUpCKR2Je9XIHYTU0r9gtUnQ+nJ779Cc+D+Y42taqw611TE2Q3pTs8aaFfhHFLDUG/p2YUXamcV5ZAT5VxfQvkcPotU+t2QRtwrQxu7FxdFVaRPFTKTocJJ20gAV3FocdDgr08SbtM6gl3Y5ozQMG4saCQnA/dVzm/u6vtxSPHcJeMbOo+1KAJNINQ4nl4vv3QZyUiQ5Xhvdo0fmFyB+oLUTvN6gz1IWVgSDLeq3wzcHntlcfZ57Ua1nfoBhu4qgICtPZFdGNFixYtWrRo0aJFZMfaqMhkVHAn5XdDDMfccAfehKGNeeXJt+vEke4IdLTYFY5mbtc6O7yqZY+PnersFLliRlT6tWhFOnhixvsaSmlJaPxM1YxDhKffQ2bu2pB8nHimmZblxpC7FfaNfZ4ucob5AiEiyZg7Z4OC9F2o5smNd98h5NM8g6saKAl1isAgxHPkydzFxPVxMQrz0pAsbMPKFfzBa+4Og1xjA1KgRqJzN2sUlBuiZww553m63d1wC+Sm9x2L7+qV9S/NUYa3KK69WqzwVT9OU4Red70rNCLh0yJ6DciqGUOZ3XeYc6gx5PA1yMZUPCXZvqocapMYcjibR5Xd5cKd586pQw7ON/68JZi9j91y98KVEzduHFsRkQyowkTJ+kBTcEwN9EoFauZGIzG9A4q6WFxqWZ2fgI7ahIR/tMOSznETU1WYkggnUCjujdJ3BjkGhsGPkEdrMjaBDkB/uFqwDRzD2dgznhnKvrq4KyI+rH5EbYvOX7tDKD9z7RWjQ9QPSPTCqMHnCJFHnxBVuQRidLH0CJyiFQyVx1xZLQ3yWGMnDqSkwlpZg4xcjjzqPWb9gNI2hO/QRW1nkdIQcW3xU9UPER7xodf+o11EguHkiuwQvUG9M6OKXBTMWRiiQETgffCBR3eJiA1RlSBUmuiHhOvKXnu+0HOrNqzkZfe6035kIIlB3gcK0vp7QoTbrs/MWTX4KdhHfB62ZCf0PNn9e4Br+TEVgwgNx3kPKuSv9WCYTUR2okWLFi1atGgPtcWHnWjRokWLFi3aQ23RjWWsGOVSArqtDZxPGA85PqUB+Y6oe+HRd3WD9EJNDQeBjqHRUZYeAqXrpAZhl9/J7LUBMxaqGcMjCXC2BahgSpdKgzLufUuozAHnSo/6IGmkwpLpnudgwqW7n2jd6c5olQBN/R6b3JMJP0GgVW2PNjiHiFFiJrEOmjleQtXUk0lIqRiMY7WjVeGhXlUkJinPkgUTutmGBOVs59IefnXXyFPeWiQfeyIx+4bk00yJpICPDVE16anADFInIPTpHPorhqBcwUWVwz1yuQD51GqnCMfFjUeDZJyVqjebawOarzHxmSyVxPp2490jdHFsQeYfw714de7q9/gtT+q88egjIuLvhe3GkbDnh96VQIiaBHp114JIv7z0rim6sehu4f25Qhm6bEVEGrSlRSZIkmXp6rP3MrWxZiAZ0+24gH7PZGqUhHGJPBm4AMw9p0EFcLfVveu/EqTmau3rWcLllcFFJbh/ivEB2uTXiMnkmoiITI+vu8/wfl+hMRvjbt2sUU9o20BluSjctecz3yZhv6IuFZOzbmtTpkRfuLJrEMqp1DyZeDcW75cSStmbOnShN43XOFIXTUIXnZsb6koJkhpzzXXGXkxSSwegGxwuqoyubrqzfLuzARGZbive/6GrinpdcPXi4ns5wgnrGZJ4vYv7+d1aSh2wbixciwR0upn9a6Mczvf4HT3vviSsg9+WgftqD594J/m0V1R+fvMuNatFtP+4S+42fz+ghHJEdqJFixYtWrRoD7VFZCewXgma5qFYyW3cracITy1yohnmaZvqpSC8lVOHmHCnW5jQZhLVNASZ4bVmN6jkPY3sJkqBPEjBDgeKmgM1ZIaT9ybfVao7BSgI4wKN7g52URDuFHTnFGyusPtnmCr6cYud5ObiVMtuEKbMHT23KCWgspHJuZQyRBT9l41JQp7h6HdkRUkCpPt+SzRIyaeGzK0hmCN+iH4xO3HhLp07mjT4rlWk5rkViUJftRiLxJYlmRHESsoHkCRIhWYRkQ7nI5pE0miSzYO2iYi0NcnxyCfWhiiDK+9ebBGeXUHFewS1ZRuez/lZAikkktNj955YZAso4sHcjcF07up7fN2R8LPcV2JSMOzfvR6XjlBbGmXa0RQoT0+i7iXq6649nfnQ8wpIyeriAu0HYloTivTzfgIF5uXa9fF2RYQDCIUhPtfsR6BzE+buSnj/+zZlSNDUbl3ZYubaX9r5BPLuFArEoylJs2iqFYfFTTYD0dnnu3Pnmxwca9nx3CE6GRW4t0uUdXWZzjxidrnGfQjEsMQ9015SUdsjRnmKgAENf3fXLkYGnU6JpoUIXIb31xsve0CF8NVyFTS469y82ja+A7Itld3xHoabgQl2L9/qmjgkrFqUkugMQ855xBhY0rFKTgxkP/bANTasH4XcYafkPtQiXJ9C7CEMq1YSsg2gGKzLlH1o9fUeRFPXJcqS7EGVlLwctsVHgdveZ0h4eNwHbSUDRGtfkI0HcAbf71nWX3tvePsLWER2okWLFi1atGgPtcWHnWjRokWLFi3aQ23RjWWsbhKpCQUaeDIDjJ8Rfi6olslEfka/hYk6qQtTUNeBSeSMiwbQKvUQ6AoKyXehpo0XG4aLwgK6gOs7dWOE6rNiiKpe24DkS+isAI62eisNCdR0pfERubMEuFBXZqiS3Jpr00mjCqXQaykyujc8pEydInUr4pqFEn99PZkssa7JEkQLFS42biwSvPMQ1rY6ESkVndU9SNVq3jZWiwiwO/wPqZBQjWPvbzVNrIqxo4vHkxC1qCQ9XV044rzUcSlzv1/pCmp9OBffcu3cOvVqqWU2a2j84CKzI0dupTbR6d1ntex64b5fFqG7thfMW6MztMY4j6gZBTcuXXZG4kgK+K9mBweok3NRMSmpiEh94epM91qKsa2QcDIfW0Ip4HG4+BoQtSsQwScmKKDFGBZIxjnCNDq7gLKyYSjTpcP71LsC3JfKkXFNoivGIOpOx0zq6ufnGIRm1Qoa3O9Wi4nuhY5Kwlh71KWeedcU3a1UiuZcHk8dib1ZGlcS3L7rJfpo4+ZDDbfR/Qtf9uAIiVrRrx1+LtbmfDnmYT5yY3Bw6MZ0DRKzvZc5x1arNY6uDgdTui+ttpn77AzK25uNc33Nj45dG8062qo/lSrgTPpp3W1lcGSgw/DoytDNHJJ3dY2ztIUkfC/Q1REJ6bQDgq+qLDMGw/yOeHshN1Y4H5WKgHlLt5Z9T3/fmtBNaOvpXfnq/w/bFGgchTZ0eYXk4/DTZC+xOKQMDN1aVl1/V03phS0iO9GiRYsWLVq0h9oismMtSbx6sXmC9mnssYPiA3i6iwIxlLeHIilFbLOCSrW+LPmNGXbnueZpsgrCJMcNVUK5ozBkVqALfGpPNNdUSCwW8TuFFiQ2hjZ3qo5sGdpU+g2v3RriJ3eGHcK96y3IsjVDpn2b5gibThg2zSNTD4nZZWFnm43CEP6RHqdalnmufOgkw0KJbO0SyfU9IAfBbpD5dLi7Zp8ku0iZ5+VhDJNQbboNyMzc0bnzEzHwoZhGegBzazRxiMlk5o7bzbmIiKw2PgTbUw2JlLm+SQ1BteruiYjI4swRVZfLJ0VE5OBgMCYiMoJsgvYf0T8SI1O/u1bSKtmWQDg3W6JhBl3AOK+Wrg5EE63ars/d5NpSq9que71Z+7B3zq1EVZaxW0VVtkZOgPmjiGy2qBeDDVIzpuMsJMOOy5Asfjg3pFaM5RZtIYLEMHgRkYIIZolrAxmjKvZk4vuzBAq5vnTIRonw99kjCJ0embIFJcjR1wkRUtefnQmrZmADUYCq5hqG/jH75MUCRPTeoWnjGdBpk++L40J5grYr8Nqd98CM6ZaSExjTFGHfQoViM0dqrKOUp7hUuQp3b0wODrVsgvNQgTtTdM4EgzBPnkqncz1FWYOq9D3RbvSJLhW74d8tkWUlSXPN3bVEw7JRBSLOGdEM4yFQ2CILrmkJ0R7Jcce6ZZ8R4fbrSF2TgI752TDsn5Ibfp4SaSeC3w9D+22gxzA2fBDosS/v1VAdOUC/hnnChiHnQWEGdDwYthORnWjRokWLFi3aQ20R2TFWFBPlwNhs0nzKzgsiMOBP4Ml5u/WCeQz3Yxi0ZpXl5tjwHBKcrwCfp1DxKvuEP3hC1t0FeCS99WGGYZ/8DjOOWySmH4Ye0o9M4SwjyJVBeJACgW3F0HbDl8GOgZyKeu2QnRqhwrlFq4BSMHyYIZ4MRexMyCh37cqBorAf4bXU8IaQEyrpB6Giuls34nppOPXZj61pE3d/Cv4Y/oXIwM89DE/d0bva3X3wWhrKju311nBXpkCwWN/F+Rmug92c0XeTgWBgBZ5DYuQOGGJNFMW3l7wXvxNPsEtfXjruDrOxz+eOlzEyecmmB24sT+87tKbGrnOEnE5rn3JJGnJpwO9pWjdnVit/H4EKInVCXgtE/8A5saAahRJLtJP3ZYYw5cbwpZbI91Uwt1pG0U5y1kzodU6JAYTrNwzXBh/H5MQbTdOg4hQytLwEIk1EUwryrshrsqgSUJ7ROMwJl+AeLkxeMnLROuXLMbQbx86L9SWZKzOeom/I9+iJlPn6zsA/mh+AC0VOoEGrxhM3B7YqHurm7tEhxta0aUvUWzDHcL4xQvpbw6kjUkSEi1y9FmvtRe2lLMaHruwIAoYESFKzl1fxPI3zDjlwiUHyuU50rE4f/ia0AW8GbVJkpw2+Y20oNOmPoaRF8DeXMBUe9ecbcnWI5FR7eJf14D3NXYj6pkbuglwlitD2QEODm25oAwSm1/Vwl7PD3zTlO9mcjYoMhedLZLc/fdj7g1lEdqJFixYtWrRoD7XFh51o0aJFixYt2kNt0Y1lLC9TyTXUz4NjOXPEMEQYECXJyBayJMRNFV/vxUCuLKMSOwZ7ma4Fhfcs6Zj1UMSP5NhQLdn9DUi1C902qm5siVyAGRvNQROGZ3e9eQ5m2LOGAw7dQyJNkwefKZGuIxHOX3u1DhVTx1PnFpnNHelwZMJK6dEqqF6dhhBr0hr4dSi6SfgZbhOLd/YY0z4FOVKceyQxbrF+EE7q+XWYD5ZQSNiWJGtTL3cu427DRyTDs6vo3rHnpWtrATIvyYPMpzTJPUG7aaCKjLkyORgPmy0XZ84lReIsQ3hruFcZDi4isriES7JhqLSr1yXClre1n/cruHS2GNsFjlTFPrl67Puic321gkuJLsqm8nP57BlHwD4+cXNis3BlD+duvCZz70LbInya7qHlmu4wkJuNa4qjsETYMxWuO8zPuvNLYo3zjcmoBuxOd1li3M28v6dTkGTpfs78XKb68wz5pwrN5QW3W2YJtXRtQWKCa0LlxqSvvZyAEsUZ8ID8Yb2442LtXT4tAicSuKbrys2ZAvU9MMRnTuHFigRyV7+Dqe97zi3m1BqBDD+euXlZG1XkvOT8Adl448577x4kDsy1Newffd5xbuCCm8q3n+tdSUI53eLG56Nue3XfM1cU3Y3+fvX3fRqUUTeWoSJoDsCWa20TnMO6zlVlPR0cs103ls4tdcXvurFYL68Yzjx34VHEuq/q4Mj6pal1E2GNzUL3KPszoE4MZBO82xbn3UNQTgZHe+VB0LsJupCdssPvfCaLyE60aNGiRYsW7aG2FxXZefvb3y6/8Au/IH/0R38kk8lEXvnKV8oP/dAPyRd/8Rdrmb7v5Qd+4AfkP//n/yynp6fyFV/xFfKf/tN/ki/5ki/RMtvtVt761rfKT//0T8t6vZZXvepV8iM/8iPy2GOPfVb1SRODGBhiFbP08j0KcfGplpnSRTzBik/VSQFiJT4PQvFIABsIB/YBEUwZajjgKVt3FJ7Myr89SY67FexM7Hmxw6mwq+wZxsis7QEXLSQ6U/Crq8y1sbMvsTsdQfyL3WjStEjbkogcCmatsdOfHvi+HzErcUn0izmt0EQrlKiiiuFui+OWlz4ElzvulMc9Wd6JUqUDVGn4Ghdn49yRMgDc6QX9GQo5Ukyva9GvhkjebCF3gDmYYyY1IIK3dvfWDeYRkSKDlBU4T9OGbVkAOanMmFII8NajN9xnQEyIRFwu/O56xNxDyFn2CEjogh3zaulDxccgGXdAUSqQTnsjOVAeOGRg05B06d6/DxRganIu1ZiPU4TKUyDuDGHbTefHiWmZzlYYn5YkWYg1GrCGAQm9hrQjbBuoSGuIunkBpGyLMcBuvav9wB8fAtGhCCI5zUBDWnsvI5x4jFxwQjQRYo1iRPCIDHQd1iVII7ToFytSynu4JhKB+6giOmBF2/Ankb0SecU4h0REKkgLrCpIJMzcZ0RiextAAPSAidVT3CvLJTK6l36cjo7c+DeYj/eAMqrwqllGO6AUTQVCfk5E0yDECdAe9GMvPLLvdvGFfoBSk8zfGtSWRF9+Nsxz6CVUzXoCxIQikFlG4c1dpJhH/9vgGz5EdioKB74AQbkdIDz8bcjNvE+xPuWK7IT52YLEkQMIJtkzPtp+ErQVrBqSkXeRnOEHwXkHIfGfyV5UZOe3f/u35Y1vfKN8+MMflg984APSNI28+tWvluXSL6LveMc75N//+38vP/zDPyy/93u/Jzdv3pR/8A/+gVxeen2RN7/5zfK+971PfuZnfkY++MEPymKxkNe97nXBpIwWLVq0aNGi/fW0FxXZ+dVf/dXg9bvf/W65fv26fOQjH5Gv+qqvkr7v5T/8h/8g//Jf/kv5xm/8RhERec973iM3btyQn/qpn5Lv/M7vlPPzc/mxH/sxee973ytf93VfJyIiP/mTPymPP/64/Pqv/7q85jWv+T/ermjRokWLFi3a5499XhGUz88dKfHKlSsiIvLxj39cnnnmGXn1q1+tZUajkXz1V3+1fOhDH5Lv/M7vlI985CNS13VQ5tFHH5VXvOIV8qEPfWjvw852uw20cS4uHDTuUDGSxiykSKVbuHpaKhIPyLhitGeoxAt4lAqrmXF5qVQGyXJ96NYRMUqaPTU0kPeqIyzp3QPUVyGMTb0E1dux6puApqn70+sRMKyFagl9b5hPB0TYtSEJoh45SZxwVaQgXycGdieJ23+WB2WKkSfdMp9OruRNdgjqb0itbU3yJaBZ5iXLefRuLMnCqd/1uyRRugeolaT5igABd71FDsN8VwrnUreptQRIuAPVPUjVaYjRJH6cCuDLXoPJfWdx6e6V9WIxrIK68Wr4fmZwKbpmQ+l36b5XJe5IraOq8tceIf+UKknT7YoxfuT6NS2bwkV4eurq9fSzd0TEu5YmBzMtyzxHkwn0VTCXU+PGOl+7Prl6xen31CAUd02oOu3qBdccSPUXC9ePJEeOS4N9z9zfdG1dwK1Fl0Ju3C4cQ5Js+5T3p6vvfO6DDdLBXxnKFqn1XzKAAO2GOzCHunpm3KI11qdxCXcOdYagoC1G6ZuuXAY6NFwH4I6otyaXFe6JBPcKlZinR05B+/bFPV9dzMMbh3O8QbK80etCH82RE4s+hQXysaUmNxb7cb2Ga7Jhvdkf/rxtGt5HJfKb0c1u71OOPwnlOe6nRPz5qE9ErbAK5G1q5qR7yOZ6P5GgPNC1EfFBBUN3Fsv0JncfydbpwH3FY27qwN8L/vb0Snnw1VSvUhuq4NeaG8tfm+5p7+LnZ7sBJMzR1WD9a3O2O3TViXhqRDZwKVEJOXQ74UB3ln5gSczhOyoDt8ctpl2xR9Non33eEJT7vpe3vOUt8pVf+ZXyile8QkREnnnmGRERuXHjRlD2xo0b+tkzzzwjZVnKycnJ85YZ2tvf/nY5OjrSf48//vhfdnOiRYsWLVq0aJ8n9nmD7LzpTW+SP/iDP5APfvCDO58lg8e6vu933hvaC5V529veJm95y1v09cXFhTz++OPSdb0SC1v7sFjxyXYY2h3u/ET8Ez7zs+RlmO08M8q9/oGUpC6qRZp2MDSWmcyJKpDEanMuaSbwAROMhFhzXr0WkAKfXwVHsxtsqw3eQ74rkGO7yqNKOa7NLN8tyLYNdwOJ2QWDN1hKGI4/gRqrVVtmO5uOuzUSgHFoPEJHQi5JhymIpIwHt5mNVbVZERieZBelYxs0jPJ5MhyLGL5eH+bEaowyc0iGNLuhjFmb7c7JtWm1OEV73esFMpLnFqHCvORbV4G8tEZGgDuxYuJ262tIG7dQL85HRnUWw8tmVxjv6SzMbC0imguOYdqPPv6EKwMUx0okpBjvS6A1h8iVtl4ZmWVc8/L0Img31ZFrc5NMkTX78mKN+rp+nBxQAduPKZFVKoXnQBC4Q7fp2TU8XyHYEPVNzThSiXkEBGI0JXrp66lIYUH1aqK1ru+mpSfUNkAl6q1D3nKgnSnyR+Xi70/mFuNS0CAse70+Q/v9OOWY9yWyvmtYee7aYtJzyWIdkm0JPGw3Nn8aif5QeGb+rxHDv31/jnGNvqAaNMaiJFnYBBvgPme+szmkBlYggI8nJus9LsHcUH0NorJBiImwUCFfFZkHxF1rmmm8JRGYCsoW2dni+ywDBIXZxU2wAe90BlkoopMT2THSAznlLTSRFj8xZ+Na2wVtUHTJEOh7KlwrKs21Eqc3AGSD9bKlRwN1aYDw5CabeptTloLvwZvQD36LxISlD0L7A0mQB0Rp3NcevKyv2Yts3/Vd3yW/9Eu/JL/5m78ZRFDdvHlTRGQHoblz546iPTdv3pSqquT09PR5ywxtNBrJ4eFh8C9atGjRokWL9nDai/qw0/e9vOlNb5Jf+IVfkN/4jd+Ql73sZcHnL3vZy+TmzZvygQ98QN+rqkp++7d/W175yleKiMiXfdmXSVEUQZnbt2/Lxz72MS0TLVq0aNGiRfvray+qG+uNb3yj/NRP/ZT84i/+osznc0Vwjo6OZDKZSJIk8uY3v1l+8Ad/UF7+8pfLy1/+cvnBH/xBmU6n8k/+yT/Rst/xHd8h3/M93yNXr16VK1euyFvf+lb50i/9Uo3OelAripEkmvzMkHlxpMZBookqHTSYGEIpNW5I7pxAJ4MkvD4xisckX+GZU2FTA/mrdg41OBTmIwHO1FNPEDLBqISZpNZBloWNo6+CCqMG1m0qJvl0boce5Eb7pEwVXOrhCEiXSebgZyZlFPHJHAskkmRSSqpOJyGuiXoRfnUvVbHYuB0IymZwB9FdkMG1QBel+x7GuWE/hppE7k0mSQwJ6dpy05/8i4rUShpUhV7jHlMYnGqucM1UVF81Wjc9XQkoA+IqNTCoSisikiOxpioS74GESbLkeBxDvZqKwrXR2aE2To9EnTOQY1VR2RBq15CCyABVk3SryrJmTk+hwHv33LmotkvnfroLDR0Rke2Grh3XvpGKdmOMjSDOCi60NIMeDApXDCiojB5OTlIoXaiUvIZL2kD/I8xHEomZuDPPQxVr9zfI9QWTunIuGo0jas9gWEi6JdLfmvHyhFm4PKA3RRdg4L7sqV4ObS+SPHuSpP29t2EyTtZhTA0x98ZLbniU+7l7IBkLXbH4wNxys5lzQR5AQ6hpoES9xlgYt1gFlzNlengbcEwawx1oGurLcI6hzzEfAsVj6r7g/lkjgMLkYJVkivtFmFCYiy+CD4yCsIrUg7TbqoIySc7GjdWFhF9VVG7C1+58nW2K3j/8bcismx33JwnKyR4dMP4e8Z6ge02DTEw9ed9r4lLcj3TFW9pG2kBHCnOwrkM3W2ODOKCcT306kpv9r9SQuu/538mQsbzPkvCP3rrx1Cv2YO6sF/Vh50d/9EdFRORrvuZrgvff/e53yxve8AYREfkX/+JfyHq9ln/2z/6Zigq+//3vl/l8ruXf+c53Sp7n8vrXv15FBX/8x388iKiKFi1atGjRov31tKT/bBhBD6ldXFzI0dGR/ND/5x9JAXKsJaH5/E58YiYBDDl5Np6o2+Ap9eDwqoiIzHEcTdwOujBqtkp0ZKQjVYxrE05OZCcgunlExw4fQ4NVqVNzWbFNZveCR/ktw5S3IBQ3fO3JojXCSJvtEucDUc3sNgoQsUu0swRiUIIIW+S+3T6PVBjSrLlSgpw2TfBeR6IygajWliXRm0TfNChrzV8T58WYJobw3Suqgl060SuGsBtUaZg/h/mYeg37t7tWhJoDIWMIe0qE0NSBBMVm6+eEiMiSYf9mV3R47Pq6RLg3w9bPTr0AJxGICVAa5l5LgDpsVl5OYLlCWDracAySKOdtQLQmiVfRSZAxMe5n9+5q0REJqlQmxj1nw38/9WlXnvfW0QT1Bnpjx4kh0j2I2Gfnrg0VAgdSsxtMipBIXEHAdINcXktDvuV4H81wPHR9dIJw+NLAFhXul+nEkWK5VlSGxD8BojVFKDd33lQSp1yDiEjBPsaawPVjdPio+/zwES2bZ268eX82lRu3GuTZeu3lCS7PHLdxCSnpyws3N1rMg9RIYzx35xyfufavgXpdverRn/nhDPUDGRgKxVSfZr+K+HlPGQUGRVRci7YG9caaVRS854CKdUQV/ZiuMGc3K4STo57lxOQhPHL9lU0cjzMr0YaMJHazNjIPFdfYgYKylZHohutTH+aeak1gAhEXInicl+keWZKkoEp7HpRJDFJClCNRdIYyF01Qf1vnXvNchciOzWFFpG0Mte4SXorpGK8nPjca8zuOgHKWKvcRBgKI2HD6MEuBRfK5nA3zZvn6WWTHfbpYLuUf/b//mZyfn78g//bzgqAcLVq0aNGiRYv2ubL4sBMtWrRo0aJFe6jt80Zn5/PCklQJViYPqLoiqCHRkfnWhiqXIiI5v6+oPlwU5LQa14+6UAbwaKiKHKr1ErojilsYKD3PQ1IjtUNquMJa4/Ih1NtqIlC4yUAi7I0rLaG2R0rCc0gAFvF6QiRQJkwMmVBLwpelii+hSk12R9jVMAtbZbNR6yN0UbWpUVBW14ayWXFAGeMeq9mvDQngIO4ZUp/XIiKEDpiYWhJWk0Vha6gBU6MC5Nit0S0iGZR86V4TuIJEmRuXFzRTCuiZMIHnOJ3v1IFumwnem0MVdzL30O7igm4q9DlImBW0SawaUwvC5wRul1bC+pWZH9PNJtQpWS7OXB2Q0JOkXnceKAeTqIkxXVx6d8v1q67u241rd7V2/XoJ19rhzC9dvAcW0NlZwJ3x53fdHLbu2yeuubbMRiBq433qt6xNM66C1Do/cNeaQgU6gatma9zXJDNTFXgyptaP7yNebbtmsAHKHhygH4xbFHOZb+k6QoJ14smsrWbZxbzCvSgd3GLG41eUbpxHcNuuSdBGct6LS6N1pAkrXZkpXBPW3VRCcbuHBssM7aV6r+VI0CVF8jbXowz9UhoX/xpBEQ36gXOFwRa5pQO0WHsqkOPpJjOk+Gp55sqAQJ1N0Skg0kvv+171s5QqEK4jvXXfcs3he7wmgg4SqzaMv0kc74ZuJ+PyEhC0c9UvCtdMZwOsQgm7Kv2sHyWezeteD1xf1o3n+d74TahDXSCx2QWoYabKx2Hi0sx2FV6k3YBmYdrUq4uLTcL5Bhpn9m/rKnwhi8hOtGjRokWLFu2htojsGGvbWrqUhFKzHcLTOzhjitI0lJ00ZDnmbNGwQuxAuNPvDNFYw7upEsy8LdVKy/CJfBidp4CHIWrqDo/AE8N+GVcYpCDR+FTUC22qGJroz1ugTVlJ8iHzNBlC5RgKryBZEoHhbrU120uGimpIPFRWOyI9idk55CRqEoFiKDdVOG2YOscuJJRzF2Pb1NUkM7qdLMPpxeSIabHb7VKGHrv3SypSG9lRqu1qCHvHUG7kETPITlWB2I6+Zh9lOmdM3h/2G2SnE8ynOXbQVk3guefui4jIU08/5+rJ/GQGgVuskXMJZEMSqXVna3bDN29ex6WxW8e4FVBN3a48ElMjpJkh8QdAdCYHx6i3V7NtoMTdN0QRQgK4iMgFwtJzzLlNzfO7ei4NqjJD3YmmHM7dtRIgO88s/LhvGlfnv/WoQ3gmGNsp8mfNpx4xODl255nO3HszIjCauMd3PhE3KvRWG4Z4+zapgCxzdqG+27Xrj7khV7ZAGDMQk7ORQ7qy3I1b2xmkEMduENpMSMdKTpQgEte4f+ZXgUihPy8vfb+2W/f9JcapRp1ONFeWyAbK25ST6ChdQGTKzE+ub1ucd4t7piiJ1vh5WnTM7+fqOUJQwBIq29vaK6dTuiI5QHg67h8ber7g99aOdJ2zq0rXltQgz4nC+hqDjtf94LUYpATfFRLo++ArtowiL4N8Ul2AxISBMknLQALrGQhJuzuRRrsgiJmEvDbvd7vugQSO9xrMnwrXtuTwjOg3f4+UWEzEyNchIzI+CEhJjBslkB0x9W2T8Du2fcyJ+JksIjvRokWLFi1atIfa4sNOtGjRokWLFu2htujGMtaLJ5jWBhpTdUiWU0KZe50mxu0AKL5g4j64c9S10hsylapZwqVCQphJ3EcdGarsKiGVydpMEtKeMCPcLCTAke21V6eS6sDUfoEuiE3yqZBkFkKUhYF+6dvje3kRuvO6PVdXwh6hSiUAmzIk8dFttaNIbDRUlMPG75B0zCR4Rpka7e0ApXdVmEzP1QfnhesogcZLC4VWMRoSFRR/10jQ2bVwjw361Z3XnYewfQcXyIoKsIYAenTkSLFXJu54iASILYjkz90/07J0HV49ce6Qy4UjIz995yktw4SVWX/P1a+nS9G1sSi92yUr4VbDfJxO3Hlnh9B8mXjXVMkknoSxQbLXBIEWUoeKbUX3CLRY7hsXyhVoBqVQHK/hZiF3f7P29wjdLdMJ56U7PnbCZIrG1Yu7eLlyrqMU/ozjI2iIWBeiQvOh5g1nHt0nIiIFFHhJdD84cn1l3S1cP+jq43ydwHWWG7J5WsIdXLq+nhw5fRif5NZ3qLrceY+gLizDIAcRT5in/kmH+m2h47QxyV3pXk3hBq9xHI99H03ggmK74aHVRMhV7c+XqQumRhn3egq348SQjheYMPfPL9FGutJc74/KXVcK1z+uGVZUlvpSa9yH2427T3FLSzH2q06Ke8F7TNTR5D43S1mn7poBmZmzxMw9P3P64Ogvsyt51w/U8C3pmO1V15Gu87uaNN6FFhKStazVYFPyMknmL6BwPEiKPCRf2/p2Q5L1Tn1NTYd9v68sPqqq6MaKFi1atGjRokWLyI61RHrzIGnC4RiKx6dU5tHhw7sh1BLRKbDr45M+EaPEIDs9FE7bFmjKnhBEVbwkSRpEVc1BYshyyQDsMNrK+I59gnaFa+7slm6ns744ExGRzBCK8wlUMZGfJy9CZU0RkbxkzhnmSkGIeEqym1H+JMqF1w2Vo1XF2NeShD/2A8MMiY4khiTatiQkUyUUyA6J2k1lyrrzNNh5djjavVVCIjbapjxvDPz24r6WXS+RGyoDmRnfXTfIL9P5vmJYcQmyaQeS4BrE9HLsFUpnc4fozA7cexdAjrZAUsYTf94NSNBrfFaQJN56dGG1AvIwdfPz5s1j1yaggRsj1J2ifvNjV6bHrnqFPFqGTyyTmUMgWnTSEvOdKuO9VTzGnNhSOReh2KU54dmZIxI/cu3EXWuC8cJYzqcnWna9cGWXqHwCIu0hVF3nN416N9XEgVblmF9j5Fw6mHu0hrfTbIKQaxCytyCWj804TUDIHmOcyLkcT/y1x7hf6o3rEyJxo+kY5/dh31SpHR04hCvnfURYwap3AynSIADcG1vIFoghtXKXvoEC9wZ91wA5Y24vEZF7l67PN6jvGOH1I5OPLVXl7AavS5zffYdzJShDBBqk43OMdXrkCdqHRA/HzJuFNmGO2zpQYuNyjXmPeo7tugw14KMjN76qwsGAlMRP/ETlR4ZYwG74cz9AMobIiV2fnw/ZUZTFghYDVN5DHVYThWcFWjuspuzabsIEqkWbWlINGutx2u1vW9CGgUy9qjkbZCfNdhWTTXXDRmnIeRe8Dn/D3N8rE9DzQhaRnWjRokWLFi3aQ23xYSdatGjRokWL9lBbdGMZa+qtKgEnyS5cqC/pZ0mpLOnhdyasU3VHVRLlSTxcSrcKCYTJQLNBxMB26h4iFLgLUjLxG2uu6sUkIxoNlTW0ThZwiyxxJNRclJbchyRvU7jokNwzH3kYPy+pJ8TGwc1E3RrjmyJkqsq2JCZ37DNDOIO6MBOiquIx4NGmMoRiqkGry4QuRLofvSvFI9QgYcKFkhV+LJnEsk9ItnSQ/BougMSoTFMPJisc/E5tkwL9mRcW+qaqtitz776D3znnRiOrO+FsuXDjRffAcom6nPrEnZx7B1MSgMP5ICLy2KMuIWIK5dh7586FMB25slevXtGyxyfub2qzXF66OjR0TRnyaZchASqTO8LdUICoujo/17JHJ8euvodu/mwnrobnZx6OpqruEm4WKn5vMcZTQ472CWTRW9BmOp6N7UtXTxD6Kyr/YkpQq6MX7xYsUfeGhHKM8QjnnRx4twvJ5iSm5khCqWrJIrKtoK8zce2n27FFmcIQ3kna79HXrc5PN7+61M/TDmR1eri6gZJ4ZpLw8h5TlxnJ1wnXMr/6TAu0BYTyfJCcVEQkgYt3MkJAglSoJz4f+XmfQA+pwfEMdbhcu/OdXfj76eYN56Ys85CYOoErMHDIsz4Yf2o+2aSZE7jDZhiXjm58LB9bQx3oerh9O65pA+0Ysfdy9zzHUPHe/u1JzOEaHniHNClwSGYX45pTUrAwsCNM/By621SNaVAXBn7YhMphAmTKtw2TnopY2R4S9ElJAO2gMAR1rE/627pHr8oTntnusI+sZhS/V6238iAWkZ1o0aJFixYt2kNtEdkx1iUiiZKodo1Pldxl8kkx3GWAmNmRsNsH3+1Nfio+/etTO0iH4cMswyihMkpkh9tVo/hLYh2RppKqzbjm0hAglyDUNluQ+tAYhmvmBuFg2DiRDu4UM0s6JnEYyp8MU+cu0xLV2uHTP0nCzOFlwrRr1I+h2/kgbLExYbUdVWcZMsvQ03RwFI+CMWdXTgVY8UYC+sXSoScLoAwMy5+Nffvn2HGWIxB9SZbFNTMT0r0GGXS1BKKD09y4duzOUZh6duwbhFWD+H7z5KqISKAKvV66+vUD5dzxaKZlSGjeYrt2/ZFrrr4IxX72mWe1bLUFMRVhuzXG6QwoU21QtYNDd42DqUNrTo4cAkFS75VrXnW3AYpSILy6w5wpUo/slFCIpsLzCjmbMtwPp/c8UpSnJHy79p6fuXp3yIN09apHayYHQCm3IPhj/jD0ejbziBFJ7ET2SL5lqHjV2EACKBKDzM1VYXpgc1i5djc4ZgirT4kGlR4p7YFs1Rsid+58o4kbL0vUVAonCL8ZlW+BPC6Wvq+2lRuPYgwEG/fMs+eufy8uPVK4QZh6jzxcJXb2drd9OGfQAtAjquMS9TZzebHYoH7Orh67+l6/hnvQIFBr3vfYtPM+Ysi8zTVXYY6MgLwVQJny1P+81SCxNkDXiOwkCcPMjYwG0a6U6EyIpocCyvsRHekGr2U3spxq263smkpCsLfC6HfUeUD0TRj+zXrvhmkTrekGiE5IUA5RH5X/4DptZQ9wrVaYG9CNRYn7qjGq2FRI11yIwyhz++bzmYVnUI3VJhKUo0WLFi1atGjR4sNOtGjRokWLFu3htujGMpanqWRMO5/uagkorB1oJ+w3PkWS70f3U2vcTnTFdAAyVenUwMSaUI66AySYqejLroYG3U50F9VQmFyZxI3blYOre0iepoNkd4GaARSimxqfZahnbohqiqVTiZiuBLisjJJsg/psAFU3qAPft4qvhFQzQNK1akhQq8Mo/qJMoonmqDJNYp2FlAkhpzgvyJyJh9Jruh2QqHGGS80fccTdPFBoBRkWsO3RNbhocE0mthTx43HtCGrItavDGsrMZxfePTIGOfzwCIkrQV6egPh5ce5dkyRx5nBbXSycqzIPsG8coZV07/RMRERG8GPOjz3p9vLSff/s3I3HBn69KfRlrl450rJKzEWX5HApXWKetka/ZwSiYrt187GCgnLbePflGO4kEkhbLFUqKGtcFLfv3hERkUdOXLu3mD8UxS0L70LLCyZdhWurx7waaGeJiJTTGdrrjpp8E5N9ZNSWJ3Df1byflIxpk7qSDAy325jJXOl28q6ZHCrQHdrZof1MLJsbFyqDCTi/a7oW6M4wfcU7gArnTUdVZDfP1ks/nyrVBAt1YVLjDvYEXIw/iNM1dbGM+5oKzLxPR1TtRl1aQ9gtMZFSJd/iKgzCMOtzPtBvaeF+G0382lC1JCSzbxA4gDWsGFviL9Zq/hb0g/Ob9V81w9jOHSVlq0w8/N0I9XXsLw6TcPK3QAm7wTkGvw3qAkptVURkV4letXSokmzdWNoGbWRwvTY4cRj80ZWhRo8mGhZPUE69NLltoq36PjFp936y6+Zar6IbK1q0aNGiRYsWLSI7Q2OYoX2CZuhp2+2SbUVCophGCOLRlE+TDNtrTFg1EYwtdvREjmxOl4L5RFgvPJnr0ap8YieiIYMglFUbIicmRK8NdyTM2dXpx75NE+xAJzOQzbSPzKWBIrVEctCWCmTcxcITH7fMc4T61SDCMseJRc4Y9kiSYAUS8wi7uYkh/paA0bhTJFGb6E9uyXKqPAw0BLuW0oTKTmbuPDOoA9fYMWalQx2OTjwKUkNV9xyh3BnQCqrmbmuD1jFsGOOVA1VJM9e2yfRAyy437prnF66PLpAjKC9ORUTk6vUbWvaRW8euzAXCtYGUUN1YRKQa7q5zd+1LkLA70/cnUG8+Bvl4i53jGqG9q6XZUZG8D6LiGCT+AuPUtH7eLxHCTiJ6gXE7mnkiNWPCM0KG2ClulYzo5z3vl8tLkCIxB4sCIfPnfu7NDtx4pEAgZ1CSniMMPrfKvLiHN5SGoAoE5pUdJ5K3eU/neThfRUTGIBAXCeelG4PFpUP9ks7DX2OE1mfMywYyc7U+c+fPzH2fUk0dgQRAsvQ61V0tmnRhsAI51kRdgpUNDd5gzSoQMl7XHiFlTriM+bjQpjHuy8QwX9sJ86QBccWas2W+LoMYKUqbhWTjEudtTKg41csLyClsKH9g0GTmKOPXiGxl7LvWor5AO5hrizkBNQTbEHT5m8BADEV0eLK9oS446q+Dq8ueokMSchCdPkDVuEYq+m+urbIeA2RnTworfy2iqIM30hAywmf8PcH5MWdyi7xnVNVnfsddRWqDmeH/QacEiclcmdV6LQ9iEdmJFi1atGjRoj3UFpEdY33fqj/eigoOhY169Ym6sswdI+IfdPlETp99q4J5vixDrquK2c4RXmyehvnwS/4NNyDM8TPyFBMVHFRkB0jJEuGk9daIgQ3bhgOfvnOTgVh3kUR/2tq+dOfWnRN3Ve5If+piadqNPhiB1zECPyFXxMjyZtxxi/Pl6M8SO8ncVKLr6PtH2D+zsicMh/dj2iJvEDOiJwhb7Y34X5pBKA71OrpyiPq5sstLz8NpVLjQtY05zCgiOT+yGbIn6AeEaUKQkTmtLi78ea9dcyHmTefqfnbhEJ3pFLeu2WR98lMuu/n9c9fnN1DfR69f1zLnzMpOrsbUlTlEqPjFwoQpo283GK8pOCwMbV+bLOVbZGovM8fjYTh5Bt7UJPP9egnEibv00/vumgcG2dlgzlaYT+SwzBDav1j7cW8wN8oRkA3lwLgyC7PDrxAufx2idRtFFZCnauzr0HTM70V0BhyYFuHPQQZm8JmQy6pWdMkvsQXOvUY4+QhzpgR6MdGwdY/Y8j5v1gwZd+PVi29/0gPBwXmIUjBUeG24eouFm2MrIHktUJY1kFebQZp5znTbnzE/kZ90E+T+IsdqNjsK6j8qPVo1AteLsgzLDYUceV4tqmjdCOctgMo2CDlPDP+Oa/Ul7p810FDLqWMZ6jbOwLFimPbG5FfqwePqOWcTopNEL3w9ZcBvUTRFxQBtYSIvOG0fzleLPHSD94YChNa4hCfKqcE5TEU79U4w5Jxh5ay3aRKvpcgQUZYQvRERadG+tg4FXImgNZkff0qBpFjD94Feni80EBMUCjuaehJ5jVnPo0WLFi1atGjR4sNOtGjRokWLFu0ht+jGMtY2vYZ0J4YtRgiU+WNqwNok2NpcIfQ7FSDq1eqa4flMiCPIi2lPNw7CKo1rpmn64HuqPglIvUpNaB8JajgflUVZ1qC6miaKZy+QE2wKeLcYe1cSvT9UW27gfmlb30ckaG5BXq0aQujOhbDZelfCGORNhkR36M8KbbUwOUNQJ2MSKOmiYN4fQ2okzA7X0Rb5o6gEbBVaU7jQJlOoziLP18i0u0eoccLQeLioGpJ8LUm0o8KxcykUcItt8d3OKGcnICQv4drjNRdwP5Uj78Ycl1BBniL0fOw+a+FKPL30Lgq6YI4Oqd7rxnRl1GapnFzBpflnn/hTERE5hrLw8aFXEC4xh9cbEAE3l2gA8qcZlW2qKV+e3XfXxjwikp6ZMS3gHtxA8Znk8M3auxJOz+BmxOvVxn3/5Agqw0tD9Md8p1vkaIIcTJinzNskIlJg7jH8n7B7iraUMw+UUymc6uCE4QnjW5fP0QlyjsE1N84ZbODnE90LlLegojKj0xOT92jotdC8R6yDmU9dSlJsGCq+WTuXJVXI3ScIy8b4bLZw26d0t/s5veZ9g76he926G2dz57YazZ0cQ0EVaLiHytKvEUXDa+OI85Pk2xqScIr6kLxf4D5fI6fZxcq7UBcgqNZwyVEigYRqEU8nGIOATuJ8zRDprXe3MAeeoO4Z3IS6EAbh5Di/5nLCG3SBBcRfjCGVjok1qLeoH5Q0vxtJ6FISsSHbIbm8H4SZi3iX5I4q8vN7xyRNfOvslcMQeqzhuEeYfrFNQxediJUEwfl86gAt03t/YFBGXX0BvYT30T4N6j3teaBS0aJFixYtWrRof0UtIjvGqk0jVYldnMnpouHZeILs+fiK3WpuyuY581OBEMeQTDyp1q0J/wZSkJNsy4g8E4KqO2OQbUmaZZxisBuE6Q6pI6kXaIgpMww99CTsUBRKRGSLdtdACCoSq40CG8WjGKbPXFszEEsPDQowPXA7Q5LwiLwcqGCiyWQOJILIAXcQbFNuyOMNdn1rtP9yzVw+IDWbLDRHCMfOEUZOJvTmwhN018iXtFpscR73Pgl8640fp03DeUOEDJmxGUJsSOcTip2h8+/dR7g6ULvHbvpwcoYwXyBreN2QLMi56Nu0Wbmd/HwOQT6M07PP3vFtApmeqNqNY4c8nFx1xFcbrtt1COkGQrZBOD2Bp8QoBdZAGhp85/zyTERExkDQZj49lYyyUOyRmcgbQ94v0Y/nC8oyuPdXHFOzu+Sub71mxnWQkI9c2+YzE6aOnX0OUniFjOPM+2YUAmSGOmSYuxQ/HE9JXLcEUBD0MSdY/8pITUxHCFVvsDZoLiyuGX453iDEngBONnHIXqv3okfBRhOK33G83GdEU3sT0s1wel03eso1kNTvy4K7LTUWofkUAQUGeSzQJg0GYKZ1ns8IGqYF0FTcjwdAf+rajXFld+ga5h0ixS2+m0+8UGRBMjw6a5wTOfGoQgYRTYIzlBEhwmmlNliNFNfs0w3Oh3xiVu5jkCExEc5PoOymLBFBzQm1k9HcoDb6JbweoCz2QwVDVOCPofIGgRpkOZfwMAjwDpNWabCNJtjyJTUTuuZApEAuz289JPwLZfiZYSoTyVGUnvNH8xuaPtLI9c8s8isSkZ1o0aJFixYt2kNu8WEnWrRo0aJFi/ZQW3RjGbtcLBQeH40NVAsoPs+AzRHppSKkYf4y/wdhOLqoWrgHusqTBVslONJ9w9xWHpbLVP0XxDpAyKqsap5XG2D9DZRpSYCm66c2RNUG2j70GNUKkzoIvDCQOutTAdfeVny9myMmBTyeghQ6gWJtbpSOSRQmjJlCWTYT6G60RhGTOazqAp+F+Otq44mKzNmSYlyoHUOiqVWmJsRdwVVF7Y/WqMNqXhdqSTTUqnDvz2YTLXvl2jXXthHVpqGHAhLdeOpJnTXcNZ/65G3XBuiDfNHLXyoiITn80596VkRELqA7Q0XmEn7CUUC6znE+qPlSS8e4Jr7gUafb0/ZQr8a8pI5RtfIuxOUSmj7UUIGLlzm8cuOigLdNSgzMjVuOuEqXahOQCOFugO4Kx9vmUeob5uFy7T2/cPOSxFSrIEzXKVHxuqV+FcfYaxzNZq6/Unx/NKIqOO6r3rfp/n30OcY5h0Jvn/J8HlKv4f/q4Kama5Yqzq4xVMx256FrRt0DW+MWBmE2wdrDHHYF82lZhXe4ypjnjeTTNdxZS+Q4c9eicjByedXus06o1ePn07pyn83Grg6HvJeNuBeVjFOSenH/dw3WMptHi9pB6nrHusr7szDuRmpj4V6rEMRQFiSd+74fI7ji9NTN1xXcjdbFO+I8TELybk3/qCHSUoMnY/4wUhB0nhmSrP6RhJ8N9NZERHoNehno2NC1aLGHJMyxpYRdyyjW9/g6VE4OpGqGyabUU7Wbn4pVTnfcWDi/cc1RM0c1fbhWqpvdqiOTSN8F16byszthmDdLaRX9oH/Fu693VJafxyKyEy1atGjRokV7qC0iO8bOzpca0nnQ+d3gwcT9zd1rQaViPJG25smUT5lUqtyCWNvgSHRExJNNuRNjHiyroEykaMAZ00y89kmXCI7okz13tgwL9yhIil1Kid1Lzl0HntA7E4LKcOUlQpCVwGee8A9BimUeLSI507kjEjLDs4gnDHNXuAFSwBDZrDaE7xQkxozICwhxVJ81u8yEKqtMp9RmwfXsTi8dMZ4eu+KauVzM+dAnmw1zBLn2TycOMbqC7OcinpBMlWYicTl2nWujIL0AefflL3vUtRfjPZq6PtyYsNoC53nkukNKuKMvSqBhZieu6B/FlRkOaqURQKplJDgVfruaJHyPqk1LoFIglqbI7D47OMD5PUGZROos0Yu772AOXi4sMd99j3noCKDZXD6Fhqq781yZI4/UBiilQRWnQK74zhrzpwVZerXxaNUU5OWDK8iRlVFdG8jGyKN1J4euzzlPM4Z4J8wR5ZHSA6JURFxxb5jbU7ZrhxSRHJzo2Ln+sMhGWrv2MhigSIHWUV4i9YzvNHPzhnvobe2I6ltFjv3uukD90pH7zohBBrjvL1f+3mOuqhJtYR4xuz7xnqqg8KwBDzyH6YAGJFYiBRkQrjGCBDiHRER6Xfdy1Nv1bwnEWPPLich0TgkHqIBfnImIyHLtEa3N2pVZIS8bw5aZw8uGSJPEy2ATrnMMgLAgSaLLMJAskMST4YIdvNivUJxYoq7WBe9xmBK/hnVDNWTNZD74rvmbwRXDUPnUyFdrDrgkLONJ7TaDFVEfeDlavnbWJlbhnigS+wgVDfjeWGsU4AkJy8m+UPZ9ScX2WER2okWLFi1atGgPtcWHnWjRokWLFi3aQ23RjWVsudqoyrCVr2GCSirKEs4jaaozuGZDVVBA34VCbID5R56omlDTZ4DmJUZLgMIQNbDJBOdlkrogKZuEcCYJyYTPa6OhUqRMyoZ6w52j+jtGk4aQ8vzQ1V01ZMYeSidxlnolSRYm47T9SWg7A+kyQx9tCVW2Rr0ZsG0CddwtSOIJ6j8yED3Ho4IfawMNjRqkZipei4isVlRvdecbAc5urW5P7+oxO3bw+EseucYecXVZeZcPpGgkh+tni3kwOaArZenLwk11BS6Jcuxg/CVOsl74RKDkKi+WqHsauqq2tdcFGhWuntQOqeAWHBsF4QquvdNzV58VSKwZXClTk1j2CGrKeeb6c4WkrpMJ1KaNvtRqRVVxuBRQQcLmhVHSZeLK9cq5Gei9sCrT6nLFxNlW1GQZEEvFECcBrx8huGAGQu3h3LumyMRsQEi/csMpH1+s4S6aGAVpaPFM6LYG4X/F8THBBjXcbmMkAiUJ2WqyVCtq5zCxaoHzuraslt7tQv9IBS2iDJ1UwZWc5L6eSUF3IN3C7jqauNHcfOzhnIk6zT0sIjIxCVbb5J67NsaZCTtrcx+1/QLXhFbOlurq7vOt0aKqO6oqg8Q/4TriXo+NS3oKlWYmJM7hoi7gfrNu8fHEBQPMEARwdOTcj5dwZ4n4BLebAzfvSdpmMmYxc4+aOy3WpWzMYBO0w6yNktANRl0YvK0eql3X1NDD1SHxcWIJ+nQ7UbdGybz+fOqu4rqvqsjdTlnOJ3WVqatKUH+jSaQJX+mKHeruWP0ekpbxW4hkzCnWmczcp/53MlT3sXpI6UBfZ+doAmf4Y50YvbcXsojsRIsWLVq0aNEeaovIjrFlU0m+wdOsfdrE0/BoDHIo1EHJ07I5SPgUnCE8lYq63KFYIliH3EuUm2wrqm/aEGk86SpSwnB37D5qsxPDrppKtA3CQVvm4DIoCKORqfDakPjL3ZdRPD4AvHB0FfmZdPfqd8wZwsd1p4MncSJFjVGF1od9lCWSNcaOPMtMf2IXNZ2jvcwbxmjdjUerthXeBLLTZ0CDELa9WHrib9cCXbni2nJw4HaDk5nfMeesD0iSG4Rnrxbuu7XZUUAUV25eu4p3oKQLpKet/b6irV1f3Ueo7AYoBomwq7XvK+bPIil8itDpPnHvzw+8kuyG8r9EQ5A/bLn0arvcyXaNu+YR0IWicLviwoSpc9vHneLh3JUhYTPJ/PhPD0AcRt3XIIQyB5UNbSVZlIrHJGEHuXwYugzE5P4F0JBJiXqaHE5o3gj32KRw57166Pr54OTYtMmVWUGeYURF6YIoiz9vCRR2i5xgVC8eT935mtK3nyHnRAUSKmqbnGBESFrMG/ZjCkTOKii3QI1Sykd0VCjH+mGQQuYu2zLH3MqhLR3qm5j7ngEPzIVVjt2RpPPUhIp//EknjQBesbQg6J6fejRxBQXq0ws37k+fucG4h9xlJuWUEpQpG3CMsTxBAMjJ3KNMx4fuvatQ9j4BWjOdu9dd709MYnKGNZIocy8n/uIgNI9BQCfRlShdnvs+YhAJZSkmmFeKVrZmnhIrwwTXMdwTFp0aLMd92Afv9wZ7UGVi3jhAuHt7I6mCcoiYeATJrqPMgRb+vqVKCDbE9IyK3kD/cwZ67CFdUwVa0SQ2bVg3r7Ls66RQkX+P5H16HjLOVyI+JuyfKLf5DXwhi8hOtGjRokWLFu2htviwEy1atGjRokV7qC26sYyt6lohQCOkq/DiHB9SSZe6JkHCuZQKpWQ6QxeDZGareUKID66jLN9VicwAv46g45HiNc+TGZickH8C11QNkmwFtWSrurrZEh4n3Ig2UQm39LDmGG6sEYiFI7iv0tKQJJmoNKH7C+etqVFiXHP4k1o+CV0nqENm6tnWIFfD7US9Imo1iDlvAR2QFDDztnVwe4WkifOZLzs/gOIxoWlAvoTJXQuQJJDuCxAqx1Sxbb0bgxDteIxEmGfODXH3OXftszNPOj5AItQDEL07QLNU/B2PPPnykCRhQunQuqELdLkwJGnoioBXq2rQSe9h3kdO4IrK3XE+R7LL1H2pMbAzdTEI25Oon2CSUENIRGSzofo1kmVCbyPHnFwaMnffw7VFIj3djwZ2H4NcvIALEqeTMxDLG3MbdZjfBdyfkwPXZ/MrxyIiMpr4ek4mSEIrONLziaWwMfu/LXSVSrhJqA9EInFuAgla1TyBqxPzfjr19wgJ8gXOt8T9SSK0ncvs21yc+4auNKq2S25I51uqYMOlqzpgcJcZ7SjyhRuMAefiBPNqM/UL3xjJNlcXbu4+d9/VYX3Hz6enLtx5nr5w711A04hKxRIQakmgxRu9G1sGS0zNmnMFyU3/BvSlHrvm7str15xr6toNnyz3GN4qEp+5wFjdHiU8497K0V7eV3T9iYhkKROpQtsLc5oUhbT388kHNIQKxVSJTgJpYvQD59jA5WPPsZP3M9Uvq3kXV3htS4Lwf+Ka6haiiwo6RsaFmsClm1N7iu4sHgMFZbrFBszsoWJzUJ/hZ9aNhd9LJUeH7iur28TPKqN39UIWkZ1o0aJFixYt2kNtEdkxtq0bg9L4p0WGJU9bEFbxOk9JpjJPukrMda+bAUkwtWGLqlaMcFJ9mvVFkj0EMhGPxHSNr2cN0mKFY1OtcESuIEOoTaEGO0JI8OHM7TYPsCsemfxMBUh9HduGOuUm11Sq+adIMmQ8PUK8e5PDCW1h/ht2Vl273X9Te0JtAsQhRc6ifAT0J93dDa+3zKPjznN+jvYD4WAYuKsddr3Y2c3mJKP6a3NnfP0RF57McOcFwlYvzW6Q+ajGC/edNcjhY5Awr928qmVJ/j7EbpNs8XEJ9MMQ+TgnlgidPbv3nKsDEI7C5Igi2Zp5rhgOfjizqJobF+bGaluEdPZb1OHA1xNK0QnI5y3CSilEbUmd45G71kVyindc+7cgIfcmN9YG5NUlyK099qKlQWBKzKdG86W5+t5fAJE0u8MpEFGdKyNX79Gh2/JzbEW8SnmC9idEIjOGNHvCN/PPrbFzTLD7zUsgfpUnCZdjd40a91oJpHNlQq9b5MLKgHYUqnPhXjeVv5crhEJ3uBcI+mYZVMINkbpFQALz07VYE0j83pqymYZw4z4FUpwih1cx8uM0B+pz964b08u7bn7eWXui/5IoN5CMR07c8eDA9dXIqiL3DFZwY3eOMPdT3DMXa9/+s7Ur89zC9dmj91w/vPS+O75s5cvexH14ABX3ggi0QZ6JiJZof8cyIKxfLE617On9uyIikpH4isCBCjncKqMgrOi2UXQWscrEBomgIjFVsJVQDDKyWfeJ/jA4hgBZGqgF8/eCOQEHFw9QkJDwSyJ1WoSBL/ZvzVmWEukJzxGcV9WWifDwYNGlXbTPFA1fJeFr7bsAVYJkydaos7+ARWQnWrRo0aJFi/ZQW3zYiRYtWrRo0aI91BbdWMYy8Vo0Bn31qsogJBIuzChjuyfFPCFbTcpJAqNJ5NZ6wRkR8UkZMwOJ5iAvUlmSQp9UQ94aV0oFwZEa+hB0HaSAD63mB7UdRlAknYPld3zVJbecjD35llpBaU4IHAq6E6uzQx0hEKgJWdeAjY3OjmoNgQDb0E0AuL0z07LXvoYeDEhzhDUb4x5JoUybwJ3FISQcf3ho3CQlYHaQMGuchyq0Ip6Y/cyzz4qI1wchjEu3johIx0mCi149hG6JkJTqx3Q0c/2WIXnexYVzh6wXbixbQ+67c+/M1RcuiesgaE7gdtxsvEuh1YSV7vvXriEJa+b7aAadnimUgoscLh+4rHqrt0EmOVw9VOLlGDeGJbxZOzcboW4S8guq4hqSdL1171ENGZxzWVv1Xk02C2Vr9JUkcF+Ya49nblyvHLlxvoUErQdwEyrBWLyLQ+9luND6jqRe35+8d6mcvgWpv8ekzAvvHuvhFstyuFlxLxetbxNdZuOpq0/bMDkwEwH7+SlQre6ZLJcuXmhF5SPfpgb1qaEddHnu5tHR1WN3XaOgnUF5ue85/+m+cnNlPPML38mJIwf/8aec3s79JRS5J369e8lN3FsIDuBYTKDfNBlbtwMIyiC8r0HIvwDJ+d6ld0fchrvq7qlr05/dc/fIc5fu9Z0z727+wrtu7n3hFzjS8s1HXfABdZdERDKsR0lBbSO4aJjs07hxSqhfXyAQYbly106ZcLPy9yfvOfWGKu2AbhfjQoaLJ6cGj2rRcN0zekj0+OQsQyVlE5BCtXu+pYrK6kPTsqRX0H1FvSWuq2WQAJmk5ZCgrK4v48ZS5Wi6uF7AjTXwTKma865ykLehtk9wPk0SupEHsYjsRIsWLVq0aNEeaovIjrFJnkoJSGdc+OfAEZ7+dWefMpx8T9ghQQsqnXZ88sXHFjHCdoAh3UoAMyrL3HnwUiQb18h71Gz9Uy1DUJn3qUbobIU6VOapmES9cu6QgvGRI+GOD92ueGaUebkb7gdE6jw1RDXuVojg9FQUdS9zs3MiE6+j6qjy1oCqjTyxkDuSpiGhFkq9DRVGjeooSMEbkHnHBUKHgUTZfEokJnLnVVdU0jXJoXBuVWTtKRHgvnPzxrEWPTt14bn3z9y11wv33QLM0pPCq7mOMR53794REZEtEI4R0J/aoHVXgUaV2IETyZpOXL9MRn6cOC9rENM5l08Oj7TMwZz5iBCKC0Jyr/1hCKW4FtudYDBrkIUtab4EUbNeu7rPMa8a9N3FfS0qTet2ygxBXkPFeNP4azMXVI3dX418WpsOx8ojJo9klA9wW1xKDbRAEEi0FhE5OHTzXNWaQTptMP5Lo7K9qVxbxiAtM8SV878x86lg7h6GzoLFXW/trtP11wYICUPOG/RnY1DFFigNw9s17B+vq8rkucP9soZieIf5uYJStST+vCXmDfNUFVCJ7hMicV7F+ODIjeH0AOsTcvnduubvzyvXgJ5NQ7I9ibSpCYtW1Bz32CH67NajQAqNMvEZ0M5PfsoRh//4Ey5PF5Ge9o6/R4gQUF37ADn8xmOjhk6pDiAjCspTcsDIPaSJC3OnSn1RunuawSAbE+hxASJ1jXWvT0I0hDkCRfz94sPSQxQksEEirW4I35i/hj9DGuhi1sZ0gEpnqsgP0r0lHfM9RYMGyI5ZIygpwr6i2jxD5ZOAjIzfjwEJ2apM71Ne3ttI+/19Ue577IEedv7jf/yPD3Y2Y9/+7d8u8/n8MxeMFi1atGjRokX7HNoDPey8+c1vlscee0yf8D6TPfnkk/K6170uPuxEixYtWrRo0V50e2A31u///u/L9evXH6jsX9WHnCJPZQwYdmT0Swh9+kSagOMABfeBlgBdNNDJoL4OYUPjzVF4kERQn0VNyxC+pAtpC/dVBWJqtfV6E1uol1LzIYP7aQotnXnph/vkyI3RyRXn4jg8dqS+6fzYtd8QlL0czgBiTAyZNWUyxy6odwtGtVUS5d/UmaDWg0/u6PuzhStOCaWEo+EKW0LNVkTk8ty5hdrKvUcovQNEP517VxK1VxZIkpkkDgKnYq+IyGMvueW+37g+r+kWgUvu/t0zLUv30gYuxDmUj6cgKlfG7XLvHlxe992RKsZL6M90Jq/d4aGD1EkKp/L1eg312dz3FTWS5iDAHh0icevYE2mps0Ip1hYulB4ulM64UDdQPZ7QHVDT3dLiaBWE0Q8tVaeZJRfutgPjSjtwfb6FBk0L6H9hzkdtpAL1XeHalyCHlqlRsQVBtweBfnLiXFWSuz6rTBLWpqM/mfelc9ukBdwuue/8tGU76frgNelCNUrf6Ee6pEnIPzw81jILENCpg0LV6RZzujT355bjgWuMZnQ3oW7p7saTI0eyOe/PzvQrk9dmII63wuTDJNb6OhzAlX3tCC5KeO1mR4ZIDRKvgMyviuR0zVVWZwju0BYJHKFIXkDjaDbz1z4COfoRqGCfHLmyH/v/ObL0M895gvKnz9z9PnoSQRdYu8aWmA5CN9dRusPZR0Xp3dd0M3UpgyHgbqSukslu2qYgkEPiu6f7TonA/ryqW6NE3+dPsJk8D5223/sCLiM9wR5NGvw9dEnRNV2YcWd0Tva8bixDs+BvgLqxGKjBOpl2kCSurrndVqkbqwt/C9WNZzSOWLbecy/sswciKH/f932fHBwcfOaCsO/93u+VK1euPHD5aNGiRYsWLVq0z5U9ELLzfd/3fZ/VSd/2trc9ULnf+Z3fkX/7b/+tfOQjH5Hbt2/L+973PvlH/+gf6edveMMb5D3veU/wna/4iq+QD3/4w/p6u93KW9/6Vvnpn/5pWa/X8qpXvUp+5Ed+RB577LHPqs4iIkcHB5pXJDdPr3y6bIHkcCemT872cTslMZdPvNh1am4PEzqH73WqqoyyBjHR8Gzs9GrscBm22pr09gl268ngKZgkstIo3o6wsysRep2CqJhoCLmfGhpOnIWIjCWR8c88pyKve12Wu7sWPmN3gDD4FM8UJ52BNkh4btBOIlub1SWO575sCxXgEcNgEeLNPDgGVtts3HlI1OMu3SIbp8gJREJpB5J0Ubhd5WTqyZzcKd684XakJEueXbjvGhBAttj1ZkUY2p0BTRyNTY4koF4kHa9JXkZbr996RMteueqQqxKk49TsVmlEp2ogRA1yjyVKDPRl1+jr1RLSA1AopkJ3ZZRLM6gskwip8BRCstcmRD4jQoJ2L/HZxdaQWSkxgK7gPJ8AORhnvuxs7N6bgiTbJVDHBbHYShms165Ns9kUdXFzhOhlWZp6EigFeZtgFUPm687PlSUQQqoDl8gfd3rpz1egjypAJCTtc2e/rTzhOUf4cwJ0aQ0U7PDoAG3UolJVJJLjPsX9WZTIYTfqTdkN2sQEdeH9mRk0gPWbgaDcEjEo/H3UJCRmY/6gk7bMYbbyCAzXrgrh/fkEZHs4AurOo8kHU/f3/MTN6S/BGMywvnz0j5/Wsp9+xt0TT95zx+NjtyZce8SjtOMDh5AyNxaJ5BnOa3MutQj7lwFiUHEdzD2a3iQYX13CKRWCvjd9VWBtJVpJcjB/RxL725CEaE0/QG1CC8cwld3fmmFeKyVLE7UJchemwXvpznEXMdIwcPVssEp76ktvxRDFkV1PBj0FCfP0mfXJZx7Y1ye79qKGni+XS/k7f+fvyA//8A8/b5mv//qvl9u3b+u/X/mVXwk+f/Ob3yzve9/75Gd+5mfkgx/8oCwWC3nd615nNGyiRYsWLVq0aH+d7YGQnb/39/6e/Lf/9t/k5OTkMxcWka/8yq+Un/3Zn5WXvOQlL1juta99rbz2ta99wTKj0Uhu3ry597Pz83P5sR/7MXnve98rX/d1XyciIj/5kz8pjz/+uPz6r/+6vOY1r3mg+kaLFi1atGjRHl57oIedj370o/I//sf/eGAezkc/+tEHTs71mey3fuu35Pr163J8fCxf/dVfLf/m3/wbJUp/5CMfkbqu5dWvfrWWf/TRR+UVr3iFfOhDH3reh53tdhvU7wLuipODQykAO9JlJeJJtkTblKjLAobMTL0CunN4pFurM+dtgMmlIEVPoJeRG1JbDW2HGgTXHogVdTysIjPVNQn9UcV1Br7VxPCujk6gMjpx0D+JZXRnEHIWEWlUmTdM+kZ3nqsP4EfVl8iCMon19UFNl645uqi0bXu0JAivMw9eh+SH0npI+fAA7qqc4j5wATUkQhv4FS4kkm1nUIDNU0/mXSwdDH7//pn7DjRZrl0F6dgkeVwv3d+TKcnGUJDG3Nkad+NsCj2QA7pZXB0OQNhcrz30X8F9tQH5fISm3bjh7oHjEx80QI2Ujm7Xrau/4fQpIXuNttEdSAL12ujMtCQU0v0CZeoCrr6tcU2R4FiAZEseNPWarDry6QUIylWoMt4ZnZkK7kveP3VHlWEEEBiiP90DOeqpbjKQmA8P/bpFgi81XThX6KILdFEw+bYVlZNJbiXp3s+ng/khysDVjTluXb3rLaB+zEu6pmrM5cnYE3/pTaW72cug4D7zzZf53LlOt9S4atmfvJ/MGsH7lDJDdBsQ5Dfq7TVcEBQM7tE3jfgyGbSRmiXcVhjTCslCq5WfIzWIvU2P/hy5PpqDNE0tLfc37tlDuLPgkn7scee2tZHBSfKUiIjcedbN6Wfvuzl9+9l7WoZq2mO6tDFH0p7JNG3CTlwb73EOkmyf2eSmJHY3UFUHmTmDG5KBBbbOuWrdhOr46R61Za86nISvZVevJhkk40yDRKAhaTlJqNYvu9ceJJ9OdO0l+Xg3GefQXbXvwaJXsrF7rVpXqV+g1F2V9LLPeqPb0+9xvb+QPXA01qte9apdoZ/nsQf1oX0me+1rXyvf/M3fLE888YR8/OMfl3/1r/6V/P2///flIx/5iIxGI3nmmWekLMsdxOnGjRvyzDPPPO953/72t8sP/MAP/KXUMVq0aNGiRYv2+W0P9LDz8Y9//LM+8V+EIDy0b/mWb9G/X/GKV8iXf/mXyxNPPCG//Mu/LN/4jd/4vN/r+/4FH7je9ra3yVve8hZ9fXFxIY8//ricnt2X2dShK+PSq2/OELo7AhGSOaxyhugZZEejx2WXdCYi0hoyFtV7mYulpHppQPwNycB84iWJzJ6fT+JT5D8aA8k5mLvjmExA8YgOtwXM5cUw2zT1u0FuEJg/ZlfL09eZSEmrmzTuEnzRjtdg2CMUVZOS5zBKsg1DWLFzhEpyCzZzYcJ1yzF3UyTLuvN2S0dcPL1/V8sSrZpgx1cgf9D5/bWW2V46BGIMOInh06stco4ZxdcC4b73z4HKoL05QnJbo7raAiHZpA5RHGNHf3nh6rlcXWjZGQiVV09cm46PnEuXqNB44ucpyX1bhIwvEeq8vPDh+Wfnl6gndr933bUuli3aZsJqlYgPlA7E2gnaZNvPYRihr8Yl1adPcS5fdguUZ4vzXWzddWqza+uolE3VYqrvaqiszbkDkiwQng67dSI8FjHIFLmFEjEQTOZRKgpPOq8x03PsNtcIFecuu5h4FLAB/JEB0WkbN0/LiT8fd78r5rdSgjrCtTu/u94i950Uro/mJeY0lcoN3ZI9MS7cHLyEXDXJs8yZJSJSUOm6IYk5DCtuE38/1bhWTZQhpQyEFtGQe53Ta6gMQzl6ufbryAK5r7hOjYECdUCHenPf9+jzEutcMcO9PXPz/rEnfL8Sjf/w7/+5iIicLdx1nnrGy3afgNg9p5QD8xCiuZmYXICcY9rXDBKBcrgJoJhgzckFJHZB7jXMvbL05yWapOspVbc1LHxXkX7nGMSnD0jMaVg2ICgn6eCzMOw9QLb03grP49Gm3d/W4e/c8yohi+xIP3etXxtVugTHFn3dAfXvut2yTePR/ReyB3rYeeKJJx7oZJ9ru3XrljzxxBPyJ3/yJyIicvPmTamqSk5PTwN0586dO/LKV77yec8zGo1kZOTBo0WLFi1atGgPr/2Vyo117949efLJJ+XWLSf29mVf9mVSFIV84AMfkNe//vUiInL79m352Mc+Ju94xzs+6/Mv67VU2H0Umd8NTxCWfXLkdvbjk6vu/QlCCM1TMfMvdUR2lLvCUDp/vZHyG8K8RNzNioj02F3yoZ/5dDbY+bXmqZj+/Ql2+yPsKvmdzOanYv3UR8+sz2G4uvubJRjqx/ZalGoYwoqdU8L2G8TAJ3FxZcAF8Fmgje++Qu6iFhwA7FIz8G8mpRGXQ99rluLEnWcJfspk5LlQDZEWIEXrC3e+CxMqzL6ZHwMZK7DTHzFc3d8+907dNY6vYueI/tggP9HthUdrJAWHCuJn0LOT9drNufnMIwZEcK5cu4bvuPZuETq/XPrzst+eu+O4Cp++/ZyIiHziqTta5qn7rj4XQClW6Icau2sbTs05nCHTeK5cAHcdA6pJgYEvdK44G+fuemXmz5sztxxeb4EQdYYvwvtkiVDxjHnTmK3b8CZydOAY/UbUcov5sLnwIcjXbjhkjGKMlCvoesoK+DpUFXf0EMPDeI/GYU4rEY+ENpqzCnwXw+vifUiOXg1ki1nPD4yo3rYGNwn37Aoh3BmEI23oOe8NIkVj1G8NdCXkt4T5/UTRC7TD7NqLlBIR7jXphl3v0RqKB1J6geH5WyAddwwH7JNPubGcYuLcuHaI8wMpTfy6l6Zok4ZGu3rNcT+MDjyy8/gXuDL3kAn9f/zPT7trn/lxv3MH4ehXL3Fe9/5oAs6SBUyYJ07D0yk86O69urKICQQnwfkqkFWe58hMJvscRDbyxBJFdthmI9KqaFoozrfPY+FFCcNjIHOi3x98Z+95O/1WYJwkhk/Dv7qBIK7ycwyi2ytqA/S/JXpjOGWYR1zLOa8oSNnuQXY2mwfjB7+oDzuLxUL+9E//VF9//OMfl49+9KNy5coVuXLlinz/93+/fNM3fZPcunVLPvGJT8j3fu/3yrVr1+QbvuEbRETk6OhIvuM7vkO+53u+R65evSpXrlyRt771rfKlX/qlGp0VLVq0aNGiRfvrbS/qw87v//7vy9d+7dfqa/Jovu3bvk1+9Ed/VP7wD/9QfuInfkLOzs7k1q1b8rVf+7Xysz/7s0E6ine+852S57m8/vWvV1HBH//xH3/gPF7RokWLFi1atIfbXtSHna/5mq95wQivX/u1X/uM5xiPx/Kud71L3vWud/1v16frPCzXmHjdKnUw2QLuEcKZDJkrC5NXBQ9ZdDcUiBVO6MZqfdkRwhJJTGNeocoQrgjrMV6PKskkbFl3E3M2UXU30Rwso+Ao4snGRclQTMCZgKgTAy3yPCSqEo7MMwu7Mhwd7eT7rJ8NgwT0W1MVGaG3LY8mnHwDt1UNNV96GRK4PhjiKuJdRuUEpECQL0dwO12ce9ckr1Xis6Z17qDrV/2DNInIJM7OJww5d8TffOTbxLD3iwt33mfhOhkDsp8YNeMM+YhIID47dcTp648+KiIij9zw5P6jIxc2zfDUNcjWd587ExGR+3c9CfNphNp+/I777JP3XHsXRpmXKrgMq86gRMypURh3E3m92xpEVRIhQW7dGhcqXZyE3/lJnjjXwtS6UvoBPI6504l3+fioVEgD4J5jfWvj6mSAQA7V2hlyoBVwEybir70C5H2AUGZVasa1bQ63EpOtgdp017nvan6pxIRpw31Fpeh+QLQU8e6w6YwSE0Hzgw0aYfy6CQnEGkBgxqlCaHzD/Ex0RdNlZcLpKXNA6YoFcstND5xrviitqxv1wqWY76zeE8rOKdair5dwzd2+6+/Pe2eu0DkUihvMje6qu2Za+PMWSwYHuLKrkoq/GC8jozGdOnfYFz3h6A23nwXp/r7v++fO3Ppx/9S5s2YkPJfMEeevneL+1EAMuoXgUrJ5tLiuNz1d2wxXB0F5bAnKVEoPFYmVNByEdKd7y+xTUH6+YJy96sUD6/eVoSuKv4YDQnGgYjx4T193u4RizUBAqkcbvhbxwSmkNPhce83u+aguvvLuyheyz1pB+Q1veIP8zu/8zmf7tWjRokWLFi1atBfFPmtk5/LyUl796lfL448/Lt/+7d8u3/Zt3/YZlZL/qth8PJGMCIV5DuTTNXNWkVhFZMKSjvnU7vN+4GleM8ga0TIQMlOGnibufHnmdw7M69MlJGi59/vM7SQzgy7kyCfD3USJbNUMf8xKT+rTjMgDspjm1zKhvR3aSXKY5lOxaA3DaPGQnmjWc2bKNmiVbpnQRxRtBIk5xPpCgawO51HisyG1luOQdM1dMEOGbVbpdATyKTN5Y2u63RryZRaSoC8vzlwZCPDdfdITf69cdQjMlWsnaLe75p1nHEn4+NCjahTgY2j0S172JSIicu0RJxCYG7Rus16gva4tRKf+1//twmz/+FPPatlnINZHEbSTYzePvmDqx3IOEuwR5kgGiKdqGTrsEZMFwtEvVq7M/ZWrw/kaxEBfVHeyOSEijDGJyZUh3RO57BFWmmmWZn++rid53V17pJNmN0M4c6ERrqIoZ0GRzsIQf1HpDRDBqQr5QVbBkI45HzXLM0LaNyBNj6f+vBQIVUItdv+XC0+eZN6sdhkGF0xmyOy+8rIHM2Y5Z/b040dwfvd5XRkyLxADhh6PgCZX1ZmriwlMYD6zFvfEGuP9yDVPUaYlmsPMvdc2rJ8lqFIozpWBtqZ8+q4r+9w9L5DZgVXN2IC7IMsXICOPDLI1AuF7lEEaYLRBVTC2mZdcGANVPXnEoVN/46UO4fmfS39vbBp37QvcI550jnlmJl+qIeD4jIT6Dn1uUH/OLaKKVReGZ9vzlhSYLZh/MCSJWyTGh3mHBOIQxHlh5Gaf16TfIRIzr5pZ7/U9FKWIbs91eh/peBgyTvRmF4nxpOOQ3C5i1uMmLOtfG5S6Y0CKn2MvZJ81svPzP//z8tRTT8mb3vQm+bmf+zl56UtfKq997Wvlv/7X/xqo7kaLFi1atGjRon0+2F8oEejVq1fln//zfy7//b//d/nd3/1d+aIv+iL51m/9Vnn00Uflu7/7u1UHJ1q0aNGiRYsW7cW2/y2C8u3bt+X973+/vP/975csy+Qf/sN/KP/zf/5P+dt/+2/LO97xDvnu7/7uv6x6/h+x6XSmJF+6rEQ8FEkyL91EOfVrjPIlkVgqHFNklu6ixqhvdj2JhdRfoMvLu7EKajIAZfS5t1AH424qAcnnqgZLN1kW1EXEw4t0L2SqnIzzGbIcyctdEip+djbpEtDFlHo9dI8BqrQKncxlpFAqtG5yup9qD+encAdlgLWpBtviO6YG0vdUonXn3YDULHs0Hy4uHYmRRM/lwp2PCtoiIgcH7nxlusZp3PeZP+qlj3sicZEDUj1zZOMNzk+XwnLjx/0Kcrv9jS96Oa5zhE/gHlqdadkGbqxnkb/to3/8KRER+difP436+zb9rS905OpHb7rj/BA5uGbGfUl9EejM0F10fupcCtuVIYnCLUiC93PPuLp8+ilH8vzUcx4+fg7+C7oXpsjXdPUIxFejMv7nn/i/3bXQNirSJgZ2Z72AXkuVqH/Ufce4ZmaHx+6a7EdqnMAdWG13ycwkIjcdgwJYf3/f67WrUPmXkH9beRfVFDnRTs/hdimp2GvIwYDgZ+ibe9CB2cKlNJt5crwGCoD4msNVV6AfrDuc7isSx7PCrQ01GrBaeWI+3SN0D5CEzfWlM+uTjhkJ5F3YZyIiHVwpLfpzCx/V+Tn0sbYm75HqazH/Xh/0w2RigzdcvaZo0xTu5RxjafOybaDWfQAS8+MvcS7lJz917sugXnQrrhHMcDBn/jff7rwFgZi/BXif42+ab3w9cLvhN4H0gz5Qw5fASNQf5rQS2UMu1hxmu5cevtHvK6C/Q8zzyBxppFv4op2Si+mi7MPvGlcS3VjtIGdj04ZEY1tGcyLq0eiqUT9uQFAefkdEpMc1lhv/e/FC9lkjO3Vdy8///M/L6173OnniiSfk537u5+S7v/u75fbt2/Ke97xH3v/+98t73/te+df/+l9/tqeOFi1atGjRokX7S7fPGtm5deuWdF0n//gf/2P53d/9Xfm7f/fv7pR5zWteI8fHx38J1fs/a/cvF4ridJagnHGH63bIR0AbTqCEe3R4pGVHSvxkqCRDR0lyNCHdOFJlMyPZ1mQy5w50i13kEqGilPwsDBKRJAxpZIgjz4sdafBEzkzjjT2dEpOD8EJ+DW3gE7rdfTDPS+c1NV1/ULXYIGVUjmXeE+5sajy1byv/pF5t3e5/AcQk6bdB/brE7wYP5q4vmJV4g3w9KfrcZhMfA9m4WLqxZGj4yYG/JQ6wK1+CmHu5cnU5OoaKbbXQsmuQThkGfDhHJu6xC4s9vnpTyz5yyxH65whBJgl3del2uGenPlvzJz/lMjr/4Z85JOeZhSvzkpc4FOALbvoQ3JMrbu4RTSpKzmU/TiTek95Kou+1x49FRGRb+YEnybqAQvHLHnFteewLHVrz2Md9Pf/Xnziy9rPnrk+2IDFfYF5cBcFWROTGrS8QEZGnnv6ke6OG4rVBFUgb3mI+tUQeGJJukUeiHpByUPkIzG1blrYBQlAgU/oIudE2JoyVmbeZwyuF1MR0QjK2IZKD+DsGUZ9SCY2JXrg4d0jD/XtnIiJy5ZpD+C5Ql7zwytkaeszXgE5J0E8LH9JMFJqyDBUQk+nUnS/L/ZzmPVYD5u2xNjRQku5bg1LzvFhPfJi5Cafv0V4qhuPamw3WCNP3RAF0OuL8DYjLFv3cgujbYiZ0RG1BNK5NIMF6AykM9NYUCNG1a35t/PRTblzXCC7g+LM/ktbMEQ2coLIzEB7N2m3bD9QLcy3HOGUjKlP7e0/XLELsCdE7BmFYqCacs72P/zbn6x/oKOLRbkV0qIo9QHH2vdcNwsgtSXgYPs7fEx8yblAbqm2D20v5CBu80sDT8HzoTxfkTXR/Uyn8M9ln/bDzzne+U775m79ZxuPx85Y5OTn5CyUPjRYtWrRo0aJF+8u2z/ph51u/9Vs/F/WIFi1atGjRokX7nNhfqUSgn3trpOmYENEkHNsSmgU5tiJp1n1eZLYbqWw8SLhHrl+geMwEoITb4YYyCSb7QaI+wsJ0/QSQKqA+us66bqilYzQKAAHSncXEgh2g+8RA9H0PshmIlFTLLY1+SdpQvRlupYxkYVdfS8ymdgQVWQl5EtbsDUxOjY/RGCrOLAvtn/mhJ3VOkSTw9PRMREQqqLCmqP+08JAyrzCGy4c6O+cLowdUOBj8NhJqckzbM+dKbI0mS4Jxv/moS9jZot3l1NXp6pUrWnY+hpsRCTVbKPSew331f/2vP9ey/9efPoX2u3q+4otvuOs84lwU82PvxivhiikpxoIJut1aHQu6RV0PLOBuKkauDolxeaQJ0NuOp4O7YOb68fEvuqFlxxifP/u4czd+8hnnNrigp8+4M15y3bn0jqbOBffHf/KHIiJSG7cg3bfq8QAkr8reZj6xVKoEepL4Xf3XG+++JAF9RBV0ajvhfCOj39PVGEO4ONcgQlaA4efzQ1NfuE5xrbZlclLvSimhncNErZtnXcLKK1ecW/DJTz6pZW/edHpNTHi6gT5QmTE5q7lH6LZWN4mrZ46y6dSg8FjDStR3C7dQhTkyGZmAB7gFCyRWre47V2Vl5n2LelBnaAtCcgdC8NHU60vVcIvQ1TtUm0+MS7qjIjHI5lRmrtWV5teynG4RzF0GSRwfeRfv00+6e3YLV9lqTRcK5nRtXPx5mCSzhYuOa1hvFLlT/oRSt4x8ZbQxH+26EOldUk020gICEZ2BG2uPa0oTsvZDF1VIKLbf43v9oCzXYhFPL2iZoFdf051lE8GSkAw3VjMkKFvycTU4goxsNLhq/Qxr40BRmQlBbT3XJgDhhewvFHoeLVq0aNGiRYv2V8UismMsk5F02G3bZ2zyxvg03HZ8+gTSY1VXWyqxIp+OKhOTNOq7PCm7sGwBRVmbIwfkrSVyIm2WzBGF85kcMSRSZ/rUznBdokE2DJSh5jgqdMQQR0NCa+wu2oe9dsGzMlRGB4rHLTEps7PnLkJ5elQbxS4uEb8Tx8ZWKhROM7dLnYGEmOV+N7hB3qNLhGmv0GeC8fJquSKSU2UZSBw+mxmy+Z277jxnl+48E+QNKrjTM8S6q9eO3R8gjlJG4PjE7dpLk3OIu6vNpWvn7TvPiIjI7//hJ0RE5L//2VNa9vjEzZdXvNwRfG894pCCMZCJ3hAWqeZKsvnlwp3/4syTbjcbSg5wh4zxglou1XxtnadAbcaYr4nmovJ9f/Nxh1yNoOidi2vTn91298hy+ZyWPT1317h65NCL+fzYvX/qiYY97gmdlkR2FFX0/cn7hcR0zQ1VoC612V0DEaRCMcmhnrxvQ2WpkM4dOcNr3eeULxARSVPXpjHyNJ3eP3UfmLDYHAvJCMjbHO0ncpQZpJTEzFFBAizWhHyGOpncWFiHPIgM0i3D001Zol68dfW+p4q1AYyIWJ9gfD6NezozqyORDBKxiUCxn+0SQeSaqJpHFzAXt0Ztmjt7jAuRyCwlAmdzuAG5xhwm2jQb21Budz7mRluvILUApCszQSHCcH/KcKBPOB96g6a3/BDIDvuc4fmdEdrNsYY1GcLoVZmfCsr7DEEhvGaA7Gg8uSvThf0ZIDvPp3SsxGJftia5WFWQB7mszO8Bidm+DFEgIjF+jSQxmchOC2SnqS1BuQ6ODJKg2nhr1ZvxZ1WFv0/PZxHZiRYtWrRo0aI91BYfdqJFixYtWrRoD7VFN5axLE8kAbE0NRAg+cIkqFJfw2tIWH0EQonUpOmC71oXFZWXSWJWMWRDAKuhr0P9jw6wawcCZJ37emYZyKYc1WYI/VliGdRW4ZIgGXFU0JVk9CG6kIRG3Y7UqLgqoRkwOdVb6aJrDEyqGiIkWUuYCDQxarv1GuQ9aAa1HUhtayjATn0d7t9zrhKqKxNjz1HPc5OUsQAMfnDg2p0Uzj22XHtXCsdqXDrXUQKXH90l07nXOumgxXFw4AjKh8eOmFzClTIeeZfPFroQzz7nXB0f+uifiYjIf/8Tp6Vz9ao/75d8oXN13Dhx9TvANUskfbVc7rqmOqw7/yXcV8tTr6C7XMMtCiIpiZ8Z2r9Y+P4kWXcM0ioVbkcTVzbPPPw8habP7MjV66VPHIuISLV1bfzEqXdNLtdnOJ9zyRwfO72ZxdITlLdb5yLSOaHuVbrSfH9OoCfTq4YVlaiRYHLkCbpbEEdXa9c3Y7qQMG9XK++a4rUquGRyuCgbEOknU+9CrvAe/UJbuGTOLr0L8coVN5YHx85VWoIIy2SvB1M/7rydqK5dMzggG+pZ+SSs2ny6ZFCXjUkwmoG0XYM4qusSbjnroqGb5drRsYiITEdUZvb3EV1mPfR2tnQ/oHpt5deco6nr61sgZJ8jgeN9jHv1/2/v34Nty8rycPidl3W/7Os5Z59zuk93A43IRRLBQFMxGC+ddILBUBWJmhSpEEuDWnYhZUmolE3KagimCFGUFImJaGLafBVJpSomoU2kCR+f+bCFzxb5KUjT13Pbl7XXfc255pzfH+N5xnjnXOscWoOe3pvxVp2z9lprzDnHbY41x/M+7/OGbj5Rt4ikW66RAQnlS6UdBYJ/InBJwU0YB3rNoV7LrNSGBIrs9ZrrT5LjrYsYLipLni2USz7E3EJfBQgKiWt04ys3Dl2kKBtVE4HeJK+n81hp11RZB4durHxJd+tqEs5l1SVl3VjqNyerEJL5uiy7qMx3GP/lsvSert+yLg5Jx6BtMMF0SYuHbquyK42/pzrpNvsk04vgTcwjO968efPmzZu3U20e2VEWx7ElaunwQiIjJOw1SHzkbkMBOwyNY44pohga0aEx1JAKx0RTCh1Wi916AIVTIiULEEtrNZ3LCHXHeUmSbQQkbq6GnltCZl4mgukwSBILg4LflVWSTRswlZjTh4LROKauiNkhdkYL7pQWZVLafO52w2MoRhf4jkq3tSYQKNWmOjmc+GM+MdfGBt/mNBIRaSNfFAnVROu2Wg4FuL5/KCIimz3spqkyix1fZ8OFk5+/aFSR+8hvFNu6mFdL2BSR8cS07/NfMArCv4fw8nbb1O/FtznE4PyuIbxubOO8IFIvmf9LqUJPgfpNRjO039R3qsI1D5DDajIHyRptqdXNsc1E9yfGCeH5C3zXy0jyVaHCijAsItLdMm24dIc5/yQ7tN9dgZJwujSIzva2QcNGE5fLaP860Ajs7BgNTJL42bOu71sgG5P4zpxOeSVPj7bU7irRpjbyx6ld4tGRqQ9VYesI/0+4M1V9nwIpI/rVBfm4mDlU5fDYzOU+0ESGNHPXmiqiZmQlHAyqWAClIYojKo/SDMgGt7oBFX9JOg7c2EBZQmY2r5cps4Di8VbNjWkAJKsH0vW5HUOSn8wHtgzXRkoCBFi7IhsA4c53AeN84ayRLFhevSwiIkOgbCXyLUjHvGcpV2ElCXTaJ1ybaDIAWKskLaLQY44d1lEi54tYIyZYMBLKe5i3DHufa5XxyMy9WguyIZQuAbQVxO5+IpJNxWvmOSSkvxbZscExzGGlFc7LuapWUBuFqqwqEpdRFY3ALFdIx0R2UHYdslORhLAIoVqfq+crKu9L56kEr1hCvZr3nBurv6zrzSM73rx58+bNm7dTbf5hx5s3b968efN2qs27sZS1On0Lb4ZKH4PuFSrT1kLC5Exc6UitIfB2kvsIN1PtUonZSgg3U61GbRPoMCjdnjSlqrDgPHCPxVTUVIq/IOYmc6gN43O6s7Qbi3BhjOSezFNqkVTl8kkAr1tCsXWz6YR4JGITmkVf4dqZYpYlNkEjlF9BDixY/8S1v4Ekj61+B+/RZ/h8NnNkyQxuggncRCRQt2skBNqiTikXEDL1TA6u79sy1CJi59dbxqXQ3TBw/Pnb77RlqVYbx1TdJfxelNosIvLUs1dFROSzXzSKuRkIpXdDNXdrQ2ndAB7PgM0ncCUtUiSaTJ0rJSH0j75ewD1yZe6A3t9/xvTteGTKbOJa2xumr+a5K9sgYZSQMuZEjA9sQkNxmjudFtWhoWK7ba5zaaTIp1AZHg5NP1w4dwl12bVl9g8MWZvu1BpeG5hP9brSTMKsbUEdmeMeMDltvkpgbJK0DHXtGciy9di5fHgPX9s3c2IDmkeW5KtcfgXm8vEU+kC4vzbhzhIROcwGIuISjAYYd+p1NZsuEWijZVxH9EDGIJDzfaB0YayLA/O1BvcTWx0qVwqFglP6s0h8TaEw3HEk6Rb6jy742/eMq/bawVVbZgqtIbpUGGRR4I9W7NzCWz3TFzUEG9A1FYVr/DdWxJhBDNTxolrwakJMapotMS+TuVobLYHWvF/QdY5ggbm49X5ewF1TMHDCfE6tr+nCXXtRmPY1e0gS2zfk66jGYA5333MdJvs8pZI0CdVKXd8RkrnOlzV0RJy2Ed1VaUVteJnq3xG67SrUAevWU6rYy7Iby1I7bF3Uj5hVZGZSU+oOmZdQB7pIec7ZJKmq3TZDAK5FtX66rNYlVo1uoFBUNY/sePPmzZs3b95OtXlkR1l/+6zkePKdhC4ENVkYpID5j4qA+UTME26iiIXxAl1KXh4eJ7kJjhWdKgfJmIQwogBLRazjLsWGAxYkAEItd6l2GQjhTEHwHeEpuYZdcKul8vSAiFiAvJhBNZSPyxoFqWHnkWI3MAOqUKidfR2EYZLuqCQaYTcTqVBh7nC4O2MYLMmCXZVPKI5auBbzfoFYCwXgpUKBul1zjT52kAnUXKncWVO5seothuCahk6xs2+3XT0nUFvt9A0ZdmMLpFiqpCpSH3er3IlyJ0ZV2OtXHWL0h180OZEGYzNOe2cMmfe2c4aE3Ou63TD3cVNAgkPk+8otOqZ2ZCg8RZuGUPP+8jVH+H7iWaiWInT3YGTOMwZh+cKeyzWWc8eJOUaEoJgybFXtrgPMvaUZr2bMnT5yJPXdUnN205z3S9fMPXZt/wra6natJBfXGJ2Lzzk+nZ4jcdcQEp0XZSJ1t9dEvzhkYzYhWx05kUD8ZZ6dxcyRpNsgG29umvmUAhZhyHxRqBBsIIWzY4wPVXeXbh1hDigb7lwHKtA0851qsSIi21ub5hqY9xHWDRu8UGLoYly4fiDYgKrTkdr4EhFjHioqXs+RTyuZO5mCRp33njlPF2jTHefvsGWOp/+PiIiM0Cbmu2qAsH5hx+VP64LonJBQnFGtnlIUrk0REn2FRDRImrX3v2tTzHXZhnuX1ZxFnGI4ycvLxLR3OjHjk8518AZQEK69IL4XaNuycGv4Ash6WsT4DnVqmDkSKgSyDgQ/xqvNqUgivSLfis19WEatdIg4VZqJ4Lh1FK9KkToFgpXYV2YBAKG4RDqGN8Hm3DKfs+8CNU78zSK5OrRka6yDCrULrJI/1dAxp12r7fnCSi4wh146s+T1wiM73rx58+bNmzdv/mHHmzdv3rx583a6zbuxlPW3zll8lIrCIiKTMaDOBV0IBgpMAR9HCgIkNCspicSA7gjPqcfLJa4VzOHGAryXpCohXkZoEiS0eZlgNg/mqqz5rgmdmRYg1FqDJGcFAnaIO2pgUCQCvK2kWazLxBHgoGehXHLkPpOsHQGitwqtDT3VyhoxCxBWa+irZaJIxyThWfItiIr4PI6VygJccekC44L+bNItpMh99Gwk0EGhNkukEna2enAr9Qz8TiJdXDculG63b8s2oUUTChSeATfPMLZPPut0Zv7wGePSanfMtS7tmfP04aJpNVXiSuxHZvOydgbbnyrNjzHmyDQ1x1wDCfnpK06Z2Mr9WBeiKfv0NVNmovr+jts2RUQkhxOJsPlGiy4Vpfkh1OKALlQPejNw73R6Ds7f7Jl5ujE0ff/E078vIiJh6O45qZKKMY8azXKiVRGnK0UXItV3a3W6UN1NZxPfwr22XJa1SrR+Dd0XjZape4rErdPpGHVxbZpBpZjVZnLK6dz1/dbmpqk7JM6p47S9Y9yj165es2V34MZq474h8Z3uiFpdE6nxB9wi5IjSrVFT2jnUYmlhvjKh8AJuzFQFZkjL9COTnNbh1rr9/O22yHhhyo+/9EUREaH00lbPuHF2txxBmxWjdtaMgR2ov9Yiozs8xBzLQBUI0HdakX0JsnYWcF6CxL9wixgTidI9MsV9P51CJbymNMPobiFBG31E13etrhS5sR4tSayNqfBN9XbnYnHNo8ow35N86+aedV9ZleTKPBW3HtONRToFfyOShRvLBBpcC4wvE6AmSVmjyfxJcjDcRFR8tsr3tqiE+P1w+jdlfblCk4+pFF0hpOt3RSXhqU0qYJW9lVuM1/IEZW/evHnz5s2bN4/slKy/sSMhdgz1miLzYkcznyI8EyQ+F/arSMIMFWdYpXDHjyfV0KFAScjdpXnPB95MkW6Z12YEAu2cT+gJydEKmQGS0Ud4dr+LXVyymtOEuwGqDZM82UAOpyBwU4NEXOblCZAbqxa7HSM5YkQB6iTfBbye2mVgNzEDAZg7sQi7oLpS401BJCTCVUMuo2YbCshKbXqWgUiOwwPs/ue4zlzt9HieTteMM1GLqOZ265QE4PHM+3UW6sDNpmt/iN1lCiLxEjl8Do4ORETk8Wfdrn2M8911m0GO9naxCz5vFGrDmtuDHCGMXoBE1OrM02NjfG3ZAggGicMjzJ3J2BFfbdnKHwHC1AdHuqyZ5xfPm3oWLYTXo0jcVAq1Beey6QcSQokT1WpuPnVa5lrtpik7uWYQjvHM7dCa2BFy50hwps/cYA2F7NiQWBzbZGg4VMGj1R1zBvSUu1gS3fUekQTiEHOv1aPasGnbZKYQXaAoPaCBU0gidDcckfpw3+RuO3P2DCqDfG9AipsNt+aMRqbv6xFzrDE/G/JgrcnHRwQ2wn1JNd+g5nbXTZDrw4K5+6AODWXmVCFqcyAFTIHHa+t6vuSOrzN9ATLw6I8eFxERpoKbTh3he4G5egRkJ8nKId6Bgr2J8hbMhWVzOaEuolFFqoHjeKDe05mSO8Aa1sB4L6ZAVwB1Rm1936P/sIa10DcNKHU3VKBHgTVhDrXlWUbpdCrn61DpMppIInVRUds3H64nKGclZKesPE/JDiI8WsKDhOQZUM8F5qf1Iuhrox9JoI6InFYQVFXU5fcKiehQ8tjd90GVvMzTqNM56ZOi9LouCyXfPVfExiM73rx58+bNm7dTbf5hx5s3b968efN2qs27sZR1u31Lua1pdwZcHiRHLqYGxqQ7i64WEZEMySITCC5EcLM4wp3WEoF6cUxiIRVAFVQJomMC98Ac0OSCiQwVj5PKxjO4sxrQ/CkAk+ukmRa+BgEyg2tlwiSKyj1Cgt7GxmapLay/KY+Ekug3QtPUONEKyrOZqQ9dXnGdujtMDOfaFOBanS5caHAXsa157qDqJdwW46Fx/VAvg/otNomiOIJeCjdgHTB2q+5cU5ZsBxXY/rZxP1B9Nwhcm8jDI3lxOjTfPfW0cWN98ZnrtmwEle1e07S72zPzKcfnmdKx4PjwSktoM5FIvFiqfp2XNXMO4ZJSOUgt3KxJuyJKmVVpVgyPzfGtpumrdtO4ZBJLgHUDFQExp7r4eIrEteiXfknwuKwKS6XqRBGeY6vWXaAOcM326dZxbqya1XKKdBNtW8LAuXEYFMB5U6+Xlb61ZkcCcvEC90YUUyXbHDMeONI59WtsMk8qiKtAh3bX1L1B9WbcPzMEPtRUslzqzNCdU4drk8TnSCkTc82xiYTZBromQtdXbB/rO5mh7zGU2jVNdV0bXMFgC9WfnY4h13/Di16Ka5syn/6DL4mIyBPXn1H1ZLXoxmA9sVaqW4+uM/ZnHrD9uT7EnBfnSbFwJHAvDsdKjAdzrIugACbdpXs1UqRjIaEbejpB3biv6h1Dtq43nRuLbpoiQuAA7jXGDSwWTuPKjgvmBl2HgR0frVtV9vFQ261QDedfuVWVzkuves1lbEqWl91jVCTOtX+I04b6OrwXrfvJrR3xiq4OD47KryKWoc2fjUoTS38GFYcVrSh9jN+P4rlhNh7Z8ebNmzdv3rydavPIjrJ2uyc1PH3GKlyzjt3+HMTHOQhq8xmJy+7pPUnMLo3EWeYKYeiojpTmrq2GHT1RnFTJgzL/CXdtVBttY2fbVLtBqq3ygX4M9ILoz/HYIVBbIHpubG7waFM/u6N2uwKH5AB5AlTQULtroj98XM+428CWMYxdPetAyCKcNwFKERXo81CjK6jzEugUPuXljkYutPcIOYzG+KwN0nUHebVmC9evra5pdwu7tNzuMtWutWuQjHrD7F6juEwOZb+gguY7jPtkaIiZT142xOTJzF273zPH9Tc6uCRIxwgZ1cgOib4kiXMXGwVEfFyouFWXxRw5HoJAr7ZDnD/cXnVA9G5ihzuZKSI5Js5syrw3pq9abTN+ydLl5aoDE6Xid4zrLJl7aqFDySNcE4hpRARBoZ52VwlkB8hGPSbCpyUHymGqVMzmbjNX6BfnsCVdYryYV2oxd/cyydYktw6PDJK7DUVlKqCbvjDn24TMAUOcW02H7BwfDURE5OC6UYy+ePE2EREZPGkQok2Epou4XSj7k8RPKhTrMO0m1qMZiL/UgSCSEmdu68xweubYG4MAnwHFiFVgApEhGxyA+133PQnEWxvmfvrGF73YtAVo7f/384/bsp97AvcC+f64f3gvt9TiGOblNmQg/jI/lSbzcnaT8DyamDl8/djNT86RDuZcG2t5DWtEoBCtEBAT+6jGslRAVkhZYVXqTdmE84nkYIUUEkXib0sE+IpISaCwhwo/VyzCo9Sbif7lEeUJQL5HH0U6nB7jHkZEHoHo2xxrGl5BoAORUiIo+Dwq9T0IySQosy08ViM7DM9HWctHLyE7PI+UrNoP2sJ85aO15pEdb968efPmzdupNo/sKGs2W9LgU7d60meOmHrLvDYWZifVBHdn1nS7wcXCoArMZFxAZC3EbitUGWMpELXErpIZzksh4swJRZ5HH3XAdkjvcCYIJxwDwZkh3LDOzOvqofjqwOx6DsamnhtAeraI9Cgy0DgzKMUSqFUTIZiJ5jWBh1Bg1x7UmCsL4bUqA7FzXSO0s20QFO4ceR0RESZ1z5hHB47k4+MjU7eBC21NrTijqXunx5xJ5vvN7R1bdmPbZNjOEMJ9hPNtbrlQ4VZrA12B3STd0BTSUn5lZlWmuNwVCMZd3jeClIEKQd1BDq+tHkP4K85rNVCk1nAHSc5GnWH6Klw3wo7bCk6CNxOobVJgd0acc5gj3B0qxKCwWZ/NMdMJ+BMQDGzoDOH4OwUC18o5P5GnSOWPK5bgsxBFZf3ULpjTj6J3O0A96phnNYUUMhyXCKEVf2T4suLARSHzCfG+BFISU9jNzXsiukfHAxFx91demDnH9cBcElw1q4lGbpm6dkTUlLt0oElAkBpKKJDrRwrEKEMYOdelQqF1zJZNbkUBgccYfZQpeQbuxLkDJ9ITyGqG+IJqhfyI69Ka7NxENHtdsza86JLJn7Wj8txd2jRj9+iXDLL17PEc9cfc01tv5gmDUCg5OykmRqT4hwlzQkFw8cqRed0fOsHVHrhZYUTui/mcHMhAzU+KsXaQC6wNFJgh95rPSdCMYf918EeWVoBPIzFEv8t8FpYJ1mAPHOcgZ5K4VS4LuUAcJiuvoOaeFYIlGk/9CIq06vxS5FTx/BXOjq6nbR+nig2jJ4dHhd5XRAULi/Co9amCENnrcN0qATur6/DNzCM73rx58+bNm7dTbf5hx5s3b968efN2qs27sZTVanUbFhprmJxEyoaBLxO8nwNSbqiwxXkC8ibCSVOEr6YIQcxTBRNL2X3BlPeRUp2kAjPDXjcQptzrMvzZPa+OJ+aajdC4UOYLkPpwzf2hcw8t4V7rIw9TEzD+s1OobypSZ7tONVMDhbahwtlWEDVh+xpcfjnikwdT48bJFP7YBPzf6SCMGHAuc2IVSwcpMxeUU/5EODBI4YUOp8drqwXiL8Jz2yAhdze2xBlIwUvjdurCNbdUYdoLqMKSUM1w3VpEkrArSxfaeGz6+PDItHs8NedoKML7BvIGkaDbbFCx1fTzYqkherQN39HtkgtDaNX455hz2cCUyRjirQmFZTIv3RjDienX7Q2X76uembkxA8R/AILt7ibcUG1Fjs/LeYlICi7gNtKEQ0L/DF0nCX9ZuDlHiYEO+ubc7qZpL+ZOqHNj4ZXwPX1JhNhz5RZm/TLMtTmOrjcZvu7GiUTcOtwX7bY5bwvujRFy5omIbEApeQH3WIb7K1X30RCSCHt7JhfWbGbek6DLe1JEJIa7gXm+6PKOIA8eatck3KokC9MVRaXzPHfk+FrN3BMLSGO0Me8pRTAZuTZZ9wjJzGNDgO71dK4xymZAZR0E5zoCJ7a3erbsq196l4iIXNwx/ff4ZSPH8PTAnHeaufaHgmAAuFm4DuQZXYDuHpngu2O45C8PzOtc3UcduLEmcPEejs18jyHt0Oq6ejYaZix7G8btXWuZ95aYG6zeT841WVYSjpTLL7SkXciQcJ1f4/Ky52fIuM1ruMrGdd9wvBEkoHM21qAUjXlFuZMQLmUd0u2UjSvurDWuJBcSX44np8urpApd7T8X267KVIjON3BraQsz78by5s2bN2/evHnzyI62KIptXpRYhVXnMQh/mfmMomLMXlxTQnT1hdmRLIACzJgrhDlOSjF12K3YBEUoq0rEQJNI4qrhvaB+up4d7M6WIOq1sGWcAR6YqZ0O88aQvDtFvp8RdqbM8SUi0rOIBgnFHdTTtWUBQT8SlC3JjcTsyJH6qrmMJtjh8uE9UjuceUKhQSBH2PEHCPVcJm6n0wACxXFpIWSUj/TjkSMzN7Bb41g2KP6mwslrDebP6qAsTmQz0auwb+6CgKLMgOjMQZ6kKJ6ISBM5photCJqhr7hBCTSqmJN8ydw4zMiMczQcEnO+aUQPjwb4rn5VRESmc0X4xkUo6EgCNJGnF912my17+boJ5U+HA/MKAcYJ5kq34fZKS+y4+QmJn5y3TdWvc6Cd4xlFD4k2ufkU4y4gmbsLBNLlGnJ3SRhxF1mUvqMUQ10RSucIrY8p9wBUIEWm+FQRVTnnOkAwj48N6kEkptFUQnRoeBPI5sGB6fOtjlJTxL0wQWh0ABLuVn/TfD5282l311wzYptycwwDFTKFfgrDshPmsgKpF/3JuW4uCrkH5PVrQ0ZgacP1dfg/UTrzun99YI5pORQkrjOvHccQqFJOOQG3jjSbppNuv2iQrTM7pl4vGJj58Pi1A1t2QBkG5rJini68nyUK2UHZg6F5XSSUhlCEb0ybhOHuQGt7QHt7O2dt2daGqV8MEU1LKI7KqI2Iy6mW2JB+kGaB6BQ6gCCqoCoW4aEYpiJ+U+wvp/QA+jVYRXZ4K9jfGIvsqACCmqknJULCWgXZ0eiIRVPKSI69u9ZkSGd9ifAUlWPNZ1zg2Ba22/WRy59VXueCNeRo1iKMtGrqjc0jO968efPmzZu3U23+YcebN2/evHnzdqrNu7GUBUFgiXpam8TqdoCEyXwg1E2IFVmSKpmhzTFFAhddTA7WXgJKzkFMJFRJIqyISB3QJ2V/mEeJ9UuUfg1h7AIkyyKCJgVcNe2WVmY29Rrh+BleLfoYagjY1H0KqPMIREut27O1RUJhiteyS053J1U1qY9CqNIqf6pH8AxutSXUoKOASsWEjV1Zq39BrYeY5y2TB83xIGj2jBuIcHlTQf5UeF4i91m2gMaNJX6q3DNZXvrseEyysPm+U3JOwiUHlwQ1XwqQT1OtswRyeUE3kdWoABSsCJDNmnG3veDCC0VEZPISc77/z2f+f7bMqIBLi3owJOhiztm8TaLgZYyPbS6hejWoKeoZoVCtAX2dOSD1miLUgsxKgjI8fqW8VD3A7VtwIekgAJEy6ZjaM5b4WSFhl9L+kOiNvmaurGxJlWB3nRlcR5xXLRDqr+0bd8v58xds2WVOd45536TqrlI43zljtJ3ShDnMjPvmzN55U6eJczdG6PNOs15qA+ei1aERkTnmHhXZLeEV9Q6UdtLSBkjALY61YTExLroiddo0MXMB0hWN8y+VwnuDqsDoV+ojWc6pIhIzAIGLwSZy7fV65vXMzqYtO4GLcwxC8ZTrFLTDuAaZa5p+29tGIAJI7Ft9F0CxDbXynQ0zhhub0NDB/d7suPu+DldkwLlCNxNeU6XbxDyGvC/jSo61XK1ldJmHWFutG6visjHGe473Gkj3mqDM3xZMDrr4YgyCVnjnWmZfWRfmqxLXJnfD2NUb12GeQ11PupCx/lVcYFmJtoEj4EplH+l1OaiQoB1ZeqVy7sObkJe1eWTHmzdv3rx583aqzSM7NzL1RGqz/TKLMje8EfNdqVBMEigZeghkhmqs04ki32Ijx2y9KUh9OvyZKcBDIiV40ueOsVD5ZDKw8HodszPJkPdojhDqQNWzgd1FFEJJeQR0gURotSs4RFj11dFARER226Ytd6odXi0AooPn5wZURxsdvCpSI9GY+cLsUuvYrTSALoyHR7ZsilDzGIgBVWxToCG9rtu9jZDnhwrPEZCOOfId5UpJdvuMqQ93ojHC1AO1a4lq5dDdeo1hmiSNut1QgEYx1HgyMTtk7nCzVO/IQGLGrrULcnBqVXcV+Za7NgwzFY5JhK6rMeVurdE0F905YwjLGikMqU6NejEs/+yWCbONFKLHasSWOE+yKNAQVc8cRNQMRNKAirJAF8cz11c52j0BkXS+JKLn7rk7d0y99rDbZ8ZwG+qsQ2WJEEaEFUiAJGlayRMAuWDIsUWnbKiw689e11ybu1+itkuLKrrzurlhju8zhF9VlGrQJLq32mdxHih+dxV6xUzgRCeXmf5YAp0jCWgCrz3HXOsB2dFZqlP0hVXmxet8eoRucPWdgcwdxUBKts+Zuqh2c04Q7SFqEaCi85nKT2VD43F8y8z7ehOoS+e8LbqJMgx8CAOgVJi4i4U772xqQtdJSCZK01ZoTRMBCPVGGbXJ7Jru+rNOpB5TY4lFgnXJ9OSjCjJ/E0C6ZZh6rkPPLaLDVyJGRBsV+ZYh7EEZXdHABvNk8TeBqDJzWkWxniNlhXS+EtlLFUqd6/ZJGcE2bVodf2HghEVVy6+qBVKJUi/NZWaaJ+F5FRdy5q7x3JJjeWTHmzdv3rx583aqzT/sePPmzZs3b95OtXk3VsUqoGHJrComVUwJPyoCIP0WJLNF1h2E5GyZc/3w7xxkwwT6OKKgZJIOSVQk7Mz6aSVZivTyuwaqRW2epdJxmECfhlIhO4E5eAaodpE6l88ChMoEUPrxzNTzwMliSAyIugu3Uq1tYHzKQiyVJg1dfR242+j6EiRJjVX76VbLoKsxhVurA32Q0VgRKqF0ex5aMZORgboTaGHsXbjo6gAiKpO8UlNFlI4F1XYbcAdQS2ROXSBVlskWC0DeTKxJ2D3XcC7h65xEPRALwzXwM0jbTCCb2/OVE1ia+pE4DzdJi/pIytUFciBh4p2uGadLZ/ZERGQ6dcTPNCnPR0uKx9SYKXVgCTGvqSAMd0kQMymhm0/TmfnscFJ2qZxvO72qrztvyLzn94wrrt0zbqzAqs4qNzNdx+gjJg10rp9VZeYlfMV08c3pU1ZlOScaDehK4X0bLrDRsbsBzp0z/ZdgvOgeHI5GtkwNRGpLrka1R0Oj/7SztWHLkoBPd20EF3eDHhatII0qu7UBiuRUsQ5UMlJqUAWmTRxjumrqSjNsjoFutUm6pdvFjSV1UazWi5Q1T0j2FREZHuPebdElRVI/kx07d2sDGjc1aDklWI+4ZnZbLqlvu2e0cjiPrP6ZUi2vwVVGcizXbkdid/dnJgwKMNdc4tpcE1OVJNlGU/B81HyiK0mtudSVCa3rC/d/RUtGRJP1SUIGmVfBE3Q5cl0KqRwe8fzqvufaUnkNLd1Ca/xwvtANDE0q/iYo93UQUzEZKuhc28qSOrgW50pZD2vdj639fWORYNWttcJd/grmkR1v3rx58+bN26k2j+xU7KYRbvY9/rJP765oXQxiYJ/eSTrDrrCE7IDUR9Qjws4mUqqjdZDBSGokcZi7jVyF7WXYyfGJnzuHOnY4Gz2lNhyb3RCVP8cjs6MfImfM8cQhJhutWqn9kzlUlnUoNwnP2CmzndkS4fXiQmUbIVRbGUZLkiAQlFyp2BJFmWOHHFiiNvqn5UidZ/Yu4trYiVFJGghSo+3IzHWEpzaA8FANOVMq027TBnQCqrU17KqZB8kcX1Z6Du2WBuTG1PUV8+iEVJ2l8jPGS4uZctdWx25qBvXiKiFYxIk/cwPVqpljmINMRGQeg+gLNHED6tAzED6PVW6kBPOTqFQDu0CIV0sKgrmIyDKblc7brIGoTv6v2g1OF2Z8hmjLBiDIV93lVGwvnDUoR69vkKcwYt+UQ3xFFNET7zMQqC2ZO3d9FEdEfbBrFyI9aIvKS7cA6sGRXGJetdABo6nrq9kchGQgB/M5UDaF0rUw52ogix4dGWSIhNBMEd4ZRU5kJyiAwHC3rZAyEu8pXdComzHNkWsqiDW6QBSBKICpS7e3jTYrxeMGw8kRlm9lOWwRKQoixObeciH8gmM1qlauL9VwY6A/kQr7D9FHDZyoHZjzE5Fbpq6vQswfAi6UxEjVjZQvGDBAWYpKCLba9xNFyHFCEvET3GuJunZUpzRIrXSsfVWke6cOXFEJDlaRHc5mEpSdJIgKXiAiZAnOZbK1Rnas5EIclt9zTDNX1o6zJYOXkchS4LmtH+tbrr+eLDZgoFJv3UdWgJ9tsurS5b7TFkbP7THGIzvevHnz5s2bt1Nt/mHHmzdv3rx583aq7Za6sT7xiU/IT//0T8ujjz4qly9flo9+9KPyXd/1Xfb7oijk3e9+t3z4wx+Wo6Mjec1rXiM/93M/Jy972ctsmcViIe94xzvkP/yH/yCz2Uy+7du+TX7+539eblMJDZ+rBUGwBo4T5dKqfleslHUKzCSCAgpdGpizlqqkodB8oCsihyslzZwLKbK+FJDE4CZJAG/nSwdrLrMypLjAd+2Wed9U6rgdEIjnC3MeaogwMWBnqIiVIfFh8zocm7LTuYNzn9kHsRV6NZ2CrgPqOyjYWZCoMF/opklSM+1ezJ176HhgPpsgCeNW37i6mAC10XEESAszw93UADGbCRsnY9Umkk7pDoOrb7Z0rom4DrVqvLeaIpZYrhSpmagQ49WFe6gG9944ca6UQxA1k8S4lNpAiSlxozU/yOVLUNGiKBM1o8DNlaIGt0VOBVVT9uK5XVvmL/y5N4qIyP6VZ0VE5MrnP2HeH1wXEZGB0kXJmfiQbrcYJES4hY5Hyt0Kt1obKwpbO6ZeiFKdfXaI+uG833jJ1O/r7nSKxBtbm+a8LbgvmDwWLpBQMR/pmqLbJsMrvUINlYQ1g1o53S9U7Y7hQtEuijog/9HRNZzH1CW1AQqOUDsaGjfYmfNGKyYBubfXdS7EGVwpnDcbcNExCCFV876GZLFU6yZnNLfaVuq+T0kGN/OmiWCGJKHquFLFtqrvpswcCWbb0MXK4MYWEWnCJU11aGqyFIWby3Q3sDa8L6m7s5g7V2eCtSbISK43c63X6KJtykXDZMtYT6hQXofLSnGPrfuGY8cxzZXLh9pAvIeZNDa0ZFk37tQlY1LYNKX+lRnThkq+bDXYmPiTysdS1mYTEYmk4rayJGm6YXWSS9YLmlFWd2adq6tcB5Lww5ILja9wr+LaNau/o5MPgxwPlyaT5lqlZ1WDKsGZQRac07FyocZMgEoCtX3VSs9lFxzL2N/YNa4+JsL9SnZLkZ3JZCKvfOUr5YMf/ODa79/3vvfJ+9//fvngBz8on/70p2Vvb0++4zu+Q0YqwuH++++Xj370o/LQQw/JJz/5SRmPx/KGN7zBpiLw5s2bN2/evH1t2y1Fdu677z6577771n5XFIV84AMfkHe9613ypje9SUREPvKRj8i5c+fkV37lV+QHfuAH5Pj4WH7hF35BfvmXf1m+/du/XURE/t2/+3dy++23y2/8xm/IX/krf2XtuReLhSwWbhc1HJrdfBBodUcdBmhrVXpZfa+NpDGGF3KnosMrsdvATm8BJdBUXZtP+FTV5S57CSJtoYifFDatAcloYIfHUMxk4XbiJOSyH1pAfbotg0h02243uAThk8enQGYG84EtM4HKcg1ITH/OMGCEzrddu49BzOQujTvRAuefjY/dtbE7ZU6YdtOcr43zRQ13Xu7ac+yqIxCehwOzW93YcttBkljJpJwj5LredO0miZX5vqqcOy0symFgrhzunHpN1GHkHr73B6aeh/tm3jVqIHlC+VkihUQw/w1z5ODzgAhP4nbiC8SlLpGPirm8um1HZk2PP2fKQg17CuJre8sQ1s+fPWPLDgb7pu7Hpiz5jinyE+WK+BsiFxbRoCV26QGI2ccz11lHI3PcS8+ba77yxZdERGR3d9udD8iDJZByB46daa5yOEmNO2NLJRYRR1DWStf1uvlsOmMuOC6BEb53fT88NqrC04m5L8/0DUrTbG6a06o44BlInDnuyxZyLo0nbny40x7jfLtQuKYa+nTuNnF5BmTY7s5BrLbrgGs+Q5q5RoyHh+Y9jmnX+rZsZEOkgcjMmcvM9HcrcyT+mIR0GyKNL1S7a0Qhbdg3EI7JMfrDzb3BoWkf8/uRqF9vYrxaisyMm2uGnHiUHGgjR5pWuubCRwXuxAZ+6POV5R0EKE2G/GdJ6tbG+RTfMZSfxxC9UYq/DBApgCYVFokBulIiPlPZ28pgmzL2B0at5TbvFdZ/hqCLNlzbqiuXkSKNwRD9sogO0Slce6FyLGZFObcWj8mJ4il5hqiiyHyjV102qiA7OuzdIjkV8nJYIXNri056bqzHH39crly5Ivfee6/9rNFoyOtf/3r51Kc+JSIijz76qKRpWipz4cIFefnLX27LrLP3vOc9srGxYf/dfvvtf3oN8ebNmzdv3rzdUnvePuxcuXJFRETOnTtX+vzcuXP2uytXrki9Xpct7ErXlVln73znO+X4+Nj+e+qpp77KtffmzZs3b968PV/sea+zU42rL4pibaz9H6dMo9Gw5FVtYRgqzQNVB57XXQDv18GP5WSO/KYGl4qUzmvgwASJKoOK/oApQ5gUxGTAjUvomWiYlNoj1OShfgfJkrOZc92RZEvSGMmMVktGQYuE/omoL5aAvFWCSaqLjgDRNyNDHB6OzEGTqSMqNgF1txpUZsU5oGKryawkojbqTNyIZIdIUtiOnWtqPDGfdUC2dO+N2mpv0xF1qYczmw5ExBGBm+LaNJ+Y7yxUi/4loZw6PiJOD2WJV7oAenAHRmPX99ePzd+X91EWk21rG6q+LdemJdVw4W4hnL1M4C5KHKG6CMw8WqToo4V5bXbcHDnYf9y0G1U/e/5i6bxDuK5EnOZSijnRwjworGvCuShCQPtZRh0b6DeBAHs8dmP6wm3jVnnNy+4WEZHz51cTlmYktsONNR+bdlItWXFZZQ4CPRVzI6vRwftAKf4yVygmXUHlVxRpd5zLp0WlY9yDLQQUzOHyCJUy8d65TdQPQQFws46VFk8jorIvXGZoywzu16Zak+g6LQokoYUbJ7dkVNd+atvEqN/wyLiQ6FJpbzjXJPtvBv2qhBpfdo6rtQfuCupKpctyf4iINHBNKjEz8TFf+xvOLXZ4BJfu2Fyb9/QcyWnbKlkwFaSp0LsEWXYK91NdkYTpVqEKNNfVKFxdl0m+pU4ZScjLzM0RuqKtu4ZK56AgFFrrpiCh1nxHsq1TR1YaR0I3ULmNebDyCyPWRWULl91apnTlOyo/s97qdPydsGtYDC0yjJv+vWNia+uthKsuD1d/U+majSsEZeeyWiUf0z1GV2pJD8gSqK2wEOpHhrW+OoV/TgBB+Wa2t2fk16sIzbVr1yzas7e3J0mSyNHR0Q3LePPmzZs3b96+tu15i+zcddddsre3Jw8//LD8+T//50VEJEkSeeSRR+Sf/tN/KiIir3rVq6RWq8nDDz8s3/3d3y0iIpcvX5bf+73fk/e9731/7GuGYehULtd8z51OEVSftnWKeZLO8Jb5ioQKmypkNAL5lk+zdnelCFsMXUfo8hyEvazgDsehAF2EYTO8lGGf8xkIeyqXEUmRDYRpfoYAAIvFSURBVBATExCKJ0BX5rlDLfobCA1FPQs8ZYc1N32COndtBg0Ihmb3xlxR21tuh+fyE5nXwb6pZ6OGHYTqzimQgRi7izRH34BPOFehrZubmyIicnxs2sAw8B7qr/tebOixeduEEvNs7HbiKVR1G8irswCB1IXVOlJfQlVpIFhNKsDitd90u/ZrQHmevm76qgeF6hCkxk7P7TKjpqlzivqmQhImCbuOUB3XzPjXMS5NhIq3dS4jEDyTpRmfLz3+hyIiMj42bZur8GeqtfZ7mJcMKCdJVkmHc8wWzGGG6TNFJPvXn3e5jL7p6wwh+dJtZkNTR06zSKEKnNUpdv0LICRNoF5TJSPQDQ1iF4c9nAfzlEq9auNHeYYoQp4qthUolUojZvMadXsG7Ykxx2sMPa+pUPFaB9cm4mDO3FH5vhp2V23ez6BATXSVu2xTT+R1K0ASbSI3mNOJdhUF6tdsmzJ1zEHe7mGoUBDccyTokwjMXXaycLnRqNZOEr8NbVarI9eaGsYwxfkpRF4oyGB729yHwyOQboEuI/WW1JRyPNGFmkVugcTOzT1zpPKSMRy/VWdgBqUt1FpLiQnk/sotAo81XRGpSf4nqkA0iOrqsZr3lihNIKKS7iksB2qbl6K6zrlZuGI4H9uSa1VoflZBf2y4ug49Z8VyBrZQbd+U0Uh+VkF0XO5CC0mp85ZDz50yc5lorP8mYhTaV4WU2VdKGjDQh+81+oV1aH2E0Ird0oed8XgsX/ziF+37xx9/XD772c/K9va2XLp0Se6//3558MEH5e6775a7775bHnzwQWm32/K93/u9IiKysbEhb33rW+XHfuzHZGdnR7a3t+Ud73iHvOIVr7DRWd68efPmzZu3r227pQ87v/3bvy1/+S//Zfv+7W9/u4iIvOUtb5Ff/MVflB//8R+X2Wwmb3vb26yo4Mc+9jHp9Zxv95//838ucRzLd3/3d1tRwV/8xV8shbN58+bNmzdv3r527ZY+7HzLt3xLiXBVtSAI5IEHHpAHHnjghmWazab87M/+rPzsz/7s/3V9wsC5n0r14merNcRxWvG2TDbjOyKqJY4X/iZhi+6HpSoUMZEkIF6S0Kju2lZk1hjJFx3kCaIeoMV605XNAWfOQVCcQXeEUjy5Rskn5sN+17hJtjfMedp199C5NYL2DiBpunomIAIGI+fyIRRJ4cceqrW3a9wF07mDlG3b4G4L4ApI0LZm3bnH5tDVoFughgSD1MvJl85NMAGRugVdoeHAaJMEKhEoiaQLECpJul1CH4R6HCIisxk0eegmwTiFgHwbatyJAj9+YNwNNXz5YtnE+V1f9UIkWMQcQ3dKgjHWeiN5MinVL4XOzmLoXBMzui9mgOQz4xZwSreu/RstaJtEZe0QqzKuKH+L1JSZzuDGRf1e+0KjKPyKFzp15N0zxu1EdeQ6XRWqj6jhs4S7LRAzTxMwq6ejQ1u23iSB3lyT496E67BQ7suIxGRcLILrbw7NqNnMucciErIzKsqaPuqCAF8EG67CcCWRJBuinzstReKHT49cywlUyklGHk+cvlSnARIn5lELc4Su41y5met1ugHNtTrdLbQN94Fyi2fChLWYB0wIivnVUIR/m0gULj5LIFcLIYmkVrcHC8cCLrrF3NWTyuixVR02r1P0ywZUzc15cR6Sr1GvbmfTtAmqyyIik5HhbI7GZk5MZ1RLdpZbva++aLP6OoVzoXH5dUko6cYzdaipJLQ2oMV6eLD2VlT2TRlNd9C6OyThrv440NXF9brsxiIRueI745UVH8AmZKW7jfSKuKyArc8XFiRUU+urXG8R516iO6yq1Fx2Y4G0XEmIWmLbU0fLJhituvh0f97wh3mtPW8Jyt68efPmzZs3b18Ne94SlG+FBRLa3ap+yC5WiFAMWy0TwkRECvs0zKduhgMSbdFpLLiFIBGMH7uLZ1Sipdporbzjm03dzmk6K4dlRiAht9rc4SoUADtQEsAi1KXTgZqxelrmDoL5mMD/lLoOT8dM2umaaw3G2A2z/up8E+zwEHkuLZAbByPTlrEKkW/WGHLeQr2ASIBoqFWhswXIrLgmFaqZk2es1HFJgKQS73xiCLCZymFFldUoLIfcxjWzq0zc9k2WIFKPRuZaI+S/yhjiunBE6h466wj1+uJlEp9Nfc9vuHqeTZjnyxyTYXfEFE4qPZlFylLUi7vqTKnD5iAQR0BiznSgXksUUM2R2O76pWRUjR0v3MWHU1N2Cwjc619qhDrv3DPE5J1ze679JPwCgeM1cxXKbse1oBo20DTICegd7mhgEJE50Mk6COW1XRNyHStyeB1K4SQDM49WG8rZczX+LappAxlhriCazpFEpeAJiNS1yKArgVLDprwDt5hUUqaCur7pMqA9ec78VNiJo++Xqu8bTQZK4N7A/dRomXsmih2JnczhJRWosdYUkBeIFJmd8fiUWmgTTSkpvANxsrmhSMw2Y3D1aZdrbTSY4BqmbII5GDeAio5d2X7D1C/GvTIeYmyhTF2ruZx4G1umzAboDcuFufdGI4eUUVWZJOMwhkRAkwRddz6ipwVzVhHtihkAonJj2QARqJcTkbHuANVXFdTfDTfGcl1YNUnC/B3Rivn42yLOlnxeJl+LqPXXehjKisr6SYCIDn/WnORKOU+XOU9Y+ozSBk5GRZ2XRGT7IQnvOjwf57E4TIUUrX+XK0rUX8k8suPNmzdv3rx5O9XmH3a8efPmzZs3b6favBtLWRgEa5WXLWxnv6ILiC6qNcfQNZUToidUqSFAQonQqgAkulCqkxkSKUZwwVAXh8y1ROmiLAA3E9akl6mANo1C/qUBTQqrPlkAmoXrJlRtIulyDnyXUOWmIl+Ss7cP+YskB1kWyqSF9rcAku80Ddx+ODSuiRTulqZKxpksTf/tH5vzpbmBktuA7rPcJVpMFnT5mPMeHY3QD6bPNrquvpDVsfUjmVVrc9BXxJoHcJ0RSu83HPR9DNXaLjr58BDuIWjTbDjep9RIYkXbBok55vGrph+OR85dcv3QfLbbq6HecBfADZeppIwpxn2Oz5IlSb7ONUGXLN1WW3Bb9DegrKvI4Snm7gKqyPwqgSssVuTDl501LoTXvPQuERG5eM6QkDtIbtrfcUk+A2hOcf7XQJKczZS7LaAejmnvrKJ4S5eqiEgKAn0HbpwAfT6bmGM3G2dtWZKYrWor5nkNc7HQCSYxF0jMnc+g30TvsytpiZRjkGWbmBvdtiPdMhAhgQspwhmOR1PUyd0jRQrlbCSJbXd4b+Nz5W3KQdqutakHQ9cSSP06qTHWrAbcw1MkwJ3MjHI2XYsiTleI5PVm29SPBHBTD6hJh1TQhqYX3HDzhXMLLuAGbLUqCSChAxTXlbsNP010g3e6ILNjnKZzN/48bx3nyUKsEX1309VALp+grwrM4R60yWIlsEQvi030SnXwFGuDoiIEOYnecDPjRyKlCnPg+tNq0YQk1FewBq2ObKVzQH8g8VmTjnEP8zNSJKx2kCrrAm5I/C3/9ujZbJ1K/A0rSPheJQTzPE7wuEw+L809W5YEZSm9rpxcHbMiJaSPuEmQkzaP7Hjz5s2bN2/eTrV5ZEdbqAlV+nGzKL2471ZDcIn2OH4ZCbp82na7AoZEpyBFFkAZ6uoRtKgxXI+7FDx324d2tSOpUXWUeVlAqKVKZqiGG0/9C5B6uVuh8mWmYCCGRtaZ3wttGahw8uOJ2TFdG5rzpQFRAew6UrcVbQOlunxoyJwJdmYN7K6mqSPzhmLOt7dhdsgJdqKCkPkw0giUeX362nVzTeyqNrArTFKHgvW7UMftmvMGQIOaPQXBAIFqot0NEL2509fqsPWOIaQyVHb7NhNyfXTlqoiI7F+9ZssOR0O8mvo8e2z67gqG4kDlkdofm3F45tj033YXkgMN5LpRclJEGBcVZVVNaswxdiS6kjOYctrm7oRN7PramBObffN6AUq42z0Xer0FMvA2XgUoRqtjEJ8wcP3KeyFHuG8OvWSdn6gOqHAO1GsBhCDF+8GRI+Y3QDLtIFSeCEoNJNTl0s0nEl7t7ho7UF67phTJOboJ7s8WEL057pmZCqsO0NdEsph7qtl20ggkRw/HAxFxJGSxCKwbJ6eQDUKylTBAnqrUzZEUiNPGtkmRw/xElmwfu3k6hYwCUao5CNWzsUEmO2pMm31DLp+DSM37J645BCYDEry0KIOp92iE9rccCnRw3aBeJMd3QMSvoX6xCvSo4b4uMB7sDko4dDuuDvWYhHzmhkMuwIUjPDcgI9DjeOSUUQCCpPqeucaWVjEfaCqVuTO9QJsXK1mCNcEqWKj8aRzfMKj8ntjIcU1mJomZ90pFLVlWw9E5n5hHsVAIVFEJlOE1qRJehin5wsCcAOdnXVRRG6aPV0tYpoKy8mSE5WNILA7UuPPi9nd0Jby8xFBm4+S5mEd2vHnz5s2bN2+n2jyyoywIQ+tPXPusWKXmFMHK50HBTMt56ZW7hFQ9hS5xlRQ7CYZKplMlbFYgIzJ2JhHQmxYE2RoqrDbHkz2fYJeF2dkxYjbQj+T4M1mAU4PvWgg9r9X1DsJcmzsIIjGhyjbbapmrnt02u7UheAjXE4qDOVRlBo4FESeiDHPu3pSvmWJVTx2aPtmEj71ZAyqmOn9G/37P9E0Pse19tKmucnm1+gZx6ADZ4a49UAKRFBV0AnRmN0kELVPif+TCMHPz5rYJtT5/8UWmnmqXORhcFhGR8ZEhOB0jke3V62aXfXjsEINjEGWY7brVYNiu6cNU9RWzZzPzOMOVtZ+f+Y7aQKcagBFbCO0+03c78d1tw7PhTr6GUGuCfpyDIiIbWwYFCJkZGvM9WTJ7tRpTogHg39iMxoovQz4Cc3UVzKKO3GszJf4oKfPylMUFuRMNS3wMSC1YgTMIRy7X3PHM+g1E1Ga5B0rVaDh0YQxRSuZlmiNv2mTicq0JznPtqhl3yj0QiWjUXD2HkC647bZNc0l8niTm88nYiSrWMJYutxiEN5dmzhWJCtOflAUyF+jHMRDTWkOFVQfk9yDkGj8XmiNBCYulDf81dRgfD0ydlFhfB0mwiAJRwLANtCVQqBq5Pjt907YM6B/XnmW2msPLRicTBVPSGAGQuxmENylpwDGMVDh5jDUgrpl6zcGtI1dtqSQS8pBojXnvODCroefMxxWEuCcoGMgCmrND3o0NU78xSsvXzCI9q6HnQqkR3DacKVYEUPOHKAVBEIioP+6dUAmP8jjLwyEyQ36O1q2wXJ1yH5VyrdkOqMq6hNUS4jwuHtnx5s2bN2/evHnzDzvevHnz5s2bt9Nt3o1VssBCeDdLG+9QszLEKOKgSgcxqnOLVoYUCRmmCLhxSkJh6twjTZAvG7UykSwBiVeruhaVsMIawtSpXKkJoCRKF4BUmTsmBWk60sTnCmGNXoFaXeXRgaJrlsNltKAyrXkfK0iZyryOYAciMOo7mjqXD0OO2/iugCulgPtuQ+X7uh0E4p0d40rq9gz8vkBdrl7et2UzECgJw85BNo102D/g2zZItr0+iN9QW23WXZ4dRL1KitBb5kFqIFS23dt17YfLrNM3JOZLd5vzvnhujjk6uu7aD3JoDjiXbpgcBMA4dPA7w7LnUKBm3jPtlK3H5fxGLNPtmjb2+y7fWaNuXHxz1Isq0Fu9TfO9Ip+SODkGUZ3uq04HireZg9QtYR7h2SSARsrVNZ1RVRrulhlddCCxqzD1FuYAcxeFcD8EloSs5h7cFQHkCEK84sWq0JoyzDUHVw3unxDk6enUyR4wfxRJ7YuZ6atMqWx30G90/wVU6Ib7Sd/LbagBRwg2mIJAHCZmLKbHR7Zsv2/m4RKu0gzk3hnJ/Con0wRurDaI1DFcR82GmRfDQ+ce6/YN4TlqmjG07kAd0kzyKu7TBCThAQIVtBurBnJ4G+NfbzD3lHltqpB2Qd69AfK6tSA1QZffUgU8LJA3rbBuIvP5bKJcXTG7Am4nKh3jntGBI2Fk+iLAZ1T4jtGvWgSfbry8oFsdLp+CSsJuPQkqPAgXtLIaKm7Dx4ti7avIqovLkpi5rqo2sd3MDedk0eEC1OToSh4q3gck4ZdcXvQkVcLK+fOhf0Wrsi7BiovKfIoTom388UFblQuRZ8ufY3Isj+x48+bNmzdv3k61eWRHWyCrJGQRRTIrIyfrSGjhDULlLDEyVsgOERiG6WKnm4vb4bSA7DTrJI2B1IzcQZkKpyYqw6y8FCDkk3moBa64Cw4o6GbOQxSk5jbDEqB+3NEQ8cjVro0bjh7QlDZQlg2EjEspZBJkbZIGp8i8DjLqZuSIr52u2VXubG+KiMiZ7Q4+ByqgnuoZasusyhnQjwYym995l+tXjkeGHQ+PseH14nblrHqGrOkk6k1Vmxjub5MLU0AOyEmqVOBslmO8XyQgiYP42t08Z8t2e2d4lIiIzBMKMJq2jkYOBWPG8QAiaIvF6s6pC8Rga9OEyhN5ZLjywYFDvx6/9qyIiFy87TYRETl3uxEMtDt8tcNdpGxnNTM6d6hangE7ZeRsYs6oolCChiBgO+E580JxzoYbJka5y2Rq+qaFuREzVLhE/ORulXUxRpIvM5CbE3OOmM+6HaINEKtU/Uri7wSCkIOBGZd2T0kudAwC0+1DIA+IK+f91WvuXm43TRuIbA1BgG4G5nzjiSsbRwi5Rk6o1qYJH1+O1u2GiTyaNjz9xDPmekBZZlPX/inWhF5rA9dB2L5GaQvz2Xxi2jsamnrGILync018xZqDYIsxhAHDBlBLFU7fhYxAgGP2Qdhut4HWKnilAf2FNpRC58h63lQBCVlCQciyxABF//LAIaQ1IJqE+ygmaLOWqzlS5AzLZk5EQhpEQ9RNUhH2s4gb5qQOFc8roeLFGvRiRew2rP5O6RhxIPkr2dPLIoDqI0tQt+dbK8tSJRmXkZjVks7W4jFEp1w8fqWwDj3Ha772TCvmkR1v3rx58+bN26k2/7DjzZs3b968eTvV5t1Y2gIF1ZWQsTJM5mBxmxBEnQPQH2BBdjBdC8yzIiISA35tIRdUCvXSJHIwaQQ9GcLuAbRdatDz6KhLJ0seV4Ez+f3C6bewCVZt1OqZIP9Nz+X06UAHI8N3JMBqHYeUGi+AzFtwY3VbhIRdu4mgzmfQAWoDZgcM21PqqHtnjX4LlWmjWllvI1VKz8cDQ+IcgtRLRV2SBmuRq28TUqwpdIYWCciSqkydSrGAumPogpCUqF2Is4QaLOY8dZA6qSBLXRwRpz1B9WcSaAlVZzOn+DubGPieZFgSHpkHraHyiPU2zPypw6XmtD/cbU4y8DJnvjNzrQNo/YTKzfqSV7ykdL45CK+svyZzc0JlGdSGQRrutKGAu3T9GoAkTNfeEn1HN6G5Blyv0H1xZHjTDz2V56wOnytJzDO4s3p9MwZUMxYRabeNKypnDjj0DfN85UrrhvdGivsGciuygCuxEascbgvT/oPDganlGBpCsbuP6IJmHiarEguS+bFyTdXoxgLhnXnD6l1qPblrIzZAUuZ7wrg04XYjuVlEJMcaMRwZd9P1q0bzaWfbEOgT5W48GqEfd8uk06Um0lo9JdPeAYjTdN/MZo7EvYn5GcMlP0vMsTMoK+8E2jdpjuv0Tb12zxgy/8EAGkWK7EoyeChUEIbSc+jWhqgBIm5GgrIx5gLLQhfoUIeaOv2jBdaPBNSBkh5ORv0bdoj9xrzVGjAV7ZzA5ruCa2mpXKhF2Y1j3cKq3daLQzdY5ZqFIqbzuyWoB3Rb2ftsnb+J12RVqL+zhuph3VjkP6/6n9b4rahpV6wUCarfVbxapcLPzYvlkR1v3rx58+bN2+k2j+woqwbGVa1KEluTIN0iOpGUdxASkZSrCMrYObhsuHzKdigI0RoSy+o8BiHjUV0hEcwFZJU5sdu24XvuvNwxEsnZaJudYmF3ZA5dyBieyV0c81IpRKvZKE8l5vkKkQer03GkYxJUux0gBEA2NjcNgbOlsqlnIC0yF9DxwKA2JKPqcYqIOAAFAO/XKtMyp5VpwxLnMztIZnjOVZsWQH1qyMYcQmW3DnZsoAiQTaA+DM9PQfSeTqk+6giQRKXGUMyeAzloQn35zFlHUN7aNgRlqs4SIUmBLmh0hRxDIhxEDrQ67BhIEQnAy3mZkL6z6zKE19Hu6dj0OVWNGxhrnU19gvNuqdB1cwz6Q2eKRt83QSjNM1O/2dQhEJQq4AaX8gltzNOFyqbNkO0Y45wvGYKPbN0qoplIQwRV4JjyD2kZvTN1B+rHTOkMU6dcwcIhRgGyk08Rpn+Ned/UGnH+tgumTVA4Zm4tztNCzZERUR4gT3/0pCGO332nUeaux+5+yqwsQQv15lxB9nd1L1PmgTmyipzZ1M1rr+/kFLa2DBLDDO40tlHErQ0J5iODDTJkdo9VpEML6uecCww9ZxT5dO7GNK5B5sDw6KUOUvP5s2Z+Hh9dtWWXJO9jDmYZkLjEIYWNRlllm2tkiCCGulLDDphvD+sd7+kliMozJXtglbexxpL4y9dwHbBBqMSqGkMlXaG/nHsutDss101EZRZnvSvYhSIdW28Ez0MCtT2ZOsyCNKtokshzREiq3g+cUURsvsjKx9UTiIhILmV0Sf8Gr/vsZuaRHW/evHnz5s3bqTb/sOPNmzdv3rx5O9Xm3VjKjMzOKmmqKmdQEXUsPTESbtRJ60VEiqyiQyAOhoyhi0OyZKoOZrLAqouGPMrlQpG7cOomlEqpKJsAao4UTL7MQMyDInEOsu2SmLpScU5TwvhUczYXbyoF3UYLED9dJlRJrUMtVrnQFoBrraguoO4loN+DA6fiShcP3QtM3HfujHHvxHUHP5NAPRgYBeL9a9dERGQKAt9xoDoWehs9ELF5Xu3qsroXILNmICou4VILM6VenJX1KwiTB8CxIwU/t9tQFWZiUZCCqQGj4fdlQpcUqgL42SrIRkpnCBNyMTcugHnixpBGsu7B/n7pmi980QtERCSuuzYtcG2r4gttlmJJjR83Tm0oJSdQWWby0Ml4ulKXHrSTaiAxR5iDsXIlMGMhh4w89BlIokcD50ppt5DwFf6q0djUOwiNW6ymxpQaUQVUd+nijXAP6mCDGtyVEVzJdK21OubzydC5h44OBqb9IN2O6apT99ES5wmh5UR19AyE+n7X3U9UP55M4TIMy+tKqNxto9EA7YYbEPfnZGbqcPnyFVt2e8cQfoczc6a41in1S73ufhLacCeTDEwNGSaEFRFJ4MqjaztCX49GSGas3Pb0ejbgrqUmUwvJeDv9bVs2xSJI/aIdBDrkTParXGsTEtuhqxSRhK+m/wTBEAy2oFuHyTPryuXDxMQk+tITF4cUGlNr4xxudrTNKmaTxK01YGxmTSSopasH82KZOIJ6BpoBXUhU7eariFs3SH9gX9v3yocWMChiHfVCZC3xucrkWH9oRcuq4loKVova9lfJyKVrV+2mZOTqr+1688iON2/evHnz5u1Um0d2lAVBoEjHN37aXMVo1p8Lf5Teh2oHwR1ShvDhDvIT5Znb2afTAa6FXSHCM6MayWmKzIxdVgpYgUS9+QwKtZrcxXBnq0xrbMmcWepJP0b4bw87zzreNxXz00ZeIrTeKnLiVZPSeiCxIlLWEnZJ2Gy3XLhut7tRaidDRQ+PTL+Mrh3YsiTDtoEybUJJlkqgzZYidQKtCZj3CGhKkru+58jPpuazOlCPsIF+VeHUiwQ7GezaW+0+rmnq22gqSeqCKBrQhTmIxBxTtQeZTkEgRT2vXjG79NHIEGBvu3BRtR+k84oKaV3txElA39oxu+jNzU3Uk2rGjiQ5PB6qXnCE5KPrBjHr9xxicrBv0LQLF+80bWCIPPNHqS1lCMmFNGWIMEj3KpQ7XxrUhDmsmNOKObFmSm2XqMwUu/cASsycn5z/IiIRiK/NNnKsEaUD0TtV5yX0GEJddwl0ttUwY5tG7ryLMdoJdV0SqpsKVVriu90Nw7rNgF4cQDIhVXm5CNNev2r6lbvfJoj+C4X+zVPz3XCIOgCBilpbeOtQoMQqr0O1mzIQc55P9asNkWd3AA1SqBKDCzIGUmS818w9PlFh7+OJ6fsz3U0REckxJ4KY8gJunhI1pjzBGEgR79v51KFqDJxgXrMlldRrrp6WkA2F6E7brDFLIDF63geoB9dASmwwr1ShJBISkKqXS+ZRo8QIlYWVMSScKt4gIReU7VDITp5VlMixtsXa4QD1avcrTjTFxoqra5fRubAS0l1CoMI1ddfNWIOkOHHocsh5UapDRcLFNUR9Wg5hr1ZTF7W5wZ4bsOORHW/evHnz5s3b6Tb/sOPNmzdv3rx5O9Xm3VgrRghvDbS2vmhFSoCsZcKGOB/1d5SScAH3QiOHxgtInmniVEeLpSFiWrVNctoA3dGtIyISZeY8SQL9D2B+NTDs5joZJf+uEJ8DkvICV5YaOltbmyIi0mlTL8Phh0PAyiMkBKQ+UA9k3I0Np79C/YY6rknF0iWg2+HEwcQDJACkCnAHOiuXLxudjeORg8kJZ2+CdLy5Yc7balEJ2cHabajL0n01GDFRoC0ijdj0AfKpSiAGsl4AutYIbbNBMjjOt2/qTbXlVse1v7e5jXabem3hPUmEmVKF7kCLiDoo6RxaIlA+znJHlmw0zfhTg4cEWCrKmvaZudBBckeSdydwMVAvR8TptFzfH4iIyJf+6MsiInLbGTOmceg0WfpwGaZwpdVCJiM1/boJhV7zGRST4UJYChPNOhdKCh2dBvRVIrh6KQa9veFcnXTNFTozqTgNlGTp+rMGF0ceImloB/cG3Dg2CaSIJBi7XKiubepbQx+yrSIiAVyl7Zq5VgvzYaGqtA+l4C24sfKQLk4kAM4Htizv86fhpt2AcvIYLs/ZSCcANq8T9FmL7iYsNX0oF4uIDEZmbbiMMY3h6j67izlZV3pYXMpAhJ3iHg9S5YqPqZVk3g+hoFyHG6tW69qyCdxME7iF+1tmTlAXKJkpBWkonNdiMz9J7qaez3jo3NfkAsdYT3n+UJNu4V5agEDe7sI1D0VtNUWs64yUA7pJqApcV2tuo56i/XChUSXZEpXdee3aYt050PGxBHBXlqrKlg2RU8dHreEkHdvkowyu4XVkjd2AAlxyj7Gi+doia3VtbOXDcpm1Pqab6OysiNdVXGqrsj1eZ8ebN2/evHnz5k3EIzslK4fJBWs+ByHqZgKQPM4qVjJ0HE+8sUJ28NSbMawUu4JMERUt2RRbvSnUUGvYVPa7iszbMTu4KDK7IRsqDSXgBCGq5nwIFcUOPLKKtVAHVsRKu5PheXFMrhCIZsPUowCBmggHd1dztcUlQTm3oZiCeppGDY4cWnMEZGdwbD5jGGwDIbKtmhud7U2zY97E+S0hmeiVUjxmOP7BNROCfYxrKr63bPXMjnsHqAXDq7nxWcydgi5DwusIS+5h1gyRcypTcbBURyV5lerYJJbrzRB3tOOpQUhS9FkNJHGNxBQgb0YhiXsGXeh13M6e6tXsEypRX0OY/v41p0xLgu7TV8xnXZB6++iXUKGULnkbVWYNoZQ5nlptN0+Hw2N8ZsaH6FehttfcpQfItWalATCGM0U6Jpl1DNTizM6muTaJ2UpygUhWA6HLzYYZU8oJNFquTRYhqwNxhSr2BBP2UIWeX0cofAv1rJFJqe7lGoi9RB7aPTNPSb4eDIa27PYZkxOOkgUM1+e60u46xIRK38uUSspQQweaoYV1hwMjFzADOtmNc/QL8qmpwiQkU3WZCsIWORaRJtobUUYBPykp7uXulkP0xlh/EvT1CKTuPvphhBB8EZE2JTewxpzZ2UHzzXnbSmX9mPm4IjPH4pgIp0OKiCITRWvUKHsARFshcAuMc8o8UkU5cIAorohIz8qPEOVDHq2E67+ShmBZjCHVmwuggoHONUdkh6chuqgWKMv5p8J3xdOgQRKXW4ttuVl4TaH+L/9VfatCXsqfVHJ7lQpXYJrS2W1YejVJZSWfnD7kuQE7Htnx5s2bN2/evJ1u8w873rx58+bNm7dTbd6NpS0IFFlMY2NrIDl92BpYj0VtUjXCiNophmvQVbGA+myiNDSoixECvgtBkuWFZgsHqYZQTK5VyMZM9qd1cdIFoGmSLAG3U2G0FmvoHxA33FljEAl1W+jSasG9Qq0bQuFL5fJKQYq8ehUupCETTaIdCn+tAVa/86JJjpmBjHoIleVCwc+ErY+ODazfptIpThyHDgImf5Bq0Ls7dPW4enZ7XZQ1n43GQ9TfnD9dOLIgE3LOEtOWEVw1DZDD+33ndiDReTYBmXNpxiUC/B4oLSZq20xGBvKfo+/pupgpvZEZ1IqZfHFrx7j1FrFzoS2gJ3IMtyC1dDj+vI6I0wE6u2Ha1u00S5/3eo50zbmVob51qgTDxaSThloiMnRC2NwkcW6MTrOGPgHUP4aGCN14yiVJRW6qHzMhKInZy4W7nyYTc1y9xT6v4RxwXSh3YyTQ+GEZ3J9MQpoqnaWrI/PZRmjaPQUR+sW3n7dlKAe9gAu1hnt7ifv0cOzcQ2f3TMLLzY659u62mT90azFYQETk+Ni0bzY3YxnaBJHUuHJ9dQB9qjmVvtGWO6wX0s3/Jfo1p3YQXfLKFT8YmDlMEngONwtVvPtK4bzZNfMxgfs3I6G6hX4s3H3fAiG9QFumIOa3MW6hKsu5tX9o5nS9UR5bEZfol2tjA+rYIYMClLuRyYeXljAPTS6sH1pBumNpAOa8YWTKUg8qSRQlgWsgXTVWi4fz1o1TAa0o65nCOhiqCAo3zus13YKyH8ucd913UnYlVdWQqy4vHQiw6saqvMvX+Jgqojnr1Xdu9BrepOzNzSM73rx58+bNm7dTbR7Z+WPYjYlQa1hYlqhcDp3TYXKZDVcEQRXv7U5VFCE5NLuBelwmSc/mbmdPvmjB8EfWDju8ulImJlFzid2qAP0hEiGKLJcwzxN3KcXqTmSeMdeQuWojKqNBtcI9V/OvTebEAeFvib7KRJMkUT3shoiibe0ASVEKrQeHCFPHzrM9NXXqtE3ZviJ1khy+wO6a41RX5EMqELdb5ji7Y5pBDiBwKABVZfubZkfaBnHzGsi9Tw+v2bKdvjm+jxD5eh2hx8LttS1q86VF2E1FQKuSidnFa7SKIcb9LRNGTFJwlmhUBaqtuNbuGVP2eB8hzn1H/BwNzbV6QHQ2Nw3qlwmI6oormAA96SG/0XzGMP1pqR0ielfN8HRzbFRz1w6t+i37GGG22K1HhUYpET59lorBRExNW62ysIgEliRszltvAqXDrnusZA+6UDQn9FQDCX88wVxXu9YCKsvTKfoXpN7hsUNrNjZIOkYdEO5ex43bV/cnUamz5w3C08G9srNpXlOVc6vArv8YdSfiFCypNu0G6hh130f+sHpAFMN8H8UaMYE6MJEo3MvLzJWZIocXQ/fnIPeyLo1jh9adP29QrvEIZNuC+a9M2XPnztiyNp8ZJTxQlzHRVYWYTLBAUQWZ47K1tWXLMLiACKxTfOdfOigEufAwf6h4zL6pKWXmGlDEBiQHwtDUkzkSi0LlRmOoOVGpvBJ6ru7lqOBiDkQTYxwoArkNECDCE65HePChrDX78Y3RkaJCOi5Krox1iMuNwsHLv4nOJbKunhW8x6JMWmWcfeyRHW/evHnz5s2bN/+w482bN2/evHk73ebdWNoCuXnQfjXJmfviJodA+RLvcwV9Z3BfUTGXr5r4OJsDMoeicQwdFwulqvpOoFvBSzRA8muCYKx4hdbnleBxF/xMiQAfd9rO5TMFNJ2AUBgC+tU6FkWFmp0COmdyw+lcqfjC/UUyZMZjABtvbDj4udmEFoslzZnzDZikMncuv81t48bpIFkidVGWaJxOHkkXnFXoRX8slu58C7h/khRQPKDpdse4ElotR9AlJM0xrSPx5+5Z049Z5pRpayBtLiF9Ozw0Lq45tV6azp1DlJ06Tfv7xm1HTZkNBdU30FcNuOIO9815E6VJM4N2zA4UjUm+HYbXcR3n8traMPXc3uqW+mMM18XWplKkBkH5ymWTqJTj1YDW0XTqNGTuvONO036M9wJ16vecIjO1h5i4cI6+ikCAXyZuMpMwWoebgTopraYZp8HxwJbtbpp2z0AgraEtBdS156mbp1TZphvYupsxByOVEJPTcx+6UF3cp+OZczM3oTze7W+KiMj1/X2cL0RZN06BmHG9eP42EREZgcRPV6deR+w9gHt5DNd2D67UKVyJIk61OxESf80EO4R760zi1p64bfozYd+jf4dj55oawq1EHSmSZjO49agELOKCHjaghzU4wpyjy1zpIYXo8yRlMIRpL0ni04lrk9NroZsJrqWG+3mjNk6tRhdsWb9M96d1V5NInNF9g/eRK0vCeIQ1tgd3Ld1YgSKHz+fUQ8Icy6l8LOX3IhLm1JnCb05EN65axOnaCquvOEYl3+XcCKwmz01+s+g6u8Hn+jdn5a+i8r50EpahG6/qzlIHVD1c1t2oTuiyj65pxap5ZMebN2/evHnzdqrNIzvaCh3MtkrCKqTyJFl9iq2cS0Rc4hbucNRTMXcvIXY2JLmGaodDheM0LYcc89gsdDunZUYF5iUujXrj81qsnm1D7oJAgA07KGOunanQzjrrxSYVJO650zG8l7vqNnb0DCGNVLjmEsiVzeuFLpnOzC47TRypz+6qgXoQBeBObxtkXBGRFGUmYxAzsWsfg8S8uenQqq3GBupg2tZsI0+XIoezB0aDAaoJoiJwuqy2ZpzQD9OxOcbueANXdjYdo16mLQ3kAQoxV6Lc7d56fZBiQbZuADHq9QxC0e9v2LJFgZD+pw9xTZIm3bUvXbrdtA39+uxTz4iIyME+wv9V+zf75rhDqAMfjxEqDHRgNHVIxOiJJ1AHc96Ld1wSEafMTFVbEaeCPAHaEyJcOVQh96mtBxEzKVkgrp4khxJpzHOqbEOhOnDn5a49s7IPUGiGVMJirMLU0b4YaADDqUnGni3cPA2RUyubmfN1geJopPAICNPeBYPW8F7JcC8SvRIRmYNsu9k391EdaEKMvloGrj+vXX3WfAYiMRGEXg/tzt29fBbKzLtH5t44BAmdQRETFf7e7ZmyDI13khB6uw71dyAYTSDCe01zTL/vEM0F7uvdHUNEnk0Qgo7vx0pGoYv1g3cCEaLYEnTVhChYXzMGXE+pki2i8lLZfGaYB7j4UpH4KaPBfHw5ScY4tlC5wRgaT7S61eIaTsTYzZER/ibYZ0P7CYLkrk1hQdQQX1L4XAWOBBVkh2u6C0UXZWXyclEZy0Ct91WV4sKiLatICo8rKjCQxWHUT6MTfObv6arkwA2J1Nabsjr3nquEskd2vHnz5s2bN2+n2vzDjjdv3rx58+btVJt3YynL89ySsMqx+3nps+ImbiwL29kEnnQpIaleKeV9RXWSejh1R3wkyXgJvRFClClgbmpCiCgyNDD/GfQrSGBMVeJG6smgehJzKkRQPF46OD+CG4RJ9OhSo5qvaR+xWNOGGVwKYcj2u3aSiJyD6FlHEsFudxOncNOS/UZPRISkicOB0YVJFg76bsF1kALyDpHkcA9qtEvloqEKblE39U6Gc5zPwc7UHKpF1OAx0DrJs8lUJffEHKErjYn76nXA+JFzJc3hvmrBddYEoTKFCm2h3DlDlL2+b1w+oyPzurNlzpso8mmAa7CPukiIGioi7XBoXAfPPm3cV08+bQjFLZLGtY4FXJvNlhkfSPTIwTGTkrqyGxvmWmd2z5fawiL9HUc+jmK6sUxdOm24iVSCSboSgoIkftbJlJ3Pnb5SB0khp3DfkHSewO1AV6qISALX0ZjjjPPR/dLvOVdnDk0jJlitYVzGSKYpSvH5hZeMa6Z5Ge6b1ipB+eBggPOZxvSgqn35ulEhHo7dWE7gthwj6IDJeBMqXSuy/T7m7kbXtJP3YgIXakcpXVMi50WXzPF/9CTcefgiVyRZusxJuqX7WffRfEryOvSfQOKt0Y3d3rRll5hAzGW5u2vuy2MkCG033Ty1ZP0Ycw/q0NTHCtXyTDJ8BDcOCfqRuo9qMZMXQ1eImjxLKMmn7oQMHKDvlARl0gMicesoEzsHS3PPUfE9xj0TqDU3p+sM4896B/TmaHV96KlV1ZC1urp1Y1VdU2u8jVbJn2Tuld8u/XvH37e8dIx9KTE8yr+XVupHVknOhf2MdQhKZfW1eVxeqW+5LIIYqj7uG5hHdrx58+bNmzdvp9o8sqOsKAKHUOjwOvv0yifdmxCU7YNyGckhQlGoEMe8oqDJEFqt0MmHdau2zLBv7g4yh+zwcZh5qRg6OZsQFXJFG4nZedQRypsh/4sEREXcjiRAWGWBnR13cZlqd8xwapSxIfP2qVs/V/OJnq9AqfJZ5Rinrss+Yog4X9UGV+q49va2CW2dT81OOWGIvEqklaMsw+qF4aRqfKZJOc9Tmpu6UEm21Pfori4IxTWbI8gcM1AqvjOoC8fYIi2ASCygzNxUIbNjhNhOgKLVamUpg3bbkTC5i5wBFRiODPJwdOgQiAnQvkN8twvS9lYPyE5p52jOd3xkkIdWk6HYBoHptR35tImdfANKtUfIU0TEZGNr15ZdYt4fHh6hTWaHnyuUkvdCBoQobpRzZdVqDq3hHBhBrfjcniGtk1ib6dsT82gDatPMf0TkUecwG4JAOxoOS31DAv0A9RcRyZGXbntjU0RE6qh/oFFahG7PZ6bvu1C4LoqBOe9yNaR3jHnTJjoVsw4OVaWCLsmrRAymIPxqiQQSxZe4HykZkOdAYl11ZQZ0l2rNJOzW644cTRRxPkMfgYjvCPnuXibiwrDxTteMQYj3TdVXMyCWdahYU1F7ihD8uUJgiXB02pSEaKGtq9AGb1mqiie4r3JFkiXaTUQnT6mKDZTRndWiRzn6vogp8wHEsO4QXd6qc157WQltV2ukFRmu5L3SJP5SaLno9b38u2Le8HU9mTcvEb7LngwHszDEX5+Wv40oQo/GOo40T289JGu+DcqoD+trI9DXkZE9QdmbN2/evHnz5s0jOyUrpLDIS65QAJtrqoLwBCsIjxK/s0+8RGAqT8vintIZtkwxKM1ZyeBDZ1h5hPMyijxcI22YZ8wRAyRmDs6OCoNttREi24NvHbsu8nEkU77mnCJdZmtiw8HV+Xhthjn3sGsjP2Nw7DgWI2TWZl9QTJH1TlWGbCIGkQ3PBxemQQE9h2xMETZ75Vkj1rZMiRQx/NvtJLa3TP1a5B/gK3JiRFyUKrkbEpEn1SzVxdTDfLYAinYA/gVRtpbatXJXSQ5Ahgs1wDEaHbs6DEamDZsQ+NvYMNwX7nSvXx/YskPmI7KiahwLh8DMwYu5uGt2wVvIhRVih348dmM6npoxIxdkAmmAdpPompZRMK+TiRnbBZCHc3t7IuJ87yIiR8i8nSTMem3qdzx0SEkD2+s6UMV2b1NERFKgX4XKUn0NKNICu8EZ8iY1WkDXVKjwZE5xTsofmM/jiPPfFpV+fwttgZwA2sb7dLxwhRkRHNXMfGxgG9+vu3xXnC3MEF4DotnF5v+Ftzv0K0IuvDmuQf4MYYfutpNcINpLzsqciA5QtlihC0RTD44MQvLUNcM/Oov5NZ0pHtrSzMOjmuHHtZBbrq8kLOrg2cwxlnVyVtDYCfg4IiIdiDSmWJeIN7ZxXg1UENw8ADdvG+KZyQLjHqj1iTwe5jCLKVrqTsg8X1lKVAXyFESIlnoRxyUqInohvsgVoEvOT4Q5lkVcywX9oJA9fMe1lmKNCaDJXGNGPMENMptrs79DgfsEDbBlqt4IzgOL6KjfJeYEtL8tth8Y6p2rsmWrUFYrKBCO4XeBJeK542+QS9IhO/pa5EB5zo43b968efPmzZt/2PHmzZs3b968nW7zbixlRZ6pUHGlqGnzp1QJymvIzFbpsfzdupB29xmuU1QUMcURNWdgfFlSMN1siszrcpeU6xkAdo4CRXwmPMoyQYVInTmIniRGKvLSVUf3g4hIBKg8tGC9eZ2AfDhTuWyWgLwXgGqbJF+i3nU1Kxn+zRxOCVw/E7h39qHQKyJSg5Iuwz+ZlynNEGavyMdzEl/hDmk1jDun23PE1xHyHPGoFnJWbSF3V6iI5LavwxnqglBh5uVS7qEErokgAFE5ynTzS9Dv2TPGbUV32AIhs7OhuU6z4VwUDZBPO3A77exsiojIsXIhhptmLOfIDTWCKvJ0TpefqydOIw24W8Ygc567aFxToYLouZQkJF/CjdVpG9fF8dC55i4/87SIiPTgvqCacaoUhGPEFudW6duM5WiBeRq4cZrMDtB+5GMqCG+b1024LEVEDtAXXYwhQ+bDiK4pF/7ehFuB84nq0kO4Kp+8sm/L3rFnXFAbfTNevT7uGeWSDgD6L0D43Yf7bQr33d13nLFljyERMAdBf3vTtOHyFbgWd5wbi27F4cR8d+l2cx7OmVApSFNyYobzjkCghxdLUhUqX4eraDYz90GrA5exWsPSOe5lur8qLqRMRRDQlWTXNBC1e322RblHct7nZmy34G7ubpi2DY6u2rKUS+D9Y90lyr3BgARKQ3AtoGs7y1aDF7jGUn3ZppxS4flkPBdoG9WVC+t+cvdnDYRpvkZwN1s9AOWiCqt5rtapItthCKofrLxbCTW/CRWD83SVIME+0r85staCtdTkshUVyoc5M+rFj9wfa07AeHrvxvLmzZs3b968eXt+IzsPPPCAvPvd7y59du7cOblyxQihFUUh7373u+XDH/6wHB0dyWte8xr5uZ/7OXnZy172J7pelmX2CT9TgmkkF7sw8gq6chNzD9RrnmLzMpoSg8BW09mU+QdD0BkGyZxY6qmWQlsZQ9lBinVh265eRB6syBR2K2G8uoNgviyGWda5o1c7xggxqww9H43MTp7Ijhb4arebpfqRhCqskybL4e8DhPky+zMFDRs1N4XtzosCbBBT3Ngwu8JC7ZxazKaOXXa2RKh8orI0o15sfwsoBcmNeeJ2wUTYiDwtcZ5DIAmxyk8VcGeHXd/BoTlPjmN7Kvy5SYQIIfLcQfY7ECRU6FpYI3HYvH/qGZNVejl3iEkLfZ9zsqRmZ9/DkB4cO2SDgpZECJYY4wKv1w8cWvOiu42YoEVVlpzb5tpzJX5YYLd2xx13mPdYhno9h8AUCIWeA3HiWBwOQNjuqgzpQE8WvBYE4sIJyqrs7Emal9rWRJgyw+wLNf7Xrhn0YG/X5IiaQcrgiSuG1PvFay6kP4rNefbOmX6YIq9Wf2PHlgmB4E0Q0v7sVXOeZ5Cf7OUvumDLtnCPzRFcwMz1WwiZHw/dOIUpUQvT/uExcq61QBp2keLSB/K0i5xV1xoUkzT35/7BoS27AWI7ufULENYTRXi28gaY572OIWQzoELvx62YHNa7JVCkBcjxHWRDFxGZAa2THMjR3Fxna8f0UaHW3snYrA3MtWcR0sCtjSnqk2J9L+waCYK+Qmsow8GQ8JAoiIXgVfDKkuKU+AqLEEPRAyUmGtqwdJC4Lbq+BrWpEJEtArMWxAAKasm869Ca9aj/OnSFOatsvWyouJTe6/Os2o2RnSpipM9RRYSKKtyt+6Uoz6evZM97ZOdlL3uZXL582f577LHH7Hfve9/75P3vf7988IMflE9/+tOyt7cn3/Ed3yGj0egmZ/TmzZs3b968fS3Z8/5hJ45j2dvbs//OnDE+26Io5AMf+IC8613vkje96U3y8pe/XD7ykY/IdDqVX/mVX7nFtfbmzZs3b968PV/see3GEhH5whe+IBcuXJBGoyGvec1r5MEHH5QXvOAF8vjjj8uVK1fk3nvvtWUbjYa8/vWvl0996lPyAz/wAzc852KxkMXCKZAOQZ7MstwqqmZKHfdGbixCqdrtElThxyqap3UCbD6Rco6QdOnqllktG34HAjXhU4VrklhWI1nY5toqaz+Y75jDydgC7owYyrQNhX2TFE0dD7phZio3FomNc8D3JEBSQ0erIrehvLuzbSB+6mJMcQ7dnzyOn9TRthTnz8WNE7Vuds+eExGRJjRAErhCdG6slNopyD00ODIwfKfp3EK9DQPJc3xGgwHqwFxBTpPEKX5CgygB2Rrqy6ESEQkBY+cgJna75n0Ct1hd5XKag/g5hduCZMkUsHsQu/ZH2LtMj8x5SMbUpGuSrC0xHcrXkHqSRabH3dgIhOrdM8ZF8+WnjYuBJF8R55J8Gjm3zpyl62dYuq6IyAvueqGpH+6xGvooVu5bunZTzEuqSlPhmOq7IiL1fUNSLwro6sCF1kADwtD5b9tQ5F2AmD7Avd+D8jHHRkRkNAaBFrm7eL8zH1ustF6oXvwUcph1kRvrzjudS5LT+vIVU9+rA+MWu3Js2hh+yZHtu7hmqwGCfsvUq9XCnIzcmA7mUD1Hn8GbaRWJ6d4xfWEm0JmeOf8u5sZwZsbi6rHLide6ZtxDt0HTKgmgIF5z98jRwNw/SwQktKBinOF+GKnAhJiq0lh1eD+O4QLr99WY4l6uJ1DSzsxak4BAvqVcXtTT4tadCt2R9tvbNYXjS8GZsstfRKRGJeoErk2Sj0neV9QB5mXi/U4XbWDdWK7v6R6KcW3yk62Hfw35uBroUipSKVOsaOasupisW8geUzmZiLhckCsHm5d1lagWXSeOXFT63hKh12kHgehdrUvp2nAZ5l+ZTiLyPEd2XvOa18gv/dIvyf/4H/9D/tW/+ldy5coVed3rXicHBweWt3Pu3LnSMZrTcyN7z3veIxsbG/bf7bff/qfWBm/evHnz5s3brbXnNbJz33332b9f8YpXyD333CMvfOEL5SMf+Yi89rWvFZFVJKUoipXPqvbOd75T3v72t9v3w+FQbr/9dkNQxo5vqZAIIjsZcvdQZZnZi0v5OmykYFn50tWoFBBYeiVSkCwUmZP5abCbnEKZ14YvqsdVNrvAjn4Zmt1QHSHJeqPDLMoNoBRUao7qyCuj0AX2xAIEyCVD8VVLSCSuYwfPVyIeendNcvQSKBXJzNyRNeru2jZvGEjCcwGhFjvxbluhIMyAjjEk2Zj5pY4PB7Yscy41m6YuW1vmfDpMd4awXBITiew1gBjlaq/AXWSMtoUgkLcbhhDaULmciOBQ2ZroXQBpgNnU7a75XQMkYZIaKSQ7W7j5FAEp6SM3GPNoEQUTEUmBcnWa3BUh3xF20uOpUlAeAVVBBubBIcirIA83VZbqgwMThj2dgEA+xfgDKWp33U68DimD/UNzzMaGeT8eO8LzDrKkM7/bAugS88bFNdf3LYTfBwHPa+rZQ59pRe5NzBvmt2pAmZf3vd4lMuP4fLODejdQxtSp23ZzOgLhmxnskxnRH3fn16GqPIV8wISIRqeGz904TYHu7vbMteMR1YENqtLruL7f3jZ9dfWq2eQxkpnTU6NqY6wfY9wbWwhpnyYGxZmlrr6ff3pgzhebOux0QQTP3GZyCuJ5C0rmTfBxU6xhqWrTcmnmGJW3GVY9HJnxah85xGgTRGwiORnXxsSMSVOtEV0oRTPnmEsj7toSxSTO4wPLNQbCrZZlIi02WAMdaTERNZ8KqqHzA5Dk7W+QXp+LVulaVMMPLSF4NQR7BeHRtqLWXyYoB+uIxJZsXDm2dN6KsnEVvVmD5lTrF+QrRRzyRKL6TZGdMlplS+Srv6TFaQw973Q68opXvEK+8IUvyB5k6KsozrVr11bQnqo1Gg3p9/ulf968efPmzZu302kn6mFnsVjI5z//eTl//rzcddddsre3Jw8//LD9PkkSeeSRR+R1r3vdLaylN2/evHnz5u35ZM9rN9Y73vEO+c7v/E65dOmSXLt2TX7qp35KhsOhvOUtb5EgCOT++++XBx98UO6++265++675cEHH5R2uy3f+73f+ye6XpZnNqmY1tkhSTbLq26sMnHZGCBEuENICLSKmBovJcFqWSZFZ4qgvIALYjgysPBixgSTBi+mwrC+FqE/yg+k0JJpxUptF2TBGOTQIKdbDJ8rdVy2hZ69COfvKBcSE4DSnTWHC2gxN22ZjJ0uiIWOrS4ECIV1Kr7aotIE0ZP13d7cNF+gz4fDA1t2d9d814DmydV9A80PxtAoUaRGQscxLhbD5XHtqtMZCQHn0hVRh7uE/VpXpEanA2H6qgf3QKMJ3ZHUwfkSVAjZcIEtQPiejx3xudnCLUpYHO6wJfF45W7dwHikCZPPms/nSmcnSaFsjblM9d1kymSpbj4FcM102xgXuD7pChoeub6iWnUPKKnVb8J+apGoBJO5cTfUQUg+PjDjdDw4smXOYCyZ8HUJ12wfY6gh+hGSOTLf6daO6ftj9OeZc26cdrfMeEzgrosjuqaQPFS5xzLcexMkZp1MzRzmnO42nHvo3La55oU9Q8zuIumlkpeSdofaPmYejTD+d108KyIiNeUYnkLTh3OPiVSnqFM/cGh0F1pBVzGvxnO6180xiXJjUim7DbclFY6zYiAiIkPlxuT6dBV6SjW4YTLlHjp3xrT3kERlzMvFoqyWLCIyQ7/RfdUGmfl4aNpNV6iIyNamUaSOsA5lqen7BG6zsTiXZ5sJRuEyo1sjVy5putFJkmYeWbrOMxVsQAoDpahiS0WwPAFbli4tmziayS0ZFJIqfS3cW1bTDDpgUUAdH0W0zVY1aFbM3gN55eM1x9rPqM9WepH1KsQVMvNN3UXleuZrPnZOwaBUpnxklWyMvrdzbrU/nitB+Xn9sPP000/L93zP98j+/r6cOXNGXvva18pv/dZvWTGyH//xH5fZbCZve9vbrKjgxz72Men1ere45t68efPmzZu354s9rx92HnrooZt+HwSBPPDAA/LAAw98Va63zJYWvSkpKNvcWOXXoqKAbOqEp/SAT9I3UMJU52EIJndDc5WfZgHlVOalopptDbujqPTkXCbmkSTGYxmCLuJ27USRqPSZY7cxmTg0IEVf1GpmZxdhhx+ptiVALpYg/jLc+xCKrFOF7DC8O0TOLoZ2d7ogN8eKhEa1VY6LRYVwLqW620NY8XQ8K7XxLHb6odo5Zej7BUJGrz5t1IY1mbfdjtF+8z4UKEkDIZso8UqqF/eAcBANTOem3bFq0wAkXsocNMHqTFNzvdncjROJ462O6Zv5ggrf5vuJUtLd2jREzQRE8gnyZ2nCdwoEjzmNZjwfdqithlsSFimRS/PZBhAdnr/RcW3a3D6LeuH8mFcRCMU6R9ThkdmVMzz96uVrOMaNTwI0qgPy6dHcHNOGQu9YhTTbzU1iPqvjmiRC12NFJEeVGSLNmUQl4IZqf7ePa+EefOIZgzzxdmdIuohID7ASEYQ+kL2aInFbRV6Exl/cNWV6QHrqKtpgE7m1Do9Mvca4fxpowGLi1ohGbK65t2tQL6oY5wiVHo6ObVl2cRPt5259F3OnN3fzf4FJRjQ5jEw/Z+Lm5xaQ1gnWrARh4HUQ9Tudji07mzHYwsyNFGHZtYjkYdcmKm6HQGmZRyvHuKvUhXZutdogW08GIlIO3hCEPfPebaHPl8hPt1TAa4K+pqJ5VpEG0ewPAg4O3Wd4OUOm1QJtZUPwHRD3gGrTGjmpho/b06yWqaI/61SR3Xl4jwWlsoWsojYOySpfu8xPrlx75Syr3+U3K7RCWmY9V0nM9nynIfTcmzdv3rx58+bt/9b8w443b968efPm7VTb89qN9Wdtee4Uf0uIYoWgRddKsVY9Mlj7atUuS+rABn4jgZjuq7lSd44AUXdBbqRQBDVqMq3miXqSZB2SdBxRS8XB7nRFUSumBsx3NjPugjRxOHFMVwQuFUct9INrdY5+iywx27ynjk+hdHtsf8K91u0beLwO1WYmXBQRmS4GaIPpB8Ljm5vb5vyqTQMQZo8OD9BeU5ZJQxdzB5MT+ZxAS4YupYZyN6VpWf8iwHmO4fpZLh1RsVs3boDh0LgMlgsmITVti5ULsQZyaAsuySH0VpYJtWRW9Vva6KMMEHsYmzpsKNXZCO1dwk22wPlEJyGFCyIC8Xc8RRLShCRstSRAtybJzDFUF27BnVlXy0cd7hqSL2UONV/MHfaliMjGliHXkgh6eDwQEZEzZ3dtmTn1ruCuOUYCWGocSeTGfQe6QkVm2lQDK7gN11+/51SMOc7Lwoz7aAS3KMiji4Xb/8W49w4tQdnMS7rqehuu7/tbZj5SSZnaNpEKCpjDXf3MdTNPOZe3N029O+oeCZEk9vqRIf7SHcj5HilV5DNnSLyHexH15thqNyZJwWfgQjsEIXRvy8yvwwN3j2xhnFvo8xbWoFbb6eFwrlJVPFkyyWVUqouISBrSbW/Wu8mIisRYO5S78Xho3MqbW0wwS1I/3FmKmF9gzdneNWVr0ArL1f1JeoHV/eJ6AlenTlRMt1I2NX2fpea+D/M17iHqquF8gU2SzHF3581B0s9JUwChmgmBI3U/pUX5N2ata6qoupAqbi39vU0AuqpBhNqt/F3cQPG4hJHcoA7uvbOg8luo2NGyagxeqf6eriFdZ96N5c2bN2/evHnz5pEdbXmeWaJZ+YG1rKRZ1XAsCTYzN0pQfhK151VkKiIDVHNdZua1rqWOEe6cFCSxIg8OwkxDVVFujAIQ/gLsxAG6yGyhcjlRiRK7fqr2zrDrCNRzcLsHhVqGaeOYTJVhDqOUKApec4uOuLJJYr7b2jC74Qg73GvXTOjp8ZEj/jYQGt2GYmynBYQD/TifOxSM9eMuM11AoRkk3lztABgim2QM0zZj0VK7a+YYI0pD0nHIXaKSEeCOcTE19el1uGNEOxqOqLm0Yd7myw5Ducfm2JrKd7WxyRBmIHwtjD/AilrLhSBfu2p2wzYMOCdy5hAIJsE6PjZlcszTRg8h3jp/GsN0c6KJuHYDKIMmPkMNegric4DdKsP1r1x/ypa9eBG7dSpmAznoKKXfDLt/5gl74opp250XL4qIyN5ZJyNwJGZ8xxOgk1AJvusuIzyaZW7ec54fD037223Tf4dH5vxNNf5t5qUCirLRxZgCven2HMJBaQSSzRme3my6eznB/ZegH4nScBrVFFrDvGk5yOC1ZpksX1N9X28AnQUyypBrIpr9rpt7XJY6bTOBxs0x6gIELldSFkABz583Iq2dDsnmtogs5mOcl4EZYamtx2q9o4g6gUbm0SPK0I6VyvjcrAFpYsaZKslHC4a46wAS5M1iWD3GdKoCCIhCE5zhOkwJg0It4kSyA6hC25U8pTSICs/nbwBudJsTi1IcKnglx72xHA/MB1hzagjYSCM3n8TmYax6EdYgGzdCSDTqf4MwdWe6bCUofOXaq94EhpM7VWR+r34c8aHLkbVa63VEaRyFY/OVz3Qf38w8suPNmzdv3rx5O9XmH3a8efPmzZs3b6favBtLWyFruVIE4iLgsFSFXatUaQ8i/FgmNS+Vlgj1FjKchwq1Uey0OZaAs4naWvcA4XEFE9dAACRZOIh4TQO/TsdKnKIJlwSShC5RF9ahCZKfiEgDcC6JdEzKOFNqq6MxIGO4h5iwkghoTbkoCPnSPXQEtw71VxaKoM36ZUu6B0y963WojyqPXwECaLNOsiwI2oD3JXH1bcB11oALYDga84K2TBtQf9QNS/VaAs5mP4u4ce10QJKFW2MIrZtF7oiqhF1DJP4kMZ26S3vnL9iyC6r2zgjRI8EmGv7UU1dt2avXDPF1Z5O6MzxGuZvgB0nYF5jcTShpZ6pNccO0PwfJdJrALQoNlJ0dN6bpsuzGWAKiJ7k71L5etDNAYt0uCK9aiZxzbHPrjIi4hJVMAKq1qBK0aQdlrsBdMB6ZvgtyPU9JOs3QDyCN4jZaTJXWy8R8GEHrZXMDcyOE5k3N3adtqBiTbE+drUQpZ4+GAxERufuSIWIv4ephItxey43T9UPz2Zj3AsYgQeDAYub0lZotM06tFrVtQPSfEeZX5Fu8zqD/RJdvF3o4DVWHDsnQlDTH1KA2lYjIfAbtIawxJB/zxh8rfa0+tINizN0Q62hiVYjFGe6R6cSQ96njFNegD1RS2gW5HBpBDbi6m11HTJ9jXCNchPPfah+puRdQ7R5u7AjfMaBE1HwqoFsTxGWV8cAuTApPoOsMfRTCvep0y9zaQ8Vg/m4wECVYozcjFY0fugXLLqE1pGX9bem8/F3LSi1Yr9+D+50JO1d+E/V5b6Shs1oftjO3GUXpxirV2pQpPEHZmzdv3rx58+bNIzvagjBUxOLSN+b/Mk/ZPemuCf+mWdVlS2ZW52fYItWQgSoEKqcLdxlWuzMqv48jnXuFT+IkMSMMXMrKnSIiaYoQUeyKanWQ40Cs061YzEA+nYB0zCdyxdNjjqkGyJAMr3Y5s9y1Z2r3LCKSzMwOZ++c2cUXinA2RMgxCbBJbF7nNbOLm2Zu58gtQhehxlHDvI8RZq2J32nG3b9BKZbYHeydc+HPJAXvX0f+LWwrrl4x73Uf7SFnVYrd+kSgfA2yeDEZ27J1EBL/4A+/JCIit91miLQXL5jda6TC34+h6Ly5YUiXdew2xxPTDySqi4jsQkE3IHKCccpSh+hRkZdk2J1tswvOEV67UGXHCPsOZmauTKBM3QVRN1kObNkI7ewAGWiA6DvGznx87MrOcTzDtacgquo8Ss2YbTCvu1DqzZHDKFe9zzxSXaCHe+eMMvMc6IWW2x2CrH4dBG0KcDNv1bXLz9iy2wiRb6FeLaB2DeRiOjw8smVjIIW8H4nwHQ1c7rYhkCbew1QXfvIZg84tFfA6A6JDUIWEXxLTD65fs2UbTVNoBhSljfnOWUQ0S0Sk0dhEl5j5Q7mHIh+IiMjupiO8U22aiAYEkGX/0BF/44hBC1zMcB0gUXNNJM7KayFlNSIiHmpMI6yTRUZpCAQQdE3907mrAwnjTOs2XZh+6He3bRmmkkvnDPeOcF7Kdag8Wgz+wHkLK1OP+0Ev4WwD0OQICCnXvULn56oRuY/QH8i1mFBqQ5HDC3M+R1Cmh0CUFaUXm5drndqwRT8qiEuxisBUScIcr3WejECVEnHK9OQgayQmsNXlXCEStVJdRySvfFlqGb9alut7I/PIjjdv3rx58+btVJt/2PHmzZs3b968nWrzbixlQRBIaIm1irBWQfqs7oLlfCmVTKvTQ9cXX5n00p3XpmQrym6sqOZIgo0mNDIKEBUBfTL5mYYcmYQzIzkUFQWns6QSSqiTUCoTLwZwb9RrOhkn9CXSolS/VtcRVGvQJCGMG6MMdUsy5Zpqtg2UTJJgo1UmNR8cDmxZKqWS8En9EvKItdrw9pZxXzSgihqAqNoGAbbV0IRac+3l0rgQ4mg1GV+aQOEaLoQpIPAUBM0eicDi3GwzQtLo6q3tTdPWmdN6oaeIGjdNJA9twg3DJJoiIpvbOyhsXkiOn4AkfP6iIzN/8QtfQFn6Q0jGdNemxhG1PSK4aKg7M1HE3xgaOdOJafcc5NgZ+mGsNI4u3Wa0WHahZhzDPXIM9eFEaTwNBsYF0duE2w31bCpy7OE1o3uzfQZ9jUSbV66Ydvc3VcJSq/Fj6kXlZOrYHB45V+dT1wciIvLFZwyZ+3Yj+SMXzoDcfOBcPgUSv25vGvfqAgT4PhKPsh0iLsFmCHfOCC6lhep7QvJUJ79yZHSlxujzWKkNE+q3CWXhdm2DdHt04Nxj164Zd9oTz14xdcFcaYG4TFeTiMhiwYS95nxMCEpNqa0tN6dHx6avqddD/S6deDHgjchABJbB4sixQGlzbdwAVN2OcQ9bIrQ47a0aFq8cCUb7XXM/zNQ6SiVqm2wWa02ikprSXbfAmkAXVQP6RVmm73vT3oyDWtiTmGMDF7xBl2SEdS6kVlCwSklg4EmG8wRU68Z1isDNFdIXrJYO+1y527j2O2VirmHlauPAcplKguoSS7ji4XK/hYE6Ez+pusd4Obq+qqp07jfSuS21dlC5XvlKGa3bQxekd2N58+bNmzdv3rx5ZEdbIA4NCYPV58CgQlQmYauUYr6i1OmeoNeE/uErIi5WfVPl0wlJeEugjsoQdqA3s4nbiRf4jATXGgm5MZWf9Q6PBFeGAyIHD3IuZZGbGpkNUwYJtQ/lV9VHBQh/3NG3gVbUEbZe2g0KUS7kAkPfEAUoVCghc0vNsUuLsQPtQRW4q8JLa+grhvJOgX5sI49WpMjc1/bNbpi7uBlQCp1zhyy7OtRlh9itL9EW5hMTEUmAkA2hoFzHLv0syKKL1KELdRy3t7MpIiKH1w261O4acmhb5R7iJdh/S6Brm32zI88U+TYGGse8Sg2E7auNvbRbyI101pChByDQMo9WrnZWMcYhhqRBHcjT0WBgyoYOiaB6t+s/opUkvCvSPeblZMI5Z75LU8d4zwLmQkK4f2ZeOxYpUPcndtMHh6aPN7tmzhxADmE0dvPp8nVzzTEkDCYTM0eK7Q1cx92fQ1w7RR/3N4CUAEHYPbMjVYuBlB0dm349Ghzb79gXEyg8j/A6XZj74M7bL7pr415gzevoozH67I+uHtqy/ZG5x5ZQP94/Nv1wR9cgZ1OVE64NZGNwZOrVA4GYYds6fx7zmjEf1TZC+1O13DVRL8pb2N06leRLyyjQWSAZbUvuxatCtmKiKJxjmP9xvJqXzMp5QGoixM9aSVnXoqhmDCeYG4FdjxWRGNdc5kSyuO6b8QsbOoAEObHsPOcag/D6wLUpj3g8kGfkxiqwBukQ6gzh7RbQqUpAi0L1LehR/o0ph3RX0I+VMPLVEPGvFK5uSlbD3PnjuBr+7nJ2VU6y+pNoFa1X8k8qxrMNc/eh5968efPmzZs3b/5hx5s3b968efN2ys27sUpWWKVXrfha1d6pKkmuleZZR74SKaGFPK/lN9OFpmWBbfY8JLmES2UBCHSm1IaZULQOWDgGhrzAsTUFAdK10cL5mFivKAzkHYpz+ZBA2AOMX68z8aCbPg3Aww2rvGy+I/GZxFjTTiqSmtfFlDoTUDNVj+ATKAjTBUcNnToI0EnqSH0HIG1OoGfS6xt3EDVAxuOhLZst4RYDdE7XWqLUYTe3NkVEZHvX9NEErq4EOL5OGkmiYhOk3g0kiZyCfLpUxOcanBOpZSqDFA+4fF/pt/RBzCV8y66pAQqvqf1KF+6bOgaXyR31pGu0QRyFS2oMV9cISrgXzrgEm1aLBe1M4AKpwdXx9S+4y50X03QJ+L0Vc46Ya7dabj7NMabzFtWxTT+Mj934NOCSPAJxeo6EkwdH5vWV3+A0VM7uGZfcdSQLfeaamQfbIId/8ctOk2aBOdeCKyJLykkktbuNiTVb0NXZhBtnNDT17HYcUZUquCncgWO4Uo8OnLtpCxo2VFve3TbvZ1PTpsGBG/dDaOMwGWsUmnofDunqVQTdmG2B6wOujhrWgZoKeKBf5ABq5UfQG7IJa5tunCJGNiwwuIV5bSk9pDrKz+AWK3Bvd5rU11KXlrJ7hR7PDhS+2d8ibvzpBguoDr+kS9HN0wXGkIl/leavLZMueL+DmB+Za07R91rbqxYyASwCBixPGedVC1QQcw3nOlJeT3QCZKuJBU2zuAUldVAIAqWuX7Bz+GKFZ1SZyu+Q82aVk3Gaz+hWqh5DPStnRZWhvJIAdJ2OD69ZTfK5SiiuBvzomhaVObKqwbOO8HxjN5s2j+x48+bNmzdv3k61eWRHWSShzX8VhKvITrESBliUX82XKGteSZJzSpjqKbbyRMorRorURssrD9Ux6tluuF3bguHu9togYYI0G6nrNWOGnpvdYLbEiUFy1KHn3Z4htZI4a/tIPStTKHWxAJGW4dMgd9brLo8Q+yYDIZUKrSlzTy0cUZW7gC4UaYkGXbtmdutLheyEUkbKqKy6QJjtbOZCURlqmyFON44QBqtQtS2EfbOPukBZuAtkv4iIhNh5E8CaoQ1DkFD7lOpV15hA6dXm0UGXD49d+PMGrjkDQtTv7+C85n2r7dAFhq4TOWji9fHHH7dldqFazPxku7tGMfoQucEmKlx3e8vsnnsgVl6+YvqcYbFNRWZdQoG5DQXtIRSTW0BvNJmb99ZiZvqG4dBTFZ4ex+bvbGrmz3xukIhz50ys+BefeNaWPbdt2nk7wt+XyEcVAGW4eH7Tlh2iH8cgH9dxb0+A7Nyx5xCD2+64ZMqAqDs8dqHmIiItRSRPMHcvX7ksIiIztG04dGgV1aWJAm33DUo52zVj8sSzDgWaA044u4P6IPS6hknyAlVP3qkMT98AibsFlHE2dST2CSQQxrgXlrjOFuqSLN0aQXS7DiRngXstVltkkkQpDTHHGMYRgxDU+YgUMW8YUJou1pO6QnbCmOgK7w3zmhVEoF0liCYXILHziqlSA6d8RBCYz5qQ9MgTMyazqQsgYGg817eCYeRskw4gAYrKOe3ACv42aPIs6gxCfQjl6wbanyr0e0GZB+YNwzpaymFlg2Cw3tuQbn69jnRcPZbV1ZIoZbSnGtgdaiRmBVQBArdylEaXyqHypaPt+aonDtZ/LOV8fjczj+x48+bNmzdv3k61eWRHWRiFVlRQ83AKG9JXDsmjf1HnfbJITlZGV6oIj4jycxaV8+jdEJzWDHGkYCDRgVbTIRH1mLsUhJEyPw2QDe6+Tf2QcXuK+gHZqRHRidyuqAD6MR+Z46dD7IpbrkyrB55Ag6HxFAo032eaAwVUiVmjc4Sps29StXtptstoypWrhpfB0zEEW2SVz8Ld2xgoiM6UHccUQwNHC6GjOkM4QxrZlj6QHPZjninBOIBR7PNnkbWawnahEj9kJvcx+EykPh2AszFfuF0mffdHh4YTwQzczwJl2Tt7RpU152swfxZ4H/XIoWotZHIfQSiQaNDFswYxGigk4izC0xlWf568MXBixirnEgXnjsEFYV4tiqs1Ow4FIWg6g2jjPvqq03N5mWIIQzJf1OXrpm9e8bJXiIjI1f19W/bxJ54SEZFvfPnXiYjIds+M4RxoTb7pULVL583YHQ+REw1IBoUS+323JF5A+1tAT+dAjBi2XFOh0vvXzfhcuWrqtUQ4+WzuUMoUYzmAmOD2pplPm8iRNeoq4UUgL2eA+uTg6D39jBEO3Ki5/qSg5S7a2QZXK1qTVZoIIef0fMn1CZwwVZacJPIDR+C8tRVXbU60FMiDFdmLyBdyfcTPmE27BrSXyJlGCqMQwnsUZaUsB9bnuRJrJIJZ4LsQDdbyIVxrF5CjIBrA9UUL0y3BzSssV6eMLhWBu59IfnQrFg8qi8ui8qZe5LMBMaUgoSyV+CdkLiapucdsZniNFBFVs79DuIyN8NaIxw14N7aIbgFPVMF21oW0r+ThIrJT5hHp74LKtdeGp6/wgtaFwYOrlhfyXMwjO968efPmzZu3U23+YcebN2/evHnzdqrNu7GUhVGo3FeKhJVVXVGV9yocMK+4pNwxyC+VubL8mzlY6PoixCwiNiY0AimOrhMLE+s47RAh0fCLkLjWBVSr+LkSZFA+zcrwIMmI9VjlkQKpMZsTqkYuGkUSTJn3Ba6JjBB6g2Q+16Zuw7hSoiaPp4Jujvo7iL4OAu58auD3BqHvOgnaDlImFE8X3xIkv2O4SQqljlxrwM0Gd1YH19FEauY1IlGT5Ot+35BDmw13+xA6XoDceAQV212ErWtVZM6fKdyNbZBQc86HueurI4T0Xkcber1NERGZQfl3qUiYU4SGb7KZzLmjVJYjwO5UDiaBdmuri7a53Ejsxyb6eGbLImRaEYp7UGY+ZF8D8n/yGUPY3VDnTRYMH+7h/MYt1lDMV7qiGP57tA+yLcjM5yALICJSF6iBW/Kq6QAqMwehG9PtTeOuq8OFQMXvA7gJO23nFh0NjessgFov1ZE3kNNLuxQuw71KcjnvwUTJDSeYjwnWhAXuvSXa1FHh+VOMK5XIQ+SRKp7dR72dK4mKzGdbnI8ZrmfGZ//AqTgvMGZcYrpwAdF9G6icUwH6swa/4ybcuGyHiHP/NSv5rbiGqTgPS8zeAIk9g1vHrn/KJVKLKUuA9ZPewIpEhohIBGXjIKfyMcnI7toMQChQTyrQz0EKbvacEjuXSQZKRFRQZji5kiR3wSv4wAaJkIzr3HhWgR/rsg30wFws1JrbKUxfzeeYK5QVWDq3aG6JycyjVQkvV/SKGxOJK64ldd5KUdumXNEsqq40Rz4O9KH2zPqEwRqXla1nUKaKrAt3p58xV7+pNzOP7Hjz5s2bN2/eTrV5ZEdZIbklS2mRqSwjKlNFdrATV0+WRHL4GXc4dteuy9rzprgmQh4VsS7GU/8SaMqS9bKEQJXLCLuIOlAWIhlWIDFww50xFBOIS4ZdQBwwrNwZ87vUagzBxC5OhWknQF5y7ItikO4C7EhbHbdzYnZ35rQJQVBkFux67OrJzR7LtkCa7DCbeuZ2OiGOY9jqMYikGcaJIdkiInnOrOcgbwfmfbvrynAOcCdH4m8fRNplrsfd/H2MjO3MbC3YvddC16bpDNneMU7s1xhE1aOBIwlzV84dLkXguNNrq0zhzB82Y1g1EJlC5bCaM9M8hCGfeAqoCna8DUUopdjdzq4ZF5I4W0BxCrV1Zm4kt5MzZa8iBxkJ4CIiCSBGkk4vXTLh5IXqz/N7Jox8AhL0hXOGiJ1it91T7W6BZE1UsgBbfDI2fZcrpJQ1BgApXSCPL3zBbea8XUdmHk/M8QuQjWtAV6cg7DoRO5Fnj8xnA4gIXjpr+mysQvmHEzPXCAQzV9Zoaq4zWrj2L1JKInDXbsYlR59fU2KFbcz7BrN/45jDgem7Lzx52Zbl1nl7w4zh3hnec4JXt/aQiF8ATaZopR6nZp05oRDggMNrWMPyEvEVxFzc70TyOGcShVLW6lhHC6LfWHtBKE8V+skloI2xI6k9WEMOjon25THaUuoWnMfc31OI/RWcLDhHpDCCJfMGZsw4jjWNS65eSC0vt9Cns4CHRunbWBvmWBNmEEHNtBcBUgAuJRaRnqL0qi9SzWHlUKBwpexqDisX1L76UUXYcKWkPk9RKbMqKrh67XVnAtL03JKee2THmzdv3rx583a6zT/sePPmzZs3b95OtXk3lrKiyJ2LSpFZCdFneZkQleerBKlqGbo66FJaKrLoqvuKBFvNrDNDFAHWXAI3jAu6R1xZ6oHQ9UVYOF/StaYURVG/OqDvPCV0mZfqW2pvSBgX57A5rURyuLrCOgnOxm3V6xnoO6q5qcZ61eGKCMPyM7fOSzadTUqfbYEsukzpvlK5oeAqY80n0BTZ2TLHUFFZRCSBG+/aPnV7zPn7PUekpTozyeF0D7C+zBUlokixyOlz6bbzOJYkRNemI7hXSPRlCyLmv4pd2RDju402TKHMuwVyb67mU8K8TMgn1e4Zl9zm5qYtEzH3G9xqyZIq26YtvbNO64ak8gnUlUkgn8wHIiJy24U9W/LyZaP7s7Vt3CKHR8bNsrtjzteI3XyKQcRlvrT+hlFxjjSbFX/2+2aObA2hDg3XXEnFF4Tcpy9fFRGRbeawGpv6P33F5cZifqI/esYQfc/NjI7N3o7pzwt7F23Z3GqmmH6djoxLbgHSca7IpxfhtnrySaP5MxiBdKxUgTc3TFvGU+jtDJEjDMECuZr3rRbcQrjEdA5SO+Ztkjr3bW3DXCPJzDGjYzNHnrxuVKavKIJyB0nM7tjbFBGRrQ7IvQXWCkVOtW46rDVcuxYLd9/XMN8z5sJbUOMLbiPlkqeyO8V86nW6NulScu1f8N5Cn/B+Xy7oLtHr8wR14XoCN3miXD52zV6veEw1bxHnrqR+z2Q5xrVNmcB1vV1byeumZz+yCtKubGCJuXQpoS3oj6Lm+qoO1zPdtXlh7iPdn0No8dClnVFl2fKAVR6toKp/U3Y0BcWqK4nuMUtIps+q5FGquJeCsjtL6wyteqJWc3hVlZ2Dyhdl5SDzbbZGrXmdeWTHmzdv3rx583aqzSM7yvJlbjMwayIxwxT52R8H2XHv1yhgkllVCd+LyvGaIiISAq0JgKCk2F0qEVdLSK0BBSIiwdDOQD0XM09WjWgHqsJwS03uKxDuSMIbCcqF2uKQBEsEh3luuCtIFFGzZfN54cmcROqQipiuj4hs9BEamkIVd4y+a2tl3og5ZsyucHvT7NqpWKpzkR0NQD6dl9WRJ2OnXpzbvF4gRaIfiYbkKpyeWZnPnTOhzcnCoAtHxwYNiKJVNdOdM6bsHDvGBgi2d91xuy05B9l4ClLvdWREP3v2TlRSoWBDQ8iecCxAvj2nMpmT8MrQcyI94xmyig/c+S5eMCRhKhE3odb97LOmDhcuOhSkD8SNc/fiBfMd84otVJg6ia7DEZSIrbKu66PjkanfuV1z3p4NDTZl5up8VKk+GhyW2sa5s3/kxvRZ9F8WINv7k0aRuAPl8Pncla0hvPtwHxnIQ96f6F+FVnWQRb2PbPcDoJ63q76v416gsvHBwLS/B9J9r+6WY2aLZ26lKVCgCPP+7KZD4LoITx/NzHeXB2a8nt43c7yh5l6nEeDVvE+Rc4zh5ERqRERyEnKxyFCJPFGICedEgHk4ozJzaq7ZU6rIBCWsyjIXL5Jb1bJHGQl+xCWWkhY1lZ+KiC3VoZmlPlVINtfjorLWMFhC7/qZsy/CmHZB5sYtInmikIS8/OoQCa45SkYEY1klFNtzLF0H2GsjEIPBIIH6yV4s2ddAvSqK/BrZcQTiaoi4lOpkqoO+J9JYUU7WZS0+xKLPQc24ivCUCcrlP9YEnK+Y9sLczDyy482bN2/evHk71eYfdrx58+bNmzdvp9q8G0tZlqeSAkrU2hxL6ExYnZ0Vd5bS5MnL7qui4vLSGhVFBVqkvk4pCSmQXiq9xoCZh8dwYzVUWSYxhTskDOg6I3TrfF6E6AkBxji21aZWiVJMAQkvBExKgp2GGIlekjiakMQ4gkaNUqalWucCCfdYLyLThXILssZU/hW46jbA3AwVnE1FX+p4xJZYbMoOBke2bIJ2n9s7g+vAPZJq9wgSlVINFmWGSIjYaTtl3pQaKaxwQLjd3GI11Vs1wPjNJvraNtdcp9dzGjJMNkkNmeORuXYL5MlmSyWEtLA4VJKhfRTkTjuGjMkWSMJt6O3sgNQ7mblksUMQk+MI5HqquMI1deVZp9/ygjvvFBFHoG2hbdPxwByr4HxKeuyB4Ez3yO72ri0zgCrwAFoxVNdtQemX2jcizhVLd93RwFyTro4dpbb8+aeNrlCSw+WBeXX10LiUvvz0FVt2F8rWbBOJz3SX1JWbICbhla4ufN6subXhGG26DvfV/sC8r8N9dWZHqVfjRpqBqDsB8bfbMjf8+R3nxiIZlmNb7MPdCvdGXe1pqVMzODJ1GOErJim9eP7s6nltEk5TJkncXG6g7k0ojzdrJDNDb0aR7eu4Z+twHXG9S1PSBJyrm2tgCJd8CAXkekStHnffk5BM8jlvg1hpW3EUqDwdWDcWRkpRByzBN2S9zTHNlulzHZjAdY7Jku1vAfS1NOlaMmomUbcnKLVVG+tHF3yLemMtt+AvUnPvJ0tzz6YZExSX9XZ0m/I1a7dImUicF+vLuMKadEzNoKrLy1KUVw+/6fsKGXqNwrMrCfK6zjhwE/PIjjdv3rx58+btVJtHdpRly6Us8YRKorKIVlBmCDpC/CqKyubvak4sIjt8YlW5ZxgGzKdWy25zz6AhdlPM4URkJyXBTD2uxnaDV5bvtLVTj9ARCM85VFK5C6Aic6TUlkPsTguGu9q8JypEmjsP5pNamPMGQFmaDtiR6YRhnkGpbbmVM3V932lit4b6xdhBcleo06JEIcPpGa5ZURTNXH3PnDGIDtWa5whxn6uQXqogk+BdQwePocwcittdk0jMYSYCEWD8lwoFYK4ponyBzXuWl64nIrIEqtADqXezb665DbSC4eYibrdLonOGsRhBCVlEpI+8RE2QxKnI3USIa6PtUKVj5OUiEsVw4rugZrxQ9bx+aEK5dzYMkXgxG5aOGQ9cHbKUoa3m2g3MxdHEKUc36ga5OjwY4DzoozXkSxLSeyCZF4Wpw+XLRlZABxs0obZ8fGSuRamEGVStryL3lIjIFCTpDYT9M79Sr2vQAOaeMp+BdA6C8ggozjx1c86SozHuu5umnnWEHBeZ2onjXt4HSnUA5Wzmp2o3HLKR2AACKIcj59o8JZrs1pwmiNjDGVFQBD7genHToZU1oB4keksD46WI1BEREgAkJPonFg1VaxnutQwrUoQxTDEftIJyHEOOI+N7INs2IkORebFWWUV3tLeuwv7TFEiJlY8gORov+SpywGU9AeJKgnqoVMaD1Fw7zU2f57wnSLBW6Iq9JhF8Ilw2p5taoPk35kSEsW3Fbnw225CfQLctEyDPiblvU5VHi6fj+hQCe+S1NcW3sL8YFR3kNdxjW+VsBStac0hFtfmmJ+T5yjCb/s3h4R7Z8ebNmzdv3rx5E/+w482bN2/evHk75ebdWMqSdCEhRAS0G4sE1WVe1tspKglBzd9lrQOrpbBGN4Ckq6DCUFunO2DPC1iP5EGVi9O6rwLrkmLCTmr1KJIoythkkSnJ13BDBcrdFlEzAmWkQu4TkaxgvzE5W1mpl6quug9S9DHVhWNA8xt95/OK4LaySUNJXMR5mdBTRKSNBJU2QWtKoh01UBwB1Cob4/0Uuih0F4mIDIfG1RHAFUPlXHrZxsdOk4VJMRcgkvahXkx3C4mhIg6pHYMATCVZuhQyRZKmVkhQN/Xd3oFLBeMzSRypcwYtoxpg9l0QasdD1/dUXk6ZEBTjf3BkXCwvvPOSLTvYN7o14zGUvjH+e+cMkZhJVE19TJlDKFJf3R+IiFNZbip12P1Dc94p9HtaDdNX7bYjW585Zz6L4ProoD+bTfM6Ezfuh9DR2Tljxj+cUmXY1PepK9dt2Q34U48DuCLRj2269ZRmxxwKwjuc/1J24y4SR+bO4DJ40W1GO+nZq2YMDsdufCYgtu5AFfr8LtoLF8DhoSPQN9umndcOzdhx/jfo8lJuPKu9BR/FBPOAy0qkxLjqUFDe2jT90GkZV1oN59WJZelCpfuF90qzqYn5VO3FegICbVzAvaNcUzwPl8sF9HrmcBcXhdIZqpCO84zEZ6rC26KypGpxCHcT2ttquvlE91LCoAhLFai4ataYXcvpA1I0A967Be7TgppmwarbhSR7uhUZ4BKSNKzVli2jmL8n5lUHOvTRPmqiUQdsjjVotlDzk2uiPX9Ze62sYlxeN11i0KobypQSdYZirftKSt+pjKilM6gryYobq1hTGCdYai7DTcwjO968efPmzZu3U20e2VGWJKlVlM0UucupITOUG4TAylO3+busNsmnT4u66FwxFtnRJaX0WGxJa9iBUr24hZBjRCCLiEjdqm0iZLrC940ChRggXJEh5ymf/EksVKGYJCFa1U37hdsxRgG3V2Zn18AOegny4SJz/dnBrvUYYckRkJOd5qZphworLUCkcygVdoc5c1G5zmJ/ZgsSFJv2LKZNru+JGCyxq+QuUOclsyGYGKBjkEWbULzVOwqSRCUh2ZI7PIRgL1zZMciwYW7GoIed/kbDtD9U25dazdQvRh2oPj2dGFSoUP3KubuYQwU7YJiu24nvXzeh19w5L5flslRLFhE5g3xPzz5zFfU2bfh/Hjf5n86q8OcE7eO1BkCTmu0h6maL2vBh7nCJoj6rEJiDkembjT7ynYHgfPG2TVNAhwpjx3l8DEVmzJ8+UKzpl12I/BeeeQb1McdsWMK7+b7Vc23qUQ2ZucYw7iHuyalCbdiGCPOfJPSGCuU/u2mOP4eQdt5Xc6BsBwqB2+D9iPt0PiP6Yb6PG25Mc+TNeuaq6b8FVNCbCPvuNt0yv4U27aBvuhvIXYZ7RUtj5Msyok1ULcjVfQRZAqKJlIhg2L9GAZZEnInOArVpANFdZu68NhS6inpzzqh5n+EeXhJxBrITKtYtgyAKBmTgpy+wa5qWBCmj87YMebpqHVniz47NVQeEG6jicq7QFSBlJNRyzbSSIbqdFnkpy33odZmyFj0g2in6ZgbEcaqQxzmCFDLbCHshWbGgHEDgggHYD6skYQvWBGWEp/xjVrlM9fek9LeVZF57rC6TeQVlb968efPmzZs3/7DjzZs3b968eTvl5t1YypZpIomQPKZ0dnIDP1a1c9aqRFoeFVxUUdl9FSgYMqhCc0QY9ekIi+KVqsBUzlUCutIgIQ/wcAZSbBpUEsSJg5tJZm5CXyVLQrTRnZcJASES6giLSqE0gP5PHYTHBIVnUPztbG658/EVbWpCD6PdMXBspFSR+TweaSa2aEVq159zq6AMciNddFY7R+ljUOOIGjJwZ+SK+NnpmLYsAQe3QEakXshMJaMkeZmusyyjsihdgK7vZ3AVdVB2NILSMVxemiSagqw8hwZNDuh7MjGkXMX7lS6Io+OJqe8MLpRWS7mxQBwm1D+Fe0SmIDxvOj2cLtS0SYZvQHX5aagQK1kY6UIhG10kW1tQd4UWDdWIRZwiMedyr29cAP3NTVvmWdTzeGTqtQ1y+QB6MyXoGn7aBEk8I9snpsxGx+mt1ODb6HdMH1Pr5rYLpn7triPHtzAOSQJdHcyjJnRmtM7Q8eEAx5i+noKMvD9yrq47zxvycn/DuIP2D0xbqDvVVsTfZw/NdwOQrWMk82Syx6W6doCxPIS+DuvVg3toVylyn981GkkNKnDjmh0k1D06OLRlGUBApe827hFR9/1yCW0nJC51uk9QRa+7e5nrURiaz+KK0nmmtFrsfW3dWfjCDruafNYtZv9A/ZWLt0a3GmkKCS+EV73oktkdop5xqZ56fYqsThFcxhiLgsEsiuKQ0T1kaQtY26nftnRlSSCmsnuANVx5EG1C2RpU0Pu4B89umQTI04Wbe1Mojif4bDV55hpV5OrvU5VuUXpTdV+tuqhWzicMulmn1VwhQ68L8MFnqXdjefPmzZs3b968eWSnZMskkVDKea9ETM4sEUfeK6okL/W4Se4aw0GpIGrFkfWGJCgT3/hlrmlaQGCaQAFioCo15L2qx66ezCPDx/8kNU/z6byi7ilOkZb1ZHg61XvXRPiJMNQc1ykit8MhOToGKfIYocyMPG0oJvV0wt2F6dcOUQESilVIO3dRJMWRJL5IOCaritSsPBVZGUJJBVRzIBEsjGlIlWB1S2QIm0cIZx+h3EQVluraW1sgfBKdYo6wFKG4qk0NtKnRMN/NkV9njlxW+qbkNJwDISk4nzBpJiNHamW+qwl2+McjQ9i9fqilETBvAAn1O2US7tHIITtRZNrUQ5nlyCAnr7j7LvNe7USZa+0AeZ/2zpjw9CtXjZpro+UQk+1NhtUi/xMQqDPn9myZl21vow0gODN3G5CTo0OntjyDGvAxpAB2dzdFRGSB8y5T1/4e5iGJ+THm/daOOaatcg8RTQ3F9GvC+wiqudcHDgWZAmnLxCBFKVCMbShKi4j0gDDlmJcLzKsMN5gl+YvIVUg1TFDmBWdN/Sy5W03lBPcRgyo6aONG19T7BZcu2LK375ncVzGUlInacV1SwKY0QIZnTitL/FUE3TBg/jlbG1MXEHQL1SZKVURYP6KYpGjci+7SEnAtxBhQXZpXLhRxOagoxlvERCE7c4wd0R8ipkSMY3Xfh7UK8gREi2ukKDSZa9gC478EGhbjvLWGO69FKYj22lyL7KvVkG6i6mxbpH4bOI8KQd4wEvOBTu4oNP14bOo3xr3CenIiZfrarGYlPxVf1+IoFsGqjIXOz1VBZ1ZC0UWN7w1eNVTEQI5UkepvZh7Z8ebNmzdv3rydavMPO968efPmzZu3U23ejaUsSedCYp1WRS6KMuRHI+k4XKOdU9WHsOcqi+isO23pCTSgPkTIsoALQeqtx+7gEJAxSXFMuEg4slV3BEirpcD6WvI1qqbgZ14zCAlZQ6MictMnAmlxDiXi6egYn5trpirJ4xhE0o1d4+qgci41WgLl8qEHgm5FwqJ5zr53/RzHTA5aTr5qXYsKLqXrhFB3G2TcJHE6M0u4ymLA7g2QLUdIBEo9ExGRrY2tUn2oKxOFhHMd4f3C+V20ybxvgmBI15wmIVJlli6vBC6q2cy8pkptuQl34GYfcwKVGM0cUfE6VHq3uqbPz+6a8/bhYqHrRsQp20aYY2d2jFuL2klpTY0/9FZ6UDrm/VODay0tJc009RxNTF93QWqfzl09jwYL1M+4sxgwQALomd2ztmwNA3yAxKVUPmbS3FrsXFN0C3Ta5rMuiPlUAg6Uu5WujWxp6knX3wjuPKobi4g8e9X063bfjGG/aeq50VPJKDGWl+FSmMNFRfeDvu+3MB4t6Ejtoe+p9cN7UcTpPzXQN+fOmbLndky/XrrN9VWnDTcbxiMQ6kEFOL9bI+iiou8go8ZNaW3EZ3MQqDHNcyZUVosb1drt+mF9+7yeK5tV9FXoQuM6E6o1gq543uhUFNYLK6c1tYJYhxh9X2u4ceJ3lq0A1366oItOa7DBvZyVF3G2O1bnbXVbpfPw1f5+6CAMunzs65qk06QlFNDtwm9XHXNjq+s0o7b6xgV/BNc2VZZdsI269Ir2TlU5ea3oDepZlEuoTNWFVFxd695VXF08olj7c8p56d1Y3rx58+bNmzdvpwfZ+fmf/3n56Z/+abl8+bK87GUvkw984APyzd/8zX+sc6TpzJIRcxUyaHOF2NBB7CDs02YpIG79ya2C8prPqkU1qYuh50uGJ1L52BzVUGgN1TWTzClniojEEQm6qmxEBWGQG6lIDMRIh8gnDLEOg9KxUiLLmTKLsSG45kBMqI48PnbITgO5r3r9TRERqde5+zHn18RXkjhrMdsA9IqIjw7tJHF4SakAc746dvgzpWZaiOnPBnJOjUHQnY4dQbeN8GQSNYk4NbA77HYdWmN3nhFbYvqm0yEJ0xaVOkJ5SQYfDZHbaDlEf7hxatqdIVArzIcxwpU1WbDVM2XO7O3i/NiBKpTu2oFBP47Gpo/O7yH3VBuESoXWMUx9dxdh2VZl2rQ7HTtkYzYy9draMjvIq/v7IiKy2TNIQli43TARl9HQnH80NsjJpTtfaMt88UtPoX1mDM9sm13qOrmHDRDHaZevPIu/0GeamI9d7zaUmV9w++3mOjhdt+1yowUh0U8gbguQwqdABRVRdTQ3fTLPzRhOoFrcV2HvQ+QYI4LHNjFs+WhwbMtudiAx0TfHb4Mk3oX6eKLuEao133XBIDhnNk0bOm2ElaucY7wfFwnRasH7hI22ZanaTuSB957e+ZOszJB4IjpUPg/U3AuImmM4UqCdlLAolaU0BOobA51zef40qoyQ8NDefLpppTc1rDWNblz6PFCka6scjXBt5gjTAR6qoqZ+tQoKhvMuVX4q9lsEBJsSGZkw35dS4s/L5GUuIBpBIsFZMJ8CyDnXMB/akVtHdoDoHSKAYgxF5QTrtg70cB1XDqDh/ZCXYCB8x1eroCylY81nQenVaa24MtXfwvWIDssCTaygajeyU4Hs/Oqv/qrcf//98q53vUs+85nPyDd/8zfLfffdJ08++eStrpo3b968efPm7RbbqXjYef/73y9vfetb5R/8g38gX//1Xy8f+MAH5Pbbb5cPfehDa8svFgsZDoelf968efPmzZu302kn3o2VJIk8+uij8hM/8ROlz++991751Kc+tfaY97znPfLud7975fNlmki0KvNojW6iIKhC6SWFiPJBKzBcsPJXUMkEqtBxSwqjHgR1YMhL1kkeLdEvhouGiqyAH5eKWEcIlNpBdAeF8aruRArIuyJjU/LNLBNDeCNsS5JwGAL6VTDx9o5RcW13DdxODR26krQiJmHyGJC8vSTdeor4S0JyTngcStJTkJETpSjag6rsbG5cMU9+6QkRKWtThN1y8lEmIw2hv9NsOPcA9VroMiRWH0J3KFKESglJKDRGlyGJqg0nASxbcANxfOYBk5zWUH8HkxOSDmLj1olRljo5IiIbcINQkXUGwvMO3E8TdT4m0mTiy8GxcbPUm3RnONLxaArdI1SdrpohyLgd5c6hojWTkR6B8DscOTfO2V1Tn2RuCJV5Bq0fMNYTRcymC4ZaRg3cE+Ox2cQUgZsjtYh6Jea1B5eq5YjGWkMG8weQ//6+ISFPkMh1rvqK5GC+NqlBpTKgzqCGHGFOMPnsEVySi9TN+z50i/p9M1416Au1oFcUK/dItAGXNkjXfSg/Z2hUXHcaR5bwG5hxN0EZIot5mTRrykJBuV5OPqxJtyQdC9aIFKT9kMmIl6uK8XTTp3S/sMvVLUIi8oqLCqa87NbVFVhX96qbnXQAlo3q1E6CG1/1Z4a5lVHbiq4Z1FO7klxiTt73oDygTK4SlnJdp8uUpGi68dLcBUdYP5gNTClK7RBRWkQ8P11R1BdT60gP7quzWN9G0AVigIPV3RG3HttgGLrQLL9YqS1X/7A/XtQO0srM0A6yhanpponkZdY6f//4G1nWqeN6/9wUlE/8w87+/r5kWSbnzp0rfX7u3Dm5cuXK2mPe+c53ytvf/nb7/vj4WC5duiTzRbKGie6ME9s+9IS8ufQCST5PVvrO8Xy0GJaUP6OfVw8+fvgDmyEaC3vBbNiqgvh7QR8zFy4sKsvl6sMOs36T70JxqUhH5aT0KZv3GW9sLV2OfpvjpqFkfc4fGuV8nWERibDAxBBgyzJmBV592OFNz4iDxZzZi1cfdmzG4IDZ6sFlUgt5BFE1pjNgG2eJ66Ma+5GchYhZqpOV88WIRoqy8sOOZIzOWn3Y4RjMFmUuR7xQcvz4AbQPOxSkw4++TllQx3fMoi0Z37s+IteDDzs8jzuvKxtyDhT0jWMeYCwSJdZn02VU6heGiOhKXPs5pLwWzzNXfW//xqRjao4gQt8v1zzssI+ScltS1UecW/xszog61IlpHkREwoDnS0vn46uep+S8LTHe/C5R1+Y1M9wL1fanirORYJNg+7EytqkaU56nwA95jbw2PkWE+gFGSu1mSgjyRfR5xW4k+MOL+alu/KXwPuI48WEHP2zqYcdGKCL1RWpTqvAJLFdlzd8xvuP9ZcX1VL9G3E9Z0cNKvcX9UMcQYY1w7QT1zdTcY7QVeYj8wbUbRP2wYwPBKJRZLrPuYYcVtt/wGUXze5aMkspLr/lSPexQlBDjxIexiHwf9bBTncMpNqNLG2Gn+sre9uX732U2F1eWdalwd6wAoS7LSNrK0fphp/rz6x52qud3D6GZXfdvzt058Q87tKAS6l0UxcpntEajYUN5RcS6sf7Jh/79n14FvSlbj7h5+1q33/mzu9Qfmpf/1//783+61/n9p/50z+/NmzcRERmNRrKxsXHD70/8w87u7q5EUbSC4ly7dm0F7bmRXbhwQX7/939fXvrSl8pTTz0l/X7/Kx90gmw4HMrtt9/u23bCzLft5Nppbp9v28m009q2oihkNBrJhQsXblruxD/s1Ot1edWrXiUPP/yw/M2/+Tft5w8//LC88Y1vfE7nCMNQLl68KCIi/X7/VE0Ebb5tJ9N8206uneb2+badTDuNbbsZokM78Q87IiJvf/vb5e/+3b8rr371q+Wee+6RD3/4w/Lkk0/KD/7gD97qqnnz5s2bN2/ebrGdioedN7/5zXJwcCD/5J/8E7l8+bK8/OUvl1//9V+XO+6441ZXzZs3b968efN2i+1UPOyIiLztbW+Tt73tbX/i4xuNhvzkT/5kibh8Wsy37WSab9vJtdPcPt+2k2mnuW3PxYLiK8VrefPmzZs3b968nWA7FQrK3rx58+bNmzdvNzL/sOPNmzdv3rx5O9XmH3a8efPmzZs3b6fa/MOON2/evHnz5u1Um3/YEZGf//mfl7vuukuazaa86lWvkv/9v//3ra7SH9seeOABCYKg9G9vb89+XxSFPPDAA3LhwgVptVryLd/yLfK5z33uFtb4xvaJT3xCvvM7v1MuXLggQRDIf/7P/7n0/XNpy2KxkB/5kR+R3d1d6XQ68jf+xt+Qp59++s+wFTe2r9S+v/f3/t7KWL72ta8tlXk+tu8973mPfNM3fZP0ej05e/asfNd3fZf8wR/8QanMSR2759K2kzpuH/rQh+QbvuEbrNjcPffcI//tv/03+/1JHTPaV2rfSR23qr3nPe+RIAjk/vvvt5+d9LH7atrX/MPOr/7qr8r9998v73rXu+Qzn/mMfPM3f7Pcd9998uSTT97qqv2x7WUve5lcvnzZ/nvsscfsd+973/vk/e9/v3zwgx+UT3/607K3tyff8R3fIaPR6BbWeL1NJhN55StfKR/84AfXfv9c2nL//ffLRz/6UXnooYfkk5/8pIzHY3nDG95gs7HfSvtK7RMR+at/9a+WxvLXf/3XS98/H9v3yCOPyA/90A/Jb/3Wb8nDDz8sy+VS7r33Xpkgw7LIyR2759I2kZM5brfddpu8973vld/+7d+W3/7t35Zv/dZvlTe+8Y32R/GkjhntK7VP5GSOm7ZPf/rT8uEPf1i+4Ru+ofT5SR+7r6oVX+P2F/7CXyh+8Ad/sPTZS17ykuInfuInblGN/mT2kz/5k8UrX/nKtd/leV7s7e0V733ve+1n8/m82NjYKP7lv/yXf0Y1/JOZiBQf/ehH7fvn0pbBYFDUarXioYcesmWeeeaZIgzD4r//9//+Z1b352LV9hVFUbzlLW8p3vjGN97wmJPSvmvXrhUiUjzyyCNFUZyusau2rShOz7gVRVFsbW0V//pf/+tTNWba2L6iOPnjNhqNirvvvrt4+OGHi9e//vXFj/7ojxZFcbrut6+GfU0jO0mSyKOPPir33ntv6fN7771XPvWpk5eZ+wtf+IJcuHBB7rrrLvnbf/tvy5e+9CUREXn88cflypUrpXY2Gg15/etff+La+Vza8uijj0qapqUyFy5ckJe//OUnpr0f//jH5ezZs/LiF79Yvv/7v1+uXbtmvzsp7Ts+PhYRke3tbRE5XWNXbRvtpI9blmXy0EMPyWQykXvuuedUjZnIavtoJ3ncfuiHfkj++l//6/Lt3/7tpc9P29j939qpUVD+k9j+/r5kWbaSHf3cuXMrWdSf7/aa17xGfumXfkle/OIXy9WrV+Wnfuqn5HWve5187nOfs21Z184nnnjiVlT3T2zPpS1XrlyRer0uW1tbK2VOwrjed9998rf+1t+SO+64Qx5//HH5x//4H8u3fuu3yqOPPiqNRuNEtK8oCnn7298uf/Ev/kV5+ctfLiKnZ+zWtU3kZI/bY489Jvfcc4/M53Ppdrvy0Y9+VF760pfaH7yTPmY3ap/IyR63hx56SH7nd35HPv3pT698d1rut6+WfU0/7NCCICi9L4pi5bPnu913333271e84hVyzz33yAtf+EL5yEc+Ysl2p6GdtD9JW05Ke9/85jfbv1/+8pfLq1/9arnjjjvkv/7X/ypvetObbnjc86l9P/zDPyy/+7u/K5/85CdXvjvpY3ejtp3kcfu6r/s6+exnPyuDwUD+03/6T/KWt7xFHnnkEfv9SR+zG7XvpS996Ykdt6eeekp+9Ed/VD72sY9Js9m8YbmTPnZfLfuadmPt7u5KFEUrT7DXrl1beRo+adbpdOQVr3iFfOELX7BRWaehnc+lLXt7e5IkiRwdHd2wzEmy8+fPyx133CFf+MIXROT5374f+ZEfkf/yX/6L/OZv/qbcdttt9vPTMHY3ats6O0njVq/X5UUvepG8+tWvlve85z3yyle+Uv7Fv/gXp2LMRG7cvnV2Usbt0UcflWvXrsmrXvUqieNY4jiWRx55RH7mZ35G4ji2dTvpY/fVsq/ph516vS6vetWr5OGHHy59/vDDD8vrXve6W1Srr44tFgv5/Oc/L+fPn5e77rpL9vb2Su1MkkQeeeSRE9fO59KWV73qVVKr1UplLl++LL/3e7934torInJwcCBPPfWUnD9/XkSev+0rikJ++Id/WH7t135N/tf/+l9y1113lb4/yWP3ldq2zk7KuK2zoihksVic6DG7mbF96+ykjNu3fdu3yWOPPSaf/exn7b9Xv/rV8n3f933y2c9+Vl7wghecyrH7E9ufMSH6eWcPPfRQUavVil/4hV8ofv/3f7+4//77i06nU3z5y1++1VX7Y9mP/diPFR//+MeLL33pS8Vv/dZvFW94wxuKXq9n2/He97632NjYKH7t136teOyxx4rv+Z7vKc6fP18Mh8NbXPNVG41GxWc+85niM5/5TCEixfvf//7iM5/5TPHEE08URfHc2vKDP/iDxW233Vb8xm/8RvE7v/M7xbd+67cWr3zlK4vlcnmrmmXtZu0bjUbFj/3YjxWf+tSniscff7z4zd/8zeKee+4pLl68+Lxv3z/8h/+w2NjYKD7+8Y8Xly9ftv+m06ktc1LH7iu17SSP2zvf+c7iE5/4RPH4448Xv/u7v1v8o3/0j4owDIuPfexjRVGc3DGj3ax9J3nc1pmOxiqKkz92X037mn/YKYqi+Lmf+7nijjvuKOr1evGN3/iNpXDSk2JvfvObi/Pnzxe1Wq24cOFC8aY3van43Oc+Z7/P87z4yZ/8yWJvb69oNBrFX/pLf6l47LHHbmGNb2y/+Zu/WYjIyr+3vOUtRVE8t7bMZrPih3/4h4vt7e2i1WoVb3jDG4onn3zyFrRm1W7Wvul0Wtx7773FmTNnilqtVly6dKl4y1veslL352P71rVJRIp/+2//rS1zUsfuK7XtJI/b3//7f9+uf2fOnCm+7du+zT7oFMXJHTPazdp3ksdtnVUfdk762H01LSiKovizw5G8efPmzZs3b97+bO1rmrPjzZs3b968eTv95h92vHnz5s2bN2+n2vzDjjdv3rx58+btVJt/2PHmzZs3b968nWrzDzvevHnz5s2bt1Nt/mHHmzdv3rx583aqzT/sePPmzZs3b95OtfmHHW/evHnz5s3bqTb/sOPNm7evCfvyl78sQRBIEATy5/7cn7OfP/DAA/bzD3zgA7esft68efvTM/+w482bt68p+43f+A35n//zf9r373jHO+Ty5ctfMYu5N2/eTq7Ft7oC3rx58/ZnaTs7O7Kzs2Pfd7td6Xa7EkXRLayVN2/e/jTNIzvevHk7cXb9+nXZ29uTBx980H72f/7P/5F6vS4f+9jHbmHNvHnz9nw0j+x48+btxNmZM2fk3/ybfyPf9V3fJffee6+85CUvkb/zd/6OvO1tb5N77733VlfPmzdvzzPzDzvevHk7kfbX/tpfk+///u+X7/u+75Nv+qZvkmazKe9973tvdbW8efP2PDTvxvLmzduJtX/2z/6ZLJdL+Y//8T/Kv//3/16azeatrpI3b96eh+Yfdrx583Zi7Utf+pI8++yzkue5PPHEE7e6Ot68eXuemndjefPm7URakiTyfd/3ffLmN79ZXvKSl8hb3/pWeeyxx+TcuXO3umrevHl7nplHdrx583Yi7V3vepccHx/Lz/zMz8iP//iPy9d//dfLW9/61ltdLW/evD0PzT/sePPm7cTZxz/+cfnABz4gv/zLvyz9fl/CMJRf/uVflk9+8pPyoQ996FZXz5s3b88z824sb968nTj7lm/5FknTtPTZpUuXZDAY3JoKefPm7XltHtnx5s3b15S97nWvk9e97nX2/YMPPijdbleefPLJW1grb968/WlaUBRFcasr4c2bN29/2rZcLuXLX/6yiIg0Gg25/fbbRUTk8PBQDg8PRcSIFW5sbNyqKnrz5u1PyfzDjjdv3rx58+btVJt3Y3nz5s2bN2/eTrX5hx1v3rx58+bN26k2/7DjzZs3b968eTvV5h92vHnz5s2bN2+n2vzDjjdv3rx58+btVJt/2PHmzZs3b968nWrzDzvevHnz5s2bt1Nt/mHHmzdv3rx583aq7f8PvF9p+hBW+EgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -205,24 +188,79 @@ } ], "source": [ - "multiscale['scale2'].ds.chelsea.plot.imshow()" + "multiscale['scale1'].ds.chelsea.plot.imshow()" ] }, { "cell_type": "code", "execution_count": 8, + "id": "99945f24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmR9JREFUeJzt/XuwXXd5348/674vZ5+rpHMkSxYCTLjIkMZQwKXBYBBxagghE8ilGZPSfJOCPXGAYWr4ZVAy1KZMCzSmoc2UcjGhpmkgSQea2BQw8XhoQIFiDAWDb7ItWZZ0rvu6br8/JB30vJ9H0rFjLGnzfmU8ZK3zWZfPZX320t6v9V5BXde1EEIIIYSMKeHZPgFCCCGEkB8nvNkhhBBCyFjDmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNbzZIYQQQshYw5sdQgghhIw18dk+gXOBqqrk4Ycflk6nI0EQnO3TIYQQQsgGqOtaVldXZdu2bRKGp/7+hjc7IvLwww/Ljh07zvZpEEIIIeRxsH//ftm+ffsp/86bHRHpdDoiIvKLl2yTJD52Zzh9fN3JNOJILU90GrZMmqnlJEtNmThJdJlE76d2vlyqSx10nWZNUybNJvR+G21bBo4VxYkpE0ewDu+WnW+/NrLGbueEd8Mq/Katqiq7TVXqXXiZ4LUukxf5GY9dOTsq4VhxpMeE13f5cKT3W9o61ALrvGPneM76YFFk/1WTj/Sx8fxFRGIYA0VZ2GNDewWBPVYA4wTrWTp9h/1Zlvb8DF7/mvPRbTMaDp1j62Ph+YuIhKHu3yiyHRxGehp1msb0DV4K3rFNmQ186Yx1ErF9Vxa6TFHaa6Essb8jUyaHMo3WlCkTxbpe7bYt027reSvL9ByaNuwcmsAcGkf2owz7Tpw64AsEqgonILOJ1DCMK2dA4iVe4UYikuf6Ouv1+6bM4tKyWj786CG1/OgjB802q8t6m7J0Zmdor5m5TabMrl271PLC/Da13GrbzxfTD943LXDN107b4DxV5nZOqo7PFf3BQP6//9/e9c/xU8GbHfnRB2oSh5IevzjT2F4YWaLXNRLbfI1Ur0tSWyZJ8WZHL2/sZsdOALgubWS2TKLXRbFzMwYffmYiPsdudurHc7OTOxfhj+tmB+vwOG92ihB3rpdjZ8yOYJON3ezYtinhQ/7JvNkxTbGBmx0cN6EzoVYVbLOhmx1bJorP8Zsd6Lsi0h8chf0cEewG72YngjINZ07Cm52mc+PSgnkqazRgeQM3O84/2p60mx13nsAydvyNYrjJdPYzaAzUcpbCHO98BuFnV+HN13BTkia2/Rpw09mCfmk17T+48WbHG9d4s+O1jbnZib2bHb3uTAoKBWVCCCGEjDW82SGEEELIWMOfsU6i2+3J6MTXzc5vhPHstFouS/sz0WgIv7vWznfElf76sgCvIs5aZpP25Ga1nKTOV4hJCmXs+UXwdaX5qlfEfHVrfhKInWFjfmpwfqqBMt6vERLotd7vuWeiqmyb49fVsdM2ea6/Mq6dn5vwi9I8130XRbY98afMQW9gyuD5eV/IYj8U6NGYn7lEIvxKe2j9DPPTh/N1ulnj/VaIX0/DfivnJ6oSfjYovZ/4YJ33M1EA/26roQUDr07grkjofJ0uUAfH2SnwdyCnHxL8iRHKJKnzM5EZS44vBOu86zmAy9X8tOCcb1jAT5K17bs00tdQ7ZQZjfR4GzjuVADnXOFPuoHtuxDO2f25xOCNP72MbY7X5bGD4aLTfiH+/O6cDmwWenMH/EyVZaBAOH2H80TttF8dgDdT2Xlh2O+p5bXuilo2/SQiCX4GuU4oej1e++n+jJz5OgiOrau9CcGB3+wQQgghZKzhzQ4hhBBCxhre7BBCCCFkrOHNDiGEEELGGgrKJ9FutdZzdtoNGxho8jSc5/rTppaLI0e+qk2gC2SNgLAsIjLoaTksjq2gLLW+dy1QwBSRECTMyMsWwawErKfn7Blh0Mp2VWHCJ0wZFALtsic+4zq7X5SWSyc4L4b+LR3hsoD94PkNh1Y+xkwQzFkSERn29XZeHk6IWS0QFlbkdtwkkJXhiZxGUPZkT+MwexIzSJlQxJOPMTzGE7NNWzi5g1Wp626EZac9KxMs6VyrGLviXM8oWJrrW0QKzLMCabQs7JhIGzBuHNmzhmOHjqxZhii/62UjT4tIjaKuKWFl6GFuQ/EiCCitnWu+19fSMkrrI+dhEcxjajbt2MKHMbz5GnOynKczzDaYMYXjXkTMnO44wkbCxetbxM4dDcy6cYL9RhA+2gqcDJ2m3q49YQP5Kji/le6aWu47sjkG0ibOwyw4z+LnqrfOy1E60XcD5/PSg9/sEEIIIWSs4c0OIYQQQsYa3uwQQgghZKzhzQ4hhBBCxhoKyicxv2l2/WWfE50J83d8iV3gCKw1CKyVWPkvBTmsApHYTRbGrnJEREwFTp3USZTi/PBJPIONvIGwPt3isWOj2Oe9Iw5eeGplT+8Fo1AnpwVDuK/HNzaLiIxAWPXEOXxjvXlxoJMqOhxokS/NbL8k8BLFfrdryuCL7yJIV8UkbhH71nPv2EN827IT94pSpidQC45983Zj703uG0hZhnp7b0DGN3njGPBevoovIPTCumtsiw0k1nqCdx2MYBnTsO0DEfhW7CRzpHqU1p1AdCPLmuvDVhwfUvAeZBAQn72XUkaJrldZOQnU0L/LK1rW91KhhzCu287Yb0ASPaYPi4gE8GLNGoOunVRj8zpeZ1xjqnLovUgV2s97ySwmEjca+rNjYmrabIPnnKR2bE1M6u2aTSsoR+aF0CDiO5M8vhR1MLISczWA+caZ0hN4YbX3otITgnJ/YB8K8eA3O4QQQggZa3izQwghhJCxhjc7hBBCCBlreLNDCCGEkLGGgvJJZEm0LigPezYNtIJ03DR15GOQ4DyJedhbVctxoqWzrDlptolA2EL5U8TKlI43JxEkuUaOgOdueIa/49l4SrPZykknDVFEK1FgtZImSsyBWyeQNL0kYUh4RrFYRCQCcRPTkD2Ps9/T8mQPkkhFRDJIRs2aVioc9npqOYfzSxpWPs5Hur1GQytyYtLsyEmBRrHdS6BGubgAwbYoHLF4pLcZOSnQKB+7ydtnCPn2pGY8X5QrRZxEYmdg55BYi+KziEgQ6jaOUBT3EsdhP8OR0y8m8NdpGxDHQ4igTjyxGGTZ2JWPdZ1iR4RFMbcKnfODfhiAcFo7T1EUMNcNnf5tNvRYmmjbh05K2E8j03WInWMHAfSvUwavF/exE5C1I2cMYNpwCsJy26kTJmI3INVfRKTTmVbLLUdQjhNM/daLnvSPDy54qemYiF1Wtu/wuvM+p07M4d5c7sFvdgghhBAy1vBmhxBCCCFjDW92CCGEEDLW8GaHEEIIIWMNBeWTiNNkXcRDEVVEJAJBCxMwRURqELK6PZuEm0NqbAYinZEixYrFJrVVrGDpScwVCGShsx8jfBlx8wwCs7eJeAm6TiEULmEFJhiLiBQgiJaFlVxxP14iLKbaeueHicTDoRbZM0hCFhFptLREuLa8ZMr0VrW07gnKWbN52m0GzlhLG3obT1AOQCL1JNd8qOXowPl3UlkMYVmPtdw5dg1mMY5PEZEIhEsvUbcGRR5TZAtHlByg4O3YxylI355wWXT1GMj7VmwfgVzchLHWcPobBdAodmRZqHddeheeXsRk5tCZJ0qQmKvYS4IHmTdpmjIoR2MSt1cmAxnaS2OvQHbvdXu2DLQFyvoiIv2hnk8mJ7Som6W2TimkLkco8or12L30cJyTvAc2cDMc5x5xpOuEUrOISJZh2r6dV5MEH76AecJJE8eamwRysRKz9zmF0nfoPvJybF0a23P34Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8kn0h6WccKXiyEpTGQiCQxBjRUQSsJjThk2vjBIQiUHSHHoJtomWHuPMynYYYOqJnIFAoqlj/wUmbVifX+jI24LpzY5oaiQ9T6DGxOkzu9DGBkSZW0SkgGRelOSObYdipCPX5bofikKPgcHAJm8nsN9G00qP/e4qLFvZOANZNmvpDu852wwHel3qCNR5H+RjJ/W77C+p5doRBgMQQiMYW7EjV+KRWk0rG2K/RJEtg4nOFZxf6gjpJu3clLDDzxXvTYK3PdbhA7p/lyGhPXYE4JnZKbWMwqi3XVnaOQmF/QDP13nQQkyqrS1TwtjP+8v2/FI9/5Wh8+AHzFNhCmUccRc9cUxqFhFZXdXn400lU4UWklGqbzTsXNxqQeJ9Zuf4GOcgR8w2eMn0ME/lON+MrAxfQR2S1Carm+vFueZxvsaHYrzPF3MROddCVGP/OruB9vIeyDkhLW/kI+JYeUIIIYSQMYY3O4QQQggZa3izQwghhJCxhjc7hBBCCBlrKCifRCNrrKd3em+NDwWSep1X0w8gJTbJrFSIXi5KcaEj8WVgcQWOpBmFuM5L5ISkWUfs8xKc1T4csRiP5EnMZQnJmUZPFakrTIE+c9qmEZ+9tFLo0CR1RN0hyH7OfhJIHjVpoAM7Jrp9m+6KTM3MqOXRyKYND0F+xtTTNHVEzhEIjt1FU8ak8DpidhTq/YwcEbuudRs3mlr+TBIn9RvEwyi2MmUIfYcCvYhIUYaw7OnGmggeJgidJFaTuutNDC19DdXO9RtAKvCDDx9Qyw0nwXZiQidvZ5kV20MQQHHZWwdNJUFtx6x5TqB05rreit6vlx7emVbLUXPSlDEJxCEm9zoJuTBHLS9bObqC+SZ1BO8upJD3e3q52bLy8RCSt1ste61m8GBKik+PiJixhPOjiP1sGI70Z1CvZwVqFMcTR34fDvRYShN73cWR7hcU8T01GFOhTUr0sZWw7DzsAOs8QfnEvr2/efCbHUIIIYSMNbzZIYQQQshYw5sdQgghhIw1dHZOIooDiY97BWHgeAv16X/7FhEp4PfD4dCGfI3AA6jhnjNI7G+3Am/1TRrWmWjA78SR9/s9/hbqRqlp0HcJvbfdbuCN6zb8z/6Gjudj/BE3eKuCZccFgjfN1/anbuOG4Nu2Rexbw7EtsqYT4LUGb0rv2747/Kj2AKanZ02ZzqR2OPAt45HTLyP4/V6sVmGCEj1ieMN1NbIeUgyhm1Fo5DS7DYz90JmSTJCjM7ZiCHbDt4gXheOZYX+74Wt6u7ywY6sT62NlA2dwPagdnf3La2p5eXCf2SSCN7c/59nPNmVS8HjixLZfLdDuGFQ30uciIhKUui3qyo6RoKWP5c0kYaCPFeOYEOvPBeBtbeSN9Y3M9h2qHD0I7hSxb1yPEnizt+Ol4Jvl8S3yIiJNcO4aTSdcFpyYvLD7GcJYyuHzBJ2eY+vO/Eb4FMZ67MzF5i3nGPRnthCJwNV034xuVm3MufmHwm92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtbwZocQQgghYw0F5ZOoymLdocydUDd8E7AXrldCKF7piJGDgd43vsW5cMKlrJjriHN4Ls7rYCNYF20gkAkl4bLwtsF6nvldtDakyr5pPABJLk6d+3N4+7wnKGPAGEp8IiIFrPPeII0ScwxvaK6dtwfj27XDyAn5gjfdr60umTKdUu+nATJ0XViJNBa9btBdMWXyAQiMlfOGawyEdMb1sKdF1yjV+61rO27iDILzGtagDmNdJoptQFvW0mUwaLLy6gSrcKwdPzrs1wluhP1UTijnEoTXJRDkN+jbcfPtu3+ot3Hk42c/81lqudGwom6EgXFw7Nj5FCggrK5w3q5dV3oey4d2zmxOTuvzc4IRk0z35wDGljdFZXBNeeF6OYjtofN29wgqj6KuNz8WuT5W7YQyVjB35LltmzDUY710Hr7og5BcwAMHtTPXjVCQdwTvDARlFJZFrCBvg/5sX27kbeVYxmWDQYGPBX6zQwghhJCxhjc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWsoKJ9EHCWSHBfWaif5cbim5TAvHRkTVvEt3iJWGEwh/TV03vyMEqTjshkJ03t7uUlM9nYEchjWwXsrttRnfnO2kUadMiEKynguTp0wKToInDeaQ7XxzcAiIjmkAo8GXVOmGJ5B3HQk14mpObUcOzJgkugxkDWshFvn+nx6ywd1AUeoxn6JU5vkKqLPedQ7c9Isvv1dRCRrTqllfGO0JwAnqZYco6RtysQJJuza/q0DFMX1353LUCq4FmLnzc8VCMleEjM+cLB09Igpky8dVcsXN3VbVM51mEV6Lnnknh+YMim8uf3i5z7PlEGxOcDrxYnVrmLdL2srD5kyw64W0pOm82bvnk4LryLbNhl0TpzpN6N7cyg+TBAEtgw+GFA7iej4EnsUkj1PFpO3PQkXBeVe10rMEujzcYaWDAZ6OxSWvXGNb5H3UoxLeLhm5DyQgw9NoLCMD2uIbOxt5SbFfyMPyTzOv6njbrAcIYQQQsh5CW92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtZQUD6JIh9IfrxJstRJaW1rca4QK7CmDS1+JY4UVwdanJNIi5FhYpMp251pfS5NK5qiyOeldqK5Wdd2CFjvbCNplmc2qDHt00ugLkCErUwZu40V3Oz5RiAwJqmtdxCCUOukIed9LWX215bV8qBvk2Z7kJ47t7DVlJmanVXLWWrrkMEYkEqnBve7i2abGoT5qrRjoj2hx3q0MG/KFCBrd5esaBqK3ndY6YGUD+yxi54+5+bEtC3T1VJmmEyYMtnkBWq5Buk6hpRyEZEA1qGwfGwlSP+O7Inj+vDBR0yZmVrXfb4J0rCThDsAQTSM7TV18P571PJkx84dO5+ySy23p7RIniZ2LolhDqjmLzBlht0lvcJ54CBOQGp1rt8YhdUKRPva/psc5dg0tZJ1DCJ7WdjxVxbQxoE+v8iR4RMUgJ1EdBTb89wKyt2efiCi27fnV+E4BnG8M2E/pyqYQ8WZx3C+LpzzG0EiNl5DceR9dqDE7CUoQ3877YefH77EXMP/nh5+s0MIIYSQseas3uzccMMN8oIXvEA6nY5s2bJFXvva18r3vvc9VeaNb3yjBEGg/nvRi16kygyHQ7nmmmtk06ZN0m635TWveY08+OCDT2ZVCCGEEHKOclZvdm677TZ5y1veIl/96lfl1ltvlaIoZM+ePdLt6q/Mf+7nfk4OHDiw/t/nP/959fdrr71WPvvZz8rNN98st99+u6ytrcmVV15pXl5ICCGEkJ88zqqz89d//ddq+aMf/ahs2bJF9u3bJz/7sz+7vj7LMllYWHD3sby8LB/5yEfkpptukle84hUiIvLJT35SduzYIV/4whfkVa96ldlmOBzKcPgjt2Jlxb4JmhBCCCHjwTklKC8vH5M9Z0HW/PKXvyxbtmyR6elpeelLXyr/5t/8G9myZYuIiOzbt0/yPJc9e/asl9+2bZvs3r1b7rjjDvdm54YbbpA/+IM/MOvDoFgXWSsnUXJlWX/jVDtCY9rUAlle2TKDXAt4IxDnsoaV+Fod3SaY4ikiEpokYVumFkwxdr79gnM2qcsuID478jGm8FbON28oe1a4XFqRDtNKKycduYQyhVcGUlkxMVREpAmSMAq1bqJprMW+VtumBGdNLT06/rREILkKLLedBNsaLvFB97Apk4MkPFqxkvUQ5MliZPt32NfCZavT0X/vablbRKTX1Qm7M5tsv1QwtrwQ6CjTx25MzKjlILGCMibYho7EPBrp8dft902ZI4cfVcsHHjloyvQgHncVhMuZyF5j7USvK0f22FMg1N7/g7tNGdz1hbu0sDw1qxO+RUTSTI/H1oQzZiO4XhIvoVivC1K7n7Sh19UBJFnn9qIKSl1v+yCDSCCQsozWtYhEITwcAtd8EtsxYcRcR8LNYS4ZOQI6zpGRM/6yTLdNq6nl/DRx0uLh82TQt9ddjknwhZ1XC3i4AedMbw41Urgzx4cRpOQ7ArqX+vwP5ZwRlOu6lre+9a3ykpe8RHbv3r2+/oorrpA//dM/lS9+8Yvy7//9v5evfe1r8vKXv3z9m5mDBw9KmqYyM6Mnt/n5eTl40E46IiLXXXedLC8vr/+3f//+H1/FCCGEEHJWOWe+2bn66qvlW9/6ltx+++1q/Rve8Ib1/3/37t3y/Oc/X3bu3Cmf+9zn5HWve90p91fX9SnfuZFlmWTOu30IIYQQMn6cE9/sXHPNNfJXf/VX8qUvfUm2b99+2rJbt26VnTt3yt13H/u6dmFhQUajkSwu6q/iDx06JPPzNi+EEEIIIT9ZnNWbnbqu5eqrr5bPfOYz8sUvflF2wW/JHkeOHJH9+/fL1q3HgtkuueQSSZJEbr311vUyBw4ckG9/+9ty6aWX/tjOnRBCCCHnB2f1Z6y3vOUt8qlPfUr+8i//UjqdzrpjMzU1Jc1mU9bW1mTv3r3yS7/0S7J161a577775J3vfKds2rRJfvEXf3G97Jve9CZ529veJnNzczI7Oytvf/vb5eKLL15/OmujVFUg5XE5N8+tfDUc6nUo04rY1N1R4chrtZbgGk0tcjaddOS0ocVnlF5FRCIQ52K3jL6/DR2JGc+4xmRUR2q2IrFTBtJ7PdkY941lSk8shr4qRlawHUECcH9t1ZRZXdbfDub9gSnT6OgU7ZmtO9Ty1Nxms00bRN20YX9CTUHurEp77BwiGYqelo1rV96GpNTSipyjod5usGqfTuyvajk2H9p+aE1rib4H7RfUjoQL4n02aWXZ1oRuv6xpE5QxDTkFubcOHckV1uWlHTf9nq73kUM2Ofr73/muWn7w4KOmzJE1PfbvhyThS2es3LsJLHVnKpEGSOrdVXt++7+v+7eG6/Dpz7zIbNOZ1G1uUo1FZBHEbDNPiEijpeetyVnnoYkMksvBqC6d1G8UklGEFrHzXyhW5i3gwYUhzB1DJ/W7SvX1myT2ekbZOMucJOFIt00Lk/VFJAYbP4O2ip2HKEZQB5ybRewc6YnEFaQYowPuPYyB/VK7SfpQxrs2ca5wjZTgdH80nNWbnQ9/+MMiInLZZZep9R/96EfljW98o0RRJHfeead84hOfkKWlJdm6dau87GUvk09/+tPSOekD5AMf+IDEcSyvf/3rpd/vy+WXXy4f+9jH3KdpCCGEEPKTxVm92fHu+k6m2WzK3/zN35xxP41GQ2688Ua58cYbn6hTI4QQQsiYcE4IyoQQQgghPy54s0MIIYSQseacydk5F6jrev2ntYEjpg0hZTKJ7L1ikkKKbeyIcyAop5D502pZARNlO0/2DCFVOYpt9yawLnSSKlEurkxaqf350YjEuZU9ywIFZdvGAaYsw7E8cTwfaRF24CT1jnpaul1bWjJlel1I4W1PmTKNthY3BQTvgZOwi+LmRG0F9HKk91MXdj85JKFWOYicQ0dEzCEp1ZG3Yxiz7Wkb2dDs4L7tsXC84eWRj5zEVTi2J3JGIciUQ1uHrAl9BTZv0rDJvTXkcA0cwfvo4UfU8nfu/K4p871771PLR7p2/A1gHD+jrRtnJrHXVBrqcdNsO4ItCPuxIxJn/WW1vPRD/bLle4b67yIiT32WfjI2jm2/JKmex1aW7ZjtwTy62rV915rR2zUmt6jlqt5AMrM4Iiz8W750RFZMCUahv3LmWSl0mSBw0psxzT705GN9vQSR8+ACCMkZjGNPUA5g3XBo+2UA7edJzPiGAGzP2kk+xo+GM5gq63s+87p/eKIyv9khhBBCyFjDmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNRSUTyIIRE74ullqhbJpTBV1vCrw3WSIK0QkgsTNzowWQjfNX2C2SRItJ7piGpyPl1Ccg4jmvSvVJiZD4mVpJcga0mcDsccO4QRRpBMREUiBrlFIdtKby1yvy0dWfF6DBGCnW2RiSqf5tqdmTJnmpF6XtfSYiBMrkYYgKxaFbZsMUlmj2MqKcaCPlYN3WDid2ZrSic5Jai/50Gxnzw9LlHhwEalQQN+AkL545JBa7nSsnA/h0hJG9tpMEl2vEsZa5Ij4g0JL6488aJOPv/1//59avvfeh02ZzZG+PrZusn03Aec3B0VSR/gWlEYD53oJQQp3rucUE2uhHx49oJPDRUSCUF93T3v6NlOm3daV8F68nMOFlhdW5s1CXaad6f6tIWnY209Z2TGLCfdewvMIBP7VVZ1SPuhboTqK9fXcwocWRKQJDzekmRXks1TXK86c5HwokyRa6MeHUkRsfl2WNUyZBOabfGAT20PR4w1ToQMntRq/P/EEZVznpiybdU7K8ile9H0q+M0OIYQQQsYa3uwQQgghZKzhzQ4hhBBCxhre7BBCCCFkrKGgfBJ1HUp1PBUycGTAONFCVDGyUuFwqOU/LzmzAYnJApJZVVmRDk3iwBEuA9hPGNh7WUwa9Y6FImkJCcXlSCcNi1hhtSysxFzkIKw6ScxBAKmiIMHhPkREChCxUQAXEelsWlDLWcNKe+3JSbWcZFaMjCItIIeQkB0646YWFL7tuKkgjTRLHAkX5G1MU/WMeRRWi+GKKVNXuk0jRzwsct3nK0ceMWUwPRoTWA8+fNRscz+su+gpW0yZnTu3quU4dSRwGOso4a4t7jfb7L//IbX8t39/vz2/R1fVcuK0TQseZtg8acdNK8F0c72fkSOt55DmK7Hdbw3jpIht26x2tXS72td9ORzYazVc1CnQm49YeTuGa+jRR21ydAgfMVFq2w/bAtPXi9zOUQN4CMFLBkfx3ktZHsF++pCivtaz4m4EknCU2Xm2EYJY3LASc6OhheQktf1rhGSYA5yPAalhTs8w1V9EUhCUvcT7AOaTGOe60N4+YCq5M8VLCecXVo5kvSH3+NjOz/RC8fXjbKgUIYQQQsh5Cm92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtZQUD6Jsg6lrI9JWIWTyBmDBBk7rZeAVFgGZ5a4EhBqY0cyjCG90k1QhlvXChNYxSbhYsqoiEgNcnEx1OJhPlgy2xSQdFxVtt4lWGelk6aKImxh5Gib3Ntb0gmwo6GVChsTWhCMQFgWERmBcBmEVnRGaS/AKnght4Jyuf03RgWCauGMrQzE3AgOhqKxiMioq9tm7chDpszRI0fUcmty2pRB4ffee6zwu7Kmx8CWLZt0AScV+mlP2wHbTJkyMQjAXvB2WehxgQ8YdBcPm22+9//uVcsPHFo1ZWYgJXjoPDvwCFiY/a69piZSPQbSCOTPxEqkcaYHwabZaVOm1daJ05Ujdk5WervlFS2pj4b2mpqMdV+OuvahhBiShBuJHderPZgX3AcM4PqoMB3ZboPXS+nNY7DsJe5imQgS0LOmMxeDbNyY2GTKNFszsOwJyrrPE2fex9RiM8njww8iEkNad+okKGfw8MXQGQMV7BtF4Diy/W0TnW2b44MpJYr4IuZhizB0HmY5se+N+cn8ZocQQggh4w1vdgghhBAy1vBmhxBCCCFjDW92CCGEEDLWUFA+iSTNJE2PNUldW/ErBBPKCQOVGJIpB7kVtDDRMoYYzEFPJ54eOx8t4AWQvikiEgZaZvNSKLFemJYsIlIWOk2zqkGeLZzk6BEKylbwtvauI6+BHJ0PtBg56lmJFFOgveTjBNNKHWkvjiGt1BEazRqQ47zkaBHdXpGxmkWKWrdNZLtFqlL3S11AInVuxezeihZzV44smTKLR3UbDwo7sEdDXa8jy7aes7Nawmxlej/tTTqhWkQkg34IxY6bEVwPKImLiCQJCMrQU91lmxwdwdjfvcWmVucgU64UjuQKEmnopKYnmZZPm5kuMzvlSaS6zMzctC3TAkHZuaak1ONiFrphsGa36S5qaT0f2TEbgaA6v9nK5XIE5rLISrjNpq4DJqDXThJ8GMJ8OHKkf5zbnAkRjzUR68Zpx/rcREQaTT3OJyamTZk2PBDRaHjpyPjQiZN4j3MQLFZO+jA+vJI6aeyYIJ8OnIcxYNn7TERCSBjfiBReOfsNKky/dlKWQ39/pzy3DZYjhBBCCDkv4c0OIYQQQsYa3uwQQgghZKzhzQ4hhBBCxhoKyidRDvtSVMcEK+8uMM20xJVlVrZLwZZKSytolSDqDkDCTRyZLQXxOY5s16EMVjvqVlVqsbQsrNRa5lr2RCG5Cm29A0hTjR0ZsCq1fDrorZkygzW9rhiA4FhZma09paXCpiMMGkHZEbwjaNM4cRJNE0zz1duEjnwcQH+HjmAbopzoDEBMqS4h9bS3alOCw0r3b7NlRdgI+i5rOPUO2mp529ZZe4LA8qJObz7wsD2/CNJeN8+2TZlGbCxwU6Yc6LZBQbka2XE+P6WvqUdXhqbMUl/351RmO6bZhPbLrBDaaOljdSb1+MN0bBGRKNHjZqJtr6m0qctUgd1PNdSibgCy8cB5SEHgmh84111V6nV5bfcTx7otCmdg90BAz+BjKc7stYoybxXb/eZw3eF1eOz89L6jVM8ladNK9SgoN5x05CbM4Sgji3hpw3ZewNRilIQDb76B/YZO5DimNWOisoh92AKvKY8QHrYJHLncfk45bNQ6fgzwmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNbzZIYQQQshYQ0H5JILg2H8iIrUj5PVWdXpv30keRZG4jqwQ2p7WcufkzBa1PDFhpTgU3KzcZhN/q9ImHdeQhlw7smctuu4hSLiRI/pJpI2yKreyYgByXeSIc42mFuWCll72pOEUUmQbTvulkFqNYrGICDapJ9eh7Idt7iWGYvpn7QihBYjjmJgtIlLlWt4edHUqsJf4HIGI6KU3p4k+v9KRA6tKn0/tJEWXUGbxiL5e9h+y6ddbtkzDGidxFSTNKHROsNZ1yAdDWNYyt4hICNdCHDoJsdAPsfPvwwZsN2HDaGViQtcry3QdWk17bHT8w8oK1AkcO27ZxN8RCPHVYEktDyJ77GXoS0x9FxEZQKp27lwvI5he0qbdzxBE+wr6shVZuTeAJOYw3MD1HNmOSRs69bnRmlbLWdOmQqcNLdHjgysiIkmszwel4eNrz7BsBWQc+e5DKCg1e2IxJB2jSH7sbOBzIDyzoIwSc+TV+wyp0McOtgGJ+THCb3YIIYQQMtbwZocQQgghYw1vdgghhBAy1vBmhxBCCCFjDQXlk4iSSOLjia5DNOtERIwU57x2PtDiV9a0yZSYrolSV1HYY6PDFce261A+rgorZZrE5MpJo831uhzSVMvSkSkrFJStwNpbPgLLNlE3BiEvSSE9dcIKgzEYtXj+IiKjUqdUm8Ri8frTK6P7FwW80JFnUcyuxcrHAYybwNsPlOlMb9IFHIG1gDTsKrfjBpNSK0+OFt2mRd41ZVDq37R5Ti9v3Wy2mWxrYTVNnZTbSI/+weqSKVOUuu59EJSLkSNUg/YYOBpkI8LEWju2IphGQ7HHasCDCgm0Z+TK5VoaTWJ73TUhvbc1bdt4EELy9opeRslZxEqtoZMAPMihbWwRkQCvD1vPfKj7atjXy6PcjseJ6Rm1XDkPTdQBPFgR23TuJIPE5EYHlp30ZugXnPtERHKYg7wHF3C68T5PkArmkrKwfZfDZ9dwaMdsDtuVTuK94JwEdfB8ZaNcO4VCFNm9tsEHP5z9nDifjSQ7i/CbHUIIIYSMObzZIYQQQshYw5sdQgghhIw1vNkhhBBCyFhDQfkkyjqU4nh6Z1XZ+8A41SJUktjmq0q9nZfUG2AicXR66VXEpvnWlZX2UD6uip4pU0Fisie4jUYgCI70fsvCHnvU0yLsYG3FlKkKnRycOKmnEcioZQiSprdNDHJibYVBTCSuHMk6CnUSahBa6TGENFrBROrKs/bwfByxHZa99OsMZO0YhFVvm0i0GDtyxPEcBG8vjXYEfSeBTbKOEkhlbekylZNKXkK/9PoDUwad5Xx05nRuFDkLJ923jiHNt7YiJ7aE55C2G7rPG4mX8Kz3nYAgX5eeoHxmubfZ1NJtEjv1zHSZONbjfOQ8jLHaA2k9smUaIAVHXvtB2nDpXB9DEJ0TmAOWjzxqthn09dyWTc6ZMmlTJ9WHkX1YJEr0GAihbWrnc2A0grnEqTcmjnsKbQT9aeYxEYlgDsKRhSK0iMhgiLK+vaZ6RuC3+0lCTGKGZa9SmPrtpdCH+DCGJx/jbk9dxvGbXfjNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYaOjsn0Wi0pJEea5I0dX5/ht9U8c3KIvYt4rXzw2YETkSW6d+SIyfwDgPPKuet0/g2bS/sqsZQKsf9wSCwGH7XrkvHBQKnoxjY0Dn0hYKmfUNz1p7Wyy3tqWSpfcOwaa7S/kZdgZsUOm/5rcCl8t4ijj8dB9CX+Du8iK03hu+J2N+/S+fN6IGcfmxhOKCISAlvn3deci8l+CKh85bpooK3ODvjGn0H9ALSzO53CP7XsG/rLVCHNLRjNo5wXOuxP7BNIytrer+5c73gteBdmzH0eSM7s+uF4ZOea9PIdJunqZ2uYwgwDJyxL6X252oIYEQfUEQkhnqWjg8Wglvj1aEzqee2QW7bGN+eXsLHkhfI111aUsvo0YiITM1rX6hq2GOjQ1TAeCyc6xBDX/PclilhPkRnUMS2ceI5O8YL1dsUjnOJzk6vb8NlB7CuKuxnWQWOapaeOUzRzo+2CIYn+m9TP/Ob0U+s8saHB7/ZIYQQQshYw5sdQgghhIw1vNkhhBBCyFhzVm92brjhBnnBC14gnU5HtmzZIq997Wvle9/7nipT17Xs3btXtm3bJs1mUy677DK56667VJnhcCjXXHONbNq0SdrttrzmNa+RBx988MmsCiGEEELOUc6qoHzbbbfJW97yFnnBC14gRVHIu971LtmzZ4985zvfkXb7mFz2vve9T97//vfLxz72MXnGM54h73nPe+SVr3ylfO9735NO59gbaq+99lr5n//zf8rNN98sc3Nz8ra3vU2uvPJK2bdvnwnsOx1BGKwHHKWOpIka1MgJr8MwKU9GxbfmGvnYs0grfOu0lYTL0RpuZMqgVDZy3gY9AsEN30rsvXU672kJMnVkRYGAsQjfaC727coZvHXYk/hQrisd2Q7fnh7HNmAMA7C8N1FjmQD61xM5a+g7r0xhwh6tVBg09OU6WNNlRn07JhBPzEZZceiE9k10IBzOCZYUkLVLEE/xTcsito2r2k5JOfRn3xEuM5Ape0N807xlWOi1Tj6bJDiMPScT5hiTISkiSaRXprE+3zhx5ikYW0FkgxwDmKdCcQLuci0t1zBvBc4bzQt443UY2PNDudcT23HW9AR+lLfxesFQSRGREbaxM2cWAz0n5dmU3VGkr5mRGaP2fAsI5sQQ1mPrdJsXGMopIjEI3qnTD0mi+xzHmvPxIkOY071QweFAX0P4cMuxnetrcZTqc/EeiJAKHiBxrgUj6ztjC5vdu35/tHJjgvJZvdn567/+a7X80Y9+VLZs2SL79u2Tn/3Zn5W6ruWDH/ygvOtd75LXve51IiLy8Y9/XObn5+VTn/qU/PZv/7YsLy/LRz7yEbnpppvkFa94hYiIfPKTn5QdO3bIF77wBXnVq171pNeLEEIIIecO55Szs7y8LCIis7PHYr7vvfdeOXjwoOzZs2e9TJZl8tKXvlTuuOMOERHZt2+f5Hmuymzbtk127969XgYZDoeysrKi/iOEEELIeHLO3OzUdS1vfetb5SUveYns3r1bREQOHjwoIiLz8/Oq7Pz8/PrfDh48KGmayszMzCnLIDfccINMTU2t/7djx44nujqEEEIIOUc4Z252rr76avnWt74l/+2//TfzNwwNquv6jEFCpytz3XXXyfLy8vp/+/fvf/wnTgghhJBzmnMiQfmaa66Rv/qrv5KvfOUrsn379vX1CwsLInLs25utW7eurz906ND6tz0LCwsyGo1kcXFRfbtz6NAhufTSS93jZVkmWWaTeOM4WZeHPYm0NOnInqCs1zXgrcQi9m3GKORVpRW/8A3mlSOUVbAf702xNb493ZHD8E26vdVltTxaWzLbpJAIG2VWPo4bk2q50e6YMs22bi9MMa4rW++6ghRZ723lIPphiqeIiMB+ytKKsBW0qXkbvTMm8gJFXdu/mNTqJZr210Acz/Vys2ml6xTGeekYjVFDJ1l7AnC5tKqP1bLHKkZ6uwQSqTF5VkRkAHXoda1MOVjVY78ZOlYm9EsB16G3xdSETgZfWbbnhynVWcNKpO2WbuNmy4rEKaQqRzgenX+XmbdiO2VQcsVrwVsXQb94ydabZ3X/dvvOXAermm07JnAOisXOqy1Iisa+q53Om5jU8ws+5CEiMlw+pJbD2M5JdQBvOQex2AuYx8TkPLdjNof95Lm9pvBhkcQTlDM9RiN4wKB2vq8oMeHZeeCggOuucsbNUPSxBpCg3IBzExFJIeHee0DIzOmneaP5+rIrIR9f58y5Hmf1m526ruXqq6+Wz3zmM/LFL35Rdu3apf6+a9cuWVhYkFtvvXV93Wg0kttuu239RuaSSy6RJElUmQMHDsi3v/3tU97sEEIIIeQnh7P6zc5b3vIW+dSnPiV/+Zd/KZ1OZ92xmZqakmazKUEQyLXXXivXX3+9XHTRRXLRRRfJ9ddfL61WS37t135tveyb3vQmedvb3iZzc3MyOzsrb3/72+Xiiy9efzqLEEIIIT+5nNWbnQ9/+MMiInLZZZep9R/96EfljW98o4iIvOMd75B+vy9vfvObZXFxUV74whfKLbfcsp6xIyLygQ98QOI4lte//vXS7/fl8ssvl4997GOPKWOHEEIIIePJWb3Z8fwGJAgC2bt3r+zdu/eUZRqNhtx4441y4403PoFnRwghhJBx4JwQlM8V4iST+LiEFTgyJRqCdeE1n/42KU5sGVStKhBhR4Ou2aYstPDmCXkJCGQowImIFCAfF076Zw1pn2Gtt2m1rejXaGnZuNmZNWVaE9NqOXaEPBSHTSJ1aduzirUUVzkSboFS4WDVlKlGWoStS0fmTZunXc6dpNQCBMGh0+YlCMpRYI8dgLBaweXb7dsxm4C0XBSeaHrmf3SUZtQ65iaAqbGe9B9CPbPMaoTFSMu8+dDKlDH01aNH9fXy4FErkW6b1oJl4SQ8ZyDvzm2etGVakIjuSZmYfAtNETuJ47hN5KSHB5Ee+0Ft2zib2KSX+7otkp4dj42G3u/QmQ9jEJ0lsHWwD2PYvotgswpU0soLY48h3Te39a7gOusv2VcIjfB6SPQ8Vjt2dI1p5+4DJfDAQe7MCygSD6yEG/X12Irg8yRwHjDBy7l2LGucVytn3AyH8KBKT5+Ll/iMn3feA9H4JUcU2bEV4AMkzo5OSMu5l/7scM48ek4IIYQQ8uOANzuEEEIIGWt4s0MIIYSQsYY3O4QQQggZaygon0RRFVKUx6QnFFpFRCI3h1WTNEBgTWyaagGycZ1rITkHUVbEpip7clgFgmVZ23tZlNdQpBMRGXa1vBvAsTNPUO7od5M1J6zIGUSYNmzFNPQgUWbDdFARkQrkVEySFhGpIOW0HNg2Lvq6H4rKSnFJExowAgmya18qm4NwPhxaWVZAyHNcWdkyv1ktpyCk9wZ2v0uQfLzatTIqBNia1GURkc607k8vrTkfYvrs6ZNxRUS6kM7dGzgiLJxgz4bRStXT47iR6vYMnWu329dtsbljr9XJjq5nltkyIYi6UeIleEMZEC5jtHRFJEm0QJ11Npsy+KBC5Qi1WAbTxFOnL4tCj+P+wEq4mJZbjZxkcLiE8pHt3xzGRaulE717fTtm81zXM3EeBIlBYi6cBw76q4/obZq6DmFk+xvzuANPYsa5zRGAcV3tPFhRwn7qUo8TLy3eyL1e+jDMq56InYP03YPPhdCJ/caHKLx0Y5zD3TR7kN39Nz8dW9nrO/OpA7/ZIYQQQshYw5sdQgghhIw1vNkhhBBCyFjDmx1CCCGEjDUUlE+iLHL5kf9ljagCHLNSrByGr7330ivzoRbuMLlXnJRRTJoNneRMTA4OHXmtgn33VhZNmWF3SS1PTICk6cjHWVPXO3KkMxQl89wRlCH1tIC2KUfWTi1zXaeysO2H/VA7EnMQQhKuI4Gv9fX5FEMtHyeOnFpDPwQgnoqIDEAubjScpGg456VlaCtHwExyPY4bXuppqiXMdtsKq1Md3ed9R4YOIeG3gPOtCtt3WUMfu+/IhhUIrNieIiJ5iUKy5uKd02abGsT7MLAy5UQHEoqdZGtMAm9MtJ0ykKyOIqdz7ADa03vVXwQSrjH8xaYW43U39NocUoJx/hERyRIYW57LC4KtlzAOl6+sVHqcTLSsMI9zyXDkJACDxNxo2OsuAZF9VMPDI57cC7Zs7cjHOL94D00YQdlJxcd5K0BTt7bzRF1BirHznQampmOisogViQsQ0L2kehSdMbFfRKQBQrwrWZs1Dsfboj+wArsHv9khhBBCyFjDmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNRSUTyIMTwqyDex9YIGymLMPm6bpiLAor8Er6j2pOYkhfdg7Ogi2XpnVFZ1YO+wumzIJVD2KtXkYBo48m2tJbOBIwsO+Fg973TVTZgDrMJXXa/MIBLfESaMN0O50IjkjkIJrR/gdgSA90dEyappZCbKGsbSybNs8irDPrayIqd6TcGzndGUw0ttgqqyISADnh7K0iMjhRx7Sx6pt+2WZHn9NMFar3G5TQ52y2NZ7BNsNh/b6GPT0+IvgGpuastJ1C9LOC2fMpm3o39QK3gmsixyTOIxBfsdUY0dQrkHMxgcbRETipm4Lr3+HMNZzmG/EedhhAInJnmiKCbrNhm0blE9H+JSHiExmmECt91N56cPwcEjtJGQ3QAovR3Zc5yW0X6rbvHAeQhGY/zz52DwQ4UnM4tULDmUCifUKL70ZP3MqJ0m/hMmiKO25oLSM6dxV10uz12ML528RkRSuO+9BGjvRO3PH8f8dDK307sFvdgghhBAy1vBmhxBCCCFjDW92CCGEEDLW8GaHEEIIIWMNBeWTqatj/8kp0ocxHdKR7UYghKaplQpHIHGNejqFN44cDReSMqvAyoAQBir9vk2sHXT1scQR0zAJN80gGrWy0llvZRWObeu9tAhibmnLVJCwWpa6LQonITYDITlxklLjRKewxqkd+jHsujXRMmU6ExNquQa5czRyJFJIKO5M2oRdqbS0N3Rk1DDWdRhAoikmQIvY1Ni2k+5r5MTKCn8Tbb2fsrZC7eqqlstRwq09aX1Nj5s6d5Jwe/p8AidhfDDQnZcGenl1Gca9iKSxToXOGlZijkAsLipb7wik0TryJHBItUWJ2alTlOrz8RKo61zXK4gnTJkK5o7emt7P6hokuIvIaATpuc51h7OU137Nlj6fNLXX1CrI5djCacNug6W8BOC1Pgi2pa1DCjJ0mUNiu+MQVyH0i/NkAH5WBI5gG8DcgdfLsTKnXxbnOsRkZpSRRURyWFc6acgmuRzbHEV3ESmhjXNHCk9Q1neuF6yWly59YgQOR/ba8eA3O4QQQggZa3izQwghhJCxhjc7hBBCCBlreLNDCCGEkLGGgvJJdNeGUqbH5C7PiavAVisc4S3C5MzSylN1oYU8TFT20nPrMMYVpkxRaMnMS1wNQF7ztK8U5N1iqIXGteUls02/r+tZO8meDRCvk5Zt5GoEyaggteaOwCog0g2HVkbtdk+ffCwikkB678qiFTfzAQjU0IBBqiViEZHmREcfJ7GXXberRb5Nm2dNmQoONhpB2qszHsNIy4DdNZtaHULiaqNhz295WW9XFnZslbnuqyG0ecNJR65ALuyvWaFxtavbvPCES3hYYARC7dyk7RdMGB9Vtt4pSOGhJ5GiYOmkrwtcv5iyHDjJxyX0NyZdi9hU4Mr59+vamn4wIEeZ13nYoYT5xbvsOpN6XLcnN5syKVwPzbZ98GMS6pkXZ06U7/ZhnASpKROKLhMn9sGFKNTH7oMsXQR2DhBIfK6dRPkwxH5wBGWcO9zZGE1dPfZrR1BGsdhxj00ZnMdErAwdCab4O1IzzAu9odN++OCCVwLk7diRmOPjovPQSff24Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8kkcOHhY0uPpwTMzVmCdbGkJLnOkQhTTCic1Nh+ABAdicRJbiS8BoTFNrWyHkmbhpPkOeloaDR07bAgSbm8AknBhN2pmkNTbsUmubRAaPTFt2F3RKyAhdjRwEqkh7TVwAjVjkE+DwMp1XUgALh3JuhTdD1NTup4TUEcRkQRs9z7KlSKyacsmfb6R/XfISl+3RZpqsXQic5KZRY8JZ2hJnoPY3reCdxJrWzHFuG4RCSCNNoJrobfmJGY78iSSgdg+GllhFUPHSxhduTMmIriG4pbtuzDV/Rs6Fwym99aVbeSygiRwSAaPnNT00oi6tv0ySCguc9uga2uQsgwyb+II6ZjenDqGcpaB/L66aI8N9XYCqCWBuaPV1NdL4iUzN6fUcqdj5ehDjz6ilpeWjpoyfZgPURJuOuN8BHNHZWKNRWpIM8fnS44VwhW272q4QGp4CKF0kq3xQRrH75YaUr9DR6CO4C0COCW5wjycTuHUyb55wA6KENoUl0VEguPnF3gfYg78ZocQQgghYw1vdgghhBAy1vBmhxBCCCFjDW92CCGEEDLWUFA+iUeWVyQ5bmHlpbW66hlIwo1t8mgI6a5RaFOCExAhY0xUdlIxA0jCrRypq8i10Djo2bTcEaQhxxjjKSI5CL+T01oG3LZzwWzTmphRy2FsBeoKZLvSSfxNMy0jBiBlorQpYgXb/sDu9/BRLU+O+jbZc3pG16E1OWnKCPTDEGTjOLP1xqTR3LFlE2iLriPzjqCecaz/rVKaJG6RHCT12mm/KNT7bWR2XKeJPlbiyPkVyKi9Fd3GhVNvTKwtjbwoMhqOYNlJTAXzddOkHkdbtmoBXEQkTHS6b+rEpjdhXNel7RdMGA8cGzWEBNgCzjdMbJsHIIUXhR2zvZ5eNyis/I5jABOfJ6at2L5pQffD/h/2TZlHHtHC7yPfP2DKPHhUn1/fEZ0nmroftk5r6XrX9jmzzfYLLlDLM5vtnNRo7lTLnckpU+bI4YNqeXVJzxNFbtszhfMdOhJunECis5eqjXhpyDAvFJig7HwOVBsoE50h0VtEJE51HbBOofMQRWDSm52U5RrHgJWPQ0hQDmObkB0d//wdjOyc5sFvdgghhBAy1vBmhxBCCCFjDW92CCGEEDLW8GaHEEIIIWMNBeWTWO711pNrvaTPZqYlqamOkzwK949OCK+NmQQxLXTkTxR3reQlUgx0+vBwbcWU6fW0cNdw0lM3z82q5alZLWlOTOllEZFGW0uEQWiFyxzSpL077WKkRch8qCXrwBGfo0zLbP3Sitl1dVgtz8zZtNw2CMmY7CpiJb0apODB0BHbIcW45aRLpyADerJiFGkRbzjQbVU6MmUN8amzU1b0mwRxs9m0bRMl+pzrwI4bPH5V7FfLvRVnPHb1NrUj9+a17t9HV2zCcwoJxE+5UI/Hzdu3m20wAVi8hwkglboobfthym0ldgwMQS5HidkJ9JZIUBq1EimGSfd7tm0E0meDWM8ljaYV8Wc26fP71nfuNWXu+e5DanngzJmttt5P2rYy6pGBvl5/+INltfz1H1rx+TnbdTryzzxnlymzdesWtTzVsYJyu/U0tXy4pYXlw4/oOoqIDHOQtSM7ZgNo8zjxPmr1DIhJ3Mf2o5dRNvayg3HuTUM704axlqyTzKZUp5BcnUKqdgKCv4hIDG0ROMc2I8BJR8ZSXlrzibcV9Ad23vPgNzuEEEIIGWt4s0MIIYSQsYY3O4QQQggZa3izQwghhJCxhoLySTSicF1QzmIrTcXgB0aRI1aBaYiC6LEyerskgyRXL00VtumvWtlzdXlJLQ9HTtIsJFFObtpiimx76tN1melptRxGVtJMUl2HyhFs01qX8eTtHFKp44YWY70U3kEfRd2jpkyno0XTdsemxtYgwdVOHUpIu85AWl9aXDXbNDJ9mTVS27+9rk6aHeU2qTcE2a/d0gI1JiqLiLRA3t48ZyXNVntaLXsSuNR6/FW1lWUH8G+nZluLzu2OTQA+/KhuryOLNg11BNPUam6PvaWpy0xO6WNPTNuE3fbktFouhvb8BgN9PlXl/Psw0u0Vib3uKhDZK2jP4dCOtbrUx06c6SaE+WZU2kIFrItgPEaJlVM7M/r6aEza62UehtKWrfbBhawFKbxOYjuOt2Gu2/ie+/TDBSIi++7WgvLiik14vvxFennXU20dOhO6EmG0Qy3jgyEiIsvLen5Z6jl9B58NSeo8WAHzqCfzmv3CnOTNUbgqcB4mwHTk1Dk/fEAjTXDZfg6giO0lMweoKNd2zJp6eir28TK9vu17D36zQwghhJCxhjc7hBBCCBlrNvQz1h/90R895h3/5m/+pnQ6Nq+DEEIIIeTJZEM3O9dee61s377d/f3NY//+/XLllVfyZocQQgghZ50NC8pf//rXZcsWK7N6nK83OZsnJyU5LnnGoZfqeObX1wehviGsHeksBgH5hBT9o31YgRVfY9/v2ZTg0VDLu1FsBbLNs7pvtu14iinTmZ1Xy42mlfQQbK3QScVExax2YqprlNUKXW+UkUVEustaYExCK4i25iDh2UnkzHNMQ7aybDnUaZ1JCgmxia1TBSb20aNLpgyKfZ7QiDJqUOv+3rrFkXBBEvaSwVdAbB+NbL2LSvdLmduxXxRaxg8DkPMdsb0K9Fh/tGuPXUHacOlMW42GTj9OING7jqycKrAuaTrpzaV+EMAJLpchjNGRZ97Xuu5lCanL3lwCV0zkJKvH8A/QIHIeboAximPAS+HFtNwtW6ZNmYHoY4VtO2aHcA0trVkJPGjosTW3ZbNafuELdF+KiGye1Of3zTsfNGW+9X2dfjy3Zasps6WlBeVWG9LNnbk4AlE3dOo0gP5OGjalOmvo8Yfp7CIiIXyeGLnXmcewTBTaLynMZ1Bs64nng2XcbXA8etI1DDhv7GOadFnaC68sjs3XpTepOWzI2Xn3u98tExM24v5UvPOd75TZ2dkzlvvKV74ir371q2Xbtm0SBIH8xV/8hfr7G9/4RgmCQP33ohdpxX44HMo111wjmzZtkna7La95zWvkwQftwCeEEELITyYbvtlptex7Y07FddddJ9PwuLJHt9uV5z3vefKhD33olGV+7ud+Tg4cOLD+3+c//3n192uvvVY++9nPys033yy33367rK2tyZVXXuneCRJCCCHkJ4+zmrNzxRVXyBVXXHHaMlmWycKC/XpeRGR5eVk+8pGPyE033SSveMUrRETkk5/8pOzYsUO+8IUvyKte9Sp3u+FwKMPhj3JMVpwXFBJCCCFkPNjQNzs/8zM/I4uLixve6Ute8hJ56CH7ttjHw5e//GXZsmWLPOMZz5Df+q3fkkOHDq3/bd++fZLnuezZs2d93bZt22T37t1yxx13nHKfN9xwg0xNTa3/t2PHjlOWJYQQQsj5zYa+2fnmN78p//f//t8NeTgnyp/8zcnj5YorrpBf/uVflp07d8q9994rv//7vy8vf/nLZd++fZJlmRw8eFDSNJWZGZ3cOT8/LwcPHjzlfq+77jp561vfur68srJy/IanWle7ktj+bJckep2XrokSIYpgIiIVyJ4hJFUmiSP6gTRaOxJkBKnPE5M2LXdms/6WrNW24lwFwhem+SaO8GakR0dQRjxBGTerSi0NFyMrA8aR/smyPTttyoxyXWYw6JoymAK9umTLhCAFV6Ilvryw9S5hmzi09Z5o6/1UlU2KnpjQQuOmWd2XeP4iIgcfeVQt73/okClz/8NH1PIRJ40WfxWOnP5tgNQ/0QDpGiPIRWR5WR9rbWR/fg4C3RaZs59mpq/NONNidhTba7WCf+ulTnJ0nOjzG43svBaDzFsWdlotBcYNNGheWjEbaxlmjmgKDzd4SbjdZfjmOoCHKLx/8yZ6LGGyuYjIAOrZXbTX5sqKXvfIo/bBimZDS/+9gZ7bwh32m/2LfmqnPl3n/O7+fzpl+f77HzZlJif1/Ndo63o3GrY9i1L7q4Ej3g8DkI+b06YM9lXiCMpRpNsYhWXvQRB8SAaT10VEQhCJo9COWdwOl72HPDDp3wl4NvKx91mGnw0nZOSTKU4Iys7fPDb8M9bll1/uRlN7YIUfL294wxvW///du3fL85//fNm5c6d87nOfk9e97nWn3K6u69OeQ5ZlkmX2g4EQQggh48eGbnbuvffex7zj7du3P+ZtzsTWrVtl586dcvfdd4uIyMLCgoxGI1lcXFTf7hw6dEguvfTSJ/z4hBBCCDn/2NDNzs6dO89c6EngyJEjsn//ftm69VhewiWXXCJJksitt94qr3/960VE5MCBA/Ltb39b3ve+953NUyWEEELIOcJZfRprbW1NfvCDH6wv33vvvfLNb35TZmdnZXZ2Vvbu3Su/9Eu/JFu3bpX77rtP3vnOd8qmTZvkF3/xF0VEZGpqSt70pjfJ2972Npmbm5PZ2Vl5+9vfLhdffPH601mPhd6gL/nx38C9QLkQfh/vONlDMQT5pZnztlv47TPN9O+7hfP7fQg+BP52KyLSaunz6UzbtxA3Wvo36sj5jT+ANxOH8PNl6Ly5OAKPoqzt77n4K2jhvBG+gIC2Xl97M1Wpf98/dj76N9/h0JYpCn3w3HHKSnijOr6NXkQkS7UbUmL4lfNTb29Vewp1bOudj3R7LWy70JTpTGoP5eGHtYPwvXv2m22+t187Okt92zb483TuvDm7B5sNR44zBpvF8Jt+AwuIGNnLieOTSPSY2Nyy/k2joa+7dkf7hVVgfQgBTyEIbb+YkDRn7ONzHl4oY56fPvAzCO35leBtlZVtv6rEa9M5O+gHrOXAuRYSVBadavf7EPhZ2PZ7aFn36Ld+aL2emQ5sF+j+bST6LeMiIumF29Ty057xVFPm8GF9rHv227enX7h9SS3H4CpJbOeAFNy42um7ONLXata2/mTW0PX0QvowEDDEMes5O2adU2YDa2q4GtGjQZ9SxAYEehEweaHHde5cLyMYk54DfOI66w/snOZxVm92vv71r8vLXvay9eUT0vBVV10lH/7wh+XOO++UT3ziE7K0tCRbt26Vl73sZfLpT39aJTR/4AMfkDiO5fWvf730+325/PLL5WMf+9iGX21BCCGEkPHmrN7sXHbZZaeVnv/mb/7mjPtoNBpy4403yo033vhEnhohhBBCxoQN5ewQQgghhJyvPOabnTe+8Y3yla985cdxLoQQQgghTziP+Wes1dVV2bNnj+zYsUN+8zd/U6666iq54IILfhzn9qQz0ZqQ9Lho6wZtwRuFnRc/Swqil/dGVvTHCngDchw5b7xu6WNXlRespsW51oR9+3wIAVj4pmoRkaDW4llYQ1Bi6GQUgVyHb2wWseFRTiaVVHDsOtfyWTW0QX8YKlUHVvTLIQwuzx2JdKTFuU7H9sNooPeDwXSh81rsutTbzC3Yty8/5alasCxGNtjv+8cjF07wtf/3Q7XcaNo2f+5zp9XyxISVKRMQ79fWnAAvEGHvf8C+YuX7+0E+DbQg327YN48/cki/tLfObb0xvGyu7YQyQoBm2tJjP3ZEfPOWducXdSyDgWgiIjWM9SCy02okGOSnJ4HKC2ls6HHc7lgxO41h/FX2omrAUF/r6Wto5DyMgZdvENj5BrfrlfbYDxzUY6Lbs2MLZfeJth4DMx0b8DrZ0fttbbVj6xkX6fiT79/1qCmzsqr3Mz2n+zdObL9gAJ/zMnqJICAQwwFFRFKQob232ocBCvJ4Pt48C8vOmC2NSGw/zFAuLmCedYP+8jPLx8ORntOHjmA8gAdTvDInpOWBcwyPx/zNzp//+Z/LQw89JFdffbX82Z/9mTzlKU+RK664Qv7H//gf5okDQgghhJCzzeNydubm5uR3f/d35Rvf+Ib83d/9nTz96U+X3/iN35Bt27bJ7/3e762H/hFCCCGEnG3+QYLygQMH5JZbbpFbbrlFoiiSn//5n5e77rpLnv3sZ8sHPvCBJ+ocCSGEEEIeN4/5ZifPc/nzP/9zufLKK2Xnzp3yZ3/2Z/J7v/d7cuDAAfn4xz8ut9xyi9x0003yh3/4hz+O8yWEEEIIeUw8ZkF569atUlWV/Oqv/qr83d/9nfz0T/+0KfOqV71Kpqenn4DTe3JZG/YlKY7d/w1zK37FPS3OeW9xbsNbc92USXDMUASLIivYYipr5bwpNgRJOHLexluB0FYVVu4qa32CORyrLq2blVW6np4QipJj5SRFo/c1GqJMad+anECq8cgR5/LesloOnazeAOvtjAF8i3MU6L6bnLIy5a6n6jTkC3bY16/kICTfvu9OU+bAok6AfdpTp9XylgUraUYgWHqCaA5Sa3uzTXtNU9138ztmTZkL7tHn9827FtXyqLaJ49u37VLLDz34fVOmBmldnLGfZlrejSD51ovzSqBMGNiUVvA4pSjs2MfrtSrs+RWwo+UVPY6bTXu9JJCeW1X2/MJIj7fECVOdaOsyIcxbhdj5BvPP0syO68FI90u3sP92HvZ1mWZq5yS47KQ/0iuGlX0gYjDU191a1wqsExO6TYPQ9svSir7u5gd6uXbE8VIwLd5+jNYwLwROkjAK3pEjCeP3EdgvnjCP67wUY1znycb4wAbOzf5DHvAgiJN8PBzoOXTYs3P6oK/XDfv2wYUTKcvD/Al+6/kJPvCBD8gv//IvS6NhL84TzMzMPK6XhxJCCCGEPNE85pud3/iN3/hxnAchhBBCyI8FJigTQgghZKzhzQ4hhBBCxpqz+iLQc400SiU5nkhaFFaIEtEiVFFa+aqAxN8y95JRte9UglQ4qqxwtXJUp3/WjlgMIctSZmfu3iiwUlyWgNiHBZzo4xrkYxQyRawUVzllaliHZYLQk671Ga4uL5oygzUtOkeOKJm1tEDbG9h+GIEMNzGhxc2ZLTvMNps26STh4cCOrVvv+Hu1fGDpiCnz/OfOq+W5LVokHjni+KOP6LY4eHDJlFkb6vZrtK3oPNXRkujUtHX25i+YVMs/U+nz2fedQ2abJH2KWm5OWPG5u6q3iyPnmmqhQKtFzjC014IJN3fG9SjHBwNMEalALK2d/azC+Msg7Tx0/tlp3NjAqYOg9G9PEPeNbRE49jYmoM/PbDJlfnC/3rEnrA5BYp5qORI9CNNDSCkfOVJ4PtSS66hnJdws0fsNaysxr67qJPB+d1Ut17U9NgQ+y1BssnWU6fklrK0EPgQB2EtZxsm3hgFYOgn4OcjGhZMwjH3lpWjjQzEoHxcj5/MP0pFxWUSkGOr5L3fmwxGUwetQROTEsz/eAyke/GaHEEIIIWMNb3YIIYQQMtbwZocQQgghYw1vdgghhBAy1lBQPonJ6VlJj0tt4cqyLQDicFBbOWwIiZFpYtM/C5QIQWgsckf8AomrdGTUQU/LdUliuzcBMTeO7P1uICh8aUvOS+0sQMSOKisAB5AIK47siamdmK7anuzYY4OkF4VWYE1ACG21rWAbQlsUIyu+zc1pKXh+u04ARhlZRCQO9fl967s/MGV++NDDavmnn7PFlJmc0XXvDvX5rXW1BCsicnBRj6W/+6EtM8p1vbdutu23qQvS6MCOUdmiz292XrfV05asZHjfYZ2UOjs7b8oMu1rWnnIE6omOlqMjkP5rJ3UZA2tHjvQ/gNT0wcBedwG4p16ga5w2oYzeTxA4ie2ZrmcUWxEWL5DSmZNCSFIvat13/Z4dE1G4pJZnJ+243jw9p5YPrDxkyqTQDxdu2WbKrEGi7tHuUbVc4yTgrPNk2X6u2wKlVxGRPsyZy0cPwrJtT3xuoVvZdOnWnB5cWcuOmyTTc1Ac2/k6gM8GlOFRRhYRGQ60FDzo9UwZ7HOvTA7tVUKCcuWJweYz0kuFBqHfS4GGy8F7wKA+ng4fOinXHvxmhxBCCCFjDW92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtZQUD6JbbueJY3jAu/S4UfN31eXHlHLRekIb30th1V1ZMrUgRay4j6KYDZ1sgtlRgOnzKqW7Tptm8I7NTOtlienp0yZQPT5YcAqCsEiIlGkLc04szJls6Ul0twRQqXWglsjhaRZT+SEUTw9YwXWKtfn56XcYrVm5qyU2erodTOzOvE3ja0sd+iQ7odvfvdeU2bnBboftmy2IvZqX7dXDyThVUeeveeIlgG/94Ajvxe6TRf7to2fvh3b1NazqrXkuGVW993CFiuFP3hIpyMfOGrFduypzuSEKZM0UACGBOXYSesuIWnWue7iRI+bYGTbGG1KTxodgUweJ5g4bneLF54n3mPCb+TImiUIoBk8pFCWzvkO9FzSbNsE5Wc+5Vlq+eHFNVPmyIy+OJuZHQOHVvT1kcCDApEjsJaYADywY7YGWXa1Z+eb1WX9IMqydqMliOz8HcDcliTOgyqDJbVcOfspQCbHOfT40fQ2BUrX9nrugXy8trJiyqwt6/PDzw4RkQoS70NIyY+d8RjHISzbesdQz8CpdwhPr5wu5bv0nghw4Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8klsu+Bp0mwcE+gmJ6yQt3RUy6krICyLiORDEL1GTqJpqEW54VDLV6O+TbNcWtXS2cqKFcowJXaqawXqHibC9q1U2GrqRNAYJOGJyWl7bBAja0coGw51vYZOQnGItjEI3lHgyGiQlDpwkoQrTPaMbLJ11tLia6ttJeHmxLQu09KyYlnYNv/uD/ar5RWnf593wVP0uUxYyXoE8nspum3WRlYYfPiwFhhR3BWxKa1Hj1rpcX+qJcKJhm2/Bki4K2t6vx3rKkoa6zodBnFSRGQWksBnZ2y/xJEuE4A8WTgSY13qY4dO2msA/x4MQ/vvwzXolzi1ibpG2IfxmOdWni1A4I9iW2+pdb0r5+GBAM45S7Uk7F2HQ5CsvXE9N63l/H9y8SWmTLe3Ty3/YL+V87sgfXcm9FgrSzseRyM9jodOv3TXIEl4aOXyCB54CGGui5tWhp+c0ynfSdP2ywq47oPS9i+67rFYeRvHXwEJyqPC1mk40scaDO2xuz3dpjiGRURqOHYG12HtJT5DP7jSNUr/zlcuGwlFPjGdVJHz0IADv9khhBBCyFjDmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNRSUT2Jubl5azWMiYRvSfkVEJiZ1yu3K8pwps7Kkk5fz/rIpE9UgjIEYOXJkxQiSKOc323TfHIy3xRUrH692tZi2uOqIhzO6nlmi74krJyG23dHb5KkjhIoW0xInZbnRBOFXdJ3yga3T0hHd5t1Vmxg6CcnRnZnNpkxZgVA7NWvKNEBahqaRZafNv3/fAbU8PWHl3nYLUm1zJ1IX3OIo1GOiEmsAr6zo/vW8vwTSXVFEFBHp9fT5lLWVKTEtPIc6DJyY4DTCY1mBugly9PSkvTYxWLuAaygKnYTdAqTM0J5fDkLo4rJ9MCCMdVskgZO6C32Vj87cLyGYm7XTvwkkMdelld8xQbmENh450jqOpcIRYRN40GKbkzj+6hf+I7X8fxp3mjJf/+HDajmFtOsK+0lE+vBQhwxt3x04pOeBkSNvY5J1Heqx1p60c/xER68LEpv6PQp025SOQxvGKSxbmRcF5SCCtrFdJznUM/HE7EyPk6pvj40tWqB87IzzGq5nXD62ITxMENvvXPBBALwWjm147H/KkIIyIYQQQghvdgghhBAy3vBmhxBCCCFjDW92CCGEEDLWUFA+iUajJc3j6cENR55tt3Wq7UTbptx2JrQ8ueykLPdWtFCLoqSXOjkFcvTMtD12PtTycRpZgezgUS3tHV62acNHIXm0gcKqI8Xhyshpv6LW9eqE9vwiiM4cQZ2Gq1b4rgtdptmyCbaNlm6v0Dl2E8okiZVwG6mWCutKi4jLK7Y9F1e1DPi0nbbvWk3dNoVzfnWu2yZJ9H42TVvpeqKxqJYPihXSy0qriPOzVspchHZfWbPS6By0H/ZdHFtBtDvQcmHlGJfz03osTU7Y/jX+ItQpDK0CnEOqrZeyXNV6uzSzx65B1Kwd2ziHFFtMws2SM0vNONZERAT2UxQ2bTiIdPslIIi22vZa7a7o/QwGVgKtoa/aLXu9zHa0jP9Pn7vTlHnWDi023/PIUbW8OrL1zuF8jqxYMXtxVffnjDNuQhizEzM6HXlybsFsgw9WjEorR9eBbuM0c+a6VO8nju2DCwJjq4C0+MCR1vF6HuaOXN7TfRX37GdOCfXCcW2vZpESylTOdVfjOif9GpP0Q+ez7IS0XLp6v4Xf7BBCCCFkrOHNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYaCsonEYbhenJj5Ly+PoUk19RJmk0zLbDGqZXOIkjKXFvUCbthZOXPRkMfK8tsamcNQtnsJiua1iA/P3Ro0ZRZGWghcAkSOPP9WrAWEXkOpM9OzthjNye1DOilsgYgOvfWtFCdd60AXIPTGjsSaVVqwc2Tj9PGhF52klEFpNYS6jAYWJlyNNKiJNbx2H50mRIjgUUkRFkWxuim9iazzbOe9iy1fP9DR02ZdkO312TbJhQvd3Vy8DC3euIQRNJwpMdxFdi2WVrT7ddO7TX19Au2qOXUuaZwEESBHo+ewhiBGFk7odVJCiJnbOtQ1rotGt61Cac8GuljZ6kVMLOGvlbr0grUJYzHwEmaDUF8raFM5FQcU4vDyErMAg8TeONaan3OXhryti364YttF1yglgdOmvhwpNu8u2bnhayhz3nOEe8nOpCIjtKwM8cPQWTPHak+wc8BJx05ilFQtmUEBOQ8hOvOseGLUpfJMjtm8XMqzeyxhzCX1TBO8sLuNwzxOjRFTJp5GDnXs9mxs6MT48/7m7eLDZUihBBCCDlP4c0OIYQQQsYa3uwQQgghZKzhzQ4hhBBCxhoKyicRBIEEx6WnwFEaAxAas6aTyBmB/OckP1YgFY4GWq4rh2tmm0aqpa66tFJcAGmbzbY9vy2ZlsG8Ohw6oqXl1a5O3R05iZyHjuhzTps2JThp6JRTp2mkhH33u3q/ed8KjhOTWjJsgnQoIlLDfX17asaUSUDejpx/CuC4QMm6LrxcUY0T1Ls+7k6AMryISAW2H0rCcWjHxPSkliC3XXCRKdMUfUL9vk2jrUDCLQpbicUVkMlDPc4Htd1muaelxxc+dasp8/SnbFfLcWaFRrzuKkgSDtFiF5tIXJY2fTgfwVivbf+OBlre9hK88UEFfMBg0Nf7EBGRSvd36SQJhzCDB+JIriCWxoku4z1EEYOoGzqp7mmszy92UqCLHBKAnXETiD4/TDKfatjrGac/bz4sQd51U3ihLQK4xvLctnm3p+fDykkAjuAhidhpvxCEZE/UxfmmqvSx4tjK26Z/HfE5gYcvksSWwUsmh4mrcoT5ugbp30l4xk9WL90c+yF2EuVPPExUeB8kDvxmhxBCCCFjDW92CCGEEDLWnNWbna985Svy6le/WrZt2yZBEMhf/MVfqL/XdS179+6Vbdu2SbPZlMsuu0zuuusuVWY4HMo111wjmzZtkna7La95zWvkwQcffBJrQQghhJBzmbN6s9PtduV5z3uefOhDH3L//r73vU/e//73y4c+9CH52te+JgsLC/LKV75SVld/9Pv2tddeK5/97Gfl5ptvlttvv13W1tbkyiuvlLI8sztBCCGEkPHnrArKV1xxhVxxxRXu3+q6lg9+8IPyrne9S173uteJiMjHP/5xmZ+fl0996lPy27/927K8vCwf+chH5KabbpJXvOIVIiLyyU9+Unbs2CFf+MIX5FWvetVjOp8wDNZlqcALbLRnadagkJxlNnm0PaETQ4c9LcsW3SPO2Wkxt99zJFIQGrOmkxIMEuHUpL3fbbf0dqOBPvaRo1amPLC4rJaDZNmUmQefrdWyIja238riklqeyGwvNOB8C0cqxATYyhOJHdEQqeAmOgehunbGRAtSeB9+1Ka9PmNRr5uYseeCwmAxArE910ncIiINSFx91jN3mTIPPfiwWh4OrPQYgjA4Gtjxt1ZBWyT6hId92zZPn9+sll948TNMGRTQg9oK8mGl5eIapGvvn3U1nG8Q2OmwzLWMmiR2R2Wl+zcMPGESRFMQ25tuIro+du2kapcgqTsh0FKV+jprtvR8k6T22BOdabXszYeYhBvHtm2CQI/R1RV7zdeVPuukPa+P40iuKHh7Sb34IIUnR9eFPnZ3oMfRYGDHWg1WOMrIIiIVflo4SceYiO6Vqd3sb7UXswbHcejMa5j+33Q+K3DMRiASV6XdbwYPVmTO2MIE9NhJqsd13hsNwuPScuQkWHucs87OvffeKwcPHpQ9e/asr8uyTF760pfKHXfcISIi+/btkzzPVZlt27bJ7t2718t4DIdDWVlZUf8RQgghZDw5Z292Dh48KCIi8/P6Ln9+fn79bwcPHpQ0TWVmZuaUZTxuuOEGmZqaWv9vx44dT/DZE0IIIeRc4Zy92TkB5o/UdW3WIWcqc91118ny8vL6f/v3739CzpUQQggh5x7n7M3OwsKCiIj5hubQoUPr3/YsLCzIaDSSxcXFU5bxyLJMJicn1X+EEEIIGU/O2QTlXbt2ycLCgtx6663yj/7RPxIRkdFoJLfddpv823/7b0VE5JJLLpEkSeTWW2+V17/+9SIicuDAAfn2t78t73vf+x7zMaMwkui49BQ4oikKybUrRsEr7h2xqt2eUMtrDS2Hxc42RV9Lt8Nh35SZ6OibtqqyQt4QhLvQOdYAUopRam5PWiEvWtPC6qNHlkyZEKTRia5N7WzCsUaQYFs7ycLFCJI9Qyu8tTo6lbUsrHiYi16X92yibgD/POiu6nrnfdsvU9C/33/UCt7f/+FRtfzUHU7MckOLfX0oUgdOCi9IhkFuxeJeXwvxjz561JRJI2iLwqqwOXyZujzQK3Zt2mS2uez5u9XyHPwkLSJS5Ho8jrq2nnWhxdcWPATgPV6Aya2Bk7LcgDRkV6ZM9bhBYd49PIjuRe6lN4OgHNnrDs3cKLbHznPoqwqkZufYQaDLJE4KL6YqJ4mdS4JAP6iQNZzrF44fQLK1l2bfhQc0PGEeE8Vd2Rd+ARjCfkpnTFSxnkvqwNYphnVBbdsGukFqJ2Ecv48o4borK3sd1pCY7cvlkMTspBBnqT7nOoYytZPeDGUwqVlEJAJpOXbGDZ5P6CUoH5+MQ5yUT8FZvdlZW1uTH/zgB+vL9957r3zzm9+U2dlZufDCC+Xaa6+V66+/Xi666CK56KKL5Prrr5dWqyW/9mu/JiIiU1NT8qY3vUne9ra3ydzcnMzOzsrb3/52ufjii9efziKEEELITzZn9Wbn61//urzsZS9bX37rW98qIiJXXXWVfOxjH5N3vOMd0u/35c1vfrMsLi7KC1/4Qrnlllukc9K7jz7wgQ9IHMfy+te/Xvr9vlx++eXysY99zH0nFSGEEEJ+8jirNzuXXXaZ1M7XhCcIgkD27t0re/fuPWWZRqMhN954o9x4440/hjMkhBBCyPnOOSsoE0IIIYQ8EZyzgvLZIIoCiU4If26apf4WKnQSTQM3PVWDb7RHITlCEUxECtgmccqMhlr0ixMrzrXaOkm4dL5YazS1CIsi2kzb7jea13L0I48umTJLK1q47PYGpkynoesVwP14XlvhrTfQYp/3qpCy1NLtqOfIvKU+nzq354cuXCm6PQddm44cFiBcOnLvvh8cVsu9gT32wiYtqJYg7eWO37gKYnvRtfudKHS/VIkVVmMQYevSXh/DSo/j5z/1ArX8woufabbZDNJy4GQAjwa67wZdK1CvrejtqkLXYW6LfTozAhneSygWFCOdMhMTWlgd9K0s2wTRGQXb5UXd/yIiKaRft5w09hDaq9GyZRod/UBEBd+mV4UdExE+3OBEMzdaut4ovYrYa7G3agX+GPqhD5Jw1LKJ6FGi65SGdk7K+0tqedC36c0ox2aprkPlfETWiW7j0JG3K/j8KArns6LUbRwETiPDfip4KAYTtEVESkiKdtPi4bMsSeznSQQPepgHcpxfZXAMeJ9lUaTLeAnPAUy0fpJMBf97evjNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYa3uwQQgghZKyhoHwSYRD+KI3REaJQUPZAr7nGmEwRqSH1sgKJz7sDbUB6btiwImIOQm0U2UqYdY7M24aUUzw/z3cLQLLOnVRLlDJjxzpbXtVtg4nKeC4iIumy3m93ZIW1FqQYb56z7Tc9M62Wk8a0KdMEKTOG/aYdK/embS2nbtn/oClz70H9ypN7HrYi58Ejun+nJkCmdITBPsjQlTMe52AW2DSdmTJpous5C4nUIiI7L9iulrdv36aWJ6emzTZRiCKnbb8KBPnVVSsA55Ao3mpBpUr7Spg41SnLgSNTVmDwe4m6BQi+hZNSXeb6mupD0nava/t7AMJqp2NTv4uhlneThi0DQccyGmqJvrti5Wi8MtOJWVMGw3uryorEKBsPRtain4IHIjAtN4zsx1QCKbx5Yeeb4UCP2TDxBGB9PjV8JFZixwQey7umUGyvxLZNGODDGM5DMSgkw7EKZzLOc32sKrdjAuViLyFbsN1RbHfSmzGV3Mu7M/3r2scoQztJ0cfb63TxNeo4GypFCCGEEHKewpsdQgghhIw1vNkhhBBCyFhDZ+ckgiiUYD3wyAmBMplKZw4edN+aC8vDkf6NddC3wXSTDXhDs+PE1KJ/d/XeuF7Cb8BF4STRwSnjb6y18xN1s6kdjrkZ5/dx+G3WC7vC34GH8Ftt7rzVuTWh/ZunTNu3QzdSXQd8e7CISIBv6I1tgGHYgDCzRhuWzSYyu2WHWr5o98WmTG9Nvx368JEjpgw6T+joDAbWd1nraRckdYImcV2n5bRfpiuGIXkiIgmUGY50/5bOkMDf6zG3TERkAMGIa2s2BM8EfoIrEET2esE6VZHtb7xehk4b5xAiWDphlMvLui1G6K44b3UuKt02Pedt7yUELE508G3vIr2ervvyqg7X6/UdT2qk67Rlaospg3hts7QEbz1P7ZyEPmKS6uu5dv5NPoDQTQzSExGpYaIqc+tF1bX2WcJAj4Egse1ZgsfVG1kfB988HjoftfjpUTs+IjqK6K953ozxekrr7ASwXeyMP9vuepvI+4zEZScwEK/5wHF2TNt4E8OJ/F86O4QQQgghvNkhhBBCyJjDmx1CCCGEjDW82SGEEELIWENB+SSCMFgPRXKdJ7SmKkesAnHYE78SeNNus6mFvKEjGWYxSI+OdFaDAYpvVxcRKTHQ0BHcchDuWk0tcga1lQFD0VLcBfM2xG3Hdv2G65Hzxl58q++m2Wm1PAFvcBYRyUF07q9ZkTMFLzeNHXEc+rPhBDcG0J+jQvdDENhLCt8YLoGVhLP2tFre2rRjAN+mPRhpIdQLJcOB7AW05fBW9nxoRdMWhCmmjmiaw2vXQzD6a0dERAkyH9ljRzG8STnxwtf08hDC9orc7hcF1hQFdREZokjsNDFeLw/tf9iUiTM9brds3az3UdjreRWCBg8+smjKNERvNxxaOTpJOmq539PXx8MPPGD329bbbHL+XYxSeNcRqPFN41FmAyt7ud5P1NV12DzpPGhh3ipu+zesdb9EgZ1vYhBo4xTe5J5ZEX/Q1WMCgx2Pnc+Z3xqP4bK1MwYqXGfGnx2Q+LGEUrOISAlzeOCE/0HmoRGJvYdkNoSxj72HeDbwJvPjY8D7DPPgNzuEEEIIGWt4s0MIIYSQsYY3O4QQQggZa3izQwghhJCxhoIyEpz4H+9NrFDUMYADfEuuI4dF8IbZRkNLcGHivNG80qJap2VlyiTW51NWjlQIMliWOGIaCIP91RW1nGZ22ExN6jrEifPmbBB+y9oeuwXJvAFIrkHoCMChbosotQJ1D6TM3BGUU7CYR7kVD1HwjjEyOfBkQN0viROzXEGZ2Ek6boawLtQiZ+K85b4PwupgYFNkRyAkz87N2DKQjru6ZGVZHOtZU0uu3a59G/jkpC7jJQljEnjpPDwwhDfdryzrFPLJaT2GRUQSkIYDJ50br1WvX0qQYw8vLpkyQarH0vwF+o3wlTMVr3X1Nj3nbe8XzOnrZWXV9m9S6xTjtTV9vl6C8vScfpgA06ZFRHKQcHsgI4uIjHIYE46gnLb0wwwRJCiXzsMY7Zbuu7Whve4GQ90Wo5GTJAzXYgap6bEn1Ze63t0V2y8mTNpJbDevjXfk/BzqgMngUeakvMP1EsTOHA+fFSgji9gHXLyk4zPiyMfmzQP4agJ3u1O/GR3Tqk8Fv9khhBBCyFjDmx1CCCGEjDW82SGEEELIWMObHUIIIYSMNRSUTyKUQMLjIhQ6VB61J01BIqf3intMUG5PdGDZpufmIBWKk3gZZ5Aq2rOyYlnqFFFPsg5B1J1oaYlv8yYrsA4gDbk3tDJgA2TPLGubMjmIfCsgZWJKtIjIIsiynbaVIKentNDYaFoJfHnxqFouC9t+jUT3ZzXSImxROwIrRJp2pudMmYnJab3CSScdDrQAeujgfrXcatk6RZEW/dLInt/EjO7PJUewPXjgEX16hZUytyzoVOC4RHnbTjfDkRao69rWO4i0hOklMZcgNHb7evx1e1b+bEDybYKptyISwBQZhHZslWBMB6XdjymDabROv/TAcu1hmrOIdId6v4eXrSS8pa3nk1Voi7WuHecxSq3OVFdAcnkxsgnFNaSFD3O7o3aiJesIHkLA44iIrC3ra3V1ecmUwQcMnG4xD01UlT72KLcbxZAcHVZ2bBV9fc7esQMUlAv7QMSoj4KyPr/EuRZQqnY+KkTMgzROkRoXsdCZxWL3M9LueAOc+gMZk6hPBb/ZIYQQQshYw5sdQgghhIw1vNkhhBBCyFjDmx1CCCGEjDUUlE8mEJHjcpevVZ051TEQTPy195MRSGa439HIimpDkCmlslbXVEeLzo2OTdesQHwdDaxo2mzoRNOsoUXTcgMptx0nJRhjOtfWVk2R5RUt/I5AfK5KKytWOUiupW3zHFKCS0cGLHMttTbaVvhNILEU+8Xxp6XX1em9cexI67gO05JFpAvtNYQ65U4C68yslo8rZ9w8/PCDavnRgwdNmXKkx8ns7KQpk6Qw3uDywDTi42v1+dVWbE8gvTd1UowHIMTHKYimjtwrIHLmhW0bTCWvHBny8LKWSI907Rjd3NT1HMC4KZyBE8KY8Nq8M63l49wzYWGaP3REC/3LPX39iIiE8OBC4Yi62OaD3NZhCOsmpmdNmd5At0Wc6fZrOAm7iUl+t2XwYYdWyz4Q0YQk5hDmqN6albdxYG+a7pgSYajrtLxsr80KmjRwEuUxsRs/T7CfjpUx0ce2zAa+5zDJxKaJzywGY2L/8YOffrcO/hsNglMfw4Hf7BBCCCFkrOHNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYaCsonE8iP5ClPejKrNiBGOXIYSo45yH/dvpXZ+mta3A3aVj5eWllSy4kjcjZbOq00TewQiCFyE9Ndi9yR7UBmiwN7fiMQBkOnbSYm9Pk1mlogLAorsC4tauHSCR+Wbl8Lts2mTcLNMr2ucqS4fg6JxHB+SWXl1Hyo+667tmLKrC7rOogjgVeQwjtc1fuZm19wttFtPnT6LoMxkMV2XDfaLVhj2yYHYXU4gqTZyLbN1NS0Wo4T2y8VJBsHiR1bWUMfC8fw6qoV8VsrWj6tIts2E5DuWzr1xuDgxa4do+2OXhfFup6D3J5fA4TvuRkrKEeB7t9FmCdERLogQ/dgDB9yhGpMQMc0YhGRHqT7Lq8umzJ9kL7nO9OmTFnodo9T/WCAN0/0ulrWH4xsm2NK9eSkTaaP4cEKTIHGhxZERARE4nYLrw2RBNLhw9D2L47J0kmXjkJM3oa/p3aOD2Ocv51UcrPKXvPoJ9syVlDekCr8OBKT7cNBPyrDBGVCCCGEEOHNDiGEEELGHN7sEEIIIWSs4c0OIYQQQsYaCsonUVci9fGEWZMe6azzymCycYUxmWIF5SDU3ZA66cM98LP6TuppX7Rcl8RWcm01tdDWyKwQGkJKJ0p8ji8oOciKnjBY1XrD0JFwm5CWi4m/ubNfASm4dlKrcT9lYaXMENJyy4FTB5D9ShA3vYRd/DfFYGBlT6n0Oi8vdLWr2zgCaW+wBpKziOSp7t+ysm3z8MM6MTmo7PlFke6Xbs8my4aplmMnJnVabprZ6aY/0PvJnDIF9FUd2HGDKao5yNxpZLfp9rQgOjFt+w5TqQsnobjMdR3mZmZMGTP+YMz2nIcSugO97oLMitmLy7rNV3t2P9h+2y7YpvexsmaP3dNjANOIRURSEKizzCaOb12AByIcoTab0JJ/bUa/cz1DknropCy3YL+ZSV0WyUd6Hh32ILE9t/OE4EMSTjL4ZEfL5NG87bsaJtKudcsliHQZlK4jZ443QrKTsmxTjL0HcjBBGcs4UvPG7OMzgonJ/l4pKBNCCCGErMObHUIIIYSMNbzZIYQQQshYw5sdQgghhIw1FJRPoqpqKY+LjSjAHfu7lhM9MQql5cpJ1C1h3xHIk16KLEqGUlsRMQBBuRpZMa27quswPWVTWStIZ0ZdunLukTFlORIrzvUg3bUqbR1QqkbZLnKkZhSd84HdL4qIoaO8BSDyDRxjEKXMVgvO14lvrqG9PDk6H+pz7netNIryX6Op5c/FpSWzTZbpfuk6YnsTZoGqtnUYwfklqe2HFGTootLtOZHZpNkjh4+o5VZl5fwk1ueTQWq1iMjRozpRt4Z+CBJbpxL6JQytaIpy/hok94rYdp+d6Zgy7QmdqItzQCNxUoKhvxeP2oTiHKTRyjE5S5inkkS38Wrfivhr8MDB0tJRU2Z6Zk4tmzlKRDKQqsvCjr8KHshowNhCiV1ExBzKeWqi3cSHHez59UG0H6zo86tzO8cHMMeXsT12DfNEu9E2ZTodfT0MnXR4lJhxjkJh+fgJQhlPPq5PvywiFSYkb2Abc5gNrPUexkBJ3UrrP6JyHhrw4Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8knk+Ujy/FiTlIVNkcX0VE94Q2kLk12PrcMkZl0mim23YJjlcGjPLwRBOW1Y4TKCtM8aJTTn/MAPlSqw5xdEWshb61oRcQTpx156c9aAxF8QOZcWraSJInGzbfc7OamlUS95FEW3OLH1zOCcMazZS3jGpF4URkVEhpDUGqW2DlGtywQgzM9O2gTbHEzOqGWTXAeQujvsWzF7ahIE28TKxmGsj48y+cCRoycnQZB3PMQi19v1C9t3wxr6Ci6PZtteCwLJ5YFz3S2t6PG2vLxiynz3gUNqefdTLzRlJien9X5WdRvvf1CnWIuITMODAkVur3mUyQd9K/OixDrR1v3kpbwfPaLTuOe32OsugfY6umjbZm52Wi2HoX14oK6W1HI6pbcZ9Gwy+MzMgloOXBVW13s0ctKv4VLE9PiyttdzCPN+NeyZMmVft03ipCyjiB3hRCsiBSSe23p69YbPIO9BGiMfn/lzwOx3A4LyRvBSl42QfJpDVY7Y7XFOf7Ozd+9eCYJA/bew8KNBXte17N27V7Zt2ybNZlMuu+wyueuuu87iGRNCCCHkXOOcvtkREXnOc54jBw4cWP/vzjvvXP/b+973Pnn/+98vH/rQh+RrX/uaLCwsyCtf+UpZXbWPhxJCCCHkJ5Nz/mYnjmNZWFhY/2/z5s0icuxbnQ9+8IPyrne9S173utfJ7t275eMf/7j0ej351Kc+dZbPmhBCCCHnCuf8zc7dd98t27Ztk127dsmv/MqvyD333CMiIvfee68cPHhQ9uzZs142yzJ56UtfKnfcccdp9zkcDmVlZUX9RwghhJDx5JwWlF/4whfKJz7xCXnGM54hjzzyiLznPe+RSy+9VO666y45ePCY0Dc/P6+2mZ+fl/vvv/+0+73hhhvkD/7gD8z6UT6S5Lig7MmAea5FqNJJbkRpKwytcYlrUCAbDa0gOgBpdNSzUlwWw7EDK51NTOhU0dSR4qKkiSvUopfSisK0ldtEmpD4mzoCMKawRpEuk6ZW9MsSLR+321aeHZiEYtvGmDQaOAJer9LbJak+v9CRtydATnXTuWtIb3Yk4bLQ4w3F07C0fZlCgnLkjOvGJOwntPXO8ZRDO/YHAy0Sp5neqDVhU2QDTL8e2fMzqdVtm6DcbOl993u6/UJHPg5AUPZEycVFnfCMdRSx0miO1quIdEAKfvCQvn4PLdrE7LWu7s+FuSlTZnJmRi2P7KHNAw9xoNt805Rtz/sPayE5uc8K1Fu3wDXv2OWYvO3J0Gmq51WcMzPnmq8rLWJ3Oja1GudwL90cryF8cCH2jg2ic9232sSoAmnWeSAiDkHod+ZrEXyYBRL6PUkY515nLj7Tfr3t7KE2kMy8AdwtMKz5NNuX5RgIyldccYX80i/9klx88cXyile8Qj73uc+JiMjHP/7x9TI4WOu69iO0T+K6666T5eXl9f/279//xJ88IYQQQs4JzumbHaTdbsvFF18sd9999/pTWSe+4TnBoUOHzLc9SJZlMjk5qf4jhBBCyHhyXt3sDIdD+e53vytbt26VXbt2ycLCgtx6663rfx+NRnLbbbfJpZdeehbPkhBCCCHnEue0s/P2t79dXv3qV8uFF14ohw4dkve85z2ysrIiV111lQRBINdee61cf/31ctFFF8lFF10k119/vbRaLfm1X/u1s33qhBBCCDlHOKdvdh588EH51V/9VTl8+LBs3rxZXvSiF8lXv/pV2blzp4iIvOMd75B+vy9vfvObZXFxUV74whfKLbfc4spqG2GU55Icl9qK3EpPOQhvKNOKiAik3GIi57F12ika9rX02F21T4cNh7pMUHtytN5v5YhbKcjHsSMoo5jWBykzTm1Sb5Zp8bnMrUC9tKSTUGNHGp3oaNE0Aq9vcsr+5JiA/Fc4KcZ1DfKsIx6urUH6bOXIvA1dzzDX6lzcsnVqQCr00ElcjTO9Xb5mlbxGQ4vXAxAlM0cQXe3ptqhKW6bIQUQsrUzZhDTuiWnbD3FTj4sQxPbcWM4iJaTRdldtUi/+LN1sW5kybS7pc4l0+3nSehvOt9+z6cMlXPNe0vFsRwu+2y+wP6NPQXsdfPSo3mZ+2myTwtwxGNj04Wm4Vqedn+Rx3gpAQN80O2u2WV7TY3RxxQrUmzdpObrTsfNCXYLE7MjbJVxDayswrjfZ9lyBuWRyarMpE4L8HgR2XGcNvW400mJ76QjzATxg4M2zOVxT4ciOLZS1o9IeS/BY1eMQizeQku+KxWY/Zid2k8diFp8OfBOBF61+HHxw41Sc0zc7N99882n/HgSB7N27V/bu3fvknBAhhBBCzjvOK2eHEEIIIeSxwpsdQgghhIw1vNkhhBBCyFhzTjs7TzZFUUieH5OdKicmGAXgoHakKZDgvFTWE8c4QX+gZUAvYbfV0pJrObL7jfFYTnpzCfXCcxERWetp+Q/F2E6kE21FRAaQoDzsWgk3lNOnlYqIrK7q7UZHtFi8adO02aaRaSF9bbBkyvTWtHjY79skXEyB7kDatIjICOTnAuQ4L9EUk5jDJDNlmg1dpujYMYCScBtk+OVVK0H2urqezbaV93sDXYcktP2Si16XNGzbpJmuVwGJzjhGREQiSNEOnTGxBn01yq1wuTCvBdURJFBPTdt6r6xp6fbosk3CDWpI93UCS+c3zall7wEJHBYjkIbnppx0afi3aM8RlDNo802brHg/hDE7Namv5y2btWgsIrK0pAXqeadMu6XngZEjoI+GkDYstkwPhH0cR3nhCcB6v72efahjelqLzbnz4AIatElDS9aBIyiXXewHe83jNV6Xtky5dEgtp56EW+E1Be3nScIbSVA28rEnKJdQxhRwtsFFrwwEAdsSGxObj9e9dD7DPPjNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYa3uwQQgghZKyhoHwSwfH/ExEJA3sfGES6uWpH5KwrTLy08lRpUjD13yNHYA0gjdYpIhHIf6HYY/dRHHYk6zDRsiSm7i4tWpET99NoOSnLbZ00O3SEyxJSi7H5emtWLMa+mnAk3CjW59MprHi4sqwlx3bLNvLi4pJaHoA86wQ8S4lyYmRFyQiiomfmrBBaQWL3CJb7Ay3liogEkMLrJYO3m5jwbPvl6Kpur1G9ZMpMTpawrBtjbcWRSGd0PevKSUeGpO2ysGUwBRoTk5cWbTLzAwdBxG/ZlOUI0me3bLFpviM4n86EHQT9gZbHJ9ta7j10yLZNv6/7oe8I3itLS2o5aVhBOTHtp8dAI7PbbJqd1vvAKHMROXIEztkRYQNov6qw800U6TEawH68NPZGa0oth6EjAKN8nNr+LWA+LCE9PHC2CaAvUWIXEYkyvV0Y2o/asAL5feTMbZEeSzj2a+dBGsHE5I1IzJ5+bLbbwH7NPpzTO9NG3qrT7GejCcr8ZocQQgghYw1vdgghhBAy1vBmhxBCCCFjDW92CCGEEDLWUFA+iSgKjSx3MkGt/2YFLpGigFfTeynLQAjyX5LZNNW0odf11xZNmTWQ7ZLIHruVQB1KJ+kYXMQI5LqWkxA7OTOtliemrGAbwo7X1qw0urSk15UmwdT2Twapp16/TE9rYbDXt2nD/Z5O1K0cEbbf01JhAInZK6u2PaemtWQY1I5Qh9J6w8rRUaxF0hSE+WbTJltLpdsrdNKv0XEcOEJoWepzPnTYjr8k1ec3A/KxJz4P+vpYudPmvQFI647EnIP4Gge6UgeO6L4VEbnr3oNqeefCnCmTpLq9tl1gxz76kV6K9tGjS2q529My6tKqPT8U7/PSjpv7Dh7R2zip6bsuBAEZ5NTBwIqxrWYDyti+C8PTi8UiInF0ZkM1BoG6AcdOYnvNd9p6Pgwj56Os0m0RJo4kHOnrrAq1ZF8412qd6LkkbtiHMcJYl8EHTEREoiaMpZFt46rQfYNDwLkUrCjuisQYdXxm0dnOq57UfKYSdqU/QjZUSERsiv2p4Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8kmEEkh0XAoMHNEPKZ0UXiN1QaKyiJNeCYeKYtstmN7sJTxjimw+sMmefTjnhiPtBaLl3ZnZWbUcT9m2CQIt4A36TqpooNdhIrCISAFCcgCHCnCFiCweWTxjmekZnbha5LbvolDLqFMzVrIuwOZFcTfElFERGeS6TJbZNu/39fkMcitvY6JzALIxJhaLiEQwjk2as4hU8G8eTGYWEWk0tDS6tGwTfycmdEJ2AWMtS20K79qaFnO7zphdXIPE31bDlJls63VppuvUdLaZ7oDYXtp6X7BtQR/bkVEreAjh0KFHTZmDBx9Ry502JHq3bVLvgSM6qbydWWkdzzlwHrBoQqryWldf3w89rM9NRGR+s77mUUYWEYlhbHnjBreKYid1HvY90dHj2GvzEOrZatmxPxrpcTN0RGyct4pSj9m6tmJxHUN6c2LrhMnlmCQtIhK3ptVyAz8IRCRZ06noJdTBk/XN54uboGzWOGXgYRubj2y2sV7xRo7tYI59anLnuvXgNzuEEEIIGWt4s0MIIYSQsYY3O4QQQggZa+jsnEQURz/6TdkJyCrgbcHoaxwro9cVXhl48zRu44WShRBKlTquzWRb/6Zf5vZedtTTv28O+46fkerjV319fivOG5rLXJ+PF7Q10dFBYM2GDU+cnATnCX7HPnrksD1fCEpMU+s2LC3Bm9qd/s0y7XV4nkIL3oyNv8Wvrto3j+cwbrKG7bvBSIfrFWt2P6vLGJKmx8RkRzszIiIBOBIYgihiA+PmZqdMmQkIkowcL2o01PVcWdF1Qs9CxLZx7DgdGYQlppkNRsQQwamO7suy0A7KsXV62fMfZid1mzYb1v1Zgb66+4f3mTI5eFtlqY/lvVUcg/Omp2yg4eFHtR8007bnN4K3pR86vKSWMdT02Pno/vX7G8IeczuXBJned+Z4R42mniviWNchCu1cMhrp9oxjz43U51xXtg7GK4M2H9ae5wMrvCDaWp+PM91IGIG3NWXbZhjrsbXcP6CWe7mdJ3AY137yoF7aQPDgE+fabGS/Zz7Yie1yxxXz4Dc7hBBCCBlreLNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYaC8klUdSnV8bfclrkVi0e5Fjlz80ZuG1Y3csLrcthPCcvem9ejWMtrI8d463QgmKy2++knWu4selbAC0t8MzoIYE7bDOBt5RObrWyXgAAcJzawa3aTrsNoCOdXOyJiBcF+jnCJIV9ewFgf3sCdJrb9EhDDA3iTe+SE4jVBlPRE2HZLy4prTv8OQQiFl4zLYGjHWhDqNm9ktm0wIDBLpk2ZEsYxBsGJiCQQhhlDPQsn/CuBt05vnbMiMUrBg6FtmzDQY2BxSYubDz9ig/4OHNaBhk+7cKspkzX09dLvrZoy/b6+fh85astMgmRdQjjlYGCvKRxrHisQRumFE975/QfU8mikx/4/+qntZpsM3lY+cB60CET3pxeGivapJ/23IfCxguBLDAcUERkNYS4eOA8TdLRo73m6gejroYZ+abSsHD1Y0/NE3rfXXQjXb+Rk1EaBLhOG9gSnMn38ebg+Hn7UXlNrXT32K+e6q1CgtqdnMS9K34BE7K48s8SM+z5dxG9JQZkQQgghhDc7hBBCCBlzeLNDCCGEkLGGNzuEEEIIGWsoKJ9EMRpKflwOHo2G5u95PoBlTz7GdGRbpoREXYzXTBxBOWlo8XDZ+oIy1dISZBLbpNkABLwisEMgwqRR2KbawNvepbRSIabIipPmG4HMm0Ci7vSUfbsxyp6eCFuDZzgY2SRmDOYdOBIzEoFk3XFSjHEseWMiSbSoOzlpRVNMJMZjHz2q3/7uMTNlU6uzWI+3/sARnSGhuAcyt4jI1nkt+E5P677qdrUQLCLSautU4DSzQigKiKnz9vQKEonXIMn6yLLty+8+cAjWWA2yBYJqila4iASgWDab9ppC+XRxRbdFw0mFnp/UbXNk2ablbp3TEq6nau5/9Kha3tzS53f0iP67iMjMjO47T5bGBPlO2z6UgAnyaerMNzDf4YMfReS1ZwrL3pgwW5kyMUjVKFDjAwgiImljTi0Pe31TpoQ0cXEkWnywonYs3DTWK+dn9LFHuZ1newN9bQ4cwbvExvFeYH4mAfnMLz3312wkZXkDb2U/0WB86zkhhBBCiPBmhxBCCCFjDm92CCGEEDLW8GaHEEIIIWMNBeWTOCZdHhMJC0dQHoGgXBS2TFlo6ayylpyA6ylBAGZaaE21CFKBAyetNAaJEOU7EZEYZb/IiRUFcQ4FQpRBj4GSoa13b02LfGVlhctGW6epzs1pSTNIrchZwvnETtprAf2yefOCKYPpuN3VFVNmOIQ6dPWYyJpW0oxBMsSUVm+dMwRkckq3RQz9cuSoFU1DEPsKJ/U7goM1G1bCPXJkSW/jjK1+T6doLy+BgOlE2K51dXtOdqZNmaShJeHOhJW3e9APTRCLV7tWUM5hTPScJNxHH11Syzu2z5syKDbv2DxtSjxwQAvxmDbddNK6F5f1eFxatSLshVu0oPyoU6YPgmrd0f3baFmpvt3WInvsRAA3IV06cgTvONF9VQW2nqO8gmV8SMFeL3Go1+XiJDzXus+j2I5rnBc2BM7fjsSMsnGNc7yI1PiAhlMmALEZphLZNqWFZRGRIcjRP+jeb8r0UKD2ZGQnxV3//cyr6o0oyxuJbz6NLJ27n0cWfrNDCCGEkLGGNzuEEEIIGWt4s0MIIYSQsYY3O4QQQggZaygon0S/typSHRO3itzKxygkY4KoiBiRKnSEPAGxNACbrfKMLZBIO1PTpki7o7uzLq3wFgZaYMSEYhETmCxVCYmXXupyU0uORWnrXfW0ADqqbLLnBEi4UaSFZc/cLSq938ApY+Vt28aYhOslWXdX9b67AxgnnohY6/2sdu3YSiJdhwlHwg1El+kNdPtFtZXCc5BTDxx81JRZWTvzmEhAUD1wdMmUiSHRuQTRPUuhL8U6kENHGO2v6bThNLMS+AD6AcXsvLL7xXTabQszpsz0rBaAvcTao0taZB+OrDAZQDLvljmdULziiMWHlrSg7HjtIoE+50eXbEr1VEu319N26KTr7RdsMdtUmEpbWnm7CWJzEDgpwaYf7NiKUy2ThxE8hFDZ6xBl92JkBXR8kCJz0rkLuD5wDgid9OY41e2JD3CIiMRtfayBI8iXcP2WpdPB0A8htHGa2PbcvllL9Itrq6bM0kMPqGWTbi8bSVDeSF6yt9kGStWnXVQUFJQJIYQQQnizQwghhJAxhzc7hBBCCBlreLNDCCGEkLGGgvJJ9NZWpD4uIReOkFeD5GiSj0UkxDTN0N5P4lYBRCoHThJpI9NyZ+IkzaaZ3k9/xSYUJ3B+QWrPb1jrepZgkQaOtIfppKuLR0yZGOrQmps2ZZptEJ1B7q1yK6MVZp0jzsGqsrAyJWL6UkQ6k9P6fETLqa2mlXBzGEubnHoP+1pg9IRBPOfeqpZRMZX32LH1fh46ZFOWZyd1Wm6vb2XKCUi23jm/yZQJQZYMQGRPHEEZpds0s2VM2nDDpmgXQy2ELi0tqeUotG0zCzL83PSUKTPZ0aJ4z5E973lIS99Ly1YSnp/W59cFSb1y0qVx3aZpm3SM80srsynBT3nmLrX89KdsU8tJ5FwvIIqHzr+LIxC8K+eBiBEM4zC1cnkU6/7EceOE0EucQHpzZOsdQEIxSuIiIllL928MCe2BU+8K2saTo2uQZrGOIiLS1OtQWBaxSczojVdD2zhpquu93UmLf+hRnei9vGYfXKjg4rRi8WMXjd1VG9rNqQuVzrXjwW92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtaMzc3OH//xH8uuXbuk0WjIJZdcIn/7t397tk+JEEIIIecAYyEof/rTn5Zrr71W/viP/1j+yT/5J/Kf//N/liuuuEK+853vyIUXXrjh/QwGqyL1MXHQS3kMIZk3iqzAurH7R70fTPwNvGODDJ1kVniLEyiTWMk6bGpRMu/bNN8IpOUShGWpbR3zQU8tj3pW0hRIk56ambX7GepjjWA5TRwJF8pgcu+xddDGYsW+pcNa0pueskJos62Fxnb7zKnLKfRVxxk2y8tadK4KKyuOhnrd4kj3b+rI0XMz+nwPL1rBFkX7NLayJzqAUWSlwF4XhHgQRDvWX5XBQPdV7qTlRpDe3Ol0TBkUmwOMZnYs101TOsV4CpZFRFoN3X6PPGLF++VVLaguOmnIMxNazK3BPM1Sez1v6WhxfGGzTXhugmC7+yI7301N6nGcQVv1u0tmm2Ko54XUGbMJyuSuJAzLzkcOXr8BzKtx4knruj3TzCaOo2zsgfvOQRLOe3peExEp89OnLh9bp+tQDqzELCDex86cnvf0WKpgXFe5Y2+DxdxJbXL01lk99z561ArKI5hfanyaIHAjvfWi81lWwmdkjdeqg3ekE3sp3WjxU5c/r3n/+98vb3rTm+Rf/st/Kc961rPkgx/8oOzYsUM+/OEPu+WHw6GsrKyo/wghhBAynpz3Nzuj0Uj27dsne/bsUev37Nkjd9xxh7vNDTfcIFNTU+v/7dix48k4VUIIIYScBc77m53Dhw9LWZYyP69ffjY/Py8HDx50t7nuuutkeXl5/b/9+/c/GadKCCGEkLPAWDg7ItY7qOvaDf0TEcmyTLKT3px8ws8ZDEdm3cmgsxM6zk4U6d9Lo9D+Holhdbjf0jk2OhyRE3ooEOo1HFrvo4S3/OaY+iUiObx9d4QBd46zg2+ZHjqhfRXspz+0dajA88CWKDBVS0RGIwxo24izY/tlAG3jnV8NgYpYJnecHQnxTcq2SB/6qipt3+EbzIfwe30d23on0L8jp19wP7EXaIhvg3Z+J8f94G/6eC7HtsGANltvdHa8fslzvW4Ax8qdegewDvtAxHpvQ/d60fvx3sKM7Y6XOHp7IiIFbINtJSISwPlgCJ2ISIpjC3wSHPciIgXst3TGbGD2aw+OOXmh43kYrwf6O3auKezOonbepr4BlyOG/RhnZ2idxmpDzg54j46Dh26NF2CYgzeDgYaVMx4l1PvNIyfsEa87Z8yiC7MxZwdwnZ0zhRU6uznNuhPneab9nPc3O5s2bZIoisy3OIcOHTLf9pyK1dVj0uYffvhPn/DzI6fhf912ts+AkHVuvu1bP7Z9/909j/zY9k0IOfY5PjVlU9BPcN7f7KRpKpdcconceuut8ou/+Ivr62+99Vb5hV/4hQ3tY9u2bbJ//36p61ouvPBC2b9/v0xO2iczzmdWVlZkx44dY1k3kfGu3zjXTWS868e6nb+Mc/3GqW51Xcvq6qps27bttOXO+5sdEZG3vvWt8hu/8Rvy/Oc/X1784hfLn/zJn8gDDzwgv/M7v7Oh7cMwlO3bt68/lTU5OXneD4BTMc51Exnv+o1z3UTGu36s2/nLONdvXOp2um90TjAWNztveMMb5MiRI/KHf/iHcuDAAdm9e7d8/vOfl507d57tUyOEEELIWWYsbnZERN785jfLm9/85rN9GoQQQgg5xzjvHz1/IsmyTN797nerJ7XGhXGum8h412+c6yYy3vVj3c5fxrl+41y3UxHUG3nuixBCCCHkPIXf7BBCCCFkrOHNDiGEEELGGt7sEEIIIWSs4c0OIYQQQsYa3uycxB//8R/Lrl27pNFoyCWXXCJ/+7d/e7ZP6TGzd+9eCYJA/bewsLD+97quZe/evbJt2zZpNpty2WWXyV133XUWz/jUfOUrX5FXv/rVsm3bNgmCQP7iL/5C/X0jdRkOh3LNNdfIpk2bpN1uy2te8xp58MEHn8Ra+Jypbm984xtNP77oRS9SZc7Vut1www3yghe8QDqdjmzZskVe+9rXyve+9z1V5nzuu43U73ztvw9/+MPy3Oc+dz1s7sUvfrH8r//1v9b/fj7325nqdr72mccNN9wgQRDItddeu77ufO67JwLe7Bzn05/+tFx77bXyrne9S77xjW/IP/2n/1SuuOIKeeCBB872qT1mnvOc58iBAwfW/7vzzjvX//a+971P3v/+98uHPvQh+drXviYLCwvyyle+cv39YOcS3W5Xnve858mHPvQh9+8bqcu1114rn/3sZ+Xmm2+W22+/XdbW1uTKK6+U0nmh6JPJmeomIvJzP/dzqh8///nPq7+fq3W77bbb5C1veYt89atflVtvvVWKopA9e/ZIt9tdL3M+991G6idyfvbf9u3b5b3vfa98/etfl69//evy8pe/XH7hF35h/UPxfO63M9VN5PzsM+RrX/ua/Mmf/Ik897nPVevP5757QqhJXdd1/Y//8T+uf+d3fkete+Yzn1n/63/9r8/SGT0+3v3ud9fPe97z3L9VVVUvLCzU733ve9fXDQaDempqqv5P/+k/PUln+PgQkfqzn/3s+vJG6rK0tFQnSVLffPPN62UeeuihOgzD+q//+q+ftHM/E1i3uq7rq666qv6FX/iFU25zvtStruv60KFDtYjUt912W13X49V3dW3rV9fj1X8zMzP1f/kv/2Xs+q2uf1S3uh6PPltdXa0vuuii+tZbb61f+tKX1r/7u79b1/X4XXOPB36zIyKj0Uj27dsne/bsUev37Nkjd9xxx1k6q8fP3XffLdu2bZNdu3bJr/zKr8g999wjIiL33nuvHDx4UNUzyzJ56Utfet7VcyN12bdvn+R5rsps27ZNdu/efV7U98tf/rJs2bJFnvGMZ8hv/dZvyaFDh9b/dj7VbXl5WUREZmdnRWT8+g7rd4Lzvf/KspSbb75Zut2uvPjFLx6rfsO6neB877O3vOUt8s/+2T+TV7ziFWr9OPXd42VsXhfxD+Hw4cNSlqXMz8+r9fPz83Lw4MGzdFaPjxe+8IXyiU98Qp7xjGfII488Iu95z3vk0ksvlbvuumu9Ll4977///rNxuo+bjdTl4MGDkqapzMzMmDLner9eccUV8su//Muyc+dOuffee+X3f//35eUvf7ns27dPsiw7b+pW17W89a1vlZe85CWye/duERmvvvPqJ3J+99+dd94pL37xi2UwGMjExIR89rOflWc/+9nrH3jnc7+dqm4i53efiYjcfPPN8vd///fyta99zfxtnK65xwtvdk4iCAK1XNe1WXeuc8UVV6z//xdffLG8+MUvlqc97Wny8Y9/fF22G4d6nuDx1OV8qO8b3vCG9f9/9+7d8vznP1927twpn/vc5+R1r3vdKbc71+p29dVXy7e+9S25/fbbzd/Goe9OVb/zuf9+6qd+Sr75zW/K0tKS/Pmf/7lcddVVctttt63//Xzut1PV7dnPfvZ53Wf79++X3/3d35VbbrlFGo3GKcudz333D4U/Y4nIpk2bJIoic/d66NAhcyd8vtFut+Xiiy+Wu+++e/2prHGo50bqsrCwIKPRSBYXF09Z5nxh69atsnPnTrn77rtF5Pyo2zXXXCN/9Vd/JV/60pdk+/bt6+vHpe9OVT+P86n/0jSVpz/96fL85z9fbrjhBnne854n/+E//Iex6LdT1c3jfOqzffv2yaFDh+SSSy6ROI4ljmO57bbb5I/+6I8kjuP18zuf++4fCm925NgFcMkll8itt96q1t96661y6aWXnqWzemIYDofy3e9+V7Zu3Sq7du2ShYUFVc/RaCS33XbbeVfPjdTlkksukSRJVJkDBw7It7/97fOuvkeOHJH9+/fL1q1bReTcrltd13L11VfLZz7zGfniF78ou3btUn8/3/vuTPXzOJ/6D6nrWobD4Xnfbx4n6uZxPvXZ5ZdfLnfeead885vfXP/v+c9/vvz6r/+6fPOb35SnPvWpY9d3j5knWYg+Z7n55pvrJEnqj3zkI/V3vvOd+tprr63b7XZ93333ne1Te0y87W1vq7/85S/X99xzT/3Vr361vvLKK+tOp7Nej/e+97311NRU/ZnPfKa+884761/91V+tt27dWq+srJzlM7esrq7W3/jGN+pvfOMbtYjU73//++tvfOMb9f3331/X9cbq8ju/8zv19u3b6y984Qv13//939cvf/nL6+c973l1URRnq1p1XZ++bqurq/Xb3va2+o477qjvvffe+ktf+lL94he/uL7gggvOi7r9q3/1r+qpqan6y1/+cn3gwIH1/3q93nqZ87nvzlS/87n/rrvuuvorX/lKfe+999bf+ta36ne+8511GIb1LbfcUtf1+d1vp6vb+dxnp+Lkp7Hq+vzuuycC3uycxH/8j/+x3rlzZ52maf0zP/Mz6lHS84U3vOEN9datW+skSept27bVr3vd6+q77rpr/e9VVdXvfve764WFhTrLsvpnf/Zn6zvvvPMsnvGp+dKXvlSLiPnvqquuqut6Y3Xp9/v11VdfXc/OztbNZrO+8sor6wceeOAs1EZzurr1er16z5499ebNm+skSeoLL7ywvuqqq8x5n6t18+olIvVHP/rR9TLnc9+dqX7nc//9i3/xL9bnwM2bN9eXX375+o1OXZ/f/Xa6up3PfXYq8GbnfO67J4Kgruv6yfseiRBCCCHkyYXODiGEEELGGt7sEEIIIWSs4c0OIYQQQsYa3uwQQgghZKzhzQ4hhBBCxhre7BBCCCFkrOHNDiGEEELGGt7sEEIIIWSs4c0OIeQngvvuu0+CIJAgCOSnf/qn19fv3bt3ff0HP/jBs3Z+hJAfH7zZIYT8RPGFL3xB/vf//t/ry29/+9vlwIEDZ3xzOSHk/CU+2ydACCFPJnNzczI3N7e+PDExIRMTExJF0Vk8K0LIjxN+s0MIOe949NFHZWFhQa6//vr1df/n//wfSdNUbrnllrN4ZoSQcxF+s0MIOe/YvHmz/Nf/+l/lta99rezZs0ee+cxnyj//5/9c3vzmN8uePXvO9ukRQs4xeLNDCDkv+fmf/3n5rd/6Lfn1X/91ecELXiCNRkPe+973nu3TIoScg/BnLELIecu/+3f/ToqikP/+3/+7/Omf/qk0Go2zfUqEkHMQ3uwQQs5b7rnnHnn44Yelqiq5//77z/bpEELOUfgzFiHkvGQ0Gsmv//qvyxve8AZ55jOfKW9605vkzjvvlPn5+bN9aoSQcwx+s0MIOS9517veJcvLy/JHf/RH8o53vEOe9axnyZve9KazfVqEkHMQ3uwQQs47vvzlL8sHP/hBuemmm2RyclLCMJSbbrpJbr/9dvnwhz98tk+PEHKOwZ+xCCHnHZdddpnkea7WXXjhhbK0tHR2TogQck7Db3YIIT9RXHrppXLppZeuL19//fUyMTEhDzzwwFk8K0LIj5Ogruv6bJ8EIYT8uCmKQu677z4REcmyTHbs2CEiIkePHpWjR4+KyLGwwqmpqbN1ioSQHxO82SGEEELIWMOfsQghhBAy1vBmhxBCCCFjDW92CCGEEDLW8GaHEEIIIWMNb3YIIYQQMtbwZocQQgghYw1vdgghhBAy1vBmhxBCCCFjzf8f7C9QvzE5jD8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "multiscale['scale2'].ds.chelsea.plot.imshow()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, "id": "878273f8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Johan\\mambaforge\\envs\\napari-omero\\Lib\\site-packages\\zarr\\api\\asynchronous.py:228: UserWarning: Consolidated metadata is currently not part in the Zarr format 3 specification. It may not be supported by other zarr implementations and may change in the future.\n", + " warnings.warn(\n" + ] + } + ], "source": [ - "store = zarr.storage.DirectoryStore(f'{name}.zarr', dimension_separator='/')\n", + "from packaging.version import Version\n", + "if Version(zarr.__version__) < Version(\"3.0.0\"):\n", + " from zarr.storage import DirectoryStore\n", + " store = DirectoryStore(f'{name}.zarr', dimension_separator='/')\n", + "elif Version(zarr.__version__) >= Version(\"3.0.0\"):\n", + " from zarr.storage import LocalStore\n", + " store = LocalStore(f'{name}.zarr')\n", + "\n", "multiscale.to_zarr(store, mode='w')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3a8d9c03", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "napari-omero", "language": "python", "name": "python3" }, @@ -236,7 +274,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.19" + "version": "3.12.11" } }, "nbformat": 4, diff --git a/examples/ConvertTiffFile.ipynb b/examples/ConvertTiffFile.ipynb index 9e71bc1..bd9e355 100644 --- a/examples/ConvertTiffFile.ipynb +++ b/examples/ConvertTiffFile.ipynb @@ -10,22 +10,96 @@ }, { "cell_type": "code", + "execution_count": 1, "id": "cffe4de0", "metadata": { "jupyter": { "is_executing": true } }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: multiscale-spatial-image in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (2.0.3)\n", + "Requirement already satisfied: matplotlib in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (3.10.5)\n", + "Requirement already satisfied: tifffile in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (2025.6.11)\n", + "Requirement already satisfied: zarr in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (3.1.1)\n", + "Requirement already satisfied: ome-types in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (0.6.1)\n", + "Requirement already satisfied: dask_image in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (2024.5.3)\n", + "Requirement already satisfied: dask[diagnostics] in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (2025.7.0)\n", + "Requirement already satisfied: ngff-zarr in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (0.16.1)\n", + "Requirement already satisfied: numpy in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (2.3.2)\n", + "Requirement already satisfied: python-dateutil in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (2.9.0.post0)\n", + "Requirement already satisfied: spatial-image>=1.2.2 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (1.2.3)\n", + "Requirement already satisfied: xarray-dataclass>=3.0.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (3.0.0)\n", + "Requirement already satisfied: xarray>=2025.1.2 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from multiscale-spatial-image) (2025.7.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (4.59.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (11.3.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from matplotlib) (3.2.3)\n", + "Requirement already satisfied: donfig>=0.8 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from zarr) (0.8.1.post1)\n", + "Requirement already satisfied: numcodecs>=0.14 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs[crc32c]>=0.14->zarr) (0.15.1)\n", + "Requirement already satisfied: typing-extensions>=4.9 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from zarr) (4.14.1)\n", + "Requirement already satisfied: pydantic-extra-types in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ome-types) (2.10.5)\n", + "Requirement already satisfied: pydantic>=2.4 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ome-types) (2.11.7)\n", + "Requirement already satisfied: xsdata<24.4,>=23.6 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ome-types) (24.3.1)\n", + "Requirement already satisfied: scipy>=1.7.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask_image) (1.16.1)\n", + "Requirement already satisfied: pandas>=2.0.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask_image) (2.3.1)\n", + "Requirement already satisfied: pims>=0.4.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask_image) (0.7)\n", + "Requirement already satisfied: click>=8.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (8.2.1)\n", + "Requirement already satisfied: cloudpickle>=3.0.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (3.1.1)\n", + "Requirement already satisfied: fsspec>=2021.09.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (2025.7.0)\n", + "Requirement already satisfied: partd>=1.4.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (1.4.2)\n", + "Requirement already satisfied: pyyaml>=5.3.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (6.0.2)\n", + "Requirement already satisfied: toolz>=0.10.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (1.0.0)\n", + "Requirement already satisfied: bokeh>=3.1.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (3.7.3)\n", + "Requirement already satisfied: jinja2>=2.10.3 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[diagnostics]) (3.1.6)\n", + "Requirement already satisfied: narwhals>=1.13 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from bokeh>=3.1.0->dask[diagnostics]) (2.1.1)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from bokeh>=3.1.0->dask[diagnostics]) (6.5.1)\n", + "Requirement already satisfied: xyzservices>=2021.09.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from bokeh>=3.1.0->dask[diagnostics]) (2025.4.0)\n", + "Requirement already satisfied: colorama in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from click>=8.1->dask[diagnostics]) (0.4.6)\n", + "Requirement already satisfied: pyarrow>=14.0.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from dask[array,dataframe]>=2024.4.1->dask_image) (21.0.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from jinja2>=2.10.3->dask[diagnostics]) (3.0.2)\n", + "Requirement already satisfied: deprecated in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs>=0.14->numcodecs[crc32c]>=0.14->zarr) (1.2.18)\n", + "Requirement already satisfied: crc32c>=2.7 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from numcodecs[crc32c]>=0.14->zarr) (2.7.1)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pandas>=2.0.0->dask_image) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pandas>=2.0.0->dask_image) (2025.2)\n", + "Requirement already satisfied: locket in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from partd>=1.4.0->dask[diagnostics]) (1.0.0)\n", + "Requirement already satisfied: imageio in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pims>=0.4.1->dask_image) (2.37.0)\n", + "Requirement already satisfied: slicerator>=0.9.8 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pims>=0.4.1->dask_image) (1.1.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pydantic>=2.4->ome-types) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.33.2 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pydantic>=2.4->ome-types) (2.33.2)\n", + "Requirement already satisfied: typing-inspection>=0.4.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from pydantic>=2.4->ome-types) (0.4.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from python-dateutil->multiscale-spatial-image) (1.17.0)\n", + "Requirement already satisfied: wrapt<2,>=1.10 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from deprecated->numcodecs>=0.14->numcodecs[crc32c]>=0.14->zarr) (1.17.2)\n", + "Requirement already satisfied: importlib-resources in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (6.5.2)\n", + "Requirement already satisfied: itkwasm-downsample>=1.7.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (1.7.1)\n", + "Requirement already satisfied: itkwasm>=1.0b183 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (1.0b194)\n", + "Requirement already satisfied: platformdirs in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (4.3.8)\n", + "Requirement already satisfied: psutil in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (7.0.0)\n", + "Requirement already satisfied: rich in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (14.1.0)\n", + "Requirement already satisfied: rich-argparse in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from ngff-zarr->multiscale-spatial-image) (1.7.1)\n", + "Requirement already satisfied: wasmtime>=28.0.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from itkwasm>=1.0b183->ngff-zarr->multiscale-spatial-image) (35.0.0)\n", + "Requirement already satisfied: itkwasm-downsample-wasi in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from itkwasm-downsample>=1.7.1->ngff-zarr->multiscale-spatial-image) (1.7.1)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from rich->ngff-zarr->multiscale-spatial-image) (3.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from rich->ngff-zarr->multiscale-spatial-image) (2.19.2)\n", + "Requirement already satisfied: mdurl~=0.1 in c:\\users\\johan\\mambaforge\\envs\\napari-omero\\lib\\site-packages (from markdown-it-py>=2.2.0->rich->ngff-zarr->multiscale-spatial-image) (0.1.2)\n" + ] + } + ], "source": [ "import sys\n", - "!{sys.executable} -m pip install --upgrade multiscale-spatial-image matplotlib tifffile zarr ome-types dask_image 'dask[diagnostics]'" - ], - "outputs": [], - "execution_count": null + "!{sys.executable} -m pip install --upgrade multiscale-spatial-image matplotlib tifffile zarr ome-types dask_image dask[diagnostics]" + ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 29, "id": "a3a9d3cf", "metadata": {}, "outputs": [], @@ -37,7 +111,7 @@ "from urllib.request import urlretrieve\n", "import zarr\n", "import ome_types\n", - "import dask.array as da\n", + "import ngff_zarr as nz\n", "from xarray import open_datatree\n", "from numcodecs import Blosc" ] @@ -56,7 +130,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "865974c8", "metadata": {}, "outputs": [], @@ -78,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "9d11d71c", "metadata": {}, "outputs": [], @@ -96,7 +170,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "432abb91", "metadata": {}, "outputs": [ @@ -106,7 +180,7 @@ "True" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -117,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "eef1e9e7", "metadata": {}, "outputs": [ @@ -127,7 +201,7 @@ "'\\n \\n 2019-10-01T00:00:00\\n \\n \\n \\n \\n \\n \\n'" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -138,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "59062f84", "metadata": {}, "outputs": [ @@ -157,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "290db649", "metadata": {}, "outputs": [ @@ -167,7 +241,7 @@ "['z', 'y', 'x']" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -179,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "5679e320", "metadata": {}, "outputs": [ @@ -189,7 +263,7 @@ "{'z': 3.3, 'y': 3.3, 'x': 3.3}" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -201,7 +275,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "59e371b9", "metadata": {}, "outputs": [ @@ -211,7 +285,7 @@ "{'z': 'micrometer', 'y': 'micrometer', 'x': 'micrometer'}" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -224,120 +298,29 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "33d1afd0", + "execution_count": 11, + "id": "2716e3ed", "metadata": {}, "outputs": [ { "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Array Chunk
Bytes 612.81 MiB 126.61 MiB
Shape (242, 342, 3882) (50, 342, 3882)
Dask graph 5 chunks in 2 graph layers
Data type uint16 numpy.ndarray
\n", - "
\n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " 3882\n", - " 342\n", - " 242\n", - "\n", - "
" - ], "text/plain": [ - "dask.array" + "" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_store = tiff.series[0].aszarr()\n", - "zarr_data = zarr.open(data_store, 'r')\n", - "data = da.array(zarr_data)\n", - "data" + "data_store = tiff.series[0]\n", + "data_store" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "4650f030", "metadata": {}, "outputs": [ @@ -347,7 +330,7 @@ "'sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM'" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -359,7 +342,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "18ed5e3a", "metadata": {}, "outputs": [ @@ -386,27 +369,76 @@ " */\n", "\n", ":root {\n", - " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", - " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", - " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", - " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", - " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", - " --xr-background-color: var(--jp-layout-color0, white);\n", - " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", - " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + " --xr-font-color0: var(\n", + " --jp-content-font-color0,\n", + " var(--pst-color-text-base rgba(0, 0, 0, 1))\n", + " );\n", + " --xr-font-color2: var(\n", + " --jp-content-font-color2,\n", + " var(--pst-color-text-base, rgba(0, 0, 0, 0.54))\n", + " );\n", + " --xr-font-color3: var(\n", + " --jp-content-font-color3,\n", + " var(--pst-color-text-base, rgba(0, 0, 0, 0.38))\n", + " );\n", + " --xr-border-color: var(\n", + " --jp-border-color2,\n", + " hsl(from var(--pst-color-on-background, white) h s calc(l - 10))\n", + " );\n", + " --xr-disabled-color: var(\n", + " --jp-layout-color3,\n", + " hsl(from var(--pst-color-on-background, white) h s calc(l - 40))\n", + " );\n", + " --xr-background-color: var(\n", + " --jp-layout-color0,\n", + " var(--pst-color-on-background, white)\n", + " );\n", + " --xr-background-color-row-even: var(\n", + " --jp-layout-color1,\n", + " hsl(from var(--pst-color-on-background, white) h s calc(l - 5))\n", + " );\n", + " --xr-background-color-row-odd: var(\n", + " --jp-layout-color2,\n", + " hsl(from var(--pst-color-on-background, white) h s calc(l - 15))\n", + " );\n", "}\n", "\n", - "html[theme=dark],\n", - "body[data-theme=dark],\n", + "html[theme=\"dark\"],\n", + "html[data-theme=\"dark\"],\n", + "body[data-theme=\"dark\"],\n", "body.vscode-dark {\n", - " --xr-font-color0: rgba(255, 255, 255, 1);\n", - " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", - " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", - " --xr-border-color: #1F1F1F;\n", - " --xr-disabled-color: #515151;\n", - " --xr-background-color: #111111;\n", - " --xr-background-color-row-even: #111111;\n", - " --xr-background-color-row-odd: #313131;\n", + " --xr-font-color0: var(\n", + " --jp-content-font-color0,\n", + " var(--pst-color-text-base, rgba(255, 255, 255, 1))\n", + " );\n", + " --xr-font-color2: var(\n", + " --jp-content-font-color2,\n", + " var(--pst-color-text-base, rgba(255, 255, 255, 0.54))\n", + " );\n", + " --xr-font-color3: var(\n", + " --jp-content-font-color3,\n", + " var(--pst-color-text-base, rgba(255, 255, 255, 0.38))\n", + " );\n", + " --xr-border-color: var(\n", + " --jp-border-color2,\n", + " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 10))\n", + " );\n", + " --xr-disabled-color: var(\n", + " --jp-layout-color3,\n", + " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 40))\n", + " );\n", + " --xr-background-color: var(\n", + " --jp-layout-color0,\n", + " var(--pst-color-on-background, #111111)\n", + " );\n", + " --xr-background-color-row-even: var(\n", + " --jp-layout-color1,\n", + " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 5))\n", + " );\n", + " --xr-background-color-row-odd: var(\n", + " --jp-layout-color2,\n", + " hsl(from var(--pst-color-on-background, #111111) h s calc(l + 15))\n", + " );\n", "}\n", "\n", ".xr-wrap {\n", @@ -447,7 +479,7 @@ ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", - " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + " grid-template-columns: 150px auto auto 1fr 0 20px 0 20px;\n", "}\n", "\n", ".xr-section-item {\n", @@ -455,11 +487,14 @@ "}\n", "\n", ".xr-section-item input {\n", - " display: none;\n", + " display: inline-block;\n", + " opacity: 0;\n", + " height: 0;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", + " border: 2px solid transparent !important;\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", @@ -467,6 +502,10 @@ " color: var(--xr-font-color2);\n", "}\n", "\n", + ".xr-section-item input:focus + label {\n", + " border: 2px solid var(--xr-font-color0) !important;\n", + "}\n", + "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", @@ -488,7 +527,7 @@ "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", - " content: '►';\n", + " content: \"►\";\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", @@ -499,7 +538,7 @@ "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", - " content: '▼';\n", + " content: \"▼\";\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", @@ -571,15 +610,15 @@ "}\n", "\n", ".xr-dim-list:before {\n", - " content: '(';\n", + " content: \"(\";\n", "}\n", "\n", ".xr-dim-list:after {\n", - " content: ')';\n", + " content: \")\";\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", - " content: ',';\n", + " content: \",\";\n", " padding-right: 5px;\n", "}\n", "\n", @@ -596,7 +635,9 @@ ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", + " border-color: var(--xr-background-color-row-odd);\n", " margin-bottom: 0;\n", + " padding-top: 2px;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", @@ -607,6 +648,7 @@ ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", + " border-color: var(--xr-background-color-row-even);\n", "}\n", "\n", ".xr-var-name {\n", @@ -656,8 +698,15 @@ ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", - " background-color: var(--xr-background-color) !important;\n", - " padding-bottom: 5px !important;\n", + " border-top: 2px dotted var(--xr-background-color);\n", + " padding-bottom: 20px !important;\n", + " padding-top: 10px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in + label,\n", + ".xr-var-data-in + label,\n", + ".xr-index-data-in + label {\n", + " padding: 0 1px;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", @@ -670,6 +719,12 @@ " float: right;\n", "}\n", "\n", + ".xr-var-data > pre,\n", + ".xr-index-data > pre,\n", + ".xr-var-data > table > tbody > tr {\n", + " background-color: transparent !important;\n", + "}\n", + "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", @@ -729,101 +784,103 @@ " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", - "
<xarray.SpatialImage 'sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM' (z: 242,\n",
-       "                                                                     y: 342,\n",
-       "                                                                     x: 3882)>\n",
-       "dask.array<array, shape=(242, 342, 3882), dtype=uint16, chunksize=(50, 342, 3882), chunktype=numpy.ndarray>\n",
-       "Coordinates:\n",
-       "  * z        (z) float64 0.0 3.3 6.6 9.9 13.2 ... 782.1 785.4 788.7 792.0 795.3\n",
-       "  * y        (y) float64 0.0 3.3 6.6 9.9 ... 1.119e+03 1.122e+03 1.125e+03\n",
-       "  * x        (x) float64 0.0 3.3 6.6 9.9 ... 1.28e+04 1.28e+04 1.281e+04
  • " ], "text/plain": [ - "\n", - "dask.array\n", + " Size: 643MB\n", + "array([[[ 0, 0, 0, ..., 113, 111, 111],\n", + " [ 0, 0, 0, ..., 108, 105, 105],\n", + " [ 0, 0, 0, ..., 102, 108, 108],\n", + " ...,\n", + " [ 0, 0, 0, ..., 106, 109, 109],\n", + " [ 0, 0, 0, ..., 107, 107, 107],\n", + " [ 0, 0, 0, ..., 109, 110, 110]],\n", + "\n", + " [[ 0, 0, 0, ..., 114, 114, 0],\n", + " [ 0, 0, 0, ..., 104, 104, 0],\n", + " [ 0, 0, 0, ..., 106, 106, 0],\n", + " ...,\n", + " [ 0, 0, 0, ..., 107, 107, 0],\n", + " [ 0, 0, 0, ..., 108, 108, 0],\n", + " [ 0, 0, 0, ..., 109, 109, 0]],\n", + "\n", + " [[ 0, 0, 0, ..., 113, 0, 0],\n", + " [ 0, 0, 0, ..., 105, 0, 0],\n", + " [ 0, 0, 0, ..., 108, 0, 0],\n", + " ...,\n", + "...\n", + " [ 0, 0, 102, ..., 0, 0, 0],\n", + " [ 0, 0, 105, ..., 0, 0, 0],\n", + " [ 0, 0, 107, ..., 0, 0, 0]],\n", + "\n", + " [[ 0, 116, 116, ..., 0, 0, 0],\n", + " [ 0, 108, 108, ..., 0, 0, 0],\n", + " [ 0, 104, 104, ..., 0, 0, 0],\n", + " ...,\n", + " [ 0, 107, 107, ..., 0, 0, 0],\n", + " [ 0, 105, 105, ..., 0, 0, 0],\n", + " [ 0, 104, 104, ..., 0, 0, 0]],\n", + "\n", + " [[ 0, 0, 0, ..., 0, 0, 0],\n", + " [ 0, 0, 0, ..., 0, 0, 0],\n", + " [ 0, 0, 0, ..., 0, 0, 0],\n", + " ...,\n", + " [ 0, 0, 0, ..., 0, 0, 0],\n", + " [ 0, 0, 0, ..., 0, 0, 0],\n", + " [ 0, 0, 0, ..., 0, 0, 0]]],\n", + " shape=(242, 342, 3882), dtype=uint16)\n", "Coordinates:\n", - " * z (z) float64 0.0 3.3 6.6 9.9 13.2 ... 782.1 785.4 788.7 792.0 795.3\n", - " * y (y) float64 0.0 3.3 6.6 9.9 ... 1.119e+03 1.122e+03 1.125e+03\n", - " * x (x) float64 0.0 3.3 6.6 9.9 ... 1.28e+04 1.28e+04 1.281e+04" + " * z (z) float64 2kB 0.0 3.3 6.6 9.9 13.2 ... 785.4 788.7 792.0 795.3\n", + " * y (y) float64 3kB 0.0 3.3 6.6 9.9 ... 1.119e+03 1.122e+03 1.125e+03\n", + " * x (x) float64 31kB 0.0 3.3 6.6 9.9 ... 1.28e+04 1.28e+04 1.281e+04" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "image = to_spatial_image(data, dims=dims, name=name, scale=scale, axis_units=axis_units)\n", + "image = to_spatial_image(tifffile.imread(filename, series=0), dims=dims, name=name, scale=scale, axis_units=axis_units)\n", "image" ] }, @@ -883,7 +980,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "dff01f94-1ad6-4d3d-92fe-2cb358444508", "metadata": {}, "outputs": [ @@ -893,37 +990,38 @@ "text": [ "Help on function to_multiscale in module multiscale_spatial_image.to_multiscale.to_multiscale:\n", "\n", - "to_multiscale(image: spatial_image.SpatialImage, scale_factors: Sequence[Union[Dict[str, int], int]], method: Optional[multiscale_spatial_image.to_multiscale.to_multiscale.Methods] = None, chunks: Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...], Mapping[Any, Union[NoneType, int, Tuple[int, ...]]], NoneType] = None) -> datatree.datatree.DataTree\n", + "to_multiscale(image: spatial_image.SpatialImage, scale_factors: Sequence[Union[Dict[str, int], int]], method: Optional[ngff_zarr.methods.Methods] = None, chunks: Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...], Mapping[Any, Union[NoneType, int, Tuple[int, ...]]], NoneType] = None) -> xarray.core.datatree.DataTree\n", " Generate a multiscale representation of a spatial image.\n", - " \n", + "\n", " Parameters\n", " ----------\n", - " \n", + "\n", " image : SpatialImage\n", " The spatial image from which we generate a multi-scale representation.\n", - " \n", + "\n", " scale_factors : int per scale or dict of spatial dimension int's per scale\n", " Integer scale factors to apply uniformly across all spatial dimension or\n", " along individual spatial dimensions.\n", " Examples: [2, 2] or [{'x': 2, 'y': 4 }, {'x': 5, 'y': 10}]\n", - " \n", + "\n", " method : multiscale_spatial_image.Methods, optional\n", " Method to reduce the input image. Available methods are the following:\n", - " \n", - " - `'xarray_coarsen'` - Use xarray coarsen to downsample the image.\n", - " - `'itk_bin_shrink'` - Use ITK BinShrinkImageFilter to downsample the image.\n", + "\n", + " - `'itk_bin_shrink'` - Use ITK ShrinkImageFilter to downsample the image (DEFAULT).\n", + " - `'itkwasm_bin_shrink'` - Use ITKWASM BinShrinkImageFilter to downsample the image.\n", " - `'itk_gaussian'` - Use ITK GaussianImageFilter to downsample the image.\n", - " - `'itk_label_gaussian'` - Use ITK LabelGaussianImageFilter to downsample the image.\n", + " - `'itkwasm_gaussian'` - Use ITK ShrinkImageFilter to downsample the image.\n", + " - `'itkwasm_label_image'` - Use ITK LabelGaussianImageFilter to downsample the image.\n", " - `'dask_image_gaussian'` - Use dask-image gaussian_filter to downsample the image.\n", " - `'dask_image_mode'` - Use dask-image mode_filter to downsample the image.\n", " - `'dask_image_nearest'` - Use dask-image zoom to downsample the image.\n", - " \n", + "\n", " chunks : xarray Dask array chunking specification, optional\n", " Specify the chunking used in each output scale.\n", - " \n", + "\n", " Returns\n", " -------\n", - " \n", + "\n", " result : DataTree\n", " Multiscale representation. An xarray DataTree where each node is a SpatialImage Dataset\n", " named by the integer scale. Increasing scales are downscaled versions of the input image.\n", @@ -937,7 +1035,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "id": "a0eba925", "metadata": {}, "outputs": [ @@ -945,39 +1043,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "DataTree('None', parent=None)\n", - "├── DataTree('scale0')\n", + "\n", + "Group: /\n", + "├── Group: /scale0\n", "│ Dimensions: (z: 242, y: 342, x: 3882)\n", "│ Coordinates:\n", - "│ * z (z) float64 0.0 3.3 ... 795.3\n", - "│ * y (y) float64 0.0 ... 1.125e+03\n", - "│ * x (x) float64 0.0 ... 1.281e+04\n", + "│ * z (z) float64 2kB 0.0 ... 795.3\n", + "│ * y (y) float64 3kB 0.0 ... 1.1...\n", + "│ * x (x) float64 31kB 0.0 ... 1....\n", "│ Data variables:\n", - "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 dask.array\n", - "├── DataTree('scale1')\n", + "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 643MB dask.array\n", + "├── Group: /scale1\n", "│ Dimensions: (z: 242, y: 342, x: 1941)\n", "│ Coordinates:\n", - "│ * z (z) float64 0.0 3.3 ... 795.3\n", - "│ * y (y) float64 0.0 ... 1.125e+03\n", - "│ * x (x) float64 1.65 ... 1.281e+04\n", + "│ * z (z) float64 2kB 0.0 ... 795.3\n", + "│ * y (y) float64 3kB 0.0 ... 1.1...\n", + "│ * x (x) float64 16kB 0.0 ... 1....\n", "│ Data variables:\n", - "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 dask.array\n", - "├── DataTree('scale2')\n", - "│ Dimensions: (z: 121, y: 171, x: 485)\n", + "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 321MB dask.array\n", + "├── Group: /scale2\n", + "│ Dimensions: (z: 121, y: 171, x: 970)\n", "│ Coordinates:\n", - "│ * z (z) float64 1.65 ... 793.6\n", - "│ * y (y) float64 1.65 ... 1.124e+03\n", - "│ * x (x) float64 11.55 ... 1.279...\n", + "│ * z (z) float64 968B 0.0 ... 792.0\n", + "│ * y (y) float64 1kB 0.0 ... 1.1...\n", + "│ * x (x) float64 8kB 0.0 ... 1.2...\n", "│ Data variables:\n", - "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 dask.array\n", - "└── DataTree('scale3')\n", - " Dimensions: (z: 30, y: 42, x: 60)\n", + "│ sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 40MB dask.array\n", + "└── Group: /scale3\n", + " Dimensions: (z: 60, y: 85, x: 485)\n", " Coordinates:\n", - " * z (z) float64 11.55 ... 777.1\n", - " * y (y) float64 11.55 ... 1.094...\n", - " * x (x) float64 103.9 ... 1.256...\n", + " * z (z) float64 480B 0.0 ... 778.8\n", + " * y (y) float64 680B 0.0 ... 1....\n", + " * x (x) float64 4kB 0.0 ... 1.2...\n", " Data variables:\n", - " sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 dask.array\n" + " sub-I46_sample-BrocaAreaS01_stain-GAD67_SPIM (z, y, x) uint16 5MB dask.array\n" ] } ], @@ -994,7 +1093,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "id": "f7108355", "metadata": {}, "outputs": [ @@ -1027,7 +1126,7 @@ " \n", " \n", " Dask graph \n", - " 186 chunks in 3 graph layers \n", + " 186 chunks in 1 graph layer \n", " \n", " \n", " Data type \n", @@ -1124,10 +1223,10 @@ "" ], "text/plain": [ - "dask.array" + "dask.array, shape=(242, 342, 3882), dtype=uint16, chunksize=(128, 128, 128), chunktype=numpy.ndarray>" ] }, - "execution_count": 15, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1139,23 +1238,23 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 19, "id": "2342795c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5YElEQVR4nOydd3gUVffHv7Mlm54AkgQEQgQEQpEqRBSQFjEWBAuoEIoivAE0KCCKgqCgWChKeVUEURBFsbygQKgqXYo0RUQ0qCT8EJPQ0nbn98fOnb0zO5nMZDfJBs7neebZ3VvO3JndbO7e7z3nCKIoiiAIgiAIgiDKjKWyB0AQBEEQBFHVoQkVQRAEQRCEj9CEiiAIgiAIwkdoQkUQBEEQBOEjNKEiCIIgCILwEZpQEQRBEARB+AhNqAiCIAiCIHyEJlQEQRAEQRA+QhMqgiAIgiAIH6EJFUEQfmPJkiUQBEE+zp4963fbv//+u99sXm1ER0fL782oUaMqezgEcUVBEyriiiI7OxuPPfYYrr32WgQHB6N+/foYNmyY4f779u3DXXfdherVqyM0NBTNmzfH3LlzFW3Wr1+PYcOGoXnz5rBarahfv76mrZ9//hnjx49Hq1atEBERgVq1aiElJQU//PCDL5dYZnJycjB8+HDUrFkTYWFhuPXWW7Fv3z6vdunp6WjTpo18D5o2bYopU6bgwoULhs81a9YsfPDBB4iIiPDnJVzxfP3115gyZUq52X/77bfxwQcflJt9griaESiXH3GlcOrUKXTq1AkA8Oijj+Laa6/F33//jd27d+Orr74qtf/69etx5513onXr1njggQcQHh6OEydOwOVyYebMmXK7wYMH4+OPP0abNm2QmZkJq9WquWry1FNPYdGiRejXrx9uvPFG5Obm4r///S9+//13rF27Fj169PDbtZeGy+XCLbfcgh9//BHjxo3DNddcg/nz5+PUqVPYu3cvGjVqJLe9+eab0bZtWzRs2BDBwcHYv38/3nvvPbRr1w7ffvstLJaSf4ctWbIEQ4YMwcmTJ0ucaJYVp9OJoqIiOBwOCILgV9uBwqhRozBv3jyU99eyIAhIS0vDW2+9Va7nIYirCpEgrhB69+4tJiQkiGfPnjXdNzc3V4yNjRXvuece0el06rb966+/xMLCQlEURTElJUWMj4/XbPfDDz+I58+fV5SdPXtWrFmzptipUyfTYyyJLl26iKmpqbptPv74YxGAuHLlSrnszJkzYnR0tDhgwIBSz/Haa6+JAMQdO3botlu8eLEIQDx58qSRoVcaFy9erOwhaJKWlib6+2vZ5XKJly5dUpQBENPS0vx6HoK42iHJjygzly9fRpMmTdCkSRNcvnxZLj937hxq1aqFm266CU6ns0LG8vPPP+Obb77BuHHjUKNGDeTn56OoqMhw/+XLlyM7OxsvvfQSLBYLLl68CJfLpdm2du3asNvtpdps27YtwsPDFWU1atTALbfcgp9++smr/a5du3DbbbchKioKoaGh6NKlC7Zt22b4GvT49NNPERsbi759+8plNWvWxP33348vv/wSBQUFuv3ZalNOTk6Zx9C1a1c0b94cBw8eRJcuXRAaGoqGDRvi008/BQBs3boVHTp0QEhICBo3bowNGzYo+pe0h+qbb75Bly5dEBERgcjISLRv3x7Lly/3Ou/evXvRuXNnhIaG4plnngEAnDlzBsOGDUNsbCyCg4Nxww034P3331fY//333yEIAl577TXMmzcP1113HUJDQ9GrVy+cOnUKoihi2rRpqFOnDkJCQnD33Xfj3LlzXtf/zTff4JZbbkFYWBgiIiKQkpKCI0eOyPWDBw/GvHnzAECxD43hcrkwe/ZsNGvWDMHBwYiNjcVjjz2Gf//9V3Ge+vXr44477sC6devQrl07hISE4L///a/Rt4kgiDJCEyqizISEhOD999/Hr7/+imeffVYuT0tLQ25uLpYsWQKr1Vpif5fLhbNnzxo6SpscsX++sbGx6N69O0JCQhASEoLevXsb2sS8YcMGREZG4q+//kLjxo0RHh6OyMhIjBw5Evn5+cZuiEGysrJwzTXXKMo2bdqEzp07Iy8vD5MnT8b06dORk5ODbt26Yffu3T6fc//+/WjTpo2XXHfjjTfi0qVL+OWXXxTlxcXFOHv2LP7++2+sX78ekyZNQkREBG688UafxvHvv//ijjvuQIcOHTBz5kw4HA70798fH3/8Mfr374/bb78dL7/8Mi5evIh7770X58+f17W3ZMkSpKSk4Ny5c5g4cSJefvlltGrVCmvXrlW0++eff9C7d2+0atUKs2fPxq233orLly+ja9eu+OCDD/DQQw/h1VdfRVRUFAYPHow5c+Z4nWvZsmWYP38+Ro8ejSeffBJbt27F/fffj0mTJmHt2rWYMGEChg8fjv/973946qmnFH0/+OADpKSkIDw8HK+88gqee+45HD16FDfffLP8+XzsscfQs2dPuT07GI899hjGjRuHTp06Yc6cORgyZAiWLVuG5ORkr7+PY8eOYcCAAejZsyfmzJmDVq1aGX2LCIIoK5W9REZUfSZOnChaLBbx22+/FVeuXCkCEGfPnl1qv5MnT4oADB2bN2/WtTVmzBgRgFijRg3xtttuEz/++GPx1VdfFcPDw8UGDRqUKvG0bNlSDA0NFUNDQ8XRo0eLn332mTh69GgRgNi/f/8S++lJflp8++23oiAI4nPPPSeXuVwusVGjRmJycrLocrnk8kuXLokJCQliz549dW0akfzCwsLEoUOHepWvWbNGBCCuXbtWUb5jxw7F/W/cuHGp74Eo6kt+Xbp0EQGIy5cvl8t+/vlnEYBosVjEnTt3yuXr1q0TAYiLFy8u0XZOTo4YEREhdujQQbx8+bLiXPx9ZOdduHChos3s2bNFAOKHH34olxUWFopJSUlieHi4mJeXJ4qi53Nas2ZNMScnR247ceJEEYB4ww03iEVFRXL5gAEDxKCgIDE/P18URVE8f/68GB0dLT766KOK82dlZYlRUVGK8pIkv++++04EIC5btkxRvnbtWq/y+Ph4zfeUByT5EYTfsVXAnI24wpkyZQpWr16N1NRUXLhwAV26dMGYMWNK7RcXF4eMjAxD57jhhht065kHWlxcHNasWSOvxNSpUwcDBgzA8uXL8cgjj+j2v3TpEkaMGCF79fXt2xeFhYX473//i6lTpyo2bpeFM2fO4MEHH0RCQgLGjx8vlx84cADHjx/HpEmT8M8//yj6dO/eHR988AFcLhcsFguKioqQm5uraFNUVISCggKvEAXVq1eX78Ply5fhcDi8xhQcHCzX8yQmJiIjIwMXL17E9u3bsWHDBlNefiURHh6O/v37y68bN26M6OhoXHvttejQoYNczp7/9ttvJdrKyMjA+fPn8fTTT8vXwVBvWnc4HBgyZIii7Ouvv0ZcXBwGDBggl9ntdowZMwYDBgzA1q1bcccdd8h19913H6KiorzG+PDDD8NmsynKP/roI/z111+47rrrkJGRgZycHAwYMEDxHlmtVnTo0AGbN28u8RoZK1euRFRUFHr27KmwwWTlzZs348EHH5TLExISkJycXKpdgiD8B02oCJ8JCgrCe++9h/bt2yM4OBiLFy825IUVHBzsN0+3kJAQAMD999+vkLXuu+8+DBw4ENu3b9edULH+/D9XAHjwwQfx3//+Fzt27PBpQnXx4kXccccdOH/+PL7//nvF3qrjx48DAFJTU0vsn5ubi2rVqmHbtm249dZbveq3b9+OFStWKMp4T7uQkBDNfVJMzmTXz4iMjJTfm7vvvhvLly/H3XffjX379pU6udWjTp06Xp+NqKgo1K1b16sMgNf+IJ4TJ04AAJo3b17qea+99loEBQUpyv744w80atTISwZt2rSpXM9Tr149zTGWNnb2/nbr1k1zbJGRkaWO//jx48jNzUVMTIxm/ZkzZxSvExISSrVJEIR/oQkV4RfWrVsHwP0P+vjx44a+0J1OJ/7v//7PkP3q1at7/UPkqV27NgD3Hioeq9WKGjVq6P5jZv2PHDni1Z/9Ayutvx6FhYXo27cvDh48iHXr1nlNANjm91dffbXEvS5sAnbDDTd4reo9+eSTiIuLw7hx4xTlcXFx8vNatWrh9OnTXnZZGbt/JdG3b18MHDgQK1as8GlCVdKeupLKRT+FD1BPGMtCWcfO3t8PPvhA8Z4w+NWtknC5XIiJicGyZcs062vWrKl47Y/rJQjCHDShInzm4MGDmDp1KoYMGYIDBw7gkUcewaFDhxTyiBanTp0y/Et68+bN6Nq1a4n1bdu2BQD89ddfivLCwkKcPXvW6x+OVv+MjAx5Uzrj77//BuD9D8soLpcLgwYNwsaNG/HJJ5+gS5cuXm0aNGgAQLkqVBLVqlXzalOtWjXUqlVLt2+rVq3w3XffydIhY9euXQgNDcX111+ve96CggK4XC4vubEyYfft8OHDaNiwoen+8fHxOHjwoNc9+fnnn+V6f44zJiam1Pe3pJXdBg0aYMOGDejUqRNNlggiQCEvP8InioqKMHjwYNSuXRtz5szBkiVLkJ2djfT09FL7sj1URo7SVkW6du0q/4LnvfKWLFkCp9Mpe08BwNmzZ/Hzzz/j0qVLctn9998PAFi0aJHC7rvvvgubzaY7mdNj9OjR+PjjjzF//nxFyAKetm3bokGDBnjttdc09ykZXcXT495770V2djZWrVoll509exYrV67EnXfeKe+vysnJ0fSofPfddwEA7dq183ks/qJXr16IiIjAjBkzvDwxjaxs3X777cjKysLHH38slxUXF+PNN99EeHi45uS3LCQnJyMyMhLTp0/XvLf8+xsWFgbAOzzF/fffD6fTiWnTpnn1Ly4u9imcBUEQ/oFWqAifePHFF3HgwAFs3LgRERERaNmyJZ5//nlMmjQJ9957L26//fYS+/pzD5XD4cCrr76K1NRUdO7cGQMHDkRmZibmzJmDW265RTGZeeutt/DCCy8oVr1at26NoUOH4r333kNxcTG6dOmCLVu2YOXKlZg4caJCEjt48KAcef3XX39Fbm4uXnzxRQBuSe7OO+8EAMyePRvz589HUlISQkND8eGHHyrGfM899yAsLAwWiwXvvvsuevfujWbNmmHIkCG49tpr8ddff2Hz5s2IjIzE//73P5/uz7333ouOHTtiyJAhOHr0qBwp3el04oUXXpDbbdmyBWPGjMG9996LRo0aobCwEN999x1WrVqFdu3a4eGHH/ZpHP4kMjISs2bNwiOPPIL27dvjwQcfRLVq1fDjjz/i0qVLXvGk1AwfPhz//e9/MXjwYOzduxf169fHp59+im3btmH27Nl+S5sTGRmJBQsWYODAgWjTpg369++PmjVrIjMzE2vWrEGnTp3kiOVspXXMmDFITk6G1WpF//790aVLFzz22GOYMWMGDhw4gF69esFut+P48eNYuXIl5syZg3vvvdcv4yUIooxUspchUYXZu3evaLPZxNGjRyvKi4uLxfbt24u1a9cW//333wod00cffSTecMMNosPhEGNjY8VRo0bJ7u+MyZMna4ZiKCwsFKdMmSLGx8eLdrtdbNiwoThr1iyvczD3fa2DD1+QmpqqGwpCHVpg//79Yt++fcUaNWqIDodDjI+PF++//35x48aNutdsJGyCKIriuXPnxGHDhok1atQQQ0NDxS5duoh79uxRtPn111/FQYMGidddd50YEhIiBgcHi82aNRMnT54sXrhwodRzlBY2oVmzZl7l8fHxYkpKilc5VK79Jdn+6quvxJtuukkMCQkRIyMjxRtvvFH86KOPSj2vKIpidna2OGTIEPGaa64Rg4KCxBYtWihCNYiiJ2zCq6++qijfvHmzV/R5fpzqe7t582YxOTlZjIqKEoODg8UGDRqIgwcPFn/44Qe5TXFxsTh69GixZs2aoiAIXiEU3n77bbFt27ZiSEiIGBERIbZo0UIcP368+Pfff8ttSrqfPOp7SxCE71AuP4Ig/AbL5bdv3z7UrVsXNWrUuGLz7lVFzp07B5fLhZo1a1IuP4LwMyT5EQThd9q0aQPAvT9IHRWeqDyuu+66gHIsIIgrCZpQEQThN5KTkxVhHUrz9CQqli+//FLeGK+On0UQhG+Q5EcQBEEQBOEjFDaBIAiCIAjCR2hCRRAEQRAE4SM0oSIIgiAIgvAR2pQOd3qQv//+GxEREeTiTRAEQZSIKIo4f/48ateu7ZVY25/k5+ejsLDQL7aCgoIQHBzsF1tEydCECu58beTxQhAEQRjl1KlTqFOnTrnYzs/PR0J8OLLOOP1iLy4uDidPnqRJVTlDEypATjFxM26HDfZKHg0R8PCrmIJFehAUrwEAUpncnP81ywqlMsXKqNXqfR6t1wDgTyddvdVZQfVL3OJpK49dq79Fz6aJOi076jb8vdAbkx6q9iL3WmD21Y/q56Wd1+nyPHdJz10a76PVUrot9Vh423KTMn5G2JhEb5umP3fy+NwTBNHJTRRYGTPJ3wvp3KLW/fE6h8Y4y4FisQjfY43fUhNpUVhYiKwzTvyxtz4iI3xbBcs770J8299RWFhIE6pyhiZU8PxDsMEOm0ATKqIUtCZUgsaEShBKrfPqDwCCNKFSTyKq5IRK559BVZhQ8dfp8tOESvGP36V65LCUMLFW2FKPyXtFo+yRcfw4oWL3TpAmTwI3TlbGzifwtqUJlWDkfBUzoQIAiKq/2XIiPEJAeIRv53GBtrFUFDShIojSUH1xCmwFCfBMiNhqAlcn2G3KMgtXx9rbWBtu4iG1F1mZkX0aWv/gtMqMTGJ0Ji8iGws3JFYmr+ZYvPtpvRatgrKf1tDYeVmd1dg/B7VNUW+lTNFPOTbFUOQ5gfuJwK2aCKoVFP58ouoeWIo8//gtBcWSTamMe69dNnavVfeAH5N0XqHY5T0O9v7rzDO8Vt0UFyHZdnJ1LpUxrZUjDZvy9UmrUUJhkae5FGhUKC6WXhd7bLGVLPlatM7HxiT93RhZzdLsH3g4RRecZZ0PczaIioEmVARBEAQRgLggwgXfZlS+9ieMQ2ETCIIgCIIgfIRWqAhCC72N57ysJz0XmHQX5NmDJzgc7ieS9CfaPP1EVma3Kh7557Lko5bGwEk1DK1VfdZGT+bT+EmlJcExCUuW6XhJy6puU7ItkTufS7blXSe31+kv6vwcVNvUsq3dT3kNvMwmSPeYbf+xFItedcy2i/tmle+V1Nxa4Olnv+x+bikSlW0BuOzMVsmSn4WNRepv4bdQ6b3/TM5j18R/nKTn7Pp4yU9uryWrMflR9G4jSLaYxMkeAUC47A4NwGRAocATKsBLDmTSIS89StfCNroL/MWo5C5NOVC9P7BULKioRR8XXD7vDPPdAmEUmlARBEEQRADiFEU4fXQ88bU/YRyS/AiCIAiCIHyEVqgIgsdA6ADey09gEp89yP062CHXicHuMtHBHj39XEGS5Bfktum0c95dUpkryD0WJo0ppCotD3NVnRFvaYWMJKjKuHvhkmU96ZHzgmNlchte8pMlN+9r8EhaUoGGnOcZi7JccR71uAGIFqZbefeDUoFTSptWl6Zt90Alk8VSOAyFvKYat83zxsjPpf62yx6jtovuDpZC1TUBcAVJj3YmByrPxY/FUig9asSB1JJG1fKloBHJQZCvl/fW02ivsil/Nrk2VkmStBa4L8p22VNpzXc/t152y3rWSx7Jz0sOZB6AXBwrsVjpKcle8+005UDZQMmSmGmPQT9Dm9KrFjShIgiCIIgAxAURTppQVRlI8iMIgiAIAgAwZcoUCIKgOJo0aSLX5+fnIy0tDTVq1EB4eDj69euH7OxshY3MzEykpKQgNDQUMTExGDduHIr5lUMAW7ZsQZs2beBwONCwYUMsWbKkIi6vXKEVKoIANAJQen5ryJ58UqBN2aMP8Eh9TNaTZD4AEEPd8p8rxK1tuTjJzyk9dzokyS+I9+5yP3fadTzO2I9OvR+fGlKYLur2Co88qU7Lk08l9Sk93FS2eclOaidLWgrvQFV7i0YbG5PCmMbkfS0elzOuTiUHClaP5CNYJW80i/eNFaVBOZ3MlU8j+KdNkq9sHknKKtl0Se2L8j03qOiC+7NhyVd6PAKAK1gal51pb2wg3AmZ/FgofTad3mPSvD/SWCzS/zhFP5XnnyKouSwHqnVTz3P5s6mQ/NztrfnS63zPhdry2aP7Xtgvev6GbJfcJ7fkS4+FkrxX5BkUey4USLIgHzRU8hhkXoIKqZA9l1PfeL/nWhKh4CqusKDslSX5NWvWDBs2bJBf27jvvPT0dKxZswYrV65EVFQURo0ahb59+2Lbtm0AAKfTiZSUFMTFxWH79u04ffo0Bg0aBLvdjunTpwMATp48iZSUFIwYMQLLli3Dxo0b8cgjj6BWrVpITk726XorE5pQEQRBEEQAUllefjabDXFxcV7lubm5WLRoEZYvX45u3boBABYvXoymTZti586d6NixI9avX4+jR49iw4YNiI2NRatWrTBt2jRMmDABU6ZMQVBQEBYuXIiEhAS8/vrrAICmTZvi+++/x6xZs6r0hIokP4IgCIIgZI4fP47atWvjuuuuw0MPPYTMzEwAwN69e1FUVIQePXrIbZs0aYJ69ephx44dAIAdO3agRYsWiI2NldskJycjLy8PR44ckdvwNlgbZqOqQitUBMGjDuIJeHLb2SW3ND54Z5CyjHn0AR6pzxni/jMrDuYkv2Cl1KeU/KRH6a+Tl7lkdLz8PHKZTo48LVSSn5ZHncfLj6uTPduU43a3U8pNWjY9kh/vvsbaq+Qqvo0k+cmSHS+Jqm4MH7vRYnG3t0j9bDbO44zVadxYp3RjmPTHn4OdOkiS+hw2z34R9tzpcg/ifIHnM3I+KAQAUFwg3TROarQHufvZ7ZLcpSFDOp1um0WF7v4uXobUi+vpUsmXCslPQ86TO5b8YZJlQw05mnkhWiVp01LgsWORFDqr1MZ2yVNnv+i+LhYMlXkLWgo9xq2FzEvQKZ2DDxqqDBbKy4HsuVgsSYYuTtuUvQO9A4kKLheg3A5Ubrjgu7rI+ufl5SnKHQ4HHA6HV/sOHTpgyZIlaNy4MU6fPo0XXngBt9xyCw4fPoysrCwEBQUhOjpa0Sc2NhZZWVkAgKysLMVkitWzOr02eXl5uHz5MkJCQsp6uZUKTagIgiAIIgBx+sHLj/WvW7euonzy5MmYMmWKV/vevXvLz1u2bIkOHTogPj4en3zySZWd6FQUNKEiCIIgiADEKboPX20AwKlTpxAZGSmXa61OaREdHY3rr78ev/76K3r27InCwkLk5OQoVqmys7PlPVdxcXHYvXu3wgbzAuTbqD0Ds7OzERkZWaUnbTShIq5eDATxBErz8pMCdDqY5McF75SeM6mPyXwA4HQopT6nR0XkvN9Uue608srpSn6sMX9d3u3V/WR5TjNAp8o2187FvO5s3nUe23zAS/aoIfnJnoYlS34WSQqT3yotjyz2aPEIJ0zis0qSn93qkXpsVqXAInI3nV0Wk/qsnE2rVMZshdg80lKw1fNc3Y/Zz5fkZF5GdNjduhKTEVk/jfiuyC9yj67IyX3+JImR7UkWNeQ6JhHyUqHoUm6tVUib0vvBynibTH4UNbwfnUWSxJ0v/S0VcXkpJalQkDwWbZc9/axSEFQmB3ryKHraMPmPeQnyQUNtUq5EG5MDL3s6snyCQoH0OeLlQCYDMk/AYs6rsPAScMnrEgOeyMhIxYTKKBcuXMCJEycwcOBAtG3bFna7HRs3bkS/fv0AAMeOHUNmZiaSkpIAAElJSXjppZdw5swZxMTEAAAyMjIQGRmJxMREuc3XX3+tOE9GRoZso6pCm9IJgiAIIgBx+ekww1NPPYWtW7fi999/x/bt23HPPffAarViwIABiIqKwrBhwzB27Fhs3rwZe/fuxZAhQ5CUlISOHTsCAHr16oXExEQMHDgQP/74I9atW4dJkyYhLS1NXhUbMWIEfvvtN4wfPx4///wz5s+fj08++QTp6em+3bBKhlaoCIIgCCIAcUGA07BXSck2zPDnn39iwIAB+Oeff1CzZk3cfPPN2LlzJ2rWrAkAmDVrFiwWC/r164eCggIkJydj/vz5cn+r1YrVq1dj5MiRSEpKQlhYGFJTUzF16lS5TUJCAtasWYP09HTMmTMHderUwbvvvlulQyYAgCBqRTO7ysjLy0NUVBS64m7YBHvpHYgrA17yU3v38fn6JImP5ekTOI1fDHGXsSCezlCPB5czVPLuC5WkvxDPgnCxLPlJdrifNix3H/P20/Ly0wqe6KmU+mlJfioUKpBKWlTIehZVG4XkJwWulCU87zq1nKioY7nu+PVytdQneLdhQTQFDe83QdXPwstz0nltkpRm4+r4dmqsFqXUZ+WkMItK8guze/LRMcnPJd2EC0WevSu5BcEAgPxCu9f5g5nkZ1WO0yp4S4aXi939CznJr0iS4Jj059Lx0FPE59TxZmTXx6RRXvIrLLYqzsP3K5IkyULJm1Es9hZHZKmwwFNnkZ4LTKljtrm3icl/zHOQBQoFAKskH8rSXz7nHVigLLMWcJ8RJgMWSV6fhR7Jz3n5IjYdfhW5ubllktCMwP4n7Tsai/AI34SkC+ddaJOYXa7jJdzQChVBEARBBCAu0X34aoOoGGhCRRAEQRABiNMPkp+v/Qnj0ISKuPrQ8+6Tm3BeSEz+s0iPNk6Dk56LNoviEQBcdklqkbz1XBr577QkNKilOg0JTs63pjF2I7n7NCU4PalQPU6NflqDMTIWlhdOVAhP6tyKskWPbZ2cenIr5o1m5b3YlLn1nFZe8lN6sfGylSgqZS6nhlchk7tsQsnSoZN7I9Wed1qeeExOZFIfH3S0SFTKeXqynhZWDYlTvj4mr3F1TOoLtUsBM7mxFEp/C06Xt0RVyDwUpfbMIxDw3HO2+aTY4fm35CpWyo/QkHeLmXzI8hlyHoQWKWegVg5B5nxpKZCujZMDLZIEa5U8CK1cIFHkWYDDXsMgCJpQEQRBEEQgQitUVQuaUBEEQRBEAOISBdOrjlo2iIqB4lARBEEQBEH4CK1QEQQPC7tt4bPpSntJrN51orS/SrSyPVTcXh11QmE+1IAqEbEmOt456n1L/HYe9dYexUtVe0X0dVVSW6M/bNkeKJbjQmHTqTFA1WDY3hmBT9DrFTaBteXsSHuh5BKF77/yvHwUdpeVJVWWondzyZHl/UlyuAVPv2LV/irFlUinK5LCChRz+4iCncpMugVcaINL0l6dQim5sTJRM9s7JSrGVsTtGSsodve7LIUlKOYjpavCH/C3Tr4uaZw2Llq8jMa+LKdqv5pNYw+W7t4yFvWd27emjrrO33O2/5CV2VVR491jkhJES2EbirmQDM4id1lhvvSvjo/QLu3PskhlLIEz/1xO6uyJggEhp+L+bZLkV7WgCRVBEARBBCBOWOD0UUjSmCoT5QRNqAiCIAgiABH9sIdKy3OUKB9oQkVcvfAJkFmEdPaoEUWdRU8XFWETlOESRIunH3tu6PuMV0lYSAQmFYrebeTkyC7vOjWKKBEqqZH37pfLVK8VY9Ko89iXpFEN13atmAos0a16TIoydZgG7v56udDrSH6KMA+qZMxOu6dSlgOZe7/GlWgimSiUpKzCIM9n5LJVcsGXZCo+gfHly+5Q+a5Cd1kRJ/nJiYulSyiSkx1zkp8k9bFHPhyB53PjLbsyCY1Jb1rvWDGLfK4RliLfWnJYCFlq5Mr0/ql7Pj7ekipT15nUFxLkjnUQbPPIqOx8LMwDf3+LpftRIGUtKCriY5dI95dJhoXcSpCUzBmSDG3hwi0IIRQpk9CGJlQEQRAEEYDQHqqqBU2oCIIgCCIAcYoWRSDYstnw02CIUqEJFXH1oBchnSVHZm14Lz+1d5+Vk1WY1CeVuXgvP1muUmlp4JQoTeVEqnQyCU3Zh2/iJf1xdVoR1tWynmJMrL1kSyMwu9q0xgtOyuPHrCFbltTfPWb2PqjKFbKgqqOmbW/ZVU7KHKSM0K2ok90wOVsa0pcal919p5ycp5mFyYgWVsd54l2SEm9LcpOLkzEvF0gyYIi7jT2oWDk27jzsUeTHqJbZuA+QwORO6XwWDQmPyYe8TZdT+YYUOb3/2WvJe8zrkSVJ5lEnpHa5vGVLvUjwcrJq6XUQ57HIxlIgJZrmvSAZzHORlwqZNMjeK2col9ictnkTJUATKoIgCIIIQFwQ4PLRy8+lt8GS8Cs0oSIIgiCIAIT2UFUtaEJFEDySrCdYeclPmRSZBfMEeMnP2zvQy8tPR7LTgkl1am84RX8ns8PJOerAnJxnnGDgx64ciFRjvLrJkdnpwN8DNj7lI2/TkJefXM4lK9aJGeqlDCm8/Jh3F6RH/r2WHtk4OblL8xpU55NtF3lsumwqF0muznKJJe8VvGwzb1JnsBS8M1iqtPIapWqcRiVVyQbzalTcRHYxTu+O7FqY9FZoLflfCO+tx6RCl0biZLXkx0uGoqpMTtzMvS9BLNindD4+2Cgbg93inVhaHhtLAs1LoszLU5JCiwQuYXMwSX6ENjShIgiCIIgAxD+b0knyqyhoQkUQBEEQAYh7D5Vvkp2v/Qnj0ISKuPpgHn2KIJEqyY6T9QSb+89EDuhp5SUtSYqQyhQ/JvWcCmWpRrKj6QHInmgExZTqZBmK96xT2+Q8x2Q5T+871uItP8kSmJbnoFXZRBGAVBVAVFfi1BqTWi7lJVUz/ycUXn5SkV16LOY/B9IjG69GMFU9WY19DlyF3D23KVcYBC6fnO2y9HjJXWbN5xoyDzeHu65Y8jQrDuZtewcuLQnleyb101r8kN8r9pnmzicFQZW9C7WCuLL3nO/Hnsq5HT3NnUxmF1RtAflNZvkBi6W/wQIpWCoA2OzuD3+Q5MnnsHuCftoljz85+KfCg1AVOJXPg+hSSpQUbZwwgm9riT5Sv359CILgdaSlpQEA8vPzkZaWhho1aiA8PBz9+vVDdna2wkZmZiZSUlIQGhqKmJgYjBs3DsXFxVqnIwiCIIgqg0vK5efL4auXIGGcSl2h2rNnD5xOz0/rw4cPo2fPnrjvvvsAAOnp6VizZg1WrlyJqKgojBo1Cn379sW2bdsAAE6nEykpKYiLi8P27dtx+vRpDBo0CHa7HdOnT6+UayIIgiAIf0B7qKoWlTqhqlmzpuL1yy+/jAYNGqBLly7Izc3FokWLsHz5cnTr1g0AsHjxYjRt2hQ7d+5Ex44dsX79ehw9ehQbNmxAbGwsWrVqhWnTpmHChAmYMmUKgoKCKuOyiEDCQDBPABAkiY89wsIFAGQBPS3KvH2AJ6CnLPlZNSQprSGoAl0qvLu8hu79haiW+vj+7DlTXBRSj1ry0wyqKXr1szrVbbjrZBKaU/laYd+IV6OGl5/cz4gnnx5akp8k9Vn0xquVY1HtRcn1Y/fMwn2zqj0jLZzkZ5UkP/sF9ug5obVImWuwKEJ6DOcCe0pyoEtP+mMmFZJfyR6o6mCsivfaLnkHsuvjJT911FfufF4fZf79YJ83rbEwbz6XsqqY83QsdkieeCFSIFQuj6LNpvzg8rkOPXIee81dp0rq4702xYKK8/Jz+WGFieJQVRwBsxZYWFiIDz/8EEOHDoUgCNi7dy+KiorQo0cPuU2TJk1Qr1497NixAwCwY8cOtGjRArGxsXKb5ORk5OXl4ciRIyWeq6CgAHl5eYqDIAiCIAiirATMhOqLL75ATk4OBg8eDADIyspCUFAQoqOjFe1iY2ORlZUlt+EnU6ye1ZXEjBkzEBUVJR9169b134UQBEEQhB9wioJfDqJiCBgvv0WLFqF3796oXbt2uZ9r4sSJGDt2rPw6Ly+PJlVXEbJ3H+/lp/LuUwT2tKkDe/KSnyQJyJKfp5ueR50gqnQjHSlMS+6CymtOS/JTewK6x6SSejQCdMpegloei7JkwwVtlCU/jXugDr6p5yGneZ90+nkPxRsNiYnJVXKsRh1PN92xaAU3lWy5rPxnS2WHs828+qz5UgDKy56LsUiSn0XysfF8nrhgo5L6JOeQ1JH8tDwz5WvX8Wbk30+XNBYmkyrGoj6tzv9xxWdLJfkpPCtZPksmbWvIys5gyeNQalsQ4jlxkRR4VHaq5XIssmCouluMmAzISX5CQcWtQ7CN5b7ZIMmvogiICdUff/yBDRs2YNWqVXJZXFwcCgsLkZOTo1ilys7ORlxcnNxm9+7dClvMC5C10cLhcMDhcPjxCgiCIAiCuJoJCMlv8eLFiImJQUpKilzWtm1b2O12bNy4US47duwYMjMzkZSUBABISkrCoUOHcObMGblNRkYGIiMjkZiYWHEXQBAEQRB+xiVa/HIQFUOlr1C5XC4sXrwYqampsNk8w4mKisKwYcMwduxYVK9eHZGRkRg9ejSSkpLQsWNHAECvXr2QmJiIgQMHYubMmcjKysKkSZOQlpZGK1CEN6pEdgIvVzDvPibncZ9FFtDTk7fPW/JjP00UHlEWpeahSJemeqJoqfYm04qdqJb6FF5aovJ8ikCJUp2Wd5+gCk5qUCmQU6c5vb0D9fLtqdsoJTRJ6mHj1ZJEVTYV59CR55jUJ9g1ZDI9b0T1Neh5+WnInnLAS862pUh61Aqdp5JCZe/NIu/IqZr9VeNVvC82VZleAFNeJStSyrpaAWm1UMt/ClmYPdfw8rNInpiCdH1akh8bb7HgLuS99eRchfJnlPubZ+0sGn+Eam9PzjNTKCTJj9Cm0idUGzZsQGZmJoYOHepVN2vWLFgsFvTr1w8FBQVITk7G/Pnz5Xqr1YrVq1dj5MiRSEpKQlhYGFJTUzF16tSKvASCIAiCIK5yKn1C1atXL4gl7AoMDg7GvHnzMG/evBL7x8fH4+uvvy6v4REEQRBEpeACfPbS0/F3IfxMpU+oCKJcMBLQ08ItpTN5zqr06OOfeyQ/Pqglk8lUchlgKL8ak7RErrGglql0JT+NoJ86nnF6sowgVYqyl1/Jnmo8rL2et57W+dVSmDJQJtM7Vf307oWG5OfJh+ipYh5xLg2JUpa79Lz81OMHOMlX+eh+rta7PE+tRUqjLoVUyIJ2sgFIp+LjShaW/IZ6jVcrsKeGmqSWOxX3h0mFVnihm+tQZUvpDauSXnnJj12r6j12KQKnujuyP0uhmJfklWPjpTu5jRQUVTMgLXvJS6pFXibKDf8E9qQ9VBUF3WmCIAiCIAgfoRUqgiAIgghA/JPLj9ZNKgqaUBFXL7wsyAJ6Mu8+Cy8bKAN68rn8WABHJiPxMpCX9xrvSaUqEvhKtfea1tC1ZK6S+mu20dLOlDIQv7dRL/efbmBNI8iSn47EKEt/3vdJkOU9rrssP2lIonKQSG/ZS1BLhTqBSBXDU0m+SslPrb15nlrUuRj5zw/zpFN7i3Lyk1Xl3aflnSirpxpjMvK/VuFRV6z0alWcx6lzz+TzlhwAV8sL0ivIqJYHqtyP5d3jJXnJS9Tp7Q0px9S1s7acTfX18cFxNWTD8sIFAS4jewdKsUFUDDShIgiCIIgAhFaoqhZ0pwmCIAiCIHyEVqiIKxsumKdXDj+Fl59VUSbaucCedqviUc6bBm9vKV3POD25zKVRpuPtJ+fpM5DHzogsyDfUuhb9vIRGzleyxCg3USRx07DBnUN5XinnndO7nZaXH2vnYkEita5Jw3vSU6nhKabKR6fn5cfLllq5GOV+gqo9y2unMU5DErCGHK2W25Tn15BEJY84+ae4Zg5JjTHI59MI/qr6Wa+Q/Nh7yuQ5FpSVe9PkgKfSn7CL88Jj996iygUIcPeAeX1qSH5agWldBagw/BPYk9ZNKgqaUBEEQRBEAOISBbh8jUPlY3/CODR1JQiCIAiC8BFaoSKuLAwE9GQ5/AQuJ5/83OYd2FO0u+tcqkf3c+a15C2PqH8Yagae1AhYWaKcpyl3wQtZIjKTlw7wyDKydxnXXCcIp67kp+sBqJXI0Nu+Yog6wTt5OUd9DxS2Lcp+osZnRighewNvVMsrUTMvoc7PVj1vQllmdal0J63Pip7kpxx26eNVv9d8Lr9iVib9DfHyJZPVtK5FN4irsq2Wlx8bg1P6e+MlWYvq86oIvMtunTQ2i9PTj7WXPXT590lH4nZd8i4rL1x+kPwosGfFQRMqgiAIgghAXKIFLh+99HztTxiH7jRBEARBEISP0AoVcUUj8B5W6nx9Vj5fn/tPgXn3MY8+/rkriAX25L38pEeNgI66ufjUMhkvYTi9y7xQy3kGpD+tdlq59WSZRSPIpGYQTlalkp+0z8cHC9WTZ1Wv9a5PM5dfyV6QHilNNqR7nhLHpNFY65pYcEltb82Sz6slvQIlBDc1kEdPS8aUx6spUTKPPE+lLK8J3vdXdwzqdIZakp+ORO2Rad2PLt5bTx1UVcNbVJZEeU9Q5jkovT9aufw0Jb98XyPZGscJAU4fA3P62p8wDk2oCIIgCCIAIcmvakF3miAIgiAIwkdohYq4MhF0fiuwgJ4WXvJTevfxkp/s3SdJfc4gzxK6S8O7T0bHk8/LQ03h2aTyWjMi5+nJiooxqaQaTlZk8iiTwnj1SmRj0Q3wWbLEqDUWQVdfKwHeq0x1DdpelN4eeQILYMqKLP6URFS2AUDKf6cfFFXjXsj9SpYMvexoDklH/pRte3vGaRlXe7NqfW4Nva1at1zns8zOKw9XIfmVbtsTdJSXnJW29Tx0eVyFFSn5+S7ZOUtvQvgJmlARBEEQRABCkl/VgiZUBEEQBBGAUHLkqgVNqIgrGz6XnyqgJx/YU7Sp8/VxwTtZri+7hjRgIMedZo4zJsNo1AlqLz+d/GxakpGXtOPSqNOyyaQzDUOyLKIhB3oalSwtQcdjUVeu8joH308VwJSXzVSeYgp5UX7PNBK1qceiJ00ZRPaS07Gl64GnN5YS7Gmh7+XnLYXJ8DkdWWBM1k9HglWeu+RxeQ+K7yiZlGR3dg0C52mrNq7rgaqhf4k2b1lYz8vPWYGSH1G1oAkVQRAEQQQgIgS4fNxDJVLYhAqDJlQEQRAEEYCQ5Fe1oAkVUfXRCxDJwwJ5MhnQZvOqEyWpT5EPzFqyZOMloWkEOtT05FMH9FT00/bgE7TalJT3T2XTc14dmUzdXeHmJ7UXVAWlnM/rvBrt9fPmqdCSTXW8GbVtSNKvlkeeCj2pStdrT6ud3udUY7we6VXVT+//o2beRq0PgnQPLFpekKq2fP47uVJL1jMuwRqGXSszLUl9Ci8/Ha9E73yPvPQrydhqb0rAc/O13rLCsl4MEShY+aDOOjid5nwkaUJFEARBEAGISxTg0pvxG7RBKBFFEfHx8UhNTUXr1q39ZpcmVARBEAQRgDhhgdPH+Nu+9r8S2b17NxYtWoQ5c+YgISEBQ4cOxUMPPYRq1ar5ZJcmVMQViZzDT5HLT/pisaoe+edyG97jh0kCJf/S08pjppb6lJKf0utIkbdPnZtO9JYrZJs6Upr6XAqcesEepX4KRyoNTygV6tx6paIn2ZXQVlmmPq9J7ysLk/7KhuF+OjKZV1PNXIeqwJ56KoTRW8BuukvD01Gvm/r91/Mu1Wpn1kFOeo8sLveHSnQxT1tvjzw9PH+LGvdXo79uXTFJflWddu3aoV27dpg1axY+/fRTLF68GBMmTMCdd96JYcOGoWfPnmWyS1NXgiAIgghAmOTn60FoExwcjIcffhgbN27E4cOHcebMGdx22204d+5cmezRChVBEARBBCAuWODycd3D1/5XOn/++SeWLFmCJUuW4NKlSxg3bhwiIyPLZIsmVARBEARBXDUUFhbi888/x6JFi/Ddd9+hd+/emD17Nnr37m3YA1ALmlARVxaqpMj8ng85Mjr7g7HwkdKV4RL4PRq6YVzYlgy9SOkabuRee6c0kyMr9xgp9ll57R/SGptOxGqdPS3yLeOjJsjbeAxEPNcLWaAXysHAHijdEAlGwy+wCzS756qMeO07MtrPQFgHua3Z6O3qIOwGE0Sr99AZDnmhF95D73xsLyMLdaG1h8rIAgz7W+KzBshPSr52UeO+WCpwD5VTFOD0UbLztf+VSK1atRAREYHU1FTMnz8fMTExAICLFy8q2pldqaIJFUEQBEEEIBQ2oXz4999/8e+//2LatGl48cUXvepFUYQgCBSHiiAIgiCuBETRApePkc5FipTuxebNm8vFLk2oiCsTQSXvcWWCFCGdJUQGIMt/bIlf0y3bQMRr3YjlmpHOVa/BSX3qSOu8vKIT9sBz3jKGGmD3wDtyhD6aEbJNSIQ6Eb016/RCR+hSMVKffDZ2DUYinGu08br1goYWq7bDo2fTpPzp1c/ovTf9HkmnkT6ETDaVJUD+w2lkEYF9Np3m5DpB/lvwnM9SZG7Vggg8unTpUi52aepKEARBEAGIE4JfjrLy8ssvQxAEPPHEE3JZfn4+0tLSUKNGDYSHh6Nfv37Izs5W9MvMzERKSgpCQ0MRExODcePGobi4WNFmy5YtaNOmDRwOBxo2bIglS5aUeZxmycvLM3SYhVaoCIIgCCIAcYm+74Eqq+/Fnj178N///hctW7ZUlKenp2PNmjVYuXIloqKiMGrUKPTt2xfbtm0D4M5/l5KSgri4OGzfvh2nT5/GoEGDYLfbMX36dADAyZMnkZKSghEjRmDZsmXYuHEjHnnkEdSqVQvJyck+Xa8RoqOjdZ1FaA8VcfWh8QfhFSGd8+STkyFbLF51snefVSM5skoCU3y/6X3XqSQwPqGrOuGxZhR0dUJXrajUet56mjJZ6VKhyNpwt07UuVC1fGg4WbGOh6Jn7Kp+enY0B2cuIXF5IH9xa/1j1JPsShi7QopV99e8P6V/SPUi4Ov149GVXtV1hs8njU/6e2QSIDS874xFauflaJ327LPPvHG58bpMyoZVkQsXLuChhx7CO++8o9i0nZubi0WLFmH58uXo1q0bAGDx4sVo2rQpdu7ciY4dO2L9+vU4evQoNmzYgNjYWLRq1QrTpk3DhAkTMGXKFAQFBWHhwoVISEjA66+/DgBo2rQpvv/+e8yaNatCJlTltYeq0iW/v/76Cw8//DBq1KiBkJAQtGjRAj/88INcL4oinn/+edSqVQshISHo0aMHjh8/rrBx7tw5PPTQQ4iMjER0dDSGDRuGCxcuVPSlEARBEITfcEmb0n09AG+Zq6CgoMTzpqWlISUlBT169FCU7927F0VFRYryJk2aoF69etixYwcAYMeOHWjRogViY2PlNsnJycjLy8ORI0fkNmrbycnJso3ypkuXLoYOs1TqhOrff/9Fp06dYLfb8c033+Do0aN4/fXXFQkKZ86ciblz52LhwoXYtWsXwsLCkJycjPz8fLnNQw89hCNHjiAjIwOrV6/Gt99+i+HDh1fGJREEQRCEX3BB8MsBAHXr1kVUVJR8zJgxQ/OcK1aswL59+zTrs7KyEBQUhOjoaEV5bGwssrKy5Db8ZIrVszq9Nnl5ebh8+bL5G2USl8uFV155BZ06dUL79u3x9NNP++W8lSr5vfLKK6hbty4WL14slyUkJMjPRVHE7NmzMWnSJNx9990AgKVLlyI2NhZffPEF+vfvj59++glr167Fnj170K5dOwDAm2++idtvvx2vvfYaateuXbEXRVQ8gvfvArZEL3AJkOXnzLuP8/JTS31agT2NBPhUeOsx6Y7JBqJGnYZMVpLUp5A0VFJfmT3rdNtoFGoFgFRfA2/bgBeaoCXHqNHx8vOyA43EwuWMntwlK26W0q9B8RNXjqZqIJimXoBXrfPKxpiUVsb7pNdPV1Iz2E+6H0zqEyWZXlvOLtmk7mdM05Y6Q7i3F25V49SpU4pAlQ6HQ7PN448/joyMDAQHB1fk8CqUl156CVOmTEGPHj0QEhKCOXPm4MyZM3jvvfd8slupK1RfffUV2rVrh/vuuw8xMTFo3bo13nnnHbn+5MmTyMrKUiwNRkVFoUOHDorlxejoaHkyBQA9evSAxWLBrl27NM9bUFDg825+giAIgihPWKR0Xw/AHfWbP7QmVHv37sWZM2fQpk0b2Gw22Gw2bN26FXPnzoXNZkNsbCwKCwuRk5Oj6JednY24uDgAQFxcnJfXH3tdWpvIyEiEhIT45d7psXTpUsyfPx/r1q3DF198gf/9739YtmwZXC7f9sdV6oTqt99+w4IFC9CoUSOsW7cOI0eOxJgxY/D+++8D8CwPai0N8kuHLGw8w2azoXr16nIbNTNmzFAsfdatW9ffl0YQBEEQPuHPPVRG6N69Ow4dOoQDBw7IR7t27fDQQw/Jz+12OzZu3Cj3OXbsGDIzM5GUlAQASEpKwqFDh3DmzBm5TUZGBiIjI5GYmCi34W2wNsxGeZOZmYnbb79dft2jRw8IgoC///7bJ7uVKvm5XC60a9dOdqVs3bo1Dh8+jIULFyI1NbXczjtx4kSMHTtWfp2Xl0eTqisFdUBPPrCn9JwF9BTtnOQnPfdIfp5usvzHlv95BUYt9fHSHZPqjOTr46VClTyhJaV5bJY1wKc52UJgF60nd+h4UpnyANMqMykVllnCkg2Y9HrTk1BZE5cBeY3zBC1RttT6/6hzn9l5tWFSbsk2tTB0f3Xfc4P316lsLrBB6XlMGpQhyy7TXrlefhEREWjevLmiLCwsDDVq1JDLhw0bhrFjx6J69eqIjIzE6NGjkZSUhI4dOwIAevXqhcTERAwcOBAzZ85EVlYWJk2ahLS0NHlVbMSIEXjrrbcwfvx4DB06FJs2bcInn3yCNWvWVMh1FhcXe0madrsdRUVFPtmt1AlVrVq15Bkro2nTpvjss88AeJYHs7OzUatWLblNdnY2WrVqJbfhZ8KA+2adO3dO7q/G4XBoLncSBEEQRKDggh9y+fkQ2FOLWbNmwWKxoF+/figoKEBycjLmz58v11utVqxevRojR45EUlISwsLCkJqaiqlTp8ptEhISsGbNGqSnp2POnDmoU6cO3n333QoJmQC492cPHjxYMQ/Iz8/HiBEjEBYWJpetWrXKlN1KnVB16tQJx44dU5T98ssviI+PB+C+6XFxcdi4caM8gcrLy8OuXbswcuRIAO6lw5ycHOzduxdt27YFAGzatAkulwsdOnSouIshCIIgCD8icl56vtjwhS1btiheBwcHY968eZg3b16JfeLj4/H111/r2u3atSv279/v09jKipYC9vDDD/tst1InVOnp6bjpppswffp03H///di9ezfefvttvP322wAgh7x/8cUX0ahRIyQkJOC5555D7dq10adPHwDuFa3bbrsNjz76KBYuXIiioiKMGjUK/fv3Jw+/KxW11xPveaYO6GnxztfHvPtEGxfY0+bu57KpcoahFO8+NgZZ+uPKWKYFjXx9UEuEvLIgyzeszlsWNOVZx2NGrdDzxNJCw9OszB58DB1PPq9+OoFMFWh5KhoZk5Egoex8WoEn9Wxr4CVJsXx2GhKeIflTb/xaAaF9lfV41O+DkfeAQ87lx7RJHY9J0/Ky1vnk+6lxryvQy88l+mGFysf+VyJ8ZAF/UqkTqvbt2+Pzzz/HxIkTMXXqVCQkJGD27Nl46KGH5Dbjx4/HxYsXMXz4cOTk5ODmm2/G2rVrFfrnsmXLMGrUKHTv3l1eipw7d25lXBJBEARBEFWQP/74AxcvXkSTJk1gsZj32av01DN33HEH7rjjjhLrBUHA1KlTFfqrmurVq2P58uXlMTyCIAiCqBTMeumVZINQ8t577yEnJ0fhnDZ8+HAsWrQIANC4cWOsW7fOtLMa3WniikIQBOVhtcgHbFbAZoVolQ6bRT5cVvchWgXpgHxAcB+idED0HIJ0yK9dYsmHkzvkvqLXAdXB+oM75PO6XO6D7+NCiYfW+Uo6FH2dovvQGJ/6vJrXwtDqx9AaM3tfte6N2qZL49A6n9PlPrTa6x2sn9oOb0trLHKZxntl5pD6CxqHIdt8O3V7rTqnxlHWe1jSe2DUhtRWcDrdR7HLc7C/KfW90Lo+vc+D1nWWdB8rCCb5+XoQSt5++21FRpa1a9di8eLFWLp0Kfbs2YPo6Gi88MILpu1W+goVQRAEQRBERXH8+HFFMPAvv/wSd999t7zdaPr06RgyZIhpu7RCRRAEQRABiD9z+REeLl++rEjDs337dnTu3Fl+fd1115UYGFwPWqEiqi4siCefy89ScmBPUc7hx/L2efq57ErvPhfv5acbF9EtPWl5+Xny7Ckf+Tr5USFvqeuU5+DPqxvwUme8RtC6bLMeZobOV9YAkmrPOq06PW89Pdt6bdh4jV4v8wrzNViokfyERq5J2cGcDTMebkY/ayY+k54In0bvZRnvlfyZ1Ho/K17y89UGoSQ+Ph579+5FfHw8zp49iyNHjqBTp05yfVZWFqKiokzbpQkVQRAEQRBXDampqUhLS8ORI0ewadMmNGnSRI5jCbhXrNQR441AEyqCIAiCCEBohap8GD9+PC5duoRVq1YhLi4OK1euVNRv27YNAwYMMG2XJlSVjZGlazNL4lc77H5alUE8+ecsoKfLzgX2ZFKfSvoD4B3YU+/t4OpkiU5DkpLz/GlJU+o6VbnXc622Gm20x2vus6X5adWT10yoIz5LlTr3R9eW1t+g2bHovVdGbPqKP20buRYt1PfRD2NiwWxFdSBQ3rZanjUSgNUsRj9bfoYmVOWDxWLRDceknmB99NFHuOuuuxRpaTTt+m2EBEEQBEEQVxiPPfYYsrOzS21HK1QEQRAEEYDQClVgIBpclaQJVUVg1rvHTH/TXj0GCESJUeNa5Bx+nBwgqL37LLys5y5z2aVHm6cfk/pYmYtTCtU6l1BWJx9fb6uOl5bI1elKZ3I3HXnOotHGiGec2k4p6EqaJaEIBKojNZqhPOUyf2Dk3pfjNQhaXpRa3ZjTrcH2ZvDY1JAA9T5HZZUhK+pelzYMwA/JkYmKgiZUBEEQBBGA0ApV1YL2UBEEQRAEQfgIrVCVJ75KfZV1DqM2A0QaFPjxSlKAYHN/tEXOy0+UpD7mwce8/fgyJvWJnOTH5DRZduBOJ6iDLfrx7ZDPKw1T5KQU2YOQXUJZZUitfmrpD9D3oCprkFF1/9LKAKXHpAkvSL/+nehcU3nIXUZy2+qdV5bHDP69etkyuK2grP28MNDP+H320/vBjUmohFx+vtogKgaaUBEEQRBEAEITqsAgPj4edru91HY0oSIIgiAI4qrh7NmzuOaaawy3P3z4sKF2NKEqDypC6gsEyiOAnpFzqHP4cfn6vLz7FIE9pRx+dpbLz1MlS31MXlMHEgQ8ch7vYCQoH3nktGMakovIjGilJhM8rfi2gkKC8zqb9wBMwuQ50cdgs4ZkPi0bmp6HJmS9SvTW05W7fAx4acqrVMO2Xn/2ORf0pFST5/O5X2VtJSiP3IM+QitU5UNsbCy6du2KYcOGoV+/fnA4HH6xS5vSCYIgCCIAEUXBLwehRBRFBAUFYciQIahVqxZGjx6NAwcO+GyXJlQEQRAEQVxVvP/++/jrr7/w7LPPYtOmTWjbti3atm2LBQsWIC8vr0w2aULlLwTBcxAVcy8sgnRYuMPqPqwWwGqBaLXKh8tmcR9WwX3YPId6vKKgcVgE98GVQXWIVs8hl2kc6n6weA5PGzYuZkfwHFb3IbdR9He30XwPRNF9uFA2z0DW359o2XSJ7kPUOcyMSc+Onm0dBJcoH7pj0bNt5vr0xmakTsOG1/iNjs3IPTPbX+/+mLlOPco6Jv5wVqCXHwS/HIQ211xzDZ588kkcOXIE33//PVq1aoUJEyagVq1aGDRokGl7NKEiCIIgiACE7aHy9SCUCBo/9pOSkrBo0SKcPn0ac+fOxYkTJ0zbpQkVQRAEQRBXDXq5+cLCwjBs2DBs27bNtF3y8iPKFzM54IyaZJ5JLMif1fO7gD2XA3pqBO9kj1or4SxgpsCrDMzzjxVwHoDsD5N5S/FBGHkvQmnAnudyHjpW591MlIOFentiebwERakJfzFlu9eGvPu0cLGhGDivnpeekaCd/vwclUMQTr+ivtayel/qBWP1J77aNOL558+8hnrtAuSz4Y9N5bQp3ZvFixcjKirK73ZpQkUQBEEQAQiFTSgfUlNTy8UuTagIgiAIIgChFaqKIScnBytXrkRmZibi4+Nx3333lWkFiyZURMXAyw5GluTVMgUf1ZI9t1i861SBPWV5D5Bz98nSn+aYvL985O8jOein1jg1+ouKblBKcVI7S8nnlWVHl/d5ZblKDhrKdZRsii6hBMvcebUclsq4s1LOPViSx1dJuHTkPAOflYCQ7iorGKUR1HKZ0fZm2/gYwFQTr8+5yWsxMha9z08ZP5NEYNO3b188+OCDuPfee3HkyBF07doVgiDguuuuw++//47nnnsOmzZtQtOmTU3ZpU3pBEEQBBGAiH7w8KMVKm+2bNmC5s2bAwDGjRuHXr164c8//8TOnTtx6tQppKSk4IknnjBtl1aoCIIgCCIAEeGHvf5+GcmVRX5+vpzs+MCBA1izZg2CgoIAAHa7HePHj8eNN95o2i5NqIiKx1fPP7b8z+xwXn5y7j7pUbSW7OXHe+HJZVJzl6KOjZsVeOpcci4/JiNynniC0qalmLuEYtZOqizmtDd2XayIXa4TXBt2DvaaC9YoKOVEJv25m6kkE4vB90BPzmG32Ei8Q394YLEh+Sr16Z2jPIPSVpRkZOYazI6pogMYlyT9ldWOFkY9B0nyq/K0bNkSmzZtQoMGDRAXF4c//vgDrVu3luv/+OMPhISEmLZLEyqCIAiCCEBcECD4GOmcIqV789xzz2HQoEGw2+0YM2YM0tPT8c8//6Bp06Y4duwYJk+ejIEDB5q2SxMqgiAIgghAyMuvfEhJScHbb7+NJ554An///TdEUcSjjz4KAHA4HBgxYgRmzJhh2i5NqIjAogQpQeCCaXoCerq1OMHGfYylMtmjz+7R7lw2dz+X3f3oDPLYdEplLsmUyJmUA3tqjI3JThYna8tH6FTJa7wDoNTOUiQF5rRwwUmdUplTaUbxQ7NYWSQq/Etc0tikl5ysx9oZCsKph47XJn+fvM5j1NvTgMcYu4cB4eVnBr17YOT+VJZUWVHovZ9q6a+09kYgCe+qpF+/fujTpw/27t2LkydPwuVyoVatWmjbti0iIiLKZJMmVARBEAQRgLhEAQIF9iw3rFYrbrzxxjJtQNeCJlQEQRAEEYCIYvlm9Lna2bRpE1atWoXff/8dgiAgISEB9957Lzp37lwmezShIioPI/KEoBEqjcljLIin1SPrsRx+TOpz2T392XMm9RUHc5KfQ2pj887J5z0m7rn0688lyWtMwnPbcNdZNQKCMjmPeRAKTo9R5gEoS1nMtpP35GNSoyTvcR6EIrtncn+uHxsL+5Z1en/bmg7MqfYY1PL2M+LZWcZgjQqZ1QDyffWnPFbWoJZ6Y/B1fHr9yyrFBgpVTeYlypXIyEgcOHAA1113neE+I0aMwNtvv41q1arh+uuvhyiK2L59O+bNm4f//Oc/ePPNN02PgyZUBEEQBBGA0KZ0Y4gmfwR8/vnnWLx4Md577z2kpqbK+3JdLheWLFmCkSNHomfPnrjrrrtM2a3USOlTpkyBIAiKo0mTJnJ9fn4+0tLSUKNGDYSHh6Nfv37Izs5W2MjMzERKSgpCQ0MRExODcePGobi4WH0qgiAIgqhSsAmVrwehZPHixRg7diwGDx7sidsHwGKxYOjQoXjiiSewaNEi03YrPfVMs2bNcPr0afn4/vvv5br09HT873//w8qVK7F161b8/fff6Nu3r1zvdDqRkpKCwsJCbN++He+//z6WLFmC559/vjIuhSAIgiD8hq9pZ9hxpfPwww8jMjLScPt9+/bhnnvuKbG+b9++2Lt3r+lxGJL8vvrqK9OGe/bsaSjSqM1mQ1xcnFd5bm4uFi1ahOXLl6Nbt24A3LPKpk2bYufOnejYsSPWr1+Po0ePYsOGDYiNjUWrVq0wbdo0TJgwAVOmTJFDyRNXAJp7qaQvChsX1tzu/ki7gqRHm+fLxBWkDJeg2EMlfVRZ2AR+n5Sg2hOk9f3k2RPFJWNm+5Ws0n6nYsGrPQu3wEdBt0j7qeTwCSw5cjG3F0qyKRZJfbjQCGyPkMj680GeXaxMelRUivyDYi+U7leyermde6v4KO0l2tH7WWdkv5PJ5X6ze66M4BW6wZ+JiL1O5ofx+5qtwMw5eMwmKdbb61WRXAnhKK5gZs2aheDgYMPtz549izp16pRYX6dOHfzzzz+mx2FoQtWnTx9TRgVBwPHjxw1tEDt+/Dhq166N4OBgJCUlYcaMGahXrx727t2LoqIi9OjRQ27bpEkT1KtXDzt27EDHjh2xY8cOtGjRArGxsXKb5ORkjBw5EkeOHFGEkicIgiCIqgR5+ZWMy+XCSy+9hIULFyI7Oxu//PILrrvuOjz33HOoX78+hg0bVmLfwsJCOZefFjabDYWFhabHZHhTelZWFmJiYgy1NRoUq0OHDliyZAkaN26M06dP44UXXsAtt9yCw4cPIysrC0FBQYiOjlb0iY2NRVZWljwmfjLF6lldSRQUFKCgoEB+nZeXZ2i8BEEQBFFRuCdUvm5K99NgAowXX3wR77//PmbOnClHOQeA5s2bY/bs2boTKsCdfiY0NFSz7tKlS2Uak6EJVWpqqqlEgUb1zN69e8vPW7ZsiQ4dOiA+Ph6ffPJJmRITGmXGjBl44YUXys0+Uc7IkcdVj+AipEvSmyvIoyd5pD7pNfcRY2Ui+9HCfQnJkp9WxHIGk+U0kiq7JKmPT47MJCIWLoGXFT1yIOunbMuXWQul6+TkQBZeQVCHX4BHRmTyCp/MWZYBWRs+0bOGDCj38y7yoEq+rEjUrNePYVVJU3yYB19lGD/+p1HLiIajt5fhGrQkyyoTLd6s1Gjk/rD7UVH3gOS/gGDp0qV4++230b17d4wYMUIuv+GGG/Dzzz/r9u3cuTOOHTtWahuzGJpQLV682JTRBQsWmB4IAERHR+P666/Hr7/+ip49e6KwsBA5OTmKVars7Gx5z1VcXBx2796tsMG8ALX2ZTEmTpyIsWPHyq/z8vJQt27dMo2ZIAiCIMoDCptQMn/99RcaNmzoVe5yuVBUVKTbd8uWLeUyJlNefkVFRbDZbDh8+HC5DObChQs4ceKEnE/Hbrdj48aNcv2xY8eQmZmJpKQkAEBSUhIOHTqEM2fOyG0yMjIQGRmJxMTEEs/jcDgQGRmpOAiCIAgikBD9dFyJJCYm4rvvvvMq//TTT33eP/3TTz/hqaeeMt3PVGBPu92OevXqwel0lt7YAE899RTuvPNOxMfH4++//8bkyZNhtVoxYMAAREVFYdiwYRg7diyqV6+OyMhIjB49GklJSejYsSMAoFevXkhMTMTAgQMxc+ZMZGVlYdKkSUhLS4PD4fDLGKskWh5xakStcNYBDD9eJhfoyQaSVMR73TEPPo+3n6e5y+G25WKSH/+jTjq1oHU6po7Jkp/3+QQ50jlvUyn18bYFleefhXnycZKhpYglepY8CLkI7UwOlBMvO73rPAmYuRMzGdCiIxVq3ASPHChdE/++qCUePlEzk/8EjX4loRXRu4wR1v0q3agTRJfRk1BPutOzGVCJoivCg9Do/b1SNxAReP7555Gamoq//voLLpcLq1atwrFjx7B06VKsXr3atL2LFy9ixYoVWLRoEXbu3InExES89tprpmyYjkP17LPP4plnnsG5c+fMdvXizz//xIABA9C4cWPcf//9qFGjBnbu3ImaNWsCcLtC3nHHHejXrx86d+6MuLg4rFq1Su5vtVqxevVqWK1WJCUl4eGHH8agQYMwdepUn8dGEARBEJUJBfYsmbvvvhv/+9//sGHDBoSFheH555/HTz/9hP/973/o2bOnYTvbtm3D0KFDERsbi+HDh+Omm27C0aNHy6TECaLJmO2tW7fGr7/+iqKiIsTHxyMsLExRv2/fPtODqGzy8vIQFRWFrrgbNqFkV0pdAmmj4pW0QiVdi8D9IhWk+GJCiHsnuRARLte5otyfx+Jod11hpOf9LIhy2yqIdj8Wcs6ozhD/rFAJGrGmtFeoVP10V6hYHCtPG7ZqZS3y3wqVvLoh6qxQ6eX5k69Fpw1fp/oI6q5QyZvSNVYqzVIeqxZ+slnWFSoj/bWNGoj9ZBYjK1RadWbGrnUvjMSx8gPFrgJs+GshcnNzy227CPufdN37z8Aaajy+khbOS/n4LXV6uY63qnHmzBksWbIE7733HnJzczFgwAA8+OCDSEpKwo8//qi7ZUgP07n8zMakIvyMkcmSP+1U9sRLOr/o4sYrSc4Ck56LPTMVoVgarzwB0DDJvot59ciqfhS927NuvE0mc7FJkI2foCgfXXyQS1H1yNtn/eQJlZRkmQuLYimUJoCSlx9rA3CTLBubiHHXoppk8XWy56EqMCgACGoZkJ9ssRsk3RgRGrKcphyonGSJWn5/7F6w14p/pBXs3cXQ+ietnkT4M9GzEVs6/StMBlSPUy/hslad0UlSRVDWZNf+xh8rTFfoCpUvxMfH495778WcOXPQs2dPWCz++b9qekI1efJkv5yYIAiCIAjCKNWqVVPk3tNDb1tSfHw8vv/+e9SrVw/x8fGKHMK+YHpCBQA5OTn49NNPceLECYwbNw7Vq1fHvn37EBsbi2uvvdYvAyMIgiCIqxmKlK5k9uzZfrHz888/Y9u2bVi0aBHat2+P66+/Hg8//DAAGJ6waWF6QnXw4EH06NEDUVFR+P333/Hoo4+ievXqWLVqFTIzM7F06dIyD4ZQ4S95z59jqCwJkD+vJPWJhdJGovx8uUoIcm+Csga7P9o2hyfSplPK3We77P6GcTq4QJl25hUoSScaATqZh5ri+0klzyny/olM5mKvuZ7sqUXRVNFelvxY8E5PcH+vMn4PlVOWCKVHfn+VSgZU5AeUr0GS97TkQDm/ICcjyvuj2Pi9v8FZP8WWTaeyneYeKiYjsrHxS/OsvdW4JCZZcT/4U04yIvXp5bbTqivLF7vGPdTbe6XOU2n6PEbHqCeh6dVVdNDOAIPiUClJTU31m61OnTqhU6dOmDt3Lj766CMsXrwYTqcT//nPf/Dggw+iT58+soOcUUz/xx47diwGDx6M48ePK5IR3n777fj222/NmiMIgiAIgjCN0+nEp59+imnTpmHatGn47LPPUFxcXHpHjvDwcDz66KPYvn07jhw5grZt22LSpEmoXbu26fGYnlDt2bMHjz32mFf5tddeq5s/jyAIgiAIE4iCf44rkCNHjuD6669HamoqPv/8c3z++edITU1Fo0aNyhx8vGnTpnjttdfw119/4eOPPzbd37Tk53A4NJMJ//LLL6aXx64o9JawryR4CbA85T8dryCRLf8XSb9ECjzub8KlywAAi9U9TjsnEXm+V9wfe4HzHCyUZLJiSSYr5qOBSDFiWZ4/ze8nJt0pfqJoSITqscgSI//5kR5YDsACFsST8+STy6TTc15+LKSCS/IEdBbyHoDMK9Dby4+FZZBDK2h5LEpelIrcg0wOZJ5mCtlTqtMKFqrn5af2DmTSn4s3zuQgmEKWFjXjYOggfybLKENphRPQ84wrT3S9ArXbKhuVUdo00l8LIz/9yyoPGhlLJX2n0x6qknnkkUfQrFkz/PDDD6hWrRoA4N9//8XgwYMxfPhwbN++3bCtI0eOKAKWW61W9O3b1/SYTK9Q3XXXXZg6daqcK0cQBGRmZmLChAno16+f6QEQBEEQBEGY4cCBA5gxY4Y8mQLcXoAvvfQS9u/fr9v3u+++Q/v27eXXHTt2ROvWrdGqVSu0atUKLVu2xIYNG0yPyfSE6vXXX8eFCxcQExODy5cvo0uXLmjYsCEiIiLw0ksvmR4AQRAEQRAaiH46rkCuv/56ZGdne5WfOXNGM2kyz/z58zFw4EBF2ebNm3Hy5En89ttvePzxx7FgwQLTYzIt+UVFRSEjIwPbtm3Djz/+iAsXLqBNmzbo0aOH6ZMTJRAI3n1GYOOsCM8/xbq1FOyTrdDmF6hqPL8ULFw/R1EIAMBa4NbwbJc8H/+gC25XvsJw99J+Ubhnib9Ikv9cDmX+PABw6QUEZd6BstsedwkWVXu75x4KTAaU5C6nzSKd12PAZXeX6eX5Y95+Fi4gKAsOysq0AoIKTqkfLweqgowqo6hDUaYZfV0nWKimdyCzxe6T7EnI3UR2y6wa/dVwdbK0qIrwXhqyfS3vQlO6ikn5SE9uMnkNRhBVXz+anoC+evkZbVsWvYofv5n7EkiBRSXIy69kZsyYgTFjxmDKlClyft+dO3di6tSpeOWVVxRbk9QR4n/44Qc8++yzirI6deogPj4eADBw4ECkpKSYHpPpCdXSpUvxwAMPyC6HjMLCQqxYsQKDBg0yPQiCIAiCIAij3HHHHQCA+++/X44dxX543XnnnfJrQRAU+6MAdx7hqKgo+fX777+PuLg4+XX16tXxzz//mB6T6QnVkCFDcNtttyEmJkZRfv78eQwZMoQmVARBEAThL65Qyc5XNm/eXOa+EREROHHiBOrWrQsAXhvQT548Waa8h6YnVGzGp0Y947uqKWs+L8IYsgygkv4AWf5jK/0Cl0zXInkF2i+79S7b+SC5LijE7S4XHOr+kygK90T2LApzawhFoZIHYIjnfXVKodicDuUj4PEKdFmVQUPdz9mgNL4tpTKLVbo+FlDU6tEynJLs6JI8ARVJmWVvPemR8/JjUp9VQw60qD0Aec9BlQcgn+hZnReQlwrZG2HRScYs5w7U8g6UEzZLfTRkQU8f7/6ar9VJmbXeA60AmQakQl3Z0UdEQSMfIoN9NPQkrjJ6IqslQEBbBlR7DGrlEDSS4Lm087grDHgSAh5Ztqzvi5bnYAV+r1eG5LdgwQIsWLAAv//+OwCgWbNmeP7559G7d28AQH5+Pp588kmsWLECBQUFSE5Oxvz58xEbGyvbyMzMxMiRI7F582aEh4cjNTUVM2bMgM3mmXJs2bIFY8eOxZEjR1C3bl1MmjQJgwcPNjzOLl26mLoung4dOmDp0qXo2rWrZv2SJUvQoUMH03YNT6hat24NQRAgCAK6d++uuDFOpxMnT57EbbfdZnoABEEQBEFo4I9N5Sb716lTBy+//DIaNWoEURTx/vvv4+6778b+/fvRrFkzpKenY82aNVi5ciWioqIwatQo9O3bF9u2bQPgng+kpKQgLi4O27dvx+nTpzFo0CDY7XZMnz4dgHsFKCUlBSNGjMCyZcuwceNGPPLII6hVqxaSk5MNjzU/Px8HDx7EmTNn4HIpZ9933XVXif3Gjh2LHj16oEaNGhg3bpysuJ05cwavvPIKPvzwQ6xfv97cjYOJCVWfPn0AuF0Vk5OTER4eLtcFBQWhfv36FDaBIAiCIKowbP8R46WXXsKCBQuwc+dO1KlTB4sWLcLy5cvRrVs3AMDixYvRtGlT7Ny5Ex07dsT69etx9OhRbNiwAbGxsWjVqhWmTZuGCRMmYMqUKQgKCsLChQuRkJCA119/HYA7oOb333+PWbNmGZ5QrV27FoMGDcLZs2e96rT2TfHceuutePPNN5Geno433ngDkZGREAQBubm5sNlsmD17tnx9ZjA8oZo8eTIAoH79+njggQcUaWeIEqhk6U8wubzOEE0HxisHbz+tIIhqVNIfoOH5x/9RsZQEUp3lgufjb7G5NTiblAswyOGRA0VJDiwOY4+8HOh+7pEDudNJ0qBLMqX00pOCbga5+ztDuACkwVKuQrusc7kf+eCfTAZkwUZdvPebdF7JWw/FvOTHZD3JpIYcaClWtlHWSUPivQqLlTkDBe6WW1RyIN/PI/kpX7ttqKQ+DQ9CGSYPakl+eh6EstOewc+7Wurj8j3KQU3VbcsBrQCo8n3RClaqDkgK+Oy9JhrIn2ikjXZHjbGxTcdG8hJqeQka8ZTUQyF7VuT3ueCH87n7qwNyOxwOOBwOrQ4yTqcTK1euxMWLF5GUlIS9e/eiqKhI4dXfpEkT1KtXDzt27EDHjh2xY8cOtGjRQiEBJicnY+TIkThy5Ahat26NHTt2eEUGSE5OxhNPPGH4qkaPHo377rsPzz//vOJcRvnPf/6DO++8E59++imOHz8OAGjUqBHuvfdeeW+VWUzvoUpNTUVOTg4+/PBDnDhxAuPGjUP16tWxb98+xMbG4tprry3TQAiCIAiC4PCj5KeeJEyePBlTpkzR7HLo0CEkJSUhPz8f4eHh+Pzzz5GYmIgDBw4gKCgI0dHRivaxsbFy6rmsrCyvCQ57XVqbvLw8XL58GSEhISiN7OxsjB07tkyTKUbdunWRnp5e5v5qTE+oDh48iB49eiAqKgq///47Hn30UVSvXh2rVq1CZmYmli5d6rfBEQRBEAThO6dOnVJ4rumtTjVu3BgHDhxAbm4uPv30U6SmpmLr1q0VMUzD3HvvvdiyZQsaNGjgF3svv/wyRowY4TVZNIPpCVV6ejoGDx6MmTNnIiIiQi6//fbb8eCDD5Z5IFc0Zr1rmHRWxgCfZZX69PqblgErC1Hl+SfycqC7UChwazWi1Qo1guRJJ3B1FrtbV7NKMmBQsOeLyBXqfu6U5UDOWUOS8YqDpUcHJ/lJMmBxMMsdyAcSlQJzBrO2TN7jJFUm/7FHG/8Zk+4B8+7hujkdUpBQSQ4s5uVAFiS0SEvyY8E+Neqk54JK+uPL5MCgGrkD1dKfooy1YV6CvCwoK77ekp8hD0JR+bpUVPIhLz8akvr8JQPy94lJjaq8iHw7r4CkgDIoqdfYVJ5tZZXLjHri6eDlYagzFqPeiN6NfPQELE/8uEIVGRlpOBRAUFCQHG28bdu22LNnD+bMmYMHHngAhYWFyMnJUUw8srOz5ThOcXFx2L17t8Iei2jOt1FHOc/OzkZkZKSh1SkAeOutt3Dffffhu+++Q4sWLWCXvqcZY8aMMWSHMX36dNx///0VO6H64Ycf8Pbbb3uVX3vttfJyHkEQBEEQPiIK0M7GbtKGj7hcLhQUFKBt27aw2+3YuHGj7IR27NgxZGZmIikpCQCQlJSEl156CWfOnJG95zIyMhAZGYnExES5zddff604R0ZGhmzDCB999BHWr1+P4OBgbNmyRRHOSRAE0xMqw3spdTA9oXI4HF6b2wDgl19+Qc2aNX0eEEEQBEEQlcPEiRPRu3dv1KtXD+fPn8fy5cuxZcsWrFu3DlFRURg2bBjGjh2L6tWrIzIyEqNHj0ZSUpKc/qVXr15ITEzEwIEDMXPmTGRlZWHSpElIS0uTZcYRI0bgrbfewvjx4zF06FBs2rQJn3zyCdasWWN4nM8++yxeeOEFPP3007BYAiNdm+kJ1V133YWpU6fik08+AeCeCWZmZmLChAkUNsEIZjz/fJT+/AmTAXWlP36cFZHfTz6X1pg0gn6yseu408qW+GuRrl2QYq8Jds470O7W7pgcaA/2eAdCKnMFu9u7HJ5+LodbUiwOlrwEwz3nkwOJSvkEi2UPQi6wZ4jkJRgsBfh0cPebyX+SHCjwcqCdc7OD0jvQKcmAzmJJ9uSDhcoyIAsk6rGhlghZLkC+zJNzkK8TFe2Vkh1rL6r6i15tPBIc31/pkaclFao9CXk0g2eq+9m8bWp+FlVFZQ7+ya6BV6rV59UKYMri82idVy84Kfu4mfWCNPTdpjUWE/fFoOe0lgxYokmjOQsrNLCn70qk2f5nzpzBoEGDcPr0aURFRaFly5ZYt24devbsCQCYNWsWLBYL+vXrpwjsybBarVi9ejVGjhyJpKQkhIWFITU1FVOnTpXbJCQkYM2aNUhPT8ecOXNQp04dvPvuu6ZiUBUWFuKBBx7w22Tq6NGjqF27tk82BNHkOldubi7uvfde/PDDDzh//jxq166NrKwseQkvLCzMpwFVBnl5eYiKikJX3A2bYC+9gz8wlSzU3AfG1z1UehjeS+WvCVVZv0207q90Hw3dH4MTKkgTKkGaPInlMqFyl/MhGUxNqPhI4Cq3ekW4BTnMgq8TKr5O9ajop5wIVbkJlehts0ImVApbqvNq7aEq64SKUdETKr6upHMb3Z9l4l5rRXbX6l/szMeGP+YhNze3TOlJjMD+J9V58wVYQnwLUeS6nI8/R08u1/FWBunp6ahZsyaeeeYZn20VFhZqBgetV6+eKTumV6iioqKQkZGB77//HgcPHsSFCxfQpk0br5gSBEEQBEEQ5YHT6cTMmTOxbt06tGzZ0mtT+htvvFGqjePHj2Po0KHYvn27orykpMqlYXpCxbj55ptx8803l7U7oRO8zrst79ZT+moVW0Uqj5Uq3qYh+c/XlaqyeuBo/VpWewDq4t1IlHIBCgX88v9l9wPLs8f9UbMVLYsULNTKpWuCFEg0SKoTQzwrW85w9z6D4nB3HcsrWBjmee8LI6TVK2kVqyhMSw6UrpdbvRKk54LN/WjlPAcFabmDeQfyOcBkr0C2ilXEfQ6ZZMfyCvI5ANnqlUZeQbm9vJLiMSmvUEn9rQWi4jVvUzMwKCtj3oVOjTo5WKjnvF6BQDVWzTyrX9425deKVRadOjUGcvEJigUc9WoSdx6Wx5LpXlorP2pPQC2bGmMwNF4dBK2xGMlHqLf65aO3nmEvwYrcrxMgm9IDkUOHDqF169YAgMOHDyvqtPINazF48GDYbDasXr0atWrVMtyvJMo0odqzZw82b96suURmZFZIEARBEIQ+guil0pfJxpXI5s2bfbZx4MAB7N27F02aNPHDiMowoZo+fTomTZqExo0bIzY21stVkSAIgiAIP+DHOFSEN4mJiZq5AMuK6QnVnDlz8N5772Hw4MF+GwQhoV6q1tx4qdYWSl5+5iW58tyoHtCYDqqqI8VqSoZS3j0n28jt2XUtsveGbWrnzy8FDmUBRPmN7vYgyWNQ2owaHCIFD43wBBRleQULo9z9CiK4Te2SHFgYIW145+qKw93X4GJyYLDnYmx2p+LRavV81iwWZbBQF7eZ3eWyKMpcTk5+lDa4FzOJkJMKBVWuQYXkJwcClSS/fEk6LPS0UecVFLgxCapAorx3IWvPgo3qSYWadZq5B6VHDanQW/KDNxqfO6/ApRrynPocCunOpZT6FJuu5Q32LsXrksZS4ng1gowa6Wc4H2FZNqW7SmlXUj+tKqu3jCheoRJaVeSHH37AJ598gszMTBQWFirqVq1aVWr/V155BePHj8f06dM1g4Oa3cRvekJlsVjQqVMns90IgiAIgjAD7aEqkRUrVmDQoEFITk7G+vXr0atXL/zyyy/Izs7GPffcY8gGc6br3r27orzCNqWnp6dj3rx5mD17ttmuBEEQBEEYhSS/Epk+fTpmzZqFtLQ0REREYM6cOUhISMBjjz2GWrVqGbLhj31YPKYnVE899RRSUlLQoEEDJCYmei2RGVlmIwxixBNQy4tOQwZUe+T5QwI0FeyzIgN9lkRZ4/8Y6leyHCibUbwv7sBK8vvA1ckegxfcf1vMW9Dm8HgC2iQ50BHqfgyJ9MSqKYpUyoH50Z73ujBKKQMWh3miRBaFua+hONStiQUFexL2OYLcdQ4pMKjV4nk/bdJz9ihwkk2RU/JQlB6LOTmwWJKknE7lI+CRDYuLpPFK+ReFQu4+sZhYzJOQj0PFZD2tvIRqqZAPRMqkOy2p0Klqoyn5SQUlh/5Sxq9yqdoo+qnidLk0JC31OTRiY2nF2/J4OFq8rsXI513L09HrH7deXCiT+QiNIEuORndhy+dR5S7UaqPwFq78QMsEcOLECaSkpABw5x68ePEiBEFAeno6unXrhhdeeKFUG126dPHrmExPqMaMGYPNmzfj1ltvRY0aNWgjOkEQBEGUB7RCVSLVqlXD+fPnAbhzCR8+fBgtWrRATk4OLl26VGK/gwcPonnz5rBYLDh48KDuOVq2bGlqTKYnVO+//z4+++wzeWZIEARBEEQ5QBOqEuncuTMyMjLQokUL3HfffXj88cexadMmZGRkeO2J4mnVqhWysrIQExODVq1aQRAEzdhrFbKHqnr16mjQoIHZboS/KIsnIOAlA2rJdGWVAQ1Jf1c6ejKJyktQ0U3+e3VyZdJ7VSjJgpInILhfXcJ5KQ0O8wg85/EAlL0DI905a0KjPHUF0W45sCBSkuKi+GChUsobSRYsjPDI+YVhbn3M5nA/Ojg5MMzh9q4Js7PHArnOopJf+Nc2Se9ySZILkwUBoNAleS863Y+XitxjuVzIjanYXVckyYLOYk9/l+RNKEoSoVCkIRXK0p9W7sGSpUKLhlToJctpqfVMPdLwRtQObqqU/LSkRl0PQvl8TL70ltJYwFNBEfiUSXAlfx94xuYtFWqm4VF7IWpdg176HAMypGZAUgOBSA1JhQo7JPkFAm+99Rby8/MBuBMl2+12bN++Hf369cOkSZNK7Hfy5EnUrFlTfu5PTE+opkyZgsmTJ2Px4sUIDQ3162AIgiAIgpAgL78SqV69uvzcYrHg6aefNtQvPj5e87k/MD2hmjt3Lk6cOIHY2FjUr1/fa1P6vn37/DY4giAIgrhaoUjpJbNv3z7Y7Xa0aNECAPDll19i8eLFSExMxJQpUxAUFFSKBQ9Hjx7VjGV11113mRqT6QlVnz59zHYxxMsvv4yJEyfi8ccfl0My5Ofn48knn8SKFStQUFCA5ORkzJ8/H7GxsXK/zMxMjBw5Eps3b0Z4eDhSU1MxY8YM2GxlTlNYtTCaE9BAQFBfcwDq5vnjzxcIHn8ViWnvQuX9EYs1pEI5r6BbXhMuX/ZUMu/APPeGzaB/QuQqe7j7eWi4WxYsivR86chegZIMyDwCAU8+weIwd/uLoZ5ruhDuHktupHssUWGesYQFKeXA6CCPbBltd7cLsbp1NauGHlMkus9bIEmAl52e8Ra4JGlSqrtU7Km7WOR+ni/JgkwedD+XPAfZY6GnrqjQXSYWSFIh51XI8hDKOQi57RUWdXBRzeCd8O4nexUq7bjbsTyIoqKOlxqNSH5M1lPaVpbxcqCg+ttVSH+Csg1/LWoZUDOQqJaXnyyTangjMg9Ane0Eel6UepKfbFtLatRo77FJkl8g8Nhjj+Hpp59GixYt8Ntvv+GBBx5A3759sXLlSly6dMlQaKfffvsN99xzDw4dOqTYS8Wc7cp9D9XkyZPNdimVPXv24L///a/Xjvr09HSsWbMGK1euRFRUFEaNGoW+ffti27ZtANwXm5KSgri4OGzfvh2nT5/GoEGDYLfbMX36dL+PkyAIgiAqDNqUXiK//PILWrVqBQBYuXIlunTpguXLl2Pbtm3o37+/oQnV448/joSEBGzcuBEJCQnYvXs3/vnnHzz55JN47bXXTI+pzFPtvXv34sMPP8SHH36I/fv3l9UMLly4gIceegjvvPMOqlWrJpfn5uZi0aJFeOONN9CtWze0bdsWixcvxvbt27Fz504AwPr163H06FF8+OGHaNWqFXr37o1p06Zh3rx5Xkt3BEEQBEFcGYiiCJfLvYS4YcMG3H777QCAunXrGs7Pt2PHDkydOhXXXHMNLBYLLBYLbr75ZsyYMQNjxowxPSbTK1RnzpxB//79sWXLFkRHRwMAcnJycOutt2LFihXy7nmjpKWlISUlBT169MCLL74ol+/duxdFRUVyaHgAaNKkCerVq4cdO3agY8eO2LFjB1q0aKGQAJOTkzFy5EgcOXIErVu31jxnQUEBCgo8nkh5eXmmxhzwaAWj82rDr32X7AFYLjkAyxLsUxFY7wr9ycUwkr9MlVdQ5JemmXdgviQHXvJIcMJ5txxocbg9/4KDPR6AjjAmB7rLeDmwWJL8ikIlT8BQLlio1K4wyv34f5Fhcl12uJQXMMw9pshwz1hiwi8AAKo73DJgdJCnLsLm9t4Jtbp/GIVb3ddiDTovt7FIP72tkmsckwcB4JIkDTKp0Ak+oKhSRjxf7LkHOQXue3C+0F12Id9TV1jkbs+CjTo56a1IylkILcmPNWN1vHcg8yYsZF6FfB0UZczjUOEJ6CV3cXXMQ67Y22PRWiQqyixF3sFG2bi19jSzNrxUKMuXsucg156VqTwPAXhyFcrefvx5WJ2Ot57auxAadRqSobzFQS058valj5QiR2IFevkJ8MMeKr+MJPBo164dXnzxRfTo0QNbt27FggULALg99/g5gR5OpxMREREAgGuuuQZ///03GjdujPj4eBw7dsz0mEx/MkaPHo3z58/jyJEjOHfuHM6dO4fDhw8jLy/P9IxuxYoV2LdvH2bMmOFVl5WVhaCgIHnSxoiNjUVWVpbcRn3j2GvWRosZM2YgKipKPurWrWtq3ARBEARBVB6zZ8/Gvn37MGrUKDz77LNo2LAhAODTTz/FTTfdZMhG8+bN8eOPPwIAOnTogJkzZ2Lbtm2YOnUqrrvuOtNjMr1CtXbtWmzYsAFNmzaVyxITEzFv3jz06tXLsJ1Tp07h8ccfR0ZGBoKDg0vv4EcmTpyIsWPHyq/z8vJoUkUQBEEEFhQ2oURatmyJQ4cOeZW/+uqrsFo9q9UfffQR7rrrLoSFhXm1nTRpEi5evAgAmDp1Ku644w7ccsstqFGjBlasWGF6TKYnVC6XyytUAgDY7XZZzzTC3r17cebMGbRp00Yuczqd+Pbbb/HWW29h3bp1KCwsRE5OjmKVKjs7G3FxcQCAuLg47N69W2E3OztbrisJh8MBh8NRYj1BEARBVDq0Kd006gWaxx57DB06dNBccUpOTpafN2zYED///DPOnTuHatWqlSmtnukJVbdu3fD444/jo48+Qu3atQEAf/31F9LT03XDvavp3r271+xyyJAhaNKkCSZMmIC6devCbrdj48aN6NevHwDg2LFjyMzMRFJSEgAgKSkJL730Es6cOYOYmBgAQEZGBiIjI5GYmGj20q48zIZU8GMoBYqeXg4YicYOePZXFbN9Vp7NLAJz1rjs3qMkcL/khFz3DyWr9GPDxu2vEqXEzGKwu40r2POjqjjcXVckRV8viOATLkvRzKWo6xejPCEcfmE/lCLcG3mCwzyOJJGh7vFFOdyPLPp6OBeFPdLmfh5td+/BCuY2CbE9V9Xs7l+foRaP7WCB20wEIF/0XEtusTtY8b/SY16x58v5orTXqpCFa3B6vj7zpedODZd6tteLRYS/XOQ53yUp8nu+9FjIhXBwsRAO6mjvilAF0t8ZC2fA7z9iEdblfVrcmArcZdIWNeXeLbWnOP+nL++BYv24PVTF6kduX5Yc7V0jNIIqGrpWKAZPxHQ2Ds42eyrvieL6q0Ix6EZ25/eOqv/WuH6ixvckEbhoRtCXGDp0KObMmSPvowLcAUMvXryI0aNH47333jN1LtOfjLfeegt5eXmoX78+GjRogAYNGiAhIQF5eXl48803DduJiIhA8+bNFUdYWBhq1KiB5s2bIyoqCsOGDcPYsWOxefNm7N27F0OGDEFSUhI6duwIAOjVqxcSExMxcOBA/Pjjj1i3bh0mTZqEtLQ0WoEiCIIgqjainw5Ck/fffx+X+Rh+EpcvX8bSpUtN2zO9QlW3bl3s27cPGzZswM8//wwAaNq0qcIbz1/MmjULFosF/fr1UwT2ZFitVqxevRojR45EUlISwsLCkJqaiqlTp/p9LARBEARRkVCk9PIhLy8PoihCFEWcP39eIRM6nU58/fXXsuplBlMTqqKiIoSEhODAgQPo2bMnevbsafqEemzZskXxOjg4GPPmzcO8efNK7BMfH4+vv/7ar+O4otELqVDR0l9ZwicQ2uiGkvDcXzkZsyQD8vKFnhwI6bkgZSCwcpkIbJIc6Ah2P4bxUmGIW8oqDpckrUguYrmUjLkwQgrTEO75UssJjwQAnJUisrtCJPky2KMH2aVQDGGhbnkvItgjB4YHSXKgFIrhGscFuS5GCr0QZXXXOTipMNaeCwCobnO3LxI943WqHND5MA1FLuVXKS8/2iUNi/W/4PRcZ26xWwLNKXJLjHwIBxb5nUV9ZwmiC/kk0C5JDhRY1G8ulIOUbLpQkg4LCzxjFC+7n1vy3f1Z2AaAk8wMRHvnpUJ2ybKMWMjXSWEaWMgIRaR0qY0q7AJf53nUkPXUdbxkqIrMLihkPeX5jEZ2dxWaXocgAozo6GgIggBBEHD99dd71QuCgBdeeMG0XVOfDLvdjnr16pkOx04QBEEQhEloU3q5sHnzZoiiiG7duuGzzz5TJFoOCgpCfHy8vEfcDKan2s8++yyeeeYZfPDBB4pBEARBEAThR2hC5TPx8fFekQm6dOkCwB0EtF69emXy6NPC9ITqrbfewq+//oratWsjPj7eK7bDvn37/DIwopzhJSL1h0knijpRBdGTA0Un14xF8vaWAxmy5MtLhVbpOZMFec9Bu/srxhHEZEFeDnQ/d4W665whnOeg5B1YHGKRHt3nLeLbSP0Kw93fQdlcwua/pefOMPdn2RLmkeBCw6UkziFuabN6iCdhcw2H2yswTNKtQqwe1zgWtZ15DFo43YlJfKEWt20mGQJAtMVt3xPRnZM9JdmQeRrmuzzXx9qxOuaBeMnliWDvkt4zu8VbNWDR4pmc+H/54XLduXxJYpQiwRcUcdKm033PRVfJ/2SKpTauAk4WlhJKWy9LMmKBp79VTiztfq305HM/ypHguUjynqTToqJOM8G0U9lWYVtXTtSRClVejQDgtJPkF2gcP34cmZmZiI+PlwN8Mg4fPlxiv59++gmnTp3CzTffDACYN28e3nnnHTm2Jp8OzwimPxl9+vQx24UgCIIgCJPQpnRvZsyYgRtvvBHdu3fHv//+i/vuuw+bNm0C4N771KtXL3z00UdeWVa0GDduHF555RUAwKFDhzB27Fg8+eST2Lx5M8aOHYvFixebGpvpCdXkyZPNdiEIgiAIwiwUKd2L+fPn47bbbgMAjB8/HufOncPevXvRtGlTHDt2DCNGjMBTTz2Fd999t1RbJ0+elGNWfvbZZ7jzzjsxffp07Nu3T062bAbTE6o9e/bA5XKhQ4cOivJdu3bBarWiXbt2pgdBVDImPP/KmjiZb0vBPgMUtTQo8hqIoCripEJJ/hEkfUbz3dWQA1mZRfIYtAR55K4gtudBkldEqU50cIEvWZDRECl4aCgnW4WwJM7s0eNZVxTu9qw7J+1WyA73jNgZLnkThkhJnYOL5TqHQwpAGiQ92j11QVZ3+2pSoue4EE8S59ggd/L1CKuU8Nni8UZkUiELNhpt9ciPYVI7q3RH86V7wHsb2qX3IdLitm3ndKt8STLMcbnlvayiaLkuuygKAPBPkfsmXOZkxCIX9x5BKSfaJPuXJTnxn4JQue7MJXdwxJxL7vubn8/JsyxIqZSoGcWcZCx5CsqJojWCjHoFKeVis8pyniwPevdnQUYVXokq+VFLKvRIhtxnpEB5f8oV2kPlxf/93//J+7c3bNiA999/H61btwYA3HDDDXjrrbdw5513GrIVFBSES5cuybYGDRoEwB3cMy8vz/TYTG+QSUtLw6lTp7zK//rrL6SlpZkeAEEQBEEQhBHi4+PlfVGCIMBmU64LWa1WOT9fadx8880YO3Yspk2bht27dyMlJQUA8Msvv6BOnTqmx2Z6QnX06FFF/j1G69atcfToUdMDIAiCIAjCG7aHytfjSuLRRx/FuHHj8Ouvv2LUqFF46qmncOLECQBuCS89PR29evUyZOutt96CzWbDp59+igULFuDaa68FAHzzzTeyrGgG05Kfw+FAdna2V6LB06dPe80UiSubsgb79IL3JjMS5JNJk7rBLAm/or7XWrkDXTqBWpnnoMIGkwq9PQchlcnuzBqSodWuDDIaxLtGq6VCLvegS/IUdDKpMMzzvVUUxrwKpTYOTrYKdstbhZKj4mXudC6H+8r+lJTF/RFc/sRQt7Zkl+TDYAfncehwewyynIXVHR7JjwUjjbS56zyehB7Pw2tsedK9cN/zCCFfrguWNLAaFvevdbvdMyYmLeY7lO7kAGCX+jHJkfV3n9s9BuZdmOWMlOtOFLojS/92uSYA4P8KPV6FLEhpoRQA9XKx57wXCt11cj5DLnBpsfTcWcyClEqfEU52kyXDYm8PQOYVKAcd5TwPLXIeQ+mxmJMKVfkIec9DV34Fej6T5OfFU089hczMTCQmJqJBgwb4/fffcf3118Nms6G4uBht2rTBRx99ZMhWvXr1sHr1aq/yWbNmKV6//PLLGDFiRKkb3U3PgHr16oWJEyfiyy+/RFSUW4fPycnBM8884/fI6QRBEARBEDxz587FyJEjsXr1avz2229wuVyoVasWOnXqhB49evgtrhRj+vTpuP/++/0/oXrttdfQuXNnxMfHyxvBDhw4gNjYWHzwwQdlGixBEARBECr8IdldYStUjKZNm6Jp06YVci7RoBpiekJ17bXX4uDBg1i2bBl+/PFHhISEYMiQIRgwYIBXNFKiilHGPH9m0c3vR1QN9ALDltZeLpNkQNmt2zs4pdzLSJBRTnqWpUFpbHpSIQs6CgCiQ+1dyOW/s7ttuIIkjzW7Z0xOhyRNOZTehe7nDqlOegz2jPO8JBHmSDLiiRDOmyxUklId7kdBymNo5zwPI8PcEl+NULcsd02wR54Ls7klO4fkzsZ7ANosbptMPqxu8/SrKcmIEZLnYKyU8xAAatvcA3UI7vt0yeXxZmxk/wcA8Few22kpx+nxAOSDmQLARc6rMNcZJj26vQNZQFK3fffz80XuG5XLHgtDPG2kHIcsdyELOsqXFUgeh5d5nZblMWQBSbXkwEJvGVG8VIFhCEjyM8yQIUPw0ksvlSlljL8o06ansLAwDB8+3N9jIQiCIAiCKJGDBw9qli9btgx33323vL+7ZcuWFTksAAYnVF999RV69+4Nu92Or776SrftXXfd5ZeBEQRBEMRVDa1QedGqVSsIgqApw/Xr1w+iKEIQBDid3ive5Y2hCVWfPn2QlZWFmJgY3dQzlXURhJ8xmefPb95+xJWBWa9NI/sTRA05sIKlQvbcospdCABBzMNZ5V3IP2eSIS8VMvmQPTLJEABcDvcYimU5keU39ORDLAx1e9Jlhl4DADjJ5TN0Sp6HriBRGgd3n4Pc74tNkg8jwj2yXky427uwblgOAKBh6Bm5rnHwaQBAnDUXABBq8by/RaJbnrPCXRZj9ciBEZKGFqGRczBfeh+LRPe184FL86Vch+ddbqkvR5IHeTmR5Tp0Sf2LRM/7ct7p7vd/he6go1n5EXLdP/luW3lSPsOLl7n7KkmEIvMm5AKCihcq7n8cpZ7xpmXLlqhTpw5ee+01hIS4pV9RFNGoUSN88803aNSoUaWNzdCGGJfLhZiYGPl5SQdNpgiCIAiCKC92796Nhg0bol+/fjh37hzi4+NRv359AEDt2rURHx+P+Ph4v57zlltukSdvelRgQA2CIAiCIIiyExQUhNmzZ+O1117DXXfdhRkzZsDlMrASboLi4mJkZmbKr7/++mvUqlWr1H5l2pS+Z88ebN68GWfOnPG6kDfeeKMsJolARc/zT920jHn+FAg6wSEJgseMVMh9frXyEcp17ImeVMjg5UCdAKSCXOYtFdpU/WDhziu1F21WRRs+nyHzSmRehi6HxzaTD+XHIG+vRBbAtDDCI6H9HlEDAHA8oi4AYEMkl88w0u05yLwLo4I9gURDbO4ImeGSdyELTAoA1zpyAAC17P8C0M5ZyLwKwwTP+aIlqZA91uZkREaQlHDPLt1K/p0rkN7QHMlbkA9E+n/F7ud/F1ZzPxZEy3VnCtxS6oUitwx4qcjjeXgx1wnv5GvlBO2hKpHevXvjhx9+wJAhQ/DNN9/41faRI0fQpk0b06qb6QnV9OnTMWnSJDRu3BixsbGKAFr+DqZFEARBEFcrtIdKn9jYWHz99deYO3cuatSogcjIyNI7lSOmJ1Rz5szBe++9h8GDB5fDcAiCIAiCIIwzZswYjBkzxnB7rXzEPJcvX9atLwnTEyqLxYJOnTqV6WTEFYYfg32WCcrpRxjF7GdEVyqU4APTWlSfRV4qYDKexgq+qVFJdhSqgMrzUODzqTIZUSUZAh6pkAUudYZ6JC1nqORNGCrlzwvnch2GShJhqOQ1F+w5nVNyknNKwUmLOY9DV5j7ftjCpXyEoQVyXUSw+3n1ELcMGBvskfWqB7kDjkZJwUWjbO42NaweOZEFIq1pdbeNtngkwwjpfYmQEvbFWs/KdQV29/N/pICrWSFRct05p1vyy3exAKYeD8CzYVbsQwVCX28KSgvdxNAL4XT06FH0798fCQkJmvWnT5/GL7/8YnpspidU6enpmDdvHmbPnm36ZARBEARBGIT2UHmhF7qJUVoIp+bNm6NDhw4YOXKkZv2BAwfwzjvvmB6b6QnVU089hZSUFDRo0ACJiYle6WZWrVplehAEQRAEQRCl4Q+Pvk6dOuHYsWMl1kdERKBz586m7ZqeUI0ZMwabN2/Grbfeiho1atBG9KsFE95+AAX7JK4QzOYs1IL9A2DSn8Y/BM3kq0xSVHm8ai44aMnu0t+e/B3NexCywKVSIFIbJxXa5SClkizo4H40BymlQhaQlH/OPA2dwXw+Q5bj0B3Lp5iL6ZMX6h7LOcnR8OdwzxUWS/KhKOUxtIS65bzg0EK5TXSYWw6soSEZxjrccuA1dncZ710YKnkXsoCgLEAoADilsghrvle/MEfFLfnQpvTyYc6cObr1DRo0wObNm03bNT2hev/99/HZZ58hJSXF9MkIgiAIgjAISX6GiIyMxIEDB+Q8fpWF6QlV9erV0aBBg/IYC0EQBEEQhCk0V3gNsHv3buzYsQNZWVkAgLi4OCQlJeHGG28skz3TE6opU6Zg8uTJWLx4MUJDQ0vvQFz56Hj7kfRHVGm0ZD7pc674TOt5ulpKrvP6R8B7Dkp/V3zAXL5cSckbcHWDlRboXB8LRKoINioFKZXui5XzHLSqApcqPA5VOQ4VuQ6DJU9D+ZELThoiBSCV5MPiYLdbYXGox73wQqjbOy9HUhGPhXGSoeRp6ApVSoYAECTlMbTb3Y82Li9hSJDbKzDK4Zb8wu0er0Rr/kUAP6AiIMmvfDhz5gz69euHbdu2oV69eoiNjQUAZGdnIz09HZ06dcJnn30mp9wziukJ1dy5c3HixAnExsaifv36XpvS9+2rUIdSgiAIgrgyIcnPEA8//LCpoJ7/+c9/4HQ68dNPP6Fx48aKumPHjmHo0KFIS0vDypUrTY3D9ITKiMsiQRAEQRBERbBgwQJT7detW4dvv/3WazIFAI0bN8bcuXPRtWtX0+MwPaGaPHmy6ZMQVxBl9Hryki38CT8OCvJJlDOy1MdLaMyjjpPATFGCR58CX/NbavT3ClYKgMmHIlPHdORMTSmftbdopCWzKGVBwBOU1CJJhEG8VCh7HEqSoV35GgBcklTocrBHj+1iJhmGMMnQE6CTyYdSmj84gzzjzZUUxXMhrC0nI4pli6JdJmiFSpeNGzdi1qxZ+OmnnwAATZs2xRNPPIEePXro9nM4HMjLyyux/vz583A4HCXWl0QlhbgmCIIgCEIPtofK1+NKZP78+bjtttsQERGBxx9/HI8//jgiIyNx++23Y968ebp9H3jgAaSmpuLzzz9XTKzy8vLw+eefY8iQIRgwYIDpMRlaoapevTp++eUXXHPNNYaM1qtXD9999x3i4+NND4ggCIIgCNAKlQ7Tp0/HrFmzMGrUKLlszJgx6NSpE6ZPn460tLQS+77xxhtwuVzo378/iouLERTkXqYsLCyEzWbDsGHD8Nprr5kek6EJVU5ODr755htERUWV3hjAP//8oxv2nbhC4SWFysrvRxD+QMe7T1PSYhKWngxuUo4uV5ncDDpSo55kqGjHnmh5GqplQy0p1YhkyMosnjoH8yaU8hmKdg3PQ6mf6OCDlEryYTDzMvTUFVpcyPS6CqKiycnJwW233eZV3qtXL0yYMEG3r8PhwIIFC/DKK69g7969irAJbdu2NbXBncfwHqrU1NQynYAgCIIgiDJAK1Qlctddd+Hzzz/HuHHjFOVffvkl7rjjDkM2IiMjceutt/ptTIYmVP7InUMQBEEQhHEoDpWSuXPnys8TExPx0ksvYcuWLUhKSgIA7Ny5E9u2bcOTTz6pa2fHjh34559/FBOvpUuXYvLkybh48SL69OmDN9980/TGdNNefv5kwYIFWLBgAX7//XcAQLNmzfD888+jd+/eAID8/Hw8+eSTWLFiBQoKCpCcnIz58+fLQbgAIDMzEyNHjsTmzZsRHh6O1NRUzJgxQ5GbiignTOb3I4gqByc/ydKUlkefVr48hq8/SH317tO06et/6TL+zRvyNDQnGXqqNLwvGQbeMyYdup9L7aT/Iw7u/4nD4gkOSlQss2bNUryuVq0ajh49iqNHj8pl0dHReO+99zBp0qQS7UydOhVdu3aVJ1SHDh3CsGHDMHjwYDRt2hSvvvoqateujSlTppgaX6XOOurUqYOXX34ZjRo1giiKeP/993H33Xdj//79aNasGdLT07FmzRqsXLkSUVFRGDVqFPr27Ytt27YBAJxOJ1JSUhAXF4ft27fj9OnTGDRoEOx2O6ZPn16Zl0YQBEEQvkGSn4KTJ0/6xc6BAwcwbdo0+fWKFSvQoUMHvPPOOwCAunXrYvLkyaYnVJW6c/jOO+/E7bffjkaNGuH666/HSy+9hPDwcOzcuRO5ublYtGgR3njjDXTr1g1t27bF4sWLsX37duzcuRMAsH79ehw9ehQffvghWrVqhd69e2PatGmYN28eCgsLSzk7QRAEQQQuFR02YcaMGWjfvj0iIiIQExODPn364NixY4o2+fn5SEtLQ40aNRAeHo5+/fohOztb0SYzMxMpKSkIDQ1FTEwMxo0bh+Ji5creli1b0KZNGzgcDjRs2BBLliwp620yzb///qtQurZu3SorYwDQvn17nDp1yrTdgNHFnE4nVq5ciYsXLyIpKQl79+5FUVGRIkBXkyZNUK9ePezYsQMdO3bEjh070KJFC8WNSU5OxsiRI3HkyBG0bt1a81wFBQUoKPDkZtIL8EWUEZ38fsQVSnlIUxWNSspSeKCxHHVMDuLkI0HVTzNZqyT9KepUAT3L1bPPn0FvA0gylKtkpVAnr6EfgpS6UKQ3wirN1q1bkZaWhvbt26O4uBjPPPMMevXqhaNHjyIsLAwA/KIcnTx5EikpKRgxYgSWLVuGjRs34pFHHkGtWrWQnJxsaKxDhw7VrX/vvfdKrIuNjcXJkydRt25dFBYWYt++fXjhhRfk+vPnz3ul1TNCpU+oDh06hKSkJOTn5yM8PByff/45EhMTceDAAQQFBSE6OlrRPjY2VnZxzMrKUkymWD2rK4kZM2Yobh5BEARBBBwVLPmtXbtW8XrJkiWIiYnB3r170blzZ1k5Wr58Obp16wYAWLx4MZo2bYqdO3eiY8eOsnK0YcMGxMbGolWrVpg2bRomTJiAKVOmICgoCAsXLkRCQgJef/11AO4I599//z1mzZpleEL177//Kl4XFRXh8OHDyMnJkcdWErfffjuefvppvPLKK/jiiy8QGhqKW265Ra4/ePAgGjRoYGgcPKaXD7p166Y5Gfn3339LvQgtGjdujAMHDmDXrl0YOXIkUlNTFRvMyoOJEyciNzdXPsqytEcQBEEQ5YropwNuJYY/eJWmJHJzcwG4g3sDKFU5AlCicpSXl4cjR47IbdTpYZKTk2UbRvj8888Vx+rVq/Hbb7/hgQceQMeOHXX7Tps2DTabDV26dME777yDd955Rw7uCbhXt3r16mV4LAzTK1RbtmzBoUOHsH//fixbtkxeBiwsLMTWrVtNDyAoKAgNGzYEALRt2xZ79uzBnDlz8MADD6CwsBA5OTmKVars7GzExcUBcAfh2r17t8Ie03JZGy0cDkeZ8vQQVQAmJVBOP8IX1EE8wcl6girYZGlUxGexqn3e/TleM/KhH4KUusSqKfnVrVtX8bq0TdculwtPPPEEOnXqhObNmwNwKz/+UI5KapOXl4fLly8jJCTE9PUBgMViwdixY9G1a1eMHz++xHbXXHMNvv32W+Tm5iI8PBxWVQ7OlStXIjw83Pz5TfcAsGHDBmRlZaFjx45yyAN/4XK5UFBQgLZt28Jut2Pjxo1y3bFjx5CZmSnHnEhKSsKhQ4dw5swZuU1GRgYiIyORmJjo13ERBEEQREUi+OkAgFOnTimUmYkTJ+qeOy0tDYcPH8aKFSv8fl3lyYkTJ7w2wJdEVFSU12QKcK/I8StWRinTHqpatWph69atGDJkCNq3b4+VK1eiadOmpu1MnDgRvXv3Rr169XD+/HksX74cW7Zswbp16xAVFYVhw4Zh7NixqF69OiIjIzF69GgkJSXJy3m9evVCYmIiBg4ciJkzZyIrKwuTJk1CWloarUARBEEQVRs/7qGKjIw0nFJl1KhRWL16Nb799lvUqVNHLo+Li/OLchQXF+flGZidnY3IyEjDq1Njx45VvBZFEadPn8aaNWtMZXb54Ycf8MknnyAzM9MrOsCqVasM2wHKsELFlrkdDgeWL1+Oxx9/HLfddhvmz59v1hTOnDmDQYMGoXHjxujevTv27NmDdevWoWfPngDcQbzuuOMO9OvXD507d0ZcXJziAq1WK1avXg2r1YqkpCQ8/PDDGDRoEKZOnWp6LIQPiGLJS/ii68rw/iKuKgSL4Pb6UhwW1aGu56Qnl8tzSIii6Pbwc3GH9PchukRvDz/62zEG+/7RO6ooFR02QRRFjBo1Cp9//jk2bdqEhIQERb2/lKOkpCSFDdaG2TDC/v37FcfBgwcBAK+//jpmz55tyMaKFStw00034aeffsLnn3+OoqIiHDlyBJs2bTKcu5hHEDX9e0vGYrEgKysLMTExctlnn32G1NRUXL58uUomRc7Ly0NUVBS64m7YBPOukoSE3l4Gs+ETfP1HUoW/RKscRvawVJX3g+2P0gqNoCoTrFpR0d3XKfLfg6KqjJ846YVLMPM3UFXub2Xhx2wOxWIRtohfIDc3t8xJdEuD/U9qNmI6rI5gn2w5C/JxZOEzhsb7n//8B8uXL8eXX36Jxo0by+VRUVHyytHIkSPx9ddfY8mSJbJyBADbt293n8/pRKtWrVC7dm1ZORo4cCAeeeQRRdiE5s2bIy0tDUOHDsWmTZswZswYrFmzxrCX36VLlyCKoryP+/fff8cXX3yBpk2bGrbRsmVLPPbYY0hLS0NERAR+/PFHJCQk4LHHHkOtWrVMRwMwvUJ18uRJ1KxZU1HWr18/7Nq1SzfuA0EQBEEQJvCjl58RFixYgNzcXHTt2hW1atWSj48//lhu4w/lKCEhAWvWrEFGRgZuuOEGvP7663j33XcNT4QAoE+fPvjggw8AADk5OejYsSNef/119OnTBwsWLDBk48SJE0hJSQHgdpC7ePEiBEFAeno63n77bcNjYZjeQxUfH69Z3qxZMzRr1sz0AAiCIAiCKIEKXHw0IlgFBwdj3rx5mDdvXolt4uPj8fXXX+va6dq1K/bv3296jIx9+/bJuf0+/fRTxMbGYv/+/fjss8/w/PPPY+TIkaXaqFatGs6fPw8AuPbaa3H48GG0aNECOTk5uHTpkukxVXpgT+IqgZcvKHr6lYVekuyqIEXx41Z9NhWhEfTCJTCpTydCerlQFe5vIBBIUeIJv3Dp0iVEREQAcKeh69u3LywWCzp27Ig//vjDkI3OnTsjIyMDLVq0wH333YfHH38cmzZtQkZGBrp37256TDShIgiCIIgAxOym8pJsXIk0bNgQX3zxBe655x6sW7cO6enpANzObkb3tr311lvIz88HADz77LOw2+3Yvn07+vXrh0mTJpkeE02oCIIgCCIQqeDUM1WJ559/Hg8++CDS09PRvXt32UNw/fr1JebxVcMiwANuh7unn37apzHRhIrwH/xSuJ5XjV7iZHITJwIBOSku9xm1eCfKLRFN6U+ZCFm7n4HPP0lOBIF7770XN998M06fPo0bbrhBLu/evTvuuecew3ZOnDiBxYsX48SJE5gzZw5iYmLwzTffoF69eqb3hdNmFoIgCIIIQCo6DlVVIy4uDq1bt4aF++Fz4403okmTJob6b926FS1atMCuXbuwatUqXLhwAQDw448/YvLkyabHQxMqgiAIgghEKjhswtXG008/jRdffBEZGRmKVDPdunXDzp07TdsjyY+oPEjeIwIMgcl57JGTrvWSIcvefcyjTxUhvcR+WgE9CYKoEA4dOoTly5d7lcfExODs2bOm7dEKFUEQBEEEICT5lS/R0dE4ffq0V/n+/ftx7bXXmrZHEyqCIAiCCERI8itX+vfvjwkTJiArKwuCIMDlcmHbtm146qmnMGjQINP2aEJFlA9VPCkpcXUjCIKuxAdAmeSYUdbPvZFEyPQ3dfVBE6pyZfr06WjSpAnq1q2LCxcuIDExEZ07d8ZNN91EcagIgiAIgiBKQxRFZGVlYe7cuXj++edx6NAhXLhwAa1bt0ajRo3KZJMmVARBEAQRgFCk9PJDFEU0bNgQR44cQaNGjVC3bl2fbZLkRxCEf2CSFH8EMoIgHRbvg2GxeA49XC4vzz52yLKgJOuJLlE+CEIXkvzKDYvFgkaNGuGff/7xn02/WSIIgiAIgqgivPzyyxg3bhwOHz7sF3sk+REEQRBEACKIIgQfV3p97X8lM2jQIFy6dAk33HADgoKCEBISoqg/d+6cKXs0oSLKF/bHXJrHFEEEEnoSnyTVKQJ2qgN7GoVy9xF6+EOyo49PicyePduv9mhCRRAEQRDEVUdqamqJdWZXpwDaQ0UQBEEQAQlFSq941q9fj/vvv58ipRMEQVQYzLNPw7tPEfRT5d1nmKrgKUmUL+TlVyH88ccfmDx5MurXr4/77rsPFosFS5cuNW2HJD+CIAiCIK4qCgsLsWrVKrz77rvYtm0bevTogT///BP79+9HixYtymSTJlQEQRAEEYBQYM/yYfTo0fjoo4/QqFEjPPzww/j4449Ro0YN2O12WK3WMtulCRVRMfDSRXl6/JFEQviCpfTPpuzdx3/WzHr3EYQRyMuvXFiwYAEmTJiAp59+GhEREX6zS3uoCIIgCCIAoU3p5cMHH3yA3bt3o1atWnjggQewevVqOJ1On+3ShIogCIIgiKuGAQMGICMjA4cOHUKTJk2QlpaGuLg4uFwuHD16tMx2aUJFVDzkvUQEEIJFkA9PoeAlTXs8+FxeEl9Jefs0vfu4Oi+qSh5EomIgL79yJSEhAS+88AJ+//13fPjhh+jXrx8efvhh1KlTB2PGjDFtj/ZQEQRBEESAQpJd+SMIApKTk5GcnIxz585h6dKlWLx4sWk7tEJFEARBEAQBoHr16njiiSfw448/mu5LK1RE5eGvPH8kjxAVSVnz9hGEWfwh/9L3oy5//vknvvrqK2RmZqKwsFAuFwQBr7/+uilbNKEiCIIgiACE4lCVLxs3bsRdd92F6667Dj///DOaN2+O33//HaIook2bNqbtkeRHEARBEMRVx8SJE/HUU0/h0KFDCA4OxmeffYZTp06hS5cuuO+++0zbowkVUfnwnk1mlrjJG4rwM4IgQChJgi4hb5+md58WunX0WSY0IC+/cuWnn37CoEGDAAA2mw2XL19GeHg4pk6dildeecW0PZpQEQRBEEQAIrj8cxDahIWFyfumatWqhRMnTsh1Z8+eNW2P9lARBEEQBHHV0bFjR3z//fdo2rQpbr/9djz55JM4dOgQVq1ahY4dO5q2V6krVDNmzED79u0RERGBmJgY9OnTB8eOHVO0yc/PR1paGmrUqIHw8HD069cP2dnZijaZmZlISUlBaGgoYmJiMG7cOBQXF1fkpRD+RksGLIssSBC+wGQ+l8vzudMI7KmGBfNUBPQkCLOQ5FeuvPHGG+jQoQMA4IUXXkD37t3x8ccfo379+li0aJFpe5W6QrV161akpaWhffv2KC4uxjPPPINevXrh6NGjCAsLAwCkp6djzZo1WLlyJaKiojBq1Cj07dsX27ZtAwA4nU6kpKQgLi4O27dvx+nTpzFo0CDY7XZMnz69Mi+PIAiCIMoMefmVL9ddd538PCwsDAsXLvTJniCKgfNT///+7/8QExODrVu3onPnzsjNzUXNmjWxfPly3HvvvQCAn3/+GU2bNsWOHTvQsWNHfPPNN7jjjjvw999/IzY2FgCwcOFCTJgwAf/3f/+HoKCgUs+bl5eHqKgodMXdsAn2cr1GgiACBGnzuWC1eops0m9MrkxGFX9K8dXJVqKkTeeaK1MlbUjnbRMBT7FYhC34Erm5uYiMjCyXc7D/STfeNQ02e7BPtoqL8rH7q+fKdbxVlT179sDlcsmrVIxdu3bBarWiXbt2puwF1Kb03NxcAO5IpQCwd+9eFBUVoUePHnKbJk2aoF69etixYwcAYMeOHWjRooU8mQKA5ORk5OXl4ciRI5rnKSgoQF5enuIgCOIqQ7B4HwwdWdnLs4+8+wiiSpKWloZTp055lf/1119IS0szbS9gJlQulwtPPPEEOnXqhObNmwMAsrKyEBQUhOjoaEXb2NhYZGVlyW34yRSrZ3VazJgxA1FRUfJRt25dP18NQRAEQfgGk/x8PQhtjh49qhnAs3Xr1jh69KhpewEzoUpLS8Phw4exYsWKcj/XxIkTkZubKx9aM1SCIAiCqFRoU3q54nA4vJzcAOD06dOw2cxvMQ+ICdWoUaOwevVqbN68GXXq1JHL4+LiUFhYiJycHEX77OxsxMXFyW3UN4S9Zm3UOBwOREZGKg6CIK4SBMF4/kjeq9SEdx9BEIFPr1695AUWRk5ODp555hn07NnTtL1KnVCJoohRo0bh888/x6ZNm5CQkKCob9u2Lex2OzZu3CiXHTt2DJmZmUhKSgIAJCUl4dChQzhz5ozcJiMjA5GRkUhMTKyYCyEIgiAIP0OSX/ny2muv4dSpU4iPj8ett96KW2+9FQkJCcjKyjKdGBmo5LAJaWlpWL58Ob788ktERETIe56ioqIQEhKCqKgoDBs2DGPHjkX16tURGRmJ0aNHIykpSQ661atXLyQmJmLgwIGYOXMmsrKyMGnSJKSlpcHhcFTm5REEQRBE2fGH0wI5PZTItddei4MHD2LZsmX48ccfERISgiFDhmDAgAGw2817/FfqhGrBggUAgK5duyrKFy9ejMGDBwMAZs2aBYvFgn79+qGgoADJycmYP3++3NZqtWL16tUYOXIkkpKSEBYWhtTUVEydOrWiLoMgiCsVVe4+dxn9gyOIK4WwsDAMHz7cL7YqdUJlJARWcHAw5s2bh3nz5pXYJj4+Hl9//bU/h0YQBEEQlQoF9ix/Tpw4gdmzZ+Onn34CACQmJuLxxx9HgwYNTNsKiE3pBEEQBEGoIC+/cmXdunVITEzE7t270bJlS7Rs2RK7du1Cs2bNkJGRYdoeJUcmCIJQU4o3H4BSIp8b6E8QRKXy9NNPIz09HS+//LJX+YQJE0x7+tEKFUEQBEEEIOTlV7789NNPGDZsmFf50KFDq3ZgT4IgCIIgOPj0Rr4chCY1a9bEgQMHvMoPHDiAmJgY0/ZI8iMIgigBzQTIWu2M/NMi7z7CLP7YA0UfuxJ59NFHMXz4cPz222+46aabAADbtm3DK6+8grFjx5q2RxMqgiAIgiCuOp577jlERETg9ddfx8SJEwEAtWvXxpQpUzBmzBjT9mhCRRAEQRABiAA/hE3wy0iuPIqLi7F8+XI8+OCDSE9Px/nz5wEAERERZbZJe6gIgiAIIhDhc0n6chBe2Gw2jBgxAvn5+QDcEylfJlMATagIgiBkRFEsPeCw6Co5LIJeHUEQAcWNN96I/fv3+80eSX4EQRAEEYBQpPTy5T//+Q+efPJJ/Pnnn2jbti3CwsIU9S1btjRljyZUBEEQBBGIkJdfudK/f38A0NyALggCnE6nKXs0oSIIglBhJBGyoVAJBEEELCdPnvSrPZpQEQRBEEQAIogiBB83lfva/0omPDwcNWrUAACcOnUK77zzDi5fvoy77roLt9xyi2l7tCmdIAiCIAIRl58OQsGhQ4dQv359xMTEoEmTJjhw4ADat2+PWbNm4e2338att96KL774wrRdmlARBEEYoawefOS6ThABxfjx49GiRQt8++236Nq1K+644w6kpKQgNzcX//77Lx577DGvhMlGIMmPIAiCIAIQkvzKhz179mDTpk1o2bIlbrjhBrz99tv4z3/+A4vFvcY0evRodOzY0bRdmlARBEEQRCBCXn7lwrlz5xAXFwfAvY8qLCwM1apVk+urVasmR043A0l+BEEQDJeoPIxCAT2J8qASIqV/++23uPPOO1G7dm0IguC1l0gURTz//POoVasWQkJC0KNHDxw/flzR5ty5c3jooYcQGRmJ6OhoDBs2DBcuXFC0OXjwIG655RYEBwejbt26mDlzZpluUVkRBEH3dVmgFSqCIAiCIAAAFy9exA033IChQ4eib9++XvUzZ87E3Llz8f777yMhIQHPPfcckpOTcfToUQQHBwMAHnroIZw+fRoZGRkoKirCkCFDMHz4cCxfvhwAkJeXh169eqFHjx5YuHAhDh06hKFDhyI6OhrDhw+vkOscPHgwHA4HACA/Px8jRoyQA3sWFBSUySZNqAiCIAgiAKmMSOm9e/dG7969NetEUcTs2bMxadIk3H333QCApUuXIjY2Fl988QX69++Pn376CWvXrsWePXvQrl07AMCbb76J22+/Ha+99hpq166NZcuWobCwEO+99x6CgoLQrFkzHDhwAG+88UaFTKhSU1MVrx9++GGvNoMGDTJtlyZUBEFc3fBSnWApuU4uMvAfijYCE/7AHx6ifvwsnjx5EllZWejRo4dcFhUVhQ4dOmDHjh3o378/duzYgejoaHkyBQA9evSAxWLBrl27cM8992DHjh3o3LkzgoKC5DbJycl45ZVX8O+//yr2M5UHixcvLhe7NKEiCIIgiCucvLw8xWuHwyFLXkbJysoCAMTGxirKY2Nj5bqsrCzExMQo6m02G6pXr65ok5CQ4GWD1ZX3hKq8oE3pBEEQBBGACC7/HABQt25dREVFyceMGTMq9+KuQGiFiiAIQg157BGBgB8lv1OnTiEyMlIuNrs6BUAONZCdnY1atWrJ5dnZ2WjVqpXc5syZM4p+xcXFilAFcXFxyM7OVrRhr1mbqgitUBEEQRDEFU5kZKTiKMuEKiEhAXFxcdi4caNclpeXh127diEpKQkAkJSUhJycHOzdu1dus2nTJrhcLnTo0EFu8+2336KoqEhuk5GRgcaNG1dZuQ+gCRVBEARBBCainw4TXLhwAQcOHMCBAwcAuDeiHzhwAJmZmRAEAU888QRefPFFfPXVVzh06BAGDRqE2rVro0+fPgCApk2b4rbbbsOjjz6K3bt3Y9u2bRg1ahT69++P2rVrAwAefPBBBAUFYdiwYThy5Ag+/vhjzJkzB2PHji37vQoASPIjCIJg6Eh9hrz7CMKPVEbqmR9++AG33nqr/JpNclJTU7FkyRKMHz8eFy9exPDhw5GTk4Obb74Za9eulWNQAcCyZcswatQodO/eHRaLBf369cPcuXPl+qioKKxfvx5paWlo27YtrrnmGjz//PMVFoOqvBBEkfx78/LyEBUVha64GzbBXtnDIQiiPGERkaUQCYLFWIRk3QmVeiJGX6tXLMViEbbgS+Tm5ir2JPkT9j/p1nbPwGYLLr2DDsXF+dj8w/RyHS/hhlaoCIIgCCIQCbA4VIQ+NKEiCIIoC+QJSJQ3IgBfP2Y0n6owaEJFEARBEAFIZeyhIsoOefkRBEEQBEH4CK1QEQRBlIBpzz5aDSD8iQg/7KHyy0gIA9CEiiAIgiACEdqUXqUgyY8gCIIgCMJHKnVC9e233+LOO+9E7dq1IQgCvvjiC0W9KIp4/vnnUatWLYSEhKBHjx44fvy4os25c+fw0EMPITIyEtHR0Rg2bBguXLhQgVdBEERVRnSJ8kEQAYXLTwdRIVTqhOrixYu44YYbMG/ePM36mTNnYu7cuVi4cCF27dqFsLAwJCcnIz8/X27z0EMP4ciRI8jIyMDq1avx7bffVvloqwRBEATBvPx8PYiKoVL3UPXu3Ru9e/fWrBNFEbNnz8akSZNw9913AwCWLl2K2NhYfPHFF+jfvz9++uknrF27Fnv27EG7du0AAG+++SZuv/12vPbaa3LeIIIgCIIgiPIkYPdQnTx5EllZWejRo4dcFhUVhQ4dOmDHjh0AgB07diA6OlqeTAFAjx49YLFYsGvXrgofM0EQVRte/iMJkKh02KZ0Xw+iQghYL7+srCwAQGxsrKI8NjZWrsvKykJMTIyi3mazoXr16nIbLQoKClBQUCC/zsvL89ewCYIgCMI/kJdflSJgV6jKkxkzZiAqKko+6tatW9lDIgiCIAiiChOwE6q4uDgAQHZ2tqI8OztbrouLi8OZM2cU9cXFxTh37pzcRouJEyciNzdXPk6dOuXn0RMEEfCIrrLl4ytrP4IwC0l+VYqAnVAlJCQgLi4OGzdulMvy8vKwa9cuJCUlAQCSkpKQk5ODvXv3ym02bdoEl8uFDh06lGjb4XAgMjJScRAEQRBEQEFhE6oUlbqH6sKFC/j111/l1ydPnsSBAwdQvXp11KtXD0888QRefPFFNGrUCAkJCXjuuedQu3Zt9OnTBwDQtGlT3HbbbXj00UexcOFCFBUVYdSoUejfvz95+BEEQRBVGkqOXLWo1AnVDz/8gFtvvVV+PXbsWABAamoqlixZgvHjx+PixYsYPnw4cnJycPPNN2Pt2rUIDg6W+yxbtgyjRo1C9+7dYbFY0K9fP8ydO7fCr4UgiKsY+qdFEFc9gijSN0FeXh6ioqLQFXfDJtgrezgEQZQngqB6bXLng9b+KfoavWooFouwBV8iNze33LaLsP9JPRqlw2Z1+GSr2FmADcdnlet4CTcBGzaBIAiCIK5qXCIg+DhZp3hqFUbAbkonCIIgCIKoKtAKFUEQBEEEIhTYs0pBEyqCIAiCCEj8EUeKJlQVBUl+BEFcXVCwQ4IgygFaoSIIgiCIQIQkvyoFTagIgiAIIhBxifBZsiMvvwqDJlQEQVzd8HGl9GJSUf4+giB0oAkVQRAEQQQi/kjETT8EKgyaUBEEQRBEIEJ7qKoUNKEiCIJgsF/zZtPREER5QHuoqhT0rUEQBEEQBOEjtEJFEARBEIEISX5VCppQEQRBqKGNvEQgIMIPEyq/jIQwAEl+BEEQBEEQPkIrVARBEAQRiJDkV6WgCRVBEARBBCIuFwAf5WcXydcVBU2oAhlBcD/SLwyCCDzo75IgCA6aUBEEQRBEIEKSX5WCJlQEQRAEEYjQhKpKQROqyobJegRBEARBVFloQkUQBEEQgQilnqlS0ISKIAiCIAIQUXRB9DHIrK/9CePQhKqiMSPxkfZNEOUH+/si2Z0IVETR9xUm+j9SYVCkdIIgCIIgCB+hFSqCIAiCCEREP+yhohWq/2/v3oNjvN44gH83id0kIreN7AoJ0Zq4EwmauLRTGaG0lFKamriU0qSoVlGDtr9xaTs1qlVKx7WKmnErykTiPpEQCeISVBRpIlUiiUtu+/z+6Hhr2WhkN7s2+/3M7Iw97zlnz3km7+7jPWfftRomVDXpaZcS+IdPREQPGAyAysw9UNxDZTVc8iMiIiIyE69QERERPYu45GdXmFBVl7nfDOIfORERPYEYDBAzl/x42wTr4ZIfERERkZl4hYqIiOhZxCU/u8KEqiq4vEdERNZmEEDFhMpecMmPiIiIyEy8QkVERPQsEgFg7n2oeIXKWphQ1QT+ARMRkZnEIBAzl/yEn0dWU2uW/BYtWoQmTZrA1dUVnTt3Rmpqqq2HREREVH1isMyDrKJWJFQbNmzApEmTMGvWLBw/fhzt2rVDdHQ08vPzbT00IiIicgC1IqGaP38+Ro8ejREjRqBly5ZYsmQJ3N3dsXz5cusNQuTfBxHZD5679IwSg1jkQdZh9wlVaWkp0tLSEBUVpZQ5OTkhKioKycnJJtuUlJSgsLDQ6EFERPRM4ZKfXbH7Tek3btxARUUFdDqdUblOp8O5c+dMtpk7dy4+++yzx8rLUVbJPdSqcB8q/u+WqBZ4invO8Zx3SOUoA2Cdzd6VfyY9ZR9kFXafUFXHtGnTMGnSJOV5dnY22rdvj0PYaboB3zeJHAPPdaqioqIieHl51UjfarUaer0eh/Iq+Ux6Snq9Hmq12iJ9UeXsPqHy8/ODs7Mzrl+/blR+/fp16PV6k200Gg00Go3yvHHjxgCAK1eu1NgJYq8KCwsRGBiIq1evwtPT09bDeWYwLqYxLpVjbEyzt7iICIqKihAQEFBjr+Hq6ors7GyUlpZapD+1Wg1XV1eL9EWVs/uESq1WIywsDImJiejfvz8AwGAwIDExEfHx8VXqw8npn61kXl5ednFC24KnpydjYwLjYhrjUjnGxjR7ios1/uPt6urKJMjO2H1CBQCTJk1CbGwswsPD0alTJyxYsAB37tzBiBEjbD00IiIicgC1IqF688038ddff2HmzJnIy8tD+/btsWvXrsc2qhMRERHVhFqRUAFAfHx8lZf4HqXRaDBr1iyjfVX0D8bGNMbFNMalcoyNaYwL1RYq4Q/9EBEREZnF7m/sSURERGRrTKiIiIiIzMSEioiIiMhMTKiIiIiIzMSECsCiRYvQpEkTuLq6onPnzkhNTbX1kGrM3Llz0bFjR9SrVw/+/v7o378/srKyjOrcv38fcXFx0Gq18PDwwMCBAx+7E/2VK1fQp08fuLu7w9/fH5MnT0Z5ebk1p1Kj5s2bB5VKhYkTJypljhyXnJwcvP3229BqtXBzc0ObNm1w7Ngx5biIYObMmWjQoAHc3NwQFRWFCxcuGPVx8+ZNxMTEwNPTE97e3hg1ahSKi4utPRWLqaiowIwZMxAcHAw3Nzc899xz+N///mf0G2+OEpcDBw7g1VdfRUBAAFQqFbZs2WJ03FJxOHnyJLp16wZXV1cEBgbiyy+/rOmpEVWdOLj169eLWq2W5cuXy+nTp2X06NHi7e0t169ft/XQakR0dLSsWLFCMjMzJSMjQ1555RUJCgqS4uJipc7YsWMlMDBQEhMT5dixY/LCCy9IZGSkcry8vFxat24tUVFRkp6eLjt37hQ/Pz+ZNm2aLaZkcampqdKkSRNp27atTJgwQSl31LjcvHlTGjduLMOHD5eUlBS5dOmS7N69Wy5evKjUmTdvnnh5ecmWLVvkxIkT8tprr0lwcLDcu3dPqdOrVy9p166dHDlyRA4ePCjPP/+8DB061BZTsojZs2eLVquV7du3S3Z2tmzcuFE8PDzkm2++Ueo4Slx27twp06dPl02bNgkA2bx5s9FxS8Th9u3botPpJCYmRjIzM2XdunXi5uYmP/zwg7WmSfREDp9QderUSeLi4pTnFRUVEhAQIHPnzrXhqKwnPz9fAMj+/ftFRKSgoEDq1KkjGzduVOqcPXtWAEhycrKI/PPm6eTkJHl5eUqdxYsXi6enp5SUlFh3AhZWVFQkzZo1k4SEBHnxxReVhMqR4zJlyhTp2rVrpccNBoPo9Xr56quvlLKCggLRaDSybt06ERE5c+aMAJCjR48qdX777TdRqVSSk5NTc4OvQX369JGRI0calQ0YMEBiYmJExHHj8mhCZak4fP/99+Lj42N0Lk2ZMkVCQkJqeEZEVePQS36lpaVIS0tDVFSUUubk5ISoqCgkJyfbcGTWc/v2bQCAr68vACAtLQ1lZWVGMWnevDmCgoKUmCQnJ6NNmzZGd6KPjo5GYWEhTp8+bcXRW15cXBz69OljNH/AseOybds2hIeHY9CgQfD390doaCiWLVumHM/OzkZeXp5RbLy8vNC5c2ej2Hh7eyM8PFypExUVBScnJ6SkpFhvMhYUGRmJxMREnD9/HgBw4sQJHDp0CL179wbguHF5lKXikJycjO7du0OtVit1oqOjkZWVhVu3bllpNkSVqzV3Sq+OGzduoKKi4rGfqNHpdDh37pyNRmU9BoMBEydORJcuXdC6dWsAQF5eHtRqNby9vY3q6nQ65OXlKXVMxezBMXu1fv16HD9+HEePHn3smCPH5dKlS1i8eDEmTZqETz75BEePHsX48eOhVqsRGxurzM3U3B+Ojb+/v9FxFxcX+Pr62m1spk6disLCQjRv3hzOzs6oqKjA7NmzERMTAwAOG5dHWSoOeXl5CA4OfqyPB8d8fHxqZPxEVeXQCZWji4uLQ2ZmJg4dOmTrodjc1atXMWHCBCQkJPAX3h9hMBgQHh6OOXPmAABCQ0ORmZmJJUuWIDY21sajs51ffvkFa9euxc8//4xWrVohIyMDEydOREBAgEPHhchROfSSn5+fH5ydnR/7ptb169eh1+ttNCrriI+Px/bt27F37140atRIKdfr9SgtLUVBQYFR/YdjotfrTcbswTF7lJaWhvz8fHTo0AEuLi5wcXHB/v37sXDhQri4uECn0zlkXACgQYMGaNmypVFZixYtcOXKFQD/zu1J55Fer0d+fr7R8fLycty8edNuYzN58mRMnToVQ4YMQZs2bTBs2DB88MEHmDt3LgDHjcujLBWH2np+Ue3h0AmVWq1GWFgYEhMTlTKDwYDExERERETYcGQ1R0QQHx+PzZs3Iykp6bFL6GFhYahTp45RTLKysnDlyhUlJhERETh16pTRG2BCQgI8PT0f++C1Fz169MCpU6eQkZGhPMLDwxETE6P82xHjAgBdunR57NYa58+fR+PGjQEAwcHB0Ov1RrEpLCxESkqKUWwKCgqQlpam1ElKSoLBYEDnzp2tMAvLu3v3LpycjN9CnZ2dYTAYADhuXB5lqThERETgwIEDKCsrU+okJCQgJCSEy330bLD1rnhbW79+vWg0Glm5cqWcOXNGxowZI97e3kbf1KpNxo0bJ15eXrJv3z7Jzc1VHnfv3lXqjB07VoKCgiQpKUmOHTsmEREREhERoRx/cHuAnj17SkZGhuzatUvq169v97cHeNTD3/ITcdy4pKamiouLi8yePVsuXLgga9euFXd3d/npp5+UOvPmzRNvb2/ZunWrnDx5Uvr162fya/GhoaGSkpIihw4dkmbNmtnd7QEeFhsbKw0bNlRum7Bp0ybx8/OTjz/+WKnjKHEpKiqS9PR0SU9PFwAyf/58SU9Plz/++ENELBOHgoIC0el0MmzYMMnMzJT169eLu7s7b5tAzwyHT6hERL799lsJCgoStVotnTp1kiNHjth6SDUGgMnHihUrlDr37t2T9957T3x8fMTd3V1ef/11yc3NNern8uXL0rt3b3FzcxM/Pz/58MMPpayszMqzqVmPJlSOHJdff/1VWrduLRqNRpo3by5Lly41Om4wGGTGjBmi0+lEo9FIjx49JCsry6jO33//LUOHDhUPDw/x9PSUESNGSFFRkTWnYVGFhYUyYcIECQoKEldXV2natKlMnz7d6Gv9jhKXvXv3mnxfiY2NFRHLxeHEiRPStWtX0Wg00rBhQ5k3b561pkj0n1QiD93Wl4iIiIiemkPvoSIiIiKyBCZURERERGZiQkVERERkJiZURERERGZiQkVERERkJiZURERERGZiQkVERERkJiZURDZ2+fJlqFQqqFQqtG/f3iJ9ZWRkWGRs9u6ll15SYsuYEFFNYkJF9IzYs2eP0e+dVUdgYCByc3PRunVrC43KuoYPH47+/ftbrL9NmzYhNTXVYv0REVWGCRXRM0Kr1UKr1ZrVh7OzM/R6PVxcXKrVvrS01KzXf1Y8mIevry/q169v49EQkSNgQkVkQatXr4ZWq0VJSYlRef/+/TFs2LCn6uvB1Zo5c+ZAp9PB29sbn3/+OcrLyzF58mT4+vqiUaNGWLFihdLG1JLf6dOn0bdvX3h6eqJevXro1q0bfv/9d6PXmD17NgICAhASEgIAOHXqFF5++WW4ublBq9VizJgxKC4uNmtsAHD16lUMHjwY3t7e8PX1Rb9+/XD58mUAwKeffopVq1Zh69atyjLdvn37/rPdk+ZBRGQtTKiILGjQoEGoqKjAtm3blLL8/Hzs2LEDI0eOfOr+kpKS8Oeff+LAgQOYP38+Zs2ahb59+8LHxwcpKSkYO3Ys3n33XVy7ds1k+5ycHHTv3h0ajQZJSUlIS0vDyJEjUV5ertRJTExEVlYWEhISsH37dty5cwfR0dHw8fHB0aNHsXHjRuzZswfx8fFmja2srAzR0dGoV68eDh48iMOHD8PDwwO9evVCaWkpPvroIwwePBi9evVCbm4ucnNzERkZ+Z/tKpsHEZFV2frXmYlqm3Hjxknv3r2V519//bU0bdpUDAaDyfrZ2dkCQNLT043KY2NjpXHjxlJRUaGUhYSESLdu3ZTn5eXlUrduXVm3bp3JvqZNmybBwcFSWlpq8rVjY2NFp9NJSUmJUrZ06VLx8fGR4uJipWzHjh3i5OQkeXl51R7bmjVrJCQkxCgOJSUl4ubmJrt371b67devn9EYq9ru0Xk8UFl8iYgsqXobLYioUqNHj0bHjh2Rk5ODhg0bYuXKlRg+fDhUKtVT99WqVSs4Of17IVmn0xltOHd2doZWq0V+fr7J9hkZGejWrRvq1KlT6Wu0adMGarVaeX727Fm0a9cOdevWVcq6dOkCg8GArKws6HS6ao3txIkTuHjxIurVq2f0+vfv31eWIE2partH50FEZE1MqIgsLDQ0FO3atcPq1avRs2dPnD59Gjt27KhWX48mQiqVymSZwWAw2d7Nze0/X+PhxKkmx1ZcXIywsDCsXbv2sb6etHG8qu2qOw8iIktgQkVUA9555x0sWLAAOTk5iIqKQmBgoE3G0bZtW6xatQplZWVPvEr1sBYtWmDlypW4c+eOkqQcPnwYTk5OZm327tChAzZs2AB/f394enqarKNWq1FRUfHU7YiIbI2b0olqwFtvvYVr165h2bJl1dqMbinx8fEoLCzEkCFDcOzYMVy4cAFr1qxBVlZWpW1iYmLg6uqK2NhYZGZmYu/evXj//fcxbNgwZbmvOmJiYuDn54d+/frh4MGDyM7Oxr59+zB+/Hhl43qTJk1w8uRJZGVl4caNGygrK6tSOyIiW2NCRVQDvLy8MHDgQHh4eFj0RpVPS6vVIikpCcXFxXjxxRcRFhaGZcuWPfFqlbu7O3bv3o2bN2+iY8eOeOONN9CjRw989913Zo3F3d0dBw4cQFBQEAYMGIAWLVpg1KhRuH//vnLlafTo0QgJCUF4eDjq16+Pw4cPV6kdEZGtqUREbD0IotqoR48eaNWqFRYuXPjEepcvX0ZwcDDS09PN/ukZehzjS0TWwCtURBZ269YtbN68Gfv27UNcXFyV20VGRiIyMrIGR+Z4evfujVatWtl6GETkALgpncjCQkNDcevWLXzxxRdV2sTdqFEjXLhwAQCg0WhqengO5ccff8S9e/cAAEFBQTYeDRHVZlzyIyIiIjITl/yIiIiIzMSEioiIiMhMTKiIiIiIzMSEioiIiMhMTKiIiIiIzMSEioiIiMhMTKiIiIiIzMSEioiIiMhMTKiIiIiIzPR/Vte6wSb5+gQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHFCAYAAADbiAxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjwdJREFUeJzt3XlcVFX/B/DPhWFfRkHZFBENTUWT1BCtXHFJM7OyXDF9ytJUXNLMnqQew/RXaqb5PPqYu9FTaXsmptJjrqnkmqnhmogpggvrzPn94cPkvfcAMzDAoJ/363VfL+bMueeeuTMMh3vP93wVIYQAEREREZWLU1V3gIiIiOhOwEEVERERkR1wUEVERERkBxxUEREREdkBB1VEREREdsBBFREREZEdcFBFREREZAccVBERERHZAQdVRERERHbAQRXdtU6fPo3hw4cjJCQEbm5uqFOnDh5//HGr9z906BCeeuop1K5dG25ubqhfvz5GjRpVgT2Wy8jIwLBhw1CrVi14enoiJiYGP/zwg67etGnTEBUVBT8/P7i7u6NBgwZ4/vnncfr06VKPsXXrViiKYtl+/vlnu/W/qO2tW7farU1Hc+TIESQkJODUqVMV0v68efNU78+ff/5ZIcchopJxUEV3pUOHDqFVq1Y4dOgQ3nnnHSQnJ2POnDmoWbOmVftv2bIFDzzwALKzs/HPf/4TGzduxD/+8Q+4u7tXcM/V8vLy0KVLF/zwww9477338MUXXyAwMBA9evRASkqKqu7Vq1cxYMAArFixAhs2bMCkSZPw9ddfIzo6GpcvX7bqeAsXLsSOHTvQpEkTu72G+++/Hzt27MD9999vtzYdzZEjR/DGG29U2KDqmWeewY4dOzBixIgKaZ+IrCSI7jJms1m0bNlStGzZUuTm5tq8/40bN0RwcLDo1auXMJvNFdDDWzp06CDi4uJKrLNw4UIBQGzfvt1SVlBQIJo2bSoeeOCBUo/x7bffCgBi6dKlJdbbsmWLACC2bNliTderzI0bN6q6C1KffPJJhZw/7eudPn26ACAuXbpk1+MQkXV4pYoqRW5uLqKionDPPfcgKyvLUp6eno6goCB07NgRJpOpUvry448/IjU1FfHx8XBzc7N5/08++QQXLlzAyy+/DEVRSq2/adMmdOnSBb6+vvD09ET79u2lt+fKYv369WjcuDFiYmIsZQaDAYMHD8bu3btx/vz5EvevXbu2ZZ+yGjZsGLy9vfHrr7+ie/fu8PLyQnBwMN5++20AwM6dO/Hggw/Cy8sLjRo1wooVK1T7F3f7b9euXXj00Ufh7+8Pd3d3NGzYEPHx8ZbnExISoCgK9u3bhyeffBI1a9ZEw4YNAdz6vE2dOhXh4eFwdXVFnTp1MHr0aFy9elV1jPr166N37974+uuvERUVBQ8PDzRp0gRff/01AGD58uVo0qQJvLy88MADD0hve/7888/o06eP5bZqVFQU/vOf/1ieX758OZ566ikAQKdOnSy36JYvX26pY81npKTXS0SOgYMqqhTu7u74z3/+g4yMDAwfPhwAYDabMWjQIAgh8NFHH8HZ2bnENgoLC63ahBAltvPjjz8CAHx8fPDII4/A3d0d3t7e6N27N3799ddSX0vR/iaTCQ8++CBcXV1Rs2ZNDBgwAH/88Yeq7urVq9GtWzf4+vpixYoV+M9//gM/Pz90797dLgOrQ4cOoUWLFrryorLDhw/rnissLEROTg7279+P+Ph4NGrUCP369StXPwoKCtCvXz/06tULX3zxBXr27ImpU6fi1VdfRVxcHIYPH24ZAA4bNgx79+4tsb3vv/8eDz30EM6cOYM5c+bgu+++w2uvvYaLFy/q6vbr1w/33HMPPvnkE/zzn/+EEAJ9+/bFO++8gyFDhuCbb77BhAkTsGLFCnTu3Bl5eXmq/X/55RdMnToVU6ZMwbp162A0GtGvXz9Mnz4d//73v5GYmIg1a9YgKysLvXv3Rk5OjmXfLVu2oH379rh69Sr++c9/4osvvkDLli3x9NNPWwZNvXr1QmJiIoC/bp/u2LEDvXr1AmD7Z0T7eonIgVTxlTK6y3z88ccCgJg3b554/fXXhZOTk9i4cWOp+6WlpQkAVm2l3WIZOXKkACB8fX3FiBEjxKZNm8SqVatEWFiYqFWrlvjjjz9K3L979+4CgKhRo4aYPHmy2Lx5s/jnP/8p/P39xT333GO5JXPjxg3h5+cnHn30UdX+JpNJ3Hfffarbc2azWRQUFKi2hx9+WAwdOlRXfjsXFxcxcuRIXR+3b98uAIi1a9eqyi9cuKA6V9HR0eL8+fMlvl4hSr79FxcXJwCIzz77zFJWUFAgateuLQCIffv2WcovX74snJ2dxYQJE0psu2HDhqJhw4YiJyen2D4V3ep6/fXXVeUbNmwQAMTs2bNV5UWfvcWLF1vKwsLChIeHhzh37pylLDU1VQAQwcHBqttrn3/+uQAgvvzyS0vZvffeK6KionTvS+/evUVwcLAwmUxCiOJv/9nyGSnu9crOCW//EVWNsl/zJyqD/v37Y+vWrXj55ZdhMpnw6quvIjY2ttT9QkJCsGfPHquO0bhx4xKfN5vNAICYmBj8+9//tpRHRkYiKioKCxcuxIwZM0rd/+mnn8asWbMA3LqtExQUhL59+2Lt2rX429/+hu3bt+PKlSuIi4tDYWGhqo0ePXpg9uzZuHHjBry8vJCSkoJOnTrpjvXjjz9i5cqVqrK0tDTUr1/f8rikW5Da52rVqoU9e/YgLy8PR48exezZs9GpUyds3boVwcHBxbZTGkVR8Mgjj1geGwwG3HPPPTAYDIiKirKU+/n5ISAgoMSIw99++w0nT55EYmKiVRP/n3jiCdXjzZs3A7h1W/J2Tz31FIYPH44ffvgBzz33nKW8ZcuWqFOnjuVx0ST8jh07wtPTU1de1PcTJ07g119/xTvvvAMAqvf4kUcewddff41jx46VOKnfls9Ica+XiBwHB1VU6YYPH45FixbB1dUVY8eOtWofV1dXtGzZ0qq6pd1G9Pf3BwB0795dVd6yZUsEBwdj3759Zdq/e/fuljkvACy3qp588sli27py5Qq8vLzQqlUr3aBx5MiRCAkJwfTp01XlISEhqr7IIveuXLkC4NYg5nYGgwGtW7cGALRv3x49evRAeHg43n77bbz33nvFv+hSeHp66gZArq6uuuMXlefm5hbb1qVLlwAAdevWterY2sHg5cuXYTAYLPPFiiiKgqCgIN350vbR1dW1xPKivhe9v5MmTcKkSZOkfSttaQNbPiNFyjP4JaKKxUEVVaobN25gyJAhaNSoES5evIi//e1v+OKLL0rd79SpUwgPD7fqGFu2bEHHjh2LfV42B6mIEAJOTiVPNWzRogWSkpKKfb5o/1q1agEA3n//fbRt21ZaNzAwEMCt+V1Fg50iPj4+8Pf315Xfrnnz5jh48KCuvKgsMjKyhFdya+ASEhKC3377rcR6laloMHTu3Dmr6muvxvn7+6OwsBCXLl1SDayEEEhPT0ebNm3s0s+i93fq1KnFzkkr7aqpLZ+RItYERxBR1eCgiirVCy+8gDNnzmD37t349ddf8eSTT2Lu3LkYP358ifvZ8/Zfz5494enpie+++0513H379iE9Pb3YP25FHn/8cUybNg3fffedarHQ7777DkIIy/7t27dHjRo1cOTIEbz00ktW9d1Wjz/+OEaNGoVdu3YhOjoawK3bUKtXr0Z0dLTqqpbMiRMncO7cOfTp06dC+lcWjRo1QsOGDfHhhx9iwoQJNkdodunSBbNnz8bq1atV7+9nn32GGzduoEuXLnbpZ+PGjREREYFffvnFMhG9OEWv4fZJ7kDlfEaIqPJwUEWV5t///jdWr16NZcuWoVmzZmjWrBleeuklTJkyBe3bt8cDDzxQ7L6urq4lXrGxRY0aNfDmm29i0qRJGDZsGAYMGID09HT8/e9/R7169VSroq9cuRLDhw/Hhx9+iKFDhwIA7r33XowePRoffPABfHx80LNnT/z222947bXXEBUVhf79+wMAvL298f777yMuLg5XrlzBk08+iYCAAFy6dAm//PILLl26hEWLFpXrtQwfPhwLFy7EU089hbfffhsBAQH44IMPcOzYMWzatMlS78CBAxg/fjyefPJJNGjQAE5OTjh48CDmzp0Lf3//Ym9fVZWFCxfi0UcfRdu2bTF+/HjUq1cPZ86cwffff481a9aUuG9sbCy6d++OKVOmIDs7G+3bt8eBAwcwffp0REVFYciQIXbr57/+9S/07NkT3bt3x7Bhw1CnTh1cuXIFR48exb59+/DJJ58A+OuK4eLFi+Hj4wN3d3eEh4fD39+/wj8jRFSJqniiPN0lDhw4IDw8PHSLWebm5opWrVqJ+vXri8zMzErt05IlS0RkZKRwdXUV/v7+YtCgQeLs2bOqOsuWLRMAxLJly1TlhYWF4u233xb33HOPcHFxEcHBweLFF1+UvoaUlBTRq1cv4efnJ1xcXESdOnVEr169xCeffFJi/6xZ/FMIIdLT08XQoUOFn5+fcHd3F23bthXJycm6OoMHDxYNGzYUnp6ewtXVVTRo0EC88MIL4syZM6Ueo7ToPy8vL2n/mzVrpisPCwsTvXr1KrXtHTt2iJ49ewqj0Sjc3NxEw4YNxfjx4y3PlxTplpOTI6ZMmSLCwsJKfH+0fSkCQIwePVpVVhSB+n//93+q8l9++UX0799fBAQECBcXFxEUFCQ6d+4s/vnPf6rqzZs3T4SHhwtnZ2fdZ8qaz4g1kX2M/iOqWooQpSzqQ0R3va1bt6JTp07YtGkTOnToUK7FQsn+hBAwmUx488038Y9//AOXLl2yzNciosrDxT+JyGpdu3aFi4uLXRMqU/m99957cHFxwT/+8Y+q7grRXY1XqoioVNeuXcOxY8csj5s2bapaw4mqVkZGBs6cOWN53LJlS15NJKoCHFQRERER2QFv/xERERHZAQdVRERERHbAQRURERGRHXAmI24lyP3jjz/g4+PDFBBERFQiIQSuXbuGkJCQUtNalUdubi7y8/PL3Y6rq6tVycmp/DioAvDHH38gNDS0qrtBRETVyNmzZ61O/G2r3NxchId5Iz3DVO62goKCkJaWxoFVJeCgCrcS1wLAg3gEBrhUcW+o2nJyVj10ruWnr+PrrS9zVv+nK5yddVWEh/5XVTipr6oKZ8l/zLLgXk2RIqmjbRsACj3VfZAdT0i6YHIr/T95k7v+eE75kn45q+uZXCX7mfT7KZq/SyY3/X5mybdhoae6nst1fdvOBZKyXHVZvo/+HDgV6vfz/f2m6vHNYA9dnXzv0s+7e6b+D7FznllXpn1vtOdX1jYAGHLUbWnPLwC4XC/Qt2XQnM8/b+rq4EqWviw3V/XQnCe5emOWfdbNmoel17FGoSjANnxj+dtREfLz85GeYcLpvfXhK/n8WCv7mhlhrU4hPz+fg6pKwEEV/sr6boALDAoHVVRGimZQ5eSqr+MsSQ5szaDKWf+51P4BrOhBFTTrHgmDdYMqxcWKPwgu+uM5y/ql/aMvG1RJBiu6OzSS/RTJt6HQ1HN2lQygtCcUgEEzsDO5SgZVTpL9DOo/8AYX/R9BWVva825wkQyqTPrBg/a9sXpQVagZVMnqGCSfY82gyuAsGY3Jfm8U9fHMiuRzLSuDZlBlRR2rCVTKdBFvHwXePmU/jhmc0lKZOKgiIiJyUCZhhuTiq037U+XhoIqIiMhBmSFgllwNtWV/qjxcUoGIiIjIDnilishOnFzV855Ebf1E9bwQ/UR17RwZIZsw7S6Zk6OZIG3NBGZAP/XEkGPdf7L53ppJ4pLJ3kI/jQaFXpI+aKbSFEjm7wuDFRPOJfNuhWSei1Oh5nhG2VwefZHirqmXJZnb5qK/veKco27MVFM/aRv5+gMWeKpPVvY9+t0KfWR9V58rw1XZBDH9m2N2V+/nlCeZ25YrK5O80RoeGfo+5BvVbblm6d9A96yaujLv0+oJ7Up+oa6OU9YNXZm4dl39OCdXX8ckOZ+aMv0Edyfd3MSKYoa5rLO+LPtT5eGgioiIyEGZhICpHCl6y7Mv2Y63/4iIiIjsgFeqiIiIHBQnqlcvHFQRERE5KDMETBxUVRu8/UdERERkB7xSRVQWkggzxUOdUqSgpj7FSJ5RHzWlTbVi7arW2gXUZWlWZBF62hXUCz1Kj5YDAKGpZpYkH5BF8cn+dROaoC+TmyTST9KUNYSLvq1CTftOvvpoPBdX/YvWvs15khW5nSXRf2ZP9ftcJyhTV8fDRd+HE85BqsdBda/o6lzO0odTNgq6pHqcdlkfeXrziqeuzMlD/ZoLc/QfIpMkShFe6v1EjiSy0EXfVl5tdVSd8w1921clq+v71lZ/sGSfa9fsGroyT03ePNcs/Tl3ztW/785/XFY9NmdeVT12EgogybBTEXj7r3rhoIqIiMhBMfqveuHtPyIiIiI74JUqIiIiB2VGmVM+W/anysNBFRERkYMylTP6rzz7ku04qCIiInJQJnFrK8/+VHk4p4qIiIjIDniliqgMFGd9CLnipQ5ZN7tY9z+LdkkFSdS+dPkCsyb03Clf0risMe3SCLKlGFwlyyxoEjhL++SqL3PW57DV5fZVJBM/DDmS5SB0iZH1r88pX7+fyVNdT5itW7AhN8tNXVAoS1qtD9NXnEufyWJ0zdGVhYSqQ/lb1Tqrq5PqVLfUtt1c9MsE5EiWftByr6F/s3Iz9UmP3TzVHzbXGvrjXVN89Adw1izn4SZJRu2lb+uqq/qDJbwly19c03+QMwvU75fzTUkGbgm/o+plK7zPBqoeFxbmAtutaqrcOKeqeuGgioiIyEGZocBU5lXbbu1PlYe3/4iIiIjsgFeqiIiIHJRZ3NrKsz9VHg6qiIiIHJSpnLf/yrMv2Y63/4iIiIjsgFeqiMpAcXPTlZn91NFOhZ76CEHhJEtwbMXxTJJCzX6GPH1DQh+YhgJNAmVZ206F+rZMkkS3WtJ+Srhc0+znrm/bTZ+DGHk1NQWScyeNgjSr/3805+vDFPPd9OGMzpoIRFliazP0+ykF6v0uKEZdnas39Qm3b1xVl0X6XdDVqet9VVe2K62++vhOkhOTrf+6d6qVp3rsLItaLNS/N/k31eevdV19lOLOG/pIO9M1zbly1R9PSLqgTZLt7q1/k2sEXdX3s1D9O5h9TZ9Uuk4t/X6nawWoHiuF6tdrzjFXWvQfr1RVLxxUEREROSizUGAW5Yj+K8e+ZDve/iMiIiKyA16pIiIiclC8/Ve9cFBFRETkoExwgqkcN5WsnOZIdsJBFRERkYMS5ZxTJTinqlJxUEVUGkWSB8/HW1eWW1udL6zAW//fpVkfEKjLqSec9ceT7eesieyT58/TF5pcNI1J/pWVRfEJTZiiNDefLG+h5FvGLVMTzSWL+JL8LdCeG2dJnj/Z8fT90u9X4KPvvHOuJlJSn3IOBb6S86B5PQVO+mjDG9f1UYM+v6k7/8OV+3R1PBpm68rEVU1uPMn5dM7Vfx5Nl9VRrDed9FGtrpn6/Qrz1GU//XqP/oCyPlxX72eqoa9kvql/AxWT+hznXtZHTsL7pq4o2EcdZuosiYqMrKmPsEz3V0fyBtVQt1N4Iw/6eEciDqqIiIgcFudUVS8cVBERETkok3CCSbZAmtX727EzVCouqUBERERkB7xSRURE5KDMUGAux/UPsyztAFWYKr1SVb9+fSiKottGjx4NABBCICEhASEhIfDw8EDHjh1x+PBhVRt5eXkYM2YMatWqBS8vL/Tp0wfnzp2ripdDRERkV0VzqsqzUeWp0itVe/bsgcn0V5jRoUOHEBsbi6eeegoAMHv2bMyZMwfLly9Ho0aNMGPGDMTGxuLYsWPw8bkVnREfH4+vvvoKSUlJ8Pf3x8SJE9G7d2/s3bsXzs6SkCkiWyn6/z2Etz6HWL5R/eskzZUnKdLm2XPK1/9nKc/Pp3lcIIte00dXOeerX4+TLNJP8u+WNoLOIGk7t6Z+x3wfSfSkpu+K2bpcg+5X1MeURUqa9EF1umg8IflqcLmub8tZk0+xUJKj0JBberSmS7b+gLL3tMbv6hMTtEuf4+5slxq6MndNW7JIUO05BwCTm7pfTpJckS439GU5tdWv2emyJJeiUfJ51Lwcc67+vDjlSX5JzJrjSV5LOvx1ZaZQ9eexoFB/vGPZAboyg0F9Amu45WjakSWYJKriQVXt2rVVj99++200bNgQHTp0gBAC8+bNw7Rp09CvXz8AwIoVKxAYGIi1a9di5MiRyMrKwtKlS7Fq1Sp07doVALB69WqEhoZi06ZN6N69e6W/JiIiInsp/0R13v6rTA4zUT0/Px+rV6/G8OHDoSgK0tLSkJ6ejm7dulnquLm5oUOHDti+/VZ68L1796KgoEBVJyQkBJGRkZY6Mnl5ecjOzlZtREREjubWnKrybVR5HGZQ9fnnn+Pq1asYNmwYACA9PR0AEBgYqKoXGBhoeS49PR2urq6oWbNmsXVkZs6cCaPRaNlCQ0Pt+EqIiIjobuQwg6qlS5eiZ8+eCAkJUZUrmtWshRC6Mq3S6kydOhVZWVmW7exZro1LRESOx/y/3H9l3coTOUi2c4glFU6fPo1NmzZh3bp1lrKgoCAAt65GBQcHW8ozMjIsV6+CgoKQn5+PzMxM1dWqjIwMtGvXrtjjubm5wc1Nn46BiIjIkXBOVfXiEIOqZcuWISAgAL169bKUhYeHIygoCMnJyYiKigJwa95VSkoKZs2aBQBo1aoVXFxckJycjP79+wMALly4gEOHDmH27NmV/0LojqS46H9NzD766D+TqyZPnCSizZCnLxNOpe8nS4TnpFkqWfa9a3LXFzprogSdcyV9knwzFLpp2pJ00+W6LPmfvkibk1B7DgCgUJLeTZhKnx9ikLwebbSYND+gpJ8uNzSRmZLoONnxcmtqrrBLohRl79fN2proNKGPqjPk6IrgmqXug9lQ+ucFAMyafhlyJFGYkv8/tZGSsvfdNbv01+xyTR+NZ03+X+9z+uPdDNa/qZeca6gLJMkpr1700ZXBWV3vSL56Gor5Zm7pnbQTczmvNnGdqspV5YMqs9mMZcuWIS4uDgbDX91RFAXx8fFITExEREQEIiIikJiYCE9PTwwcOBAAYDQaMWLECEycOBH+/v7w8/PDpEmT0Lx5c0s0IBEREVFlqPJB1aZNm3DmzBkMHz5c99zkyZORk5ODUaNGITMzE9HR0di4caNljSoAmDt3LgwGA/r374+cnBx06dIFy5cv5xpVRERU7ZmEApM1l+9K2J8qT5UPqrp16wZRzD1fRVGQkJCAhISEYvd3d3fH+++/j/fff7+CekhERFQ1iiacl31/3v6rTAwLICIiIrKDKr9SRURERHJm4QRzOaL/zIz+q1QcVBFpadY4c/LUR/rl1XTXlWmnLshy6rlc0xcWeqrn/8m+P7URe4Akr59k6oQsqk6bz06RRIXJIuEUTSCaLMLMJUe/o2LWvyCXm6VH/5kNsshFTduSvmtzKQL6vIiyaLwCL/3xXK+r3y8nk76ONpIRAMyG0t9TWVSdyU3dr5sB+rmhrtmSqFJNRKCTSfY+6I+naOoVSqJFZXn2tOdYFjUoex+0r0+bIxEAzJLcjdooTLds/YvJ99H/OfM4pW5MSNp2lkRTFmp+5RWT5sOfV3l/Onn7r3rh7T8iIiIiO+CVKiIiIgdlRvki+CQXKKkCcVBFRETkoMq/+CdvSFUmnm0iIiICACQkJEBRFNVWlDYOuJVbNyEhASEhIfDw8EDHjh1x+PBhVRt5eXkYM2YMatWqBS8vL/Tp0wfnzp1T1cnMzMSQIUNgNBphNBoxZMgQXL16tTJeYoXioIqIiMhBFeX+K89mq2bNmuHChQuW7eDBg5bnZs+ejTlz5mDBggXYs2cPgoKCEBsbi2vXrlnqxMfHY/369UhKSsK2bdtw/fp19O7dGybTX4EfAwcORGpqKjZs2IANGzYgNTUVQ4YMKd/JcgC8/UdEROSgzFBgloX22rC/rQwGg+rqVBEhBObNm4dp06ahX79+AIAVK1YgMDAQa9euxciRI5GVlYWlS5di1apVlnRxq1evRmhoKDZt2oTu3bvj6NGj2LBhA3bu3Ino6GgAwJIlSxATE4Njx46hcePGZX69VY2DKiItRf2fnVLTqKuSb9T/6mj/IZTNLTW7SpYJ0CyNIMn5CkjWmnHO1yxLoEiS6BZIQus1YfTCWd8nk4c+1l17PBnt0gUA4FqgX0ZCX0+/n8tN/etRNOfBSZKg2pCrP542SbX8XOlfsyFHvZ6AYtK/77Jz7JalSagsuVhgdpG8Pk1TJkkd5/zSQ+Rl75Vs2QrtkhSyZRdkx8ut6VxqHZcb+sYKhDZhdOkJxgHAkKduS5u8HJAntnZOVz+WJs2+WXpCbOc89fMmK94Deynr1abb9weA7OxsVbmbmxvc3CTregA4fvw4QkJC4ObmhujoaCQmJqJBgwZIS0tDeno6unXrpmqnQ4cO2L59O0aOHIm9e/eioKBAVSckJASRkZHYvn07unfvjh07dsBoNFoGVADQtm1bGI1GbN++vVoPqnj7j4iI6A4XGhpqmb9kNBoxc+ZMab3o6GisXLkS33//PZYsWYL09HS0a9cOly9fRnr6rVFqYGCgap/AwEDLc+np6XB1dUXNmjVLrBMQEKA7dkBAgKVOdcUrVURERA6q/It/3tr37Nmz8PX1tZQXd5WqZ8+elp+bN2+OmJgYNGzYECtWrEDbtm0B3MrLezshhK5MS1tHVt+adhwdr1QRERE5KLNQyr0BgK+vr2orblCl5eXlhebNm+P48eOWeVbaq0kZGRmWq1dBQUHIz89HZmZmiXUuXryoO9alS5d0V8GqGw6qiIiISCovLw9Hjx5FcHAwwsPDERQUhOTkZMvz+fn5SElJQbt27QAArVq1gouLi6rOhQsXcOjQIUudmJgYZGVlYffu3ZY6u3btQlZWlqVOdcXbf0RERA7KXM7bf7Yu/jlp0iQ8+uijqFevHjIyMjBjxgxkZ2cjLi4OiqIgPj4eiYmJiIiIQEREBBITE+Hp6YmBAwcCAIxGI0aMGIGJEyfC398ffn5+mDRpEpo3b26JBmzSpAl69OiB5557Dv/6178AAM8//zx69+5drSepAxxUEek4uaqzrhbW8tHVyTPqv6gUTdCZLKGs/ICadiQRdE5WRHNpI9xuVZIkSy7URBtK9pOWFaojt2TRa9pk1ADgnCfJLK1tXtKUy7XSz58sMbKTLPpPcx6kSaQlZdrz5yxru1D/3rhoow2lCaNlEYjq/aTRopLzac1nQdYHJ03fnXMln2tJW7IoTy1t5CSg/xzLIl1l76mi+V0q8JEkmr5WehJp2e+ka5a+n4omq7M2oXmhJKK1opiFE8zliP6zdd9z585hwIAB+PPPP1G7dm20bdsWO3fuRFhYGABg8uTJyMnJwahRo5CZmYno6Ghs3LgRPj5/fU/OnTsXBoMB/fv3R05ODrp06YLly5fD2fmv923NmjUYO3asJUqwT58+WLBgQZlfp6NQhJB8695lsrOzYTQa0RGPwaBI0pjTXcXJ3V312NwiQlcns6m3rsyaQZXrddkXv2aZADsOqmR/8J3ytR2VTBiVLbPgVrmDKrPkj6uuGUkdl+wCfbesGFSZ3CX/Y2r2EwbJoENyjoWLul51GVSZJe+7rC2Tu35QoyUbVJk058WegyrZMgtlHVTl1C5tUJWLXV+/jqysLNXkb3sq+ruUuLsT3L3Lfv0j93ohXn1gS4X2lf7CK1VEREQOygQFpnIs/lmefcl2HFQRERE5qMq+/Uflw7NNREREZAe8UkVEROSgTCjfLbzKm1JPAAdVdLeTTKxWPDxUjwt8XXV1zJJ5us6aSbGyfGjOeaXnz5NGpkkmQ2t7Lp30K5uErplsLY0alJRpJ0g75et3gxWTjAF9XkRZ3xXJRG7IIvQ0nKyJzJK045yrn7Csi56U7Cfc9B8GRXOuZJOvZedYGzRgzrdu4rg2sECb37HY/TTHc5blipQFO8iCD7R18vXn01m7Erdk4r80L6O2D4r+d9JF9tHQNCWL3nTK1Qc2uEkCBFQk56Si8PZf9cJBFRERkYOyV0Jlqhw820RERER2wCtVREREDkpAgbkcc6oEl1SoVBxUEREROSje/qsYK1eutKre0KFDbWqXgyoiIiK6qwwbNgze3t4wGAwoLrGMoigcVBHZRJFEV9VQp3LIq2ndr4k2usqQo48QkqZs0bYji8CSpaDRRqJJvhhk0VXaqDNppJgkAkvXtiSyUEYaXaitI4vYk33ROVnxX7dsP+3rMUuit6yIGlQk+8m+kLWvR/o+SA+giY7z1KfNcpJ8PqAtk0WnWfNZkH3OZOfFis+H9Bzr2pa0Y8X755wjeS1WpLyRRfpB0k3XK7nqKi6aCM9CSTsVxCwUmLXhsjbuT3pNmjTBxYsXMXjwYAwfPhwtWrSwS7u8LkhEROSgTHAq90Z6hw8fxjfffIOcnBw8/PDDaN26NRYtWoTs7OxytcuzTURERHed6Oho/Otf/8KFCxcwduxY/Oc//0FwcDAGDRqEvLy8MrXJQRUREZGDKrr9V56NSubh4YGhQ4fijTfewAMPPICkpCTcvHmzTG1xUEVEROSgzHAq90bFO3/+PBITExEREYFnnnkGbdq0weHDh1GzZs0ytceJ6kRERHRX+c9//oNly5YhJSUF3bt3x7vvvotevXrB2VmSg8wGHFTRXU1x0f8KmI1eqseyvG1OkjRxhlxtVF3pUW+3Dqjpk5URWLKcbGVhbTu6nIGy2wqyHIWyKDDNuVEK9CdUViYMVnzhWROZ5iz5771QEuUmq6c9nCw6Ll8THSbJVSenPi9O+ZL33ZooRcn7IIQkR6Em0k5IoitlkYu69mURkLLPlTbS1MoIUi0nST+lnzPtZ6GY0HndbvnqthRNXkhhkiW+rBgmocBUjlt45dn3TvbMM8+gXr16GD9+PAIDA3Hq1CksXLhQV2/s2LE2tctBFRERkYPikgoVo169elAUBWvXri22jqIoNg+qqvxm6/nz5zF48GD4+/vD09MTLVu2xN69ey3PCyGQkJCAkJAQeHh4oGPHjjh8+LCqjby8PIwZMwa1atWCl5cX+vTpg3PnzlX2SyEiIrIrIZxgLscmuKK61KlTp5CWllbi9vvvv9vcbpWe7czMTLRv3x4uLi747rvvcOTIEbz77ruoUaOGpc7s2bMxZ84cLFiwAHv27EFQUBBiY2Nx7do1S534+HisX78eSUlJ2LZtG65fv47evXvDZCr9MjkRERGRPVTp7b9Zs2YhNDQUy5Yts5TVr1/f8rMQAvPmzcO0adPQr18/AMCKFSsQGBiItWvXYuTIkcjKysLSpUuxatUqdO3aFQCwevVqhIaGYtOmTejevXulviYiIiJ7MUGBqRxJkcuz751s/vz5VtWrVnOqvvzyS3Tv3h1PPfUUUlJSUKdOHYwaNQrPPfccACAtLQ3p6eno1q2bZR83Nzd06NAB27dvx8iRI7F3714UFBSo6oSEhCAyMhLbt2/noIqIiKotsyjfvCgrskTdlebOnVtqnbLMqarSQdXvv/+ORYsWYcKECXj11Vexe/dujB07Fm5ubhg6dCjS09MBAIGBgar9AgMDcfr0aQBAeno6XF1ddWtKBAYGWvbXysvLU62WWt5l6amakESFOXm468pya3moHpslAWfOBfpvKsNNTcSQJPpPli/PSRMlJST9tOYrtczRgNZGKeomC1gX6SftlzYKSxJlJ2RfT9r2rYzmKrUda9uSRB8KbV44AIom+k8WySiNfNPl4rOyn9poOOl+VkTxuUj6JMs1qItYtSLSD4CSp4mak0YbSn7hhDZaVBIVKTsvZf18aN4vbS5MxVR5uf+oYqSlpVVIu1U6qDKbzWjdujUSExMBAFFRUTh8+DAWLVqkygyt/UALIUpN+FpSnZkzZ+KNN94oZ++JiIgqVtGE8/LsT3JCCJw4cQIFBQVo1KgRDIbyD4mq9GwHBwejadOmqrImTZrgzJkzAICgoCAA0F1xysjIsFy9CgoKQn5+PjIzM4utozV16lRkZWVZtrNnz9rl9RAREdmTGUq5N9I7deoUWrZsiXvvvRfNmzfHPffco1p5oKyqdFDVvn17HDt2TFX222+/ISwsDAAQHh6OoKAgJCcnW57Pz89HSkoK2rVrBwBo1aoVXFxcVHUuXLiAQ4cOWepoubm5wdfXV7URERHR3WHKlCnIzc3FqlWr8MknnyA4OBgvvvhiudut0tt/48ePR7t27ZCYmIj+/ftj9+7dWLx4MRYvXgzg1m2/+Ph4S16eiIgIJCYmwtPTEwMHDgQAGI1GjBgxAhMnToS/vz/8/PwwadIkNG/e3BINSEREVB1xRfWK8d///hcfffQROnToAAB44IEHEBYWhpycHHh4eJSyd/GqdFDVpk0brF+/HlOnTsWbb76J8PBwzJs3D4MGDbLUmTx5MnJycjBq1ChkZmYiOjoaGzduhI+Pj6XO3LlzYTAY0L9/f+Tk5KBLly5Yvnx5uXP4EBERVSXOqaoY6enpuPfeey2P69atCw8PD1y8eFG1tJOtqjxNTe/evdG7d+9in1cUBQkJCUhISCi2jru7O95//328//77FdBDIiIiupMoiqLLIenk5ARR1ojR/6nyQRVRVVJuu+JZJKe2i6aSZD9JhLw28bKTZKkCRRqerk3EbN2yBLoyaRi9LGxf0461oejaKHJrEu0W1y9rkh7LWLOfLLmv5Jxa1bZZHbovZEtGWHP+pNkdrLiSLkvyXMbEwdJzoGlLybfufREemgTR1i7Loe2X7NzJXp+GYm22DO1SFlZ+7rRLYOiWebCij/ZiRjlz/3GiupQQAo0aNVKtEnD9+nVERUWpBltXrlyxqV0OqoiIiByUKGcEn+CgSur2TC72xEEVERGRgzKLcl6p4kR1qbi4uAppl4MqIiIiuuvl5ubi448/xo0bNxAbG4uIiAib2+CgioiIyEEx+q9ivPzyy8jPz8d7770H4NYamDExMTh8+DA8PT0xefJkJCcnIyYmxqZ2ebaJiIgcVNHtv/JspPfdd9+hS5culsdr1qzB6dOncfz4cWRmZuKpp57CjBkzbG6XV6rorqFI1i0z1/TWlRV4aqL4JJF+zvmyiK/S+6BNngzoI+akkX75kk7oKpUe6QdIotVkkUySRLfapLlC1iVZtJqMc+nRalLa12htFJY1UWeS16xL5Cv5AyWgPxG6SDtplJsk4bYVUWaKZD8IKyJBrWFlgmPlZp76sey1WJEwGoqVUYq6aEorI0rtFKWnfX3SiE+qVs6cOaNKk7dx40Y8+eSTlowu48aNwyOPPGJzu7xSRURE5KCY+69iaNek2rlzJ9q2bWt5XKNGDV1OYavatUvviIiIyO54+69i3Hvvvfjqq68AAIcPH8aZM2fQqVMny/OnT59GYGCgze3y9h8RERHdVV5++WUMGDAA33zzDQ4fPoxHHnkE4eHhlue//fZbPPDAAza3y0EVERGRg+I6VRXjiSeewLfffotvvvkG3bp1w5gxY1TPe3p6YtSoUTa3y0EVERGRg+KgquJ07doVXbt2lT43ffp01eNRo0bhzTffRK1atUpsk4MqumsoHh66stxgffSfyUMT/XddEqEkiXbSRgRZk+cPgC6ySciimFwlv6qafGuyfGiyKCVt+9JoMlnYoLZtWf41a/MIWsOKtqR9tybiq6y5B6XReFYcT9ZPWY5H7Tm1tp+6iM4ynnOz5DNUxtyNijWBd9Z+XrRRidZG9VmT89FZMrVYe/607ZitiMalO8rq1asxadIkDqqIiIiqK16pcgzCyn8OOagiIiJyUAIoZ0JlqkwcVBERETkoXqmqXrhOFREREZEd8EoVERGRg+KVquqFgyoqmSzKp7rkvdL03cnXR1clp1bpvwKyJO+y7yltVJ1Tvj6SSrjo86gJg/oA0oi2Qv0BFW3yPVnaPcl7pYsIlEbxSV50WfPulTEnmzQHnKyvurYl50+Sv07Hmkg0K6I3rSY9nhV/AK2JCLQ2Ys+qtmSvz5pEl5K2tWXSz7okss6g+T2VnTtrXp+VORhL/XzaKaegNTiocgyDBw+Gr69vqfV4+4+IiIjuKnv37rWp/qJFi0pdTgHgoIqIiMhhMfdfxWjTpg0aNmyIxMREnD9/3m7tclBFRETkoIRQyr2RXJcuXTB//nzUr18fvXv3xueffw6TNVMMSsBBFREREd11ZsyYgXPnziEpKQlCCDz55JOoU6cOpkyZgmPHjpWpTQ6qiIiIHJQZSrm3spo5cyYURUF8fLylTAiBhIQEhISEwMPDAx07dsThw4dV++Xl5WHMmDGoVasWvLy80KdPH5w7d05VJzMzE0OGDIHRaITRaMSQIUNw9erVMve1rAwGA5544gl88803OH36NEaPHo1PP/0UTZs2xcMPP2xzexxUUcmE0G+KUvrmCBQn1SaM3rrN9bpZt/mcLVRtMmaDotuEAaqt0MdVt5ncnHWbcHFSb876zapz7OSk32T7WfN+ylizn6wPVrSlmMy6DSaTftO9EUK/yT6zZnPpm3Q/K9qWbWVV1W1bu1lzPk1WbFa+DyI/X7VJPxvOTvrNSVFv1r4Wbdu6OpUXAV1Vc6r27NmDxYsXo0WLFqry2bNnY86cOViwYAH27NmDoKAgxMbG4tq1a5Y68fHxWL9+PZKSkrBt2zZcv34dvXv3Vt1aGzhwIFJTU7FhwwZs2LABqampGDJkSNlOUhkoku+5OnXq4O9//ztOnjyJjRs3IjQ01OZ2OagiIiIii+vXr2PQoEFYsmQJatasaSkXQmDevHmYNm0a+vXrh8jISKxYsQI3b97E2rVrAQBZWVlYunQp3n33XXTt2hVRUVFYvXo1Dh48iE2bNgEAjh49ig0bNuDf//43YmJiEBMTgyVLluDrr78u8203W5WWy69Lly5Ys2aNze1yUEVEROSgqmKi+ujRo9GrVy907dpVVZ6Wlob09HR069bNUubm5oYOHTpg+/btAG4tVVBQUKCqExISgsjISEudHTt2wGg0Ijo62lKnbdu2MBqNljoVbcuWLfDz87N7u1z8k4iIyEHZa/HP7OxsVbmbmxvc3Nx09ZOSkrBv3z7s2bNH91x6ejoAIDAwUFUeGBiI06dPW+q4urqqrnAV1SnaPz09HQEBAbr2AwICLHUqWocOHSqkXQ6qiIiIHFR5l0Uo2lc7P2j69OlISEhQlZ09exbjxo3Dxo0b4e7uXmyb2vlIQgjpHKWS6sjqW9OOveTl5cHJyQkuLi4AgJMnT+LDDz/EmTNnEBYWhhEjRiA8PNzmdnn7j4iI6A539uxZZGVlWbapU6fq6uzduxcZGRlo1aoVDAYDDAYDUlJSMH/+fBgMBssVKu3VpIyMDMtzQUFByM/PR2ZmZol1Ll68qDv+pUuXdFfBKkrPnj3x1VdfAQB++uknNGvWDF9//TUKCgrw7bffIjIyEjt27LC5XV6pqiqOEiFXmuqS509CcVF/vAv8PHV18n30/1e4Xlfn9XLOt+4cFHiq2zIb9O+x4aY+Z5jQ5PVTnPXHk+UR1H6GhBXp7QBA0f7XW9bPorX7WZVzTnKOZZGD2s+j7N9CWVo2WR7BUvuEWxFkpZG1ba/fG2tzb2rrWXPuZKztt/Z41n4WtDnzyppDT9bPQlkOS23uRsnxiotQdRCinLf/iq5U+fr6lpq7rkuXLjh48KCq7Nlnn8W9996LKVOmoEGDBggKCkJycjKioqIAAPn5+UhJScGsWbMAAK1atYKLiwuSk5PRv39/AMCFCxdw6NAhzJ49GwAQExODrKws7N69Gw888AAAYNeuXcjKykK7du3K/FptsX//ftx3330AgGnTpmHUqFGYM2eO5fm///3vePnll7Ft2zab2uWgioiIyEEJlHMlDRvq+vj4IDIyUlXm5eUFf39/S3l8fDwSExMRERGBiIgIJCYmwtPTEwMHDgQAGI1GjBgxAhMnToS/vz/8/PwwadIkNG/e3DLxvUmTJujRoweee+45/Otf/wIAPP/88+jduzcaN25c9hdrg4KCAhQUFAAAfv31V7z33nuq54cNG4Z58+bZ3C4HVURERGSVyZMnIycnB6NGjUJmZiaio6OxceNG+Pj4WOrMnTsXBoMB/fv3R05ODrp06YLly5fD2fmvy+lr1qzB2LFjLVGCffr0wYIFCyrtdURHR+Orr77Cvffei4YNG+KXX36xXLkCgNTU1DJFB3JQRURE5KDMUKCUY1X08qyoDgBbt25VPVYUBQkJCbpJ7rdzd3fH+++/j/fff7/YOn5+fli9enW5+lYeM2bMQM+ePXHjxg0MGDAAEydOxPHjx9GkSRMcO3YM8+fPl847Kw0HVURERA7KXtF/pBYTE4PvvvsOEyZMwK5duwAAb731FoBb62olJCRg3LhxNrfLQRURERHddWJiYrBjxw5cunQJv//+O8xmM4KDg1G/fv0yt1mlYQ8JCQlQFEW1BQUFWZ63V+JGIiKi6qiqcv/dTWrXro3o6GjExMSUa0AFOMCVqmbNmlnyAQFQTWQrSty4fPlyNGrUCDNmzEBsbCyOHTtmmRQXHx+Pr776CklJSfD398fEiRPRu3dv7N27V9UWlZE9w+0reXkGJ81qwbk+Lro6N4L1/1fcUNRlbpf1/VYkkdkmzVp5znn6cyBbZsGpUN2+rG0h2c/5pvrzLVt2QZGccuGsPoAiCSlXZKHn2pB1p3J8WWu+6IW0LX2Zol2+QPaZki2DoK0nWwZB1gft51h2XmTHs2YJBxltP61ZPgGw7r0wWdGW7HjS16z5brX2HFjxfSLLyWbVgpDWfL9Yu3yCAy15Y4882neDc+fOISQkBE42LJFhNpuxfPlyrFu3DqdOnYKiKAgPD8eTTz6JIUOGlGkh0ipfoMNgMCAoKMiy1a5dG4D9EjcSERHRna1p06Y4deqU1fWFEOjTpw/+9re/4fz582jevDmaNWuG06dPY9iwYXj88cfL1I8qH1QdP34cISEhCA8PxzPPPIPff/8dgP0SN8rk5eUhOztbtRERETmaqkioXB3JrnCWZPny5fjxxx/xww8/YP/+/fjoo4+QlJSEX375BZs2bcLmzZuxcuVKm/tRpYOq6OhorFy5Et9//z2WLFmC9PR0tGvXDpcvXy4xcePtSRlLS9woM3PmTBiNRsumzYlERETkCDioqhgfffQRXn31VXTq1En3XOfOnfHKK69gzZo1NrdbpYOqnj174oknnrCstPrNN98AAFasWGGpY4/EjVpTp05V5UA6e/ZsOV4FERFRxeBEdeu8+uqrNi3WeeDAAfTo0aPY53v27IlffvnF5n5YNVH9yy+/tLnh2NhYeHh42LSPl5cXmjdvjuPHj6Nv374Abl2NCg4OttQpLnHj7VerMjIySswf5ObmBjfNJGYiIiKqfvLz89GvXz94e3tbvc+VK1dKTN4cGBioSwptDasGVUUDHGspioLjx4+jQYMGNu2Xl5eHo0eP4qGHHkJ4eLhdEjc6BAeKJKlS1kQa2attAIqXOoFyrp8+GjSvpr4PZld1mclNf0HXOUffBbM+uFDHkCOJ/stXP1Yk58UgS/x8Q/16XK7ro62c8vVlzjmF6joGfduiUL+fLErQGrLXo3u/TNZFiwrNfkqhrkrZP1dm2X5WRPGV9XhljRqU7ad9b2TJhcvKmuTM1h5PlxBbEnlqTR9MkuPJohS1xyvrd7E1UZkVhNF/xbt58ybGjBljubv122+/oUGDBhg7dixCQkLwyiuvFLuvyWSCwVD8EMjZ2RmFhbIvmJJZvaRCeno6AgICrKp7ew6gkkyaNAmPPvoo6tWrh4yMDMyYMQPZ2dmIi4uDoih2SdxIRERUXd0aVJVnRXU7dsbBTJ06Fb/88gu2bt2qupXXtWtXTJ8+vcRBlRACw4YNK/auVV5eXpn6ZNWgKi4uzqZbeYMHD4avr2+p9c6dO4cBAwbgzz//RO3atdG2bVvs3LkTYWFhAOyXuJGIiIjuLJ9//jk+/vhjtG3bVjWPumnTpjh58mSJ+8bFxZXa/tChQ23ukyJsjUO8A2VnZ8NoNKIjHoNBseIejq14+0+ugm//GYLU98svd66vq3OlmWSBTs3tP9cse97+05dZdfvvpn4/1xvq2x1lvv0nudUH2e2/grLdUpLe/rNmMU4r9lNkt53KeryyLqopI72VaEXbFXn7z5rbsLJbaNaw9jvOmt95WR+suf1nzYLDdrr9V2jOx6aLS5CVlWXVBYSyKPq7dM+qqXD2dC99h2KYbubixJCZFdrXquLp6YlDhw6hQYMG8PHxwS+//IIGDRrgl19+wcMPP4ysrKxK75NNkyQKCwthMBhw6NChiuoPERER/Y+ww3anatOmjWXVAOCv1QKWLFmCmJiYMrdrNpvx1Vdf2TyfHLAxTY3BYEBYWBhMsv8SiIiIiCrJzJkz0aNHDxw5cgSFhYV47733cPjwYezYsQMpKSk2t3f8+HF8+OGHWLFiBTIzM9G9e3eb27A5999rr72GqVOnYvXq1TatCUGVSLHyAqQo46V+RySLFMtX31fzuKz/Z8A5V3/PzuShbiuvpuS2mpck2lDbjpskh5ns/xHNJFRZHbdM/fFMmer3udBdkh8wTxI1eE1dJrtFKM0jaFJ/XUhvG8pu71hxe9HqHFua21pC9g0myx2nva1mbW5K7W0n2a0pa271ycj20/bLmlt9MrJbi7Jfd129Mi5daG0ORi3Z7U7ZfNgy3sbTzW6xNq+gA03ZKO8Cnnfy4p/t2rXDTz/9hHfeeQcNGzbExo0bcf/992PHjh1o3ry5VW3k5OTgP//5D5YuXYqdO3fCZDJh7ty5GD58uE1LNBSxeVA1f/58nDhxAiEhIQgLC4OXl5fq+X379tncCSIiIpIo7z28O/n+H4DmzZurFgy31u7du/Hvf/8bH3/8MRo1aoTBgwfjk08+Qd26ddG1a9cyDaiAMgyqynKPkYiIiMqgvKlm7rArVbbk6i1pYn67du0wZswY7N69G40bN7ZH1wCUYVA1ffp0ux2ciIiIyFo1atSwOlVdSfO/O3fujKVLlyIjIwNDhgxB9+7drZ+GUAKbB1UAcPXqVXz66ac4efIkXn75Zfj5+WHfvn0IDAxEnTp1yt0pIiIi4orqWlu2bLFLOxs3bsTZs2exbNkyvPjii8jJycHTTz8NwIY5nhI2D6oOHDiArl27wmg04tSpU3juuefg5+eH9evX4/Tp01i5cmWZO0NERER/4UR1tQ4dOtitrdDQULz++ut4/fXXkZycjA8//BAGgwGPPfYYnnzySTz55JO4//77bWrT5kHVhAkTMGzYMMyePVu1snnPnj0t6WOoklkb7VeW/coaIegA/x6ZrqiTYXpsP6arE3Y5TFeWFaEOvrgWqj9PJklmA23UoDBIIhIlC4QKgzYyTRYVpv9VFZrIrfwakryCkkwL2ug/tyz9e2zIkeRk03ZTEtVnyNFfbneShTNq8g2aJdFquog9AEqBNlJScq4kEXrCWZRax6rFMYXkvJQ1z54VUWfC2ug/7aKostfnbMUfV1kdqxbsLL2KlEES6Sc7L9pzbM0CodAvPCtd69qBIv3IdpmZmVi6dCmOHj0KRVHQpEkTPPvsszavThAbG4vY2FhkZmZi9erV+PDDDzFr1iybl5Cy+a/xnj17MHLkSF15nTp1kJ6ebmtzREREVByhlH+7Q6WkpKB+/fqYP38+MjMzceXKFcyfPx/h4eFlWqcKAGrWrIkxY8Zg//792LNnj83723ylyt3dXTr7/tixY6hdu7bNHSAiIiI5zqkq3ujRo/H0009j0aJFlny/JpMJo0aNwujRo0vN/pKdnW2JEPz2229RWPhXCi+DwYBHHnnE5j7ZfKXqsccew5tvvomCggIAtyZ0nTlzBq+88gqeeOIJmztAREREZKuTJ09i4sSJlgEVADg7O2PChAmlJlT++uuvVfOznn76afTt29eyPfroo/j0009t7pPNg6p33nkHly5dQkBAAHJyctChQwfcc8898PHxwVtvvWVzB4iIiKgYTP5XrPvvvx9Hjx7VlR89ehQtW7Yscd/FixfjpZdeUpWdOHECZrMZZrMZM2fOxIcffmhzn2y+/efr64tt27Zh8+bN2LdvH8xmM+6//3507drV5oMTERFR8Rj9V7yxY8di3LhxOHHiBNq2bQsA2LlzJxYuXIi3334bBw4csNRt0aKFat8DBw7g9ddfL7btnj174p133rG5TzYPqlauXImnn34anTt3RufOnS3l+fn5SEpKwtChQ23uxB3PnhEnZY30kzaliTSS5iKTRRpZEepjbW61iqQ5nkm2Eu/eI7qiGr96qh7XDKylq5NXTx9ZciNYHdp3M1Af2VTooe+CyVPdzwJf/fk1u+jPXYFmsWDZd6dTob6s0FNdsdBD30+XG/r33TlP3Qcnk34/001JW9f1ndBG7QlJ1JlTniT/oDYaThY1KIlK1JVJosdkkYS6fsk++tZEB1n7+6CN/rMmzx8kUW6y1yf7/bYmp55Vv7d2zCMq64P2fTZY+adL05b2PN1qWxZhqTmeNvrQjt/DVHYDBgwAAEyePFn6nKIoxS4Emp6eDn9/f8vjLVu2IDQ01PLY29sbWVlZNvfJ5kHVs88+ix49eiAgIEBVfu3aNTz77LMcVBEREdnTHXwLrzzS0tLKvK+fnx9OnjyJ8PBwAEDr1q1Vzx8/ftzmZRmAMgyqikZ9WufOnYPRaLS5A0RERCTH23/FCwvTrzNorYcffhjz588vdurS/Pnz8fDDD9vcrtWDqqioKCiKAkVR0KVLFxhuu/xqMpmQlpaGHj162NwBIiIiKkZ5J5vf4Ve5zp8/j59++gkZGRkwa257jx07ttj9pkyZgpiYGDz11FOYPHkyGjVqBODW8lCzZs3Cpk2bsH37dpv7Y/Wgqm/fvgCA1NRUdO/eHd7e3pbnXF1dUb9+fS6pQERERJVi2bJleOGFF+Dq6gp/f3/VXTRFUUocVEVFReHjjz/G3/72N6xbt071XM2aNZGUlGRzihrAhkHV9OnTAQD169fH008/DXd3d5sPRkRERLZQ/reVZ/87U1HevqlTp8LJyqCO2z322GOIjY3F999/j+PHjwMAIiIi0K1bN3h5eZWyt5zNc6ri4uJw9epVrF69GidPnsTLL78MPz8/7Nu3D4GBgahTp06ZOnLXccAcVNpowOIIs5O2oAJ6U0nM+sgt87Vr6oLr13V1XE6f15XVdFcnBPT31v9SCh99mdlXHRJ4LVxfJ6eW/r3J0+T6K/TWf6ZM7voysyb/YKG3rgqcc/XHM9xUlznn6PdzKtTv53q99DyCzvn6fiom/deTNgJRxilf/3l00uQRVAplOQNlkWGl/0445UlCLMsaVaftuqH0PH8AgAL151iBq343Wb48SX5FfZ9KryObZyujy2Uo+0MoiaZUtDkXZfkxZbSvT9ZPa/Ir6j4blRj9x9t/xbp58yaeeeaZMg2oinh6euLxxx+3W59s7smBAwfQqFEjzJo1C++88w6uXr0KAFi/fj2mTp1qt44RERERFWfEiBH45JNP7NbeqFGj8Oeff5arDZuvVI0fPx7Dhg3D7Nmz4ePjYynv2bMnBg4cWK7OEBER0W14papYM2fORO/evbFhwwY0b94cLi7qy/Bz5syxqb3Vq1dj0qRJqFVLvzahtWweVP38889YvHixrrxOnTpIT08vc0eIiIhIQyjylX1t2f8OlZiYiO+//x6NGzcGAN1EdVsJOyxQbfOgyt3dHdmSlamPHTuG2rVrl7tDRERERKWZM2cOPvzwQwwbNqyqu2Jh85yqxx57DG+++SYKCgoA3BoNnjlzBq+88gqXVCAiIrIjIcq/3anc3NzQvn17u7V37do1NGjQoFxt2Hyl6p133sEjjzyCgIAA5OTkoEOHDkhPT0dMTAzeeuutcnWGiIiIbsM5VcUaN24c3n//fcyfP79c7ZjNZpw4cUK6gKitq6rbPKjy9fXFtm3bsHnzZuzbtw9msxn3339/sUu9kw3slbjUymSf2gTK1i6pcNeRvC+iIL/UMrNkKQbIph1q3i/fQy66KjVq6FNAmQNqqh7frOerq5NdT/8rfjNEk2jaQ7IUgz4iX78UQ4jk82rWf4akyZlzNbvp8zDrEk0DgGuWun2Xa/o6siTSTgWadq7LEirr93PWLs8gW3WhUH+OtcmZnSRJnmXMsiUUtMeTLRmh3U+yPIQiWz5Bu+KAFcsnAPoE1WWdiyJLGC1Leqwrkc2XcZG8D7ma31PZ67MmHN+g+YDKPrBU6Xbv3o3Nmzfj66+/RrNmzXQT1bWLesrs3LkTAwcOxOnTp3WfY1ki5tLYPKgq0rlzZ3Tu3LmsuxMREVFpOFG9WDVq1EC/fv3K1cYLL7yA1q1b45tvvkFwcHCZJrjfrkyDqt27d2Pr1q3SS2W2hjASERGRnCKsX+u0uP3vVMuWLSt3G8ePH8enn36Ke+65xw49KsOgKjExEa+99hoaN26MwMDAcocwEhERUTE4p6pCRUdH48SJE1U3qHrvvfccLoSRiIiI7j6ffvop/vOf/+DMmTPIz1fPodu3b1+p+48ZMwYTJ05Eenq6dAHRFi1a2NQfmwdVTk5Odg1hJCIiomJwTlWx5s+fj2nTpiEuLg5ffPEFnn32WZw8eRJ79uzB6NGjrWqjaCmo4cOHW8oURYEQonImqo8fPx4LFy7EvHnzbN2V7MFeEYKALupMGw14q4r+F1JbpkuwfKtQcjxNW3fyAiqA9a9PqH9pzbmSJM8X8/T7ZahzVHn+po8a9A7UL8ibe0+A6vH1OvpQv5zakgTONTVRg17699ij1k19PyVMmi96H8/cYmqqZWapk01fz5aEKUo4a5I6u1zTR2/Jov/crqrrOUkSPzvrA0HhpEnYrE0gXdzxtBGWMu6Z+h2dc9Wvz+wiiaqTRCA656nLnAps+wNiadsk+azLPv8m7XnR90m4S06CNkpRFiEom37ipg1Zlbw+bWSfFYTs9VYU3v4r1gcffIDFixdjwIABWLFiBSZPnowGDRrg9ddfx5UrV6xqIy0tza59snlQNWnSJPTq1QsNGzZE06ZNyxTCSERERFQeZ86cQbt27QAAHh4euHbtGgBgyJAhaNu2LRYsWFBqG2FhYXbtk82DqjFjxmDLli3o1KkT/P39OTmdiIioovBKVbGCgoJw+fJlhIWFISwsDDt37sR9992HtLS0EtdO+/LLL9GzZ0+4uLjgyy+/LPEYffr0salPNg+qVq5cic8++wy9evWyddcSzZw5E6+++irGjRtnubUohMAbb7yBxYsXIzMzE9HR0Vi4cCGaNWtm2S8vLw+TJk3CRx99hJycHHTp0gUffPAB6tata9f+ERERVToOqorVuXNnfPXVV7j//vsxYsQIjB8/Hp9++il+/vnnEtev6tu3L9LT0xEQEIC+ffsWW69S5lT5+fmhYcOGtu5Woj179mDx4sW6WfazZ8/GnDlzsHz5cjRq1AgzZsxAbGwsjh07Bh8fHwBAfHw8vvrqKyQlJcHf3x8TJ05E7969sXfvXjg7c9VbIiKiO9HixYsta2W+8MIL8PPzw7Zt2/Doo4/ihRdeKHa/29fX1K61WV42J1ROSEjA9OnTcfOmdRNSS3P9+nUMGjQIS5YsQc2af6XdEEJg3rx5mDZtGvr164fIyEisWLECN2/exNq1awEAWVlZWLp0Kd5991107doVUVFRWL16NQ4ePIhNmzbZpX9ERERVpij6rzzbHcrJyQkGw1/Xhvr374/58+dj7NixcHW1LojF3my+UjV//nycPHkSgYGBqF+/vm6iujXrQtxu9OjR6NWrF7p27YoZM2ZYytPS0pCeno5u3bpZytzc3NChQwds374dI0eOxN69e1FQUKCqExISgsjISGzfvh3du3eXHjMvLw95eX9FU2VnZ9vUZ4dndVRd6SN0WWSforkCqDhJInisjQgk68jeU2uiBs+c05W5/HFR9djf20tXB7Vq6opM/t6qxzlB7ro6WfX1+QdvBksitUJzVI+b+euTIhpdcnRl3nXUUZBXCvR9zzPpv9aOZAaqHtd017ct89sFdaSk6abkK7NQ/1l3ylGXySL9ZJzy1X8AnXP1fxBzr8pyKarPsdlFv58hR/8+uGWpfyddr+k7KvubLDQRwLJVu2XRhtqoSKc8yYmRjQG07cvylMqil7W53GQ5GCW/W4o2ClIzd1jYeEuoPLiievE2bNgAb29vPPjggwCAhQsXYsmSJWjatCkWLlyoulBTkhs3biAlJUW61tXYsWNt6pPNg6qS7j/aKikpCfv27cOePXt0z6Wn3/qSDQxUfxkGBgbi9OnTljqurq66ExcYGGjZX2bmzJl44403ytt9IiKiO8qiRYuwaNEinDp1CgDQrFkzvP766+jZsycA+811zszMxNixYy0Txfv06YP3338fNWrUsLqvL7/8MmbNmgUAOHjwICZMmICJEydi8+bNmDBhglVpbPbv349HHnkEN2/exI0bN+Dn54c///wTnp6eCAgIqPhB1fTp023dRers2bMYN24cNm7cCHd3/X+8RbTRhUULcpWktDpTp07FhAkTLI+zs7MRGhpqZc+JiIgqSSVPVK9bty7efvttS9qWFStW4LHHHsP+/fvRrFkzu811HjhwIM6dO4cNGzYAAJ5//nkMGTIEX331ldV9TUtLQ9OmTQEAn332GR599FEkJiZi3759eOSRR6xqY/z48Xj00UexaNEi1KhRAzt37oSLiwsGDx6McePGWd2XImVKqAwAe/fuxdGjR6EoCpo2bYqoqCib98/IyECrVq0sZSaTCT/++CMWLFiAY8eOAbh1NSo4ONhSJyMjw3L1KigoCPn5+cjMzFRdrcrIyLCsXSHj5uYGNzc3m/pLRER0p3v00UdVj9966y0sWrQIO3fuRNOmTVVznYFbg67AwECsXbsWI0eOtMx1XrVqFbp27QoAWL16NUJDQ7Fp0yZ0794dR48exYYNG7Bz505ER0cDAJYsWYKYmBgcO3YMjRs3tqqvrq6ulvndmzZtwtChQwHcCqizdlpPamoq/vWvf8HZ2RnOzs7Iy8tDgwYNMHv2bMTFxZUYRShj80T1jIwMdO7cGW3atMHYsWPx0ksvoVWrVujSpQsuXbpkdTtdunTBwYMHkZqaatlat26NQYMGITU1FQ0aNEBQUBCSk5Mt++Tn5yMlJcUyYGrVqhVcXFxUdS5cuIBDhw6VOKgiIiKqDhT8Na+qTFs5jm0ymZCUlIQbN24gJiam1LnOAEqd6wwAO3bsgNFotAyoAKBt27YwGo2WOtZ48MEHMWHCBPzjH//A7t27LUs9/fbbb1Yvq+Ti4mK5sxUYGIgzZ84AAIxGo+VnW5Rp8c/s7GwcPnwYTZo0AQAcOXIEcXFxGDt2LD766COr2vHx8UFkZKSqzMvLC/7+/pby+Ph4JCYmIiIiAhEREUhMTISnpycGDhwI4NaLHjFiBCZOnAh/f3/4+flh0qRJaN68uWWETEREdLfTXrkp6Y7NwYMHERMTg9zcXHh7e2P9+vVo2rSpZcBT3rnORWtEaQUEBJQ4H1prwYIFGDVqFD799FMsWrQIderUAQB899136NGjh1VtREVF4eeff0ajRo3QqVMnvP766/jzzz+xatUqNG/e3Oq+FLF5ULVhwwZs2rTJMqACYJlpf/vI1B4mT56MnJwcjBo1yjIhbuPGjZb7tgAwd+5cGAwG9O/f3zIhbvny5VyjyhraqBfZPDRZxJ42HEhyrhVIoogqL2CGishypBWoo1tMmZLkdVev6stOqi9se0red28vD12Zctvva5H8sFqqxweaRerq3AzWfx7za6g/j86B+ii+BoF/6srCfdV5wBp7X9TVqeuqzxV2wb+G6rFJ6C/uu0hC+9Jy1K/Pz/WGrk6eWf/1eyXfU/X44k19NOX5LKOuLOtP9X6KqyQiN0fyfqWp++Ccq68jecm6yx+yOoYb+s+e+1V1mXOeJPJOEsXnVKAuE86SnKSy6D/tWyP5fTBIomaVfPX500YRmmU5BCuKnRIqa+cNT58+HQkJCdJdGjdujNTUVFy9ehWfffYZ4uLikJKSYnneHnOdZfWtaed29erVw9dff60rnzt3rurx22+/jRdeeEE6CT4xMdGS3uYf//gH4uLi8OKLL+Kee+7Bhx9+aHVfitg8qDKbzbplFIBbl9DKu4jW1q1bVY8VRUFCQkKxbzwAuLu74/3338f7779frmMTERE5HDtNVD979ix8ff8apJc0r9jV1dUyUb1169bYs2cP3nvvPUyZMgVA+ec6BwUF4eJF/T82ly5d0l0Fs4fExET0799fOqhq3bq15efatWvj22+/LdexbJ5T1blzZ4wbNw5//PGHpez8+fMYP348unTpUq7OEBERkf35+vqqNluCtYQQyMvLQ3h4uF3mOsfExCArKwu7d++21Nm1axeysrIqZD50SXkAO3fujKuSK/PZ2dno3Lmzzcey+UrVggUL8Nhjj6F+/foIDQ2Foig4c+YMmjdvjtWrV9vcASIiIipGJS+p8Oqrr6Jnz54IDQ3FtWvXkJSUhK1bt2LDhg1QFMUuc52bNGmCHj164LnnnsO//vUvALeWVOjdu7fVkX/2snXrVt2CnwCQm5uL//73vza3Z/OgKjQ0FPv27UNycjJ+/fVXCCHQtGlTTgwnIiKys8peUf3ixYsYMmQILly4AKPRiBYtWmDDhg2IjY0FYL+5zmvWrMHYsWMtc7H79OmDBQsWlP2F2ujAgQOWn48cOaKaIG8ymbBhwwbLxHdb2DSoKiwshLu7O1JTUxEbG2s5yURERFT9LV26tMTn7TXX2c/Pr0rvbrVs2RKKokBRFOltPg8PjzLN1bZpUGUwGBAWFgZTJeY9okoku+8si9DQvP+KIpmaJ4u+1EXnWJeHi6qAFbkGhVn/PWDKKtDvdzVLV+R07rzqce09+uSniiQhqqLNvmD01tUpDKytKzsdop4/8pvxXl2dPD9Jnj1/9XkwBeXp6tSoqY/s83BVn4d2AWm6Ok09/9CVtah5VvW4rbv+9+hovj6ZfVJWG9Xjeq6XdXWCXK7qyl473Ff1+Oqf+vPp469/fW2C1P28mKuP8DxyOlhXpmSq31PDNUk05XVZ3kJNO5KvDqf80qP/nCUfT9drpUc8aqMUCyXtVJhKvv13t0hLS4MQAg0aNMDu3btRu/Zf3xuurq4ICAgo0yoCNt/+e+211zB16lSsXr0afn5+Nh+QiIiIrMRBVbk99NBD8PBQL/cSFhYGAOVetUDL5kHV/PnzceLECYSEhCAsLAxeXuos8fv27bNb54iIiIhKUlhYiC1btuDMmTMICwtDp06dVFeZSlomYcWKFahVq5ZlNfbJkydj8eLFaNq0KT766CPL4MtaNg+q+vbta+suREREVAaVPVG9Ohg7diy6d++OXr164dy5c4iNjcXx48dRq1Yt/Pnnn2jatCm+++47qyaaJyYmYtGiRQBupc9ZsGAB5s2bh6+//hrjx4/HunXrbOqbzYOq6dOn27oLERERlYWdVlS/k3z66ad48cUXAQATJ05E3bp18d///he1atXClStXEBcXh/j4eHzyySeltnX27FnLQqeff/45nnzySTz//PNo3749OnbsaHPfbF78c8+ePdi1a5eufNeuXfj5559t7gAREREVQ9hhu8NkZmbC/X9BK9u3b8dbb72FWrVupYby8/PDzJkzdRlaiuPt7Y3Ll28FdmzcuNGyPJS7uztycvRpsEpj85Wq0aNHY/Lkyars0sCtVdVnzZolHXBRNWZFRKA2GhAAFCf9R0tx0u5Xvq6R41Ek0TKisFBfUfO5Enn6qDpZGf6Xo8vi0iV9H07q/zP30fTLRxKxqjhLyrQRiB7u+jru+pWphae63v6gKF2d7bX06b5u1lb381oDSQ4/ybe22Ud9jmURe3WN+ihMLTcf/TnvGXZUVzbaf5vqcYHkayI5QL+I402z+lydydMHO/2Ro89tmJ2vPp8n0/URnqZMyftg0OTwk+Q2dMuU5C7VfGTdL2uiQPOZW7YqNWrUCLt370Z4eDh8fHx0yaKvXbtm9QT02NhY/O1vf0NUVBR+++03y9yqw4cPo379+jb3zeYrVUeOHMH999+vK4+KisKRI0ds7gARERHJFc2pKs92pxk/fjwmTZqErVu3YurUqRg7dix++OEH/PHHH9iyZQtGjhyJfv36WdXWwoULERMTg0uXLuGzzz6Dv78/AGDv3r0YMGCAzX2z+UqVm5sbLl68iAYNGqjKL1y4AIPB5uaIiIioOFxSQWfYsGG4cuUKevXqBSEETCaTZWV24Nbq7HPnzrWqrRo1akhXcn/jjTdUj0eNGoU333zTcpuxODaPgmJjYzF16lR88cUXMBpvXaa9evUqXn31Va6wTkRERBVuwoQJGD58OJKTk/H777/DbDYjODgY7du3R0REhN2Pt3r1akyaNMn+g6p3330XDz/8MMLCwhAVdWueQGpqKgIDA7Fq1aqy9ZaIiIj0ynsL7w68UlWkRo0aeOqppyrlWMLKbB82z6mqU6cODhw4gNmzZ6Np06Zo1aoV3nvvPRw8eBChoaE2d5SIiIiKweg/qz377LP44w99+qfKVKZJUF5eXnj++eft3RciIiKiEh04cEBavmbNGjz22GOWOd8tWrSozG4BsHJQ9eWXX6Jnz55wcXHBl19+WWLdPn362KVj5MB0l0Eloau65MnQJ1mW1eE6C1Reksv00mUdtHVkSXJzc9WPNaHbAKRJx7VLS7ic1ieHdpEsP+GreRwkCwt3ki39oF6eQfH20tUx+2hbBwLd1X8C8v30yxJsrhujK/usibpMqaNfzyciOENX1ryG+ipCW++TujouPvrvgAhXdVt7guvr6vxZqE/qHOmhTvx8LDdEV0e2rMMvV9QrcZ//s4bqsflmLvBv3W4VgxPVdVq2bAlFUaS35J544gkIIaAoCkyS5X4qmlWDqr59+yI9PR0BAQElpqmpqhdBRER0J2KaGr0WLVqgbt26eOeddyyJkoUQiIiIwHfffVchE9WtZdWcKrPZjICAAMvPxW0cUBEREVFF2r17N+655x488cQTuHLlCsLCwiwLdYaEhCAsLMzmRMilGTx4MHx99Vd7tWyeqE5ERERUVVxdXTFv3jy888476NOnD2bOnGn1CurWunHjBn788UfL40WLFpW6nAJQxonqu3fvxtatW5GRkaF7IXPmzClLk0RERKTFOVXF6tmzJ37++Wc8++yz+Pbbb+3a9okTJ9CpUyeb78DZPKhKTEzEa6+9hsaNGyMwMBDKbZM0FcmETSIiIiobzqkqWWBgIL799lvMnz8ftWrVsuoWXUWyeVD13nvv4cMPP8SwYcMqoDtULcmiraxMskx0R9ImbLby1oQoUEcpyn6PIKxo60qmVcfTcpVEJNaSpB+r/b/JwUUUL09dHbOf/o/bvpqBqse7vNvo6uT46493vY76H/Y8P/13jnM9fRLphgHqCcsta5zT1WnqqV/XyFkT0Ty47i51H68XYpxuL6pKY8eOxdixY62u7+enj/q8XVnniNv8V87JyQnt27cv08GIiIjIRnf41SZblba0U5GSlnjKy8vDiy++iObNm0ufP336tC7/nzVsHlSNHz8eCxcuxLx582w+GBEREdmAc6p0SlraqUhpSzy1bNkSoaGhiIuLkz7/yy+/VM6gatKkSejVqxcaNmyIpk2bwsVFvejcunXrbO4EERERkTXsEenXq1cvXL16tdjn/fz8MHToUJvbtXlQNWbMGGzZsgWdOnWCv78/J6cTERFVEE5Urxivvvpqic+HhoZi2bJlNrdr86Bq5cqV+Oyzz9CrVy+bD0ZEREQ24O0/q/j6+iI1NdWS96+q2Dyo8vPzQ8OGDSuiL3QnkUUoaXL9KU76q5xCSK58SqILiRyFYnDRlzlbsa6y7BaG9vdG9ntUgb8PshyJ0ryJ2pyIstso5/VF2rPipo2SBOAuiUD005xPxVWfS1EWgSi81WX7atynq7O9lruuzOym/h5KbqD+U2nKywWwU7cfVR1ZHkBr9tm0aRO2b9+O9PR0KIqCwMBAtG/fHl26dCnTnTibV1RPSEjA9OnTcfPmTZsPRkRERNYruv1Xno30zp8/j/vvvx89e/bE+vXr8fvvv+PEiRNYv349evTogdatW+P8ecl/BqWw+UrV/PnzcfLkSQQGBqJ+/fq6ier79u2zuRNEREQkwdt/VrE2N1+RUaNGwc/PD2fPnkVwcLDquQsXLmDw4MEYPXo0Pv/8c5v6YfOgyppQRiIiIqLKsmjRIpvq//DDD/jpp590AyoACA4OxjvvvIOHHnrI5n7YPKiaPn26zQchIiKiMuCVqhL98MMPmDt3Lo4ePQpFUXDvvfciPj4eXbt2LXE/Dw8PXLlypdjnMzMz4aHJHGANm+dUERERUeXgnKriLViwAD169ICPjw/GjRuHsWPHwtfXF4888ggWLFhQ4r7PPPMM4uLi8OmnnyIrK8tSnpWVhU8//RTPPvssBg4caHOfrLpS5efnh99++w21atWyqtF69erhv//9L8LCwkqst2jRIixatAinTp0CADRr1gyvv/46evbsCeDWzPw33ngDixcvRmZmJqKjo7Fw4UI0a9bM0kZeXh4mTZqEjz76CDk5OejSpQs++OAD1K1b16q+EpH9CPMd/A0OQJHkwVNc9dF/sCJvmCxaSXf+qkvka1n7KfTnSZglZQWaAm30IQBkZ+vLrIjekkUgaiOTvTTve6HIx6+ltmwnvFJVrJkzZ2Lu3Ll46aWXLGVjx45F+/bt8dZbb6nKtd59910UFhZi0KBBKCwshOv/Ikrz8/NhMBgwYsQI/N///Z/NfbJqUHX16lV89913MBqNVjV6+fJlq5IR1q1bF2+//TbuueceAMCKFSvw2GOPYf/+/WjWrBlmz56NOXPmYPny5WjUqBFmzJiB2NhYHDt2DD4+PgCA+Ph4fPXVV0hKSoK/vz8mTpyI3r17Y+/evXCWhOYSERFR9ZednY0ePXroyrt164YpU6aUuK+rqysWLVqEWbNmYe/evUhPTwcABAUFoVWrVjZNer+d1XOqisuPUx6PPvqo6vFbb72FRYsWYefOnWjatCnmzZuHadOmoV+/fgBuDboCAwOxdu1ajBw5EllZWVi6dClWrVpluX+6evVqhIaGYtOmTejevbvd+0xERFRpeKWqWH369MH69evx8ssvq8q/+OIL3fiiOL6+vujUqZPd+mTVoMoeeXZKYzKZ8Mknn+DGjRuIiYlBWloa0tPT0a1bN0sdNzc3dOjQAdu3b8fIkSOxd+9eFBQUqOqEhIQgMjIS27dv56CKiIiqNaapUZs/f77l5yZNmuCtt97C1q1bERMTAwDYuXMnfvrpJ0ycOLHEdnbt2oUrV65YphsBtzLGTJ8+HTdu3EDfvn3x/vvvw83Nzab+2Rz9Z28HDx5ETEwMcnNz4e3tjfXr16Np06bYvn07ACAwMFBVPzAwEKdPnwYApKenw9XVFTVr1tTVKbqUJ5OXl4e8vDzL42zZvXgiIiJyKHPnzlU9rlmzJo4cOYIjR45YymrUqIEPP/wQr732WrHtJCQkoGPHjpZB1cGDBzFixAgMGzYMTZo0wf/93/8hJCQECQkJNvWvygdVjRs3RmpqKq5evYrPPvsMcXFxSElJsTyvXSZeCFHq0vGl1Zk5cybeeOON8nWciIioovH2n0paWppd2klNTcU//vEPy+OkpCRER0djyZIlAG4lVJ4+fbrNg6oqX1LB1dUV99xzD1q3bo2ZM2fivvvuw3vvvYegoCAA0F1xysjIsFy9CgoKQn5+PjIzM4utIzN16lRkZWVZtrNnz9r5VRGEkGxm9UZ3Hu17fIe9z4qrq1WbVcxCv93B565KSL+HNJvZpNtEYaFqM+fmara80o9tJ1xSoWJkZmaqxgkpKSmqSe9t2rQp09igyq9UaQkhkJeXh/DwcAQFBSE5ORlRUVEAboU6pqSkYNasWQCAVq1awcXFBcnJyejfvz+AW8vLHzp0CLNnzy72GG5ubjbfJyUiIiLHMXz48BKf//DDD4t9LjAwEGlpaQgNDUV+fj727dunuoN17do1XRo+a1TpoOrVV19Fz549ERoaimvXriEpKQlbt27Fhg0boCgK4uPjkZiYiIiICERERCAxMRGenp6WBbmMRiNGjBiBiRMnwt/fH35+fpg0aRKaN29e6mqqREREDo+3/4qlvUtVUFCAQ4cO4erVq+jcuXOJ+/bo0QOvvPIKZs2ahc8//xyenp6qtDQHDhxAw4YNbe6TzYOqzp07o0OHDrp0NZmZmXjiiSewefNmq9u6ePEihgwZggsXLsBoNKJFixbYsGEDYmNjAQCTJ09GTk4ORo0aZVn8c+PGjZY1qoBbk9YMBgP69+9vWfxz+fLlXKOKiIiqPw6qirV+/XpdmdlsxqhRo9CgQYMS950xYwb69euHDh06wNvbGytWrLAsAArcusp1+8oC1lKEbFnfEjg5OcHf3x/t27fHmjVr4OXlBeDWACkkJMSqRT8dTXZ2NoxGIzriMRgU2y/3kXVkq1FrCdnnp7qsKk3yFazvoPfPydNTV6ZIphKInJxS2xIm/ZwpUahZOvwOOnd3kkJRgK34AllZWWVeJLI0RX+XmoxKhLObe5nbMeXl4ugHr1ZoXx3NsWPH0LFjR1y4cKHUullZWfD29tZdiLly5Qq8vb1VAy1rlGmi+qZNm5Ceno62bdtaUswQERGRfSl22O42J0+eRGFhoVV1jUaj9M6Wn5+fzQMqoIxzqoKDg5GSkoLhw4ejTZs2+OSTT9CkSZOyNEV3kTLnhdNe/eB/747rTntvNJ89aZ4/K0hvCDC6j6zB23/FmjBhguqxEAIXLlzAN998Y1MWmD179uCTTz7BmTNnkJ+fr3pu3bp1NvXJ5kFV0fpPbm5uWLNmDWbMmIEePXqUmmeHiIiIbMMV1Yu3f/9+1WMnJyfUrl0b7777bqmRgUWSkpIwdOhQdOvWDcnJyejWrRuOHz+O9PR0PP744zb3yeZBlfY/rtdeew1NmjSpkNyARERERDLffPMNhBCWud2nTp3C559/jrCwMBismMMLAImJiZg7dy5Gjx4NHx8fvPfeewgPD8fIkSMRHBxsc59snlOVlpaG2rVrq8qeeOIJ7Nq1q8Q1IYiIiMhGwg7bHapv375YtWoVAODq1ato27Yt3n33XfTt2xeLFi2yqo2TJ0+iV69eAG7dgbtx4wYURcH48eOxePFim/tk86AqLCxMmgKmWbNmvFpFRERkbxxQSe3bt8+yttSnn35qyQ28cuVKVeLlkvj5+eHatWsAgDp16uDQoUMAbg3Sbt68aXOfHG5FdSIiIqLS3Lx507Ju5caNG9GvXz84OTmhbdu2OH36tFVtPPTQQ0hOTkbz5s3Rv39/jBs3Dps3b0ZycjK6dOlic584qCIiInJQnKhevHvuuQeff/45Hn/8cXz//fcYP348gFv5f61dk2vBggXIzc0FcCsvsIuLC7Zt24Z+/frh73//u8194qCKKo82hFyp8nzeRCVStOvXyCa/5hfoy6wgXWLkTluSgsqPSyoU6/XXX8fAgQMxfvx4dOnSBTExMQBuXbUqyhlcGj8/P8vPTk5OmDx5MiZPnlzmPvGvGhEREVU7Tz75JM6cOYOff/4ZGzZssJR36dIFc+fOtbqdkydP4rXXXsOAAQOQkZEBANiwYQMOHz5sc584qCIiInJQRbf/yrPdyYKCghAVFQUnp7+GMw888ADuvfdeq/ZPSUlB8+bNsWvXLqxbtw7Xr18HcCuhsjbHsTU4qCIiInJUlbykwsyZM9GmTRv4+PggICAAffv2xbFjx9RdEgIJCQkICQmBh4cHOnbsqLuqk5eXhzFjxqBWrVrw8vJCnz59cO7cOVWdzMxMDBkyBEajEUajEUOGDMHVq1dt63A5vfLKK5gxYwaSk5NVaWk6deqEHTt22NweB1VEREQE4NaVm9GjR2Pnzp1ITk5GYWEhunXrhhs3bljqzJ49G3PmzMGCBQuwZ88eBAUFITY21rI0AQDEx8dj/fr1SEpKwrZt23D9+nX07t0bJpPJUmfgwIFITU3Fhg0bsGHDBqSmpmLIkCGV+noPHjwoXTm9du3auHz5ss3tcaI6ERGRg6rs6L/b5yYBwLJlyxAQEIC9e/fi4YcfhhAC8+bNw7Rp09CvXz8AwIoVKxAYGIi1a9di5MiRyMrKwtKlS7Fq1Sp07doVALB69WqEhoZi06ZN6N69O44ePYoNGzZg586diI6OBgAsWbIEMTExOHbsGBo3blz2F22DGjVq4MKFCwgPD1eV79+/H3Xq1LG5PV6posojhGYz6zciR+LsrN4khMmk34RQbTBLNn7+yRpVvKJ6VlYWgL+i5NLS0pCeno5u3bpZ6ri5uaFDhw7Yvn07AGDv3r0oKChQ1QkJCUFkZKSlzo4dO2A0Gi0DKgBo27YtjEajpU5lGDhwIKZMmYL09HQoigKz2YyffvoJkyZNwtChQ21uj1eqiIiIHJWdllTIzs5WFbu5ucHNza3kXYXAhAkT8OCDDyIyMhIAkJ6eDgAIDAxU1S1azbyojqurK2rWrKmrU7R/eno6AgICdMcMCAiw1KkMb731FoYNG4Y6depACIGmTZvCZDJh4MCBeO2112xuj4MqIiKiO1xoaKjq8fTp05GQkFDiPi+99BIOHDiAbdu26Z7TpqsTQkhT2JVUR1bfmnbsRQiBP/74A0uWLME//vEP7Nu3D2azGVFRUYiIiChTmxxUEREROSh7zak6e/asapXx0q5SjRkzBl9++SV+/PFH1K1b11IeFBQE4NaVpuDgYEt5RkaG5epVUFAQ8vPzkZmZqbpalZGRgXbt2lnqXLx4UXfcS5cu6a6CVRQhBCIiInD48GFERESgQYMG5W6Tc6qIiIgclZ3mVPn6+qq24gZVQgi89NJLWLduHTZv3qybwB0eHo6goCAkJydbyvLz85GSkmIZMLVq1QouLi6qOhcuXMChQ4csdWJiYpCVlYXdu3db6uzatQtZWVmWOhXNyckJERERZYryKw6vVBEREREAYPTo0Vi7di2++OIL+Pj4WOY3GY1GeHh4QFEUxMfHIzExEREREYiIiEBiYiI8PT0xcOBAS90RI0Zg4sSJ8Pf3h5+fHyZNmoTmzZtbogGbNGmCHj164LnnnsO//vUvAMDzzz+P3r17V1rkH3BreYiXX34ZixYtsswbKw8OqsjxMR8aVRFd7j/ZZ/G2dXeKxcg+KiNFCCjl+A60dd9FixYBADp27KgqX7ZsGYYNGwYAmDx5MnJycjBq1ChkZmYiOjoaGzduhI+Pj6X+3LlzYTAY0L9/f+Tk5KBLly5Yvnw5nG/7nVqzZg3Gjh1riRLs06cPFixYUIZXWXaDBw/GzZs3cd9998HV1RUeHh6q569cuWJTe4oQ/IuVnZ0No9GIjngMBsWlqrtz97B2MiI/olRFnDw9VY8VD3ddHXHjpr5M+5mVDLyEbDDGz3q1UCgKsBVfICsrSzVPyZ6K/i61HPwWnF31nztrmfJzkbp6WoX2tTpbsWJFic/HxcXZ1B6vVBEREdFdqaRB06VLl2xujxPViYiIHBQTKlcuIQS+/fZb9OvXTxX1aC0OqoiIiBxVFa+ofrf4/fff8dprr6FevXoYNGgQPD09kZSUZHM7vP1HREREd53c3Fx8+umn+Pe//42dO3ciNjYWFy5cQGpqapkjATmoIiIC5IET2jLZhHPZ5HKzukyYJXU4KZ2sUNkJle8Wo0aNQlJSEho3bozBgwfjs88+g7+/P1xcXODkVPabeBxUEREROSo75f4jtcWLF2PKlCl45ZVXVEtBlBfnVBERETkoTlSvGCtXrsTu3bsRHByMp59+Gl9//TUKCwvL3S4HVURERHRXGThwIJKTk3Ho0CHce++9GD16NIKDg2E2m3HkyJEyt8tBFRERkaNi9F+Fql+/Pt544w2cOnUKq1atwhNPPIHBgwejbt26GDt2rM3tcU4VERGRA+MtvIqnKAp69OiBHj164MqVK1i5ciWWLVtmczu8UkVVRwjrNqKq4uSk2oTJrNusIsz6jYgckp+fH+Lj4/HLL7/YvC+vVBERETmq8v5zyX9MS3Xu3Dl8+eWXOHPmDPLz8y3liqLg3XfftaktDqqIiIgcFNepqlg//PAD+vTpg/DwcBw7dgyRkZE4deoUhBC4//77bW6Pt/+IiIjorjR16lRMnDgRhw4dgru7Oz777DOcPXsWHTp0wFNPPWVze1U6qJo5cybatGkDHx8fBAQEoG/fvjh27JiqjhACCQkJCAkJgYeHBzp27IjDhw+r6uTl5WHMmDGoVasWvLy80KdPH5w7d64yXwoREZH9MfqvQh09ehRxcXEAAIPBgJycHHh7e+PNN9/ErFmzbG6vSgdVKSkpGD16NHbu3Ink5GQUFhaiW7duuHHjhqXO7NmzMWfOHCxYsAB79uxBUFAQYmNjce3aNUud+Ph4rF+/HklJSdi2bRuuX7+O3r17wyRJKUFERFRdKObyb1Q8Ly8v5OXlAQBCQkJw8uRJy3N//vmnze1V6ZyqDRs2qB4vW7YMAQEB2Lt3Lx5++GEIITBv3jxMmzYN/fr1AwCsWLECgYGBWLt2LUaOHImsrCwsXboUq1atQteuXQEAq1evRmhoKDZt2oTu3btX+usiompIseJ/TNk/atK8fvxLRlQdtG3bFj/99BOaNm2KXr16YeLEiTh48CDWrVuHtm3b2tyeQ82pysrKAnArnBEA0tLSkJ6ejm7dulnquLm5oUOHDti+fTsAYO/evSgoKFDVCQkJQWRkpKWOVl5eHrKzs1UbERGRw+Htvwo1Z84cREdHAwASEhIQGxuLjz/+GGFhYVi6dKnN7TlM9J8QAhMmTMCDDz6IyMhIAEB6ejoAIDAwUFU3MDAQp0+fttRxdXVFzZo1dXWK9teaOXMm3njjDXu/BCIiIrti9F/FatCggeVnT09PfPDBB+Vqz2GuVL300ks4cOAAPvroI91ziqKoHgshdGVaJdWZOnUqsrKyLNvZs2fL3nEiIqKKYu0iyVxAuUz27NmDXbt26cp37dqFn3/+2eb2HGJQNWbMGHz55ZfYsmUL6tataykPCgoCAN0Vp4yMDMvVq6CgIOTn5yMzM7PYOlpubm7w9fVVbURERHR3GT16tPTCyvnz5zF69Gib26vSQZUQAi+99BLWrVuHzZs3Izw8XPV8eHg4goKCkJycbCnLz89HSkoK2rVrBwBo1aoVXFxcVHUuXLiAQ4cOWeoQERFVR0W3/8qzUfGOHDkiXeQzKioKR44csbm9Kp1TNXr0aKxduxZffPEFfHx8LFekjEYjPDw8oCgK4uPjkZiYiIiICERERCAxMRGenp4YOHCgpe6IESMwceJE+Pv7w8/PD5MmTULz5s0t0YBERETVUnknm3NQVSI3NzdcvHhRNbcKuHVxxmCwfYhUpYOqRYsWAQA6duyoKl+2bBmGDRsGAJg8eTJycnIwatQoZGZmIjo6Ghs3boSPj4+l/ty5c2EwGNC/f3/k5OSgS5cuWL58OZydnSvrpRDRXUBYufad0C6zUNHzWrTzRzmPhsgqsbGxmDp1Kr744gsYjUYAwNWrV/Hqq68iNjbW5vYUIfjbl52dDaPRiI54DAbFpaq7Q0RVwUn/T5iTl6fqsbgt2aqFZJ0q3eDLXMELEXNQVakKRQG24gtkZWVV2Jzcor9LbXv9AwYX9zK3U1iQi53f/L1C+1qdnT9/Hg8//DAuX76MqKgoAEBqaioCAwORnJyM0NBQm9pzmCUViIiISKO8EXwcYJeoTp06OHDgANasWYNffvkFHh4eePbZZzFgwAC4uNh+kYWDKiIiIrpreXl54fnnn7dLWxxUEREROSgu/lnxTp48iXnz5uHo0aNQFAVNmjTBuHHj0LBhQ5vbcoh1qoiIiEiCaWoq1Pfff4+mTZti9+7daNGiBSIjI7Fr1y40a9ZMtVSTtXiliogIgOIkycBg1iRGtjZ5cmUnVOa8GaIyeeWVVzB+/Hi8/fbbuvIpU6bYHAHIK1VEREQOiot/VqyjR49ixIgRuvLhw4eXafFPDqqIiIgclVmUf6Ni1a5dG6mpqbry1NRUBAQE2Nweb/8RERE5Kq6oXqGee+45PP/88/j999/Rrl07KIqCbdu2YdasWZg4caLN7XFQRURERHelv//97/Dx8cG7776LqVOnAgBCQkKQkJCAsWPH2tweB1VEREQOSkE5l1SwW0/uPIWFhVizZg0GDBiA8ePH49q1awCgSoNnK86pIiIqjsmk3oRZvxFVpKIV1cuzkZTBYMCLL76IvLw8ALcGU+UZUAEcVBEREdFdKjo6Gvv377dbe7z9R0RE5KC4onrFGjVqFCZOnIhz586hVatW8PLyUj3fokULm9rjoIqIiMhRMfqvQj399NMAIJ2UrigKTCaTTe1xUEVERER3pbS0NLu2x0EVERGRg1KEgFKOyebl2fdu4O3tDX9/fwDA2bNnsWTJEuTk5KBPnz546KGHbG6PE9WJiIohhFBtRJXObIeNdA4ePIj69esjICAA9957L1JTU9GmTRvMnTsXixcvRqdOnfD555/b3C4HVURERHRXmTx5Mpo3b46UlBR07NgRvXv3xiOPPIKsrCxkZmZi5MiRuiTL1uDtPyIiIgfF238VY8+ePdi8eTNatGiBli1bYvHixRg1ahScnG5daxozZgzatm1rc7scVBERETkqRv9ViCtXriAoKAjArXlVXl5e8PPzszxfs2ZNywrrtuCgioiIyFGVd1V0XqkqlqIoJT4uCw6qiIiI6K4zbNgwuLm5AQByc3PxwgsvWBb/LEpdYysOqoiIimPFwn/CLLkSwKsDZCdcUb1ixMXFqR4PHjxYV2fo0KE2t8tBFRERkaPi7b8KsWzZsgppl0sqEBEREdkBr1QRERE5KMV8ayvP/lR5OKgiIiJyVLz9V63w9h8RERGRHXBQRUSEW1F8ZdkgzPqNyF6EHTYb/Pjjj3j00UcREhICRVF0+e+EEEhISEBISAg8PDzQsWNHHD58WFUnLy8PY8aMQa1ateDl5YU+ffrg3LlzqjqZmZkYMmQIjEYjjEYjhgwZgqtXr9rWWQfEQRUREZGDKkpTU57NFjdu3MB9992HBQsWSJ+fPXs25syZgwULFmDPnj0ICgpCbGysavXx+Ph4rF+/HklJSdi2bRuuX7+O3r17w3TbEiUDBw5EamoqNmzYgA0bNiA1NRVDhgwp20lyIJxTRURERACAnj17omfPntLnhBCYN28epk2bhn79+gEAVqxYgcDAQKxduxYjR45EVlYWli5dilWrVqFr164AgNWrVyM0NBSbNm1C9+7dcfToUWzYsAE7d+5EdHQ0AGDJkiWIiYnBsWPH0Lhx48p5sRWAV6qIiIgcVdFE9fJsALKzs1VbWVYMT0tLQ3p6Orp162Ypc3NzQ4cOHbB9+3YAwN69e1FQUKCqExISgsjISEudHTt2wGg0WgZUANC2bVsYjUZLneqKgyoiIiJHJQCYy7H97+5faGioZf6S0WjEzJkzbe5Keno6ACAwMFBVHhgYaHkuPT0drq6uqFmzZol1AgICdO0HBARY6lRXvP1HRETkoMoyL0q7PwCcPXsWvr6+lvKinHdlalOTeFgIUWoyYm0dWX1r2nF0vFJFRER0h/P19VVtZRlUBQUFAYDualJGRobl6lVQUBDy8/ORmZlZYp2LFy/q2r906ZLuKlh1w0EVERHApRHIMQmUc06V/boSHh6OoKAgJCcnW8ry8/ORkpKCdu3aAQBatWoFFxcXVZ0LFy7g0KFDljoxMTHIysrC7t27LXV27dqFrKwsS53qqkoHVZW1HgYREVG1ZKeJ6ta6fv06UlNTkZqaCuDW5PTU1FScOXMGiqIgPj4eiYmJWL9+PQ4dOoRhw4bB09MTAwcOBAAYjUaMGDECEydOxA8//ID9+/dj8ODBaN68uSUasEmTJujRoweee+457Ny5Ezt37sRzzz2H3r17V+vIP6CKB1WVtR4GERERle7nn39GVFQUoqKiAAATJkxAVFQUXn/9dQDA5MmTER8fj1GjRqF169Y4f/48Nm7cCB8fH0sbc+fORd++fdG/f3+0b98enp6e+Oqrr+Ds7Gyps2bNGjRv3hzdunVDt27d0KJFC6xatapyX2wFUIRwjMRAiqJg/fr16Nu3L4BbV6lCQkIQHx+PKVOmALh1VSowMBCzZs2yrIdRu3ZtrFq1Ck8//TQA4I8//kBoaCi+/fZbdO/e3apjZ2dnw2g0oiMeg0FxqZDXR0QOTjZBVrHi/07ZbULH+FqlClIoCrAVXyArK0s1+dueiv4udW4+BQbnsk8qLzTlYfPBWRXaV/qLw86pstd6GDJ5eXm6NTuIiIgcTWWvqE7l47CDKnuthyEzc+ZM1XodoaGhdu49ERER3W0cdlBVxB7rYWhNnToVWVlZlu3s2bN26SsR3WEYDUhVrZInqlP5OOygyl7rYci4ubnp1uwgIiJyOBxUVSsOO6iy13oYRERERJWhStPUXL9+HSdOnLA8LloPw8/PD/Xq1bOshxEREYGIiAgkJiYWux6Gv78//Pz8MGnSJNV6GERERNVWea828UpVparSQdXPP/+MTp06WR5PmDABABAXF4fly5dj8uTJyMnJwahRo5CZmYno6GjpehgGgwH9+/dHTk4OunTpguXLl6vWwyAiIqqWzADKkw6PUwErlcOsU1WVuE4VEUnXqdLVkcyY4DpVd53KXKeqa6MJ5V6natNvc7hOVSWp0itVREQOQzYQsmagxQEUEf0PB1VERESOinOqqhUOqoiIiByVWQBKOQZGZg6qKpPDLqlAREREVJ3wShUREZGj4u2/aoWDKiIiIodV3lXROaiqTBxUERFZi/n/iKgEHFQRERE5Kt7+q1Y4qCIiInJUZoFy3cJj9F+lYvQfERERkR3wShUREZGjEubyzeXjPMBKxUEVERGRo+KcqmqFgyoiIiJHxTlV1QrnVBERERHZAa9UEREROSre/qtWOKgiIiJyVALlHFTZrSdkBd7+IyIiIrIDXqkiIiJyVLz9V61wUEVEROSozGYA5Vhrysx1qioTb/8RERER2QGvVBERETkq3v6rVjioIiIiclQcVFUrvP1HREREZAe8UkVEROSomKamWuGgioiIyEEJYYYQZY/gK8++ZDsOqoiIiByVEOW72sQ5VZWKc6qIiIiI7IBXqoiIiByVKOecKl6pqlQcVBERETkqsxlQyjEvinOqKhVv/xERERHZAa9UEREROSre/qtWOKgiIioO/yBRFRNmM0Q5bv9xSYXKxdt/RERERHbAK1VERESOirf/qhUOqoiIiByVWQAKB1XVxR1z+++DDz5AeHg43N3d0apVK/z3v/+t6i4RERHRXeSOGFR9/PHHiI+Px7Rp07B//3489NBD6NmzJ86cOVPVXSMiIio7IW6tNVXmjVeqKtMdMaiaM2cORowYgb/97W9o0qQJ5s2bh9DQUCxatKiqu0ZERFRmwizKvVHlqfaDqvz8fOzduxfdunVTlXfr1g3bt2+vol4RERHZQbmuUpm5onolq/YT1f/880+YTCYEBgaqygMDA5Geni7dJy8vD3l5eZbH2dnZFdpHIiIiuvNV+ytVRRRFUT0WQujKisycORNGo9GyhYaGVkYXiYiIbMLbf9VLtR9U1apVC87OzrqrUhkZGbqrV0WmTp2KrKwsy3b27NnK6CoREZFtePuvWqn2t/9cXV3RqlUrJCcn4/HHH7eUJycn47HHHpPu4+bmBjc3N8tj8b/oiEIUlGuNNSIiuvMVogDAX387KvxY5ThMUV+pclT7QRUATJgwAUOGDEHr1q0RExODxYsX48yZM3jhhRes2v/atWsAgG34tiK7SUREd5Br167BaDRWSNuurq4ICgrCtvTy/10KCgqCq6urHXpFpbkjBlVPP/00Ll++jDfffBMXLlxAZGQkvv32W4SFhVm1f0hICM6ePQshBOrVq4ezZ8/C19e3gntdvWRnZyM0NJTnRoLnRo7npXg8N8WrDudGCIFr164hJCSkwo7h7u6OtLQ05Ofnl7stV1dXuLu726FXVBpFVMb1y2oiOzsbRqMRWVlZDvvLXFV4borHcyPH81I8npvi8dxQdVbtJ6oTEREROQIOqoiIiIjsgIOq27i5uWH69OmqyEC6heemeDw3cjwvxeO5KR7PDVVnnFNFREREZAe8UkVERERkBxxUEREREdkBB1VEREREdsBBFREREZEdcFB1mw8++ADh4eFwd3dHq1at8N///requ1ShZs6ciTZt2sDHxwcBAQHo27cvjh07pqojhEBCQgJCQkLg4eGBjh074vDhw6o6eXl5GDNmDGrVqgUvLy/06dMH586dq8yXUqFmzpwJRVEQHx9vKbubz8v58+cxePBg+Pv7w9PTEy1btsTevXstz9+t56awsBCvvfYawsPD4eHhgQYNGuDNN9+E2fxXQtu75dz8+OOPePTRRxESEgJFUfD555+rnrfXecjMzMSQIUNgNBphNBoxZMgQXL16tYJfHVEJBAkhhEhKShIuLi5iyZIl4siRI2LcuHHCy8tLnD59uqq7VmG6d+8uli1bJg4dOiRSU1NFr169RL169cT169ctdd5++23h4+MjPvvsM3Hw4EHx9NNPi+DgYJGdnW2p88ILL4g6deqI5ORksW/fPtGpUydx3333icLCwqp4WXa1e/duUb9+fdGiRQsxbtw4S/ndel6uXLkiwsLCxLBhw8SuXbtEWlqa2LRpkzhx4oSlzt16bmbMmCH8/f3F119/LdLS0sQnn3wivL29xbx58yx17pZz8+2334pp06aJzz77TAAQ69evVz1vr/PQo0cPERkZKbZv3y62b98uIiMjRe/evSvrZRLpcFD1Pw888IB44YUXVGX33nuveOWVV6qoR5UvIyNDABApKSlCCCHMZrMICgoSb7/9tqVObm6uMBqN4p///KcQQoirV68KFxcXkZSUZKlz/vx54eTkJDZs2FC5L8DOrl27JiIiIkRycrLo0KGDZVB1N5+XKVOmiAcffLDY5+/mc9OrVy8xfPhwVVm/fv3E4MGDhRB377nRDqrsdR6OHDkiAIidO3da6uzYsUMAEL/++msFvyoiOd7+A5Cfn4+9e/eiW7duqvJu3bph+/btVdSrypeVlQUA8PPzAwCkpaUhPT1ddV7c3NzQoUMHy3nZu3cvCgoKVHVCQkIQGRlZ7c/d6NGj0atXL3Tt2lVVfjefly+//BKtW7fGU089hYCAAERFRWHJkiWW5+/mc/Pggw/ihx9+wG+//QYA+OWXX7Bt2zY88sgjAO7uc3M7e52HHTt2wGg0Ijo62lKnbdu2MBqNd8y5ourHUNUdcAR//vknTCYTAgMDVeWBgYFIT0+vol5VLiEEJkyYgAcffBCRkZEAYHntsvNy+vRpSx1XV1fUrFlTV6c6n7ukpCTs27cPe/bs0T13N5+X33//HYsWLcKECRPw6quvYvfu3Rg7dizc3NwwdOjQu/rcTJkyBVlZWbj33nvh7OwMk8mEt956CwMGDABwd39ubmev85Ceno6AgABd+wEBAXfMuaLqh4Oq2yiKonoshNCV3aleeuklHDhwANu2bdM9V5bzUp3P3dmzZzFu3Dhs3LgR7u7uxda7284LAJjNZrRu3RqJiYkAgKioKBw+fBiLFi3C0KFDLfXuxnPz8ccfY/Xq1Vi7di2aNWuG1NRUxMfHIyQkBHFxcZZ6d+O5kbHHeZDVvxPPFVUfvP0HoFatWnB2dtb9d5ORkaH7b+pONGbMGHz55ZfYsmUL6tataykPCgoCgBLPS1BQEPLz85GZmVlsnepm7969yMjIQKtWrWAwGGAwGJCSkoL58+fDYDBYXtfddl4AIDg4GE2bNlWVNWnSBGfOnAFw935mAODll1/GK6+8gmeeeQbNmzfHkCFDMH78eMycORPA3X1ubmev8xAUFISLFy/q2r906dIdc66o+uGgCoCrqytatWqF5ORkVXlycjLatWtXRb2qeEIIvPTSS1i3bh02b96M8PBw1fPh4eEICgpSnZf8/HykpKRYzkurVq3g4uKiqnPhwgUcOnSo2p67Ll264ODBg0hNTbVsrVu3xqBBg5CamooGDRrclecFANq3b69bduO3335DWFgYgLv3MwMAN2/ehJOT+ivV2dnZsqTC3Xxubmev8xATE4OsrCzs3r3bUmfXrl3Iysq6Y84VVUNVMTveERUtqbB06VJx5MgRER8fL7y8vMSpU6equmsV5sUXXxRGo1Fs3bpVXLhwwbLdvHnTUuftt98WRqNRrFu3Thw8eFAMGDBAGvpct25dsWnTJrFv3z7RuXPnahcCXprbo/+EuHvPy+7du4XBYBBvvfWWOH78uFizZo3w9PQUq1evttS5W89NXFycqFOnjmVJhXXr1olatWqJyZMnW+rcLefm2rVrYv/+/WL//v0CgJgzZ47Yv3+/ZYkae52HHj16iBYtWogdO3aIHTt2iObNm3NJBapSHFTdZuHChSIsLEy4urqK+++/37K0wJ0KgHRbtmyZpY7ZbBbTp08XQUFBws3NTTz88MPi4MGDqnZycnLESy+9JPz8/ISHh4fo3bu3OHPmTCW/moqlHVTdzeflq6++EpGRkcLNzU3ce++9YvHixarn79Zzk52dLcaNGyfq1asn3N3dRYMGDcS0adNEXl6epc7dcm62bNki/W6Ji4sTQtjvPFy+fFkMGjRI+Pj4CB8fHzFo0CCRmZlZSa+SSE8RQoiquUZGREREdOfgnCoiIiIiO+CgioiIiMgOOKgiIiIisgMOqoiIiIjsgIMqIiIiIjvgoIqIiIjIDjioIiIiIrIDDqqIqtipU6egKAoURUHLli3t0lZqaqpd+lbddezY0XJueU6IqKJxUEXkIDZt2oQffvihXG2EhobiwoULiIyMtFOvKtewYcPQt29fu7W3bt06VW44IqKKxEEVkYPw9/eHv79/udpwdnZGUFAQDAZDmfbPz88v1/EdRdHr8PPzQ+3atau4N0R0t+CgisiOVq5cCX9/f+Tl5anKn3jiCQwdOtSmtoqu2iQmJiIwMBA1atTAG2+8gcLCQrz88svw8/ND3bp18eGHH1r2kd3+O3z4MHr16gVfX1/4+PjgoYcewsmTJ1XHmDlzJkJCQtCoUSMAwMGDB9G5c2d4eHjA398fzz//PK5fv16uvgHA+fPn8fTTT6NmzZrw9/fHY489hlOnTgEAEhISsGLFCnzxxReWW3Zbt24tdb+SXgcRUWXioIrIjp566imYTCZ8+eWXlrI///wTX3/9NZ599lmb29u8eTP++OMP/Pjjj5gzZw4SEhLQu3dv1KxZE7t27cILL7yAF154AWfPnpXuf/78eTz88MNwd3fH5s2bsXfvXgwfPhyFhYWWOj/88AOOHj2K5ORkfP3117h58yZ69OiBmjVrYs+ePfjkk0+wadMmvPTSS+Xq282bN9GpUyd4e3vjxx9/xLZt2+Dt7Y0ePXogPz8fkyZNQv/+/dGjRw9cuHABFy5cQLt27Urdr7jXQURU6ao6ozPRnebFF18UPXv2tDyeN2+eaNCggTCbzdL6aWlpAoDYv3+/qjwuLk6EhYUJk8lkKWvcuLF46KGHLI8LCwuFl5eX+Oijj6RtTZ06VYSHh4v8/HzpsePi4kRgYKDIy8uzlC1evFjUrFlTXL9+3VL2zTffCCcnJ5Genl7mvi1dulQ0btxYdR7y8vKEh4eH+P777y3tPvbYY6o+Wruf9nUUKe78EhHZW9kmXhBRsZ577jm0adMG58+fR506dbBs2TIMGzYMiqLY3FazZs3g5PTXBeXAwEDVJHRnZ2f4+/sjIyNDun9qaioeeughuLi4FHuM5s2bw9XV1fL46NGjuO++++Dl5WUpa9++PcxmM44dO4bAwMAy9W3v3r04ceIEfHx8VMfPzc213I6UsXY/7esgIqpsHFQR2VlUVBTuu+8+rFy5Et27d8fBgwfx1Vdflakt7WBIURRpmdlslu7v4eFR6jFuHzwBgBCi2AHg7eW29s1sNqNVq1ZYs2aNrt2SJpNbu5/2dRARVTYOqogqwN/+9jfMnTsX58+fR9euXREaGlol/WjRogVWrFiBgoKCEq9W3a5p06ZYsWIFbty4YRmo/PTTT3BycirXBPD7778fH3/8MQICAuDr6yut4+rqCpPJZPN+RESOgBPViSrAoEGDcP78eSxZsgTDhw+vsn689NJLyM7OxjPPPIOff/4Zx48fx6pVq3Ds2LFi9xk0aBDc3d0RFxeHQ4cOYcuWLRgzZgyGDBliufVXFoMGDUKtWrXw2GOP4b///S/S0tKQkpKCcePG4dy5cwCA+vXr48CBAzh27Bj+/PNPFBQUWLUfEZEj4KCKqAL4+vriiSeegLe3t10Xs7SVv78/Nm/ejOvXr6NDhw5o1aoVlixZUuJVK09PT3z//fe4cuUK2rRpgyeffBJdunTBggULytUXT09P/Pjjj6hXrx769euHJk2aYPjw4cjJybFcgXruuefQuHFjtG7dGrVr18ZPP/1k1X5ERI5AEUKIqu4E0Z0oNjYWTZo0wfz580usd+rUKYSHh2P//v3lTlNDejy/RFRZeKWKyM6uXLmCpKQkbN68GaNHj7Z6v3bt2qFdu3YV2LO7T8+ePdGsWbOq7gYR3SV4pYrIzurXr4/MzEz8/e9/x6RJk0qtX1hYaFkd3M3Nrcomtd+Jzp8/j5ycHABAvXr1uOQCEVUoDqqIiIiI7IC3/4iIiIjsgIMqIiIiIjvgoIqIiIjIDjioIiIiIrIDDqqIiIiI7ICDKiIiIiI74KCKiIiIyA44qCIiIiKyAw6qiIiIiOzg/wHL7TlX03S/7wAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -1165,28 +1264,28 @@ } ], "source": [ - "multiscale['scale2'].ds[name].isel(x=250).plot.imshow()" + "multiscale['scale3'].ds[name].isel(x=250).plot.imshow()" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 21, "id": "998fe844", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC570lEQVR4nOydeXwV1fn/3+fMXbJAgiAkIBARrECF4lZIaRUVQcWtonUHFRcoblCV2lKhqKDWvW4/rSJW0IqK/SoqsrcKKoIooKKlKFQJKBgCIcm9d+b8/pgl92YjlwQI+Lxfr3kld+bMmTOT5Oa553Oez6OMMQZBEARBEARhl9F7ewCCIAiCIAj7OhJQCYIgCIIgNBAJqARBEARBEBqIBFSCIAiCIAgNRAIqQRAEQRCEBiIBlSAIgiAIQgORgEoQBEEQBKGBSEAlCIIgCILQQCSgEgRBEARBaCASUAnCj5B+/fqhlEIpxWmnndbofffr169R+/wx8eqrrwY/G6UUH3744d4ekiAI9UACKkGoJxs3buTqq6/moIMOIiMjg4MPPphhw4bV2PYf//gHhYWFZGdn06JFC37xi18wb968lDaPPfYY5557Lh07dkQpxaWXXpr2mNasWcOFF15ImzZtyMzM5NBDD+WPf/xjvc7t2rUrf//737nxxhvTvu6PnYkTJ/Lqq6/ulr6PPvpo/v73v3PVVVftlv4FQdg9hPb2AARhX2D9+vX07dsXgOHDh3PQQQfx7bff8sEHH1RrO378eCZMmMA555zDpZdeSjweZ+XKlXzzzTcp7e666y62bdvGz3/+czZs2JD2mJYvX06/fv046KCD+N3vfkerVq1Yt24d69evr9f5eXl5XHzxxWlfd2e8/fbbjd5nU2PixImcc845nHXWWY3ed/v27bn44otJJBI88cQTjd6/IAi7BwmoBKEeXH311YRCIZYsWUKrVq1qbffee+8xYcIE7r33XkaNGlVnnwsXLgxmp5o1a5bWeBzH4ZJLLqFr167Mnz+fzMzMtM7fnUQikUbpJ5FI4DhOo/XX1CkvLycSiaC1CAeCsC8if7lCk2T+/PkopZgxY0a1Y9OmTUMpxeLFi/fIWD7//HPefPNNbrrpJlq1akV5eTnxeLzGtg888AD5+flcf/31GGPYvn17rf0WFBSglNqlMb399tusXLmScePGkZmZyY4dO7Bte5f6Suarr75CKcU999zDI488wiGHHEJWVhYDBgxg/fr1GGO47bbbaN++PZmZmZx55pls2bIlpY+a1lCVl5czfvx4fvKTn5CRkUHbtm05++yzWbNmTbXrPvDAA3Tu3JloNMqnn34KwLx58/jVr34VSKhnnnkmn332Wco1xo8fj1KKL774gosvvpjc3Fxat27Nn/70J4wxrF+/njPPPJOcnBzy8/O59957q91/RUUF48aNo0uXLkSjUTp06MDNN99MRUVF0EYpRWlpKVOmTAnWOSXLtd988w2XX345eXl5RKNRfvrTn/L000+nXGfBggUopXjhhRcYO3YsBx10EFlZWZSUlKT9MxMEoWkgM1RCk6Rfv3506NCBqVOn8utf/zrl2NSpU+ncuTOFhYW1nu84TrV/9LWRm5tLOByu9ficOXMAVyI78cQTmTdvHpZlcdJJJ/HYY49x8MEHB23nzp3LL37xCx566CFuv/12Nm/eTH5+Pn/84x+55ppr6jWe+uCPKRqNcvTRR7N06VIikQi//vWvefTRR2nZsmWD+p86dSqxWIxrr72WLVu2cPfdd/Ob3/yGE044gQULFjBmzBj+85//8Ne//pUbb7yxWsCQjG3bnHbaacydO5fzzz+f66+/nm3btjF79mxWrlxJ586dg7aTJ0+mvLycq666img0SsuWLZkzZw6nnHIKhxxyCOPHj6esrIy//vWv9O3bl2XLlqU8f4DzzjuPbt26ceeddzJz5kxuv/12WrZsyf/7f/+PE044gbvuuoupU6dy4403cswxx3DssccC7u/MGWecwTvvvMNVV11Ft27dWLFiBffffz9ffPFFsGbq73//O1dccQU///nPg3VO/j1s3LiRPn36oJTimmuuoXXr1rz55psMGzaMkpISbrjhhpSx3nbbbUQiEW688UYqKip+NLNxgrBfYgShiXLLLbeYaDRqiouLg32bNm0yoVDIjBs3rs5z165da4B6bfPnz6+zr+uuu84AplWrVubkk082//jHP8xf/vIX06xZM9O5c2dTWlpqjDFmy5YtQbtmzZqZv/zlL+Yf//iHOfnkkw1gHn/88VqvkZ2dbYYOHVrfR2POOOOM4FoXXXSReemll8yf/vQnEwqFzC9+8QvjOE6d5x933HHmuOOOq7bff26tW7dOee633HKLAczPfvYzE4/Hg/0XXHCBiUQipry8vNa+n376aQOY++67r9r1/HH6183JyTGbNm1KadOrVy/Tpk0bs3nz5mDfxx9/bLTWZsiQIcG+cePGGcBcddVVwb5EImHat29vlFLmzjvvDPb/8MMPJjMzM+WZ//3vfzdaa/Pvf/875fqPP/64Acy7774b7Kvt5zVs2DDTtm1b8/3336fsP//8801ubq7ZsWOHMcaY+fPnG8Accsghwb6qTJ482QBmyZIlNR4XBKFpITNUQpNlyJAhTJo0iZdeeinIpvvHP/5BIpHY6WLq/Px8Zs+eXa/r/OxnP6vzuC/b5efnM3PmzGCNS/v27bnggguYNm0aV1xxRdBu8+bNvPDCC5x33nkAnHPOOfTo0YPbb7+dq6++ul5j2hn+tY455hiee+45AAYPHkxWVha33HILc+fOpX///rvc/7nnnktubm7wunfv3gBcfPHFhEKhlP3PP/8833zzDYccckiNfb388ssceOCBXHvttdWOVZU8Bw8eTOvWrYPXGzZsYPny5dx8880ps249e/bkpJNO4o033qjW5xVXXBF8b1kWRx99NP/73/9SMjJbtGjBYYcdxn//+99g3/Tp0+nWrRtdu3bl+++/D/afcMIJgCtD/+IXv6jxHgGMMbz88sv85je/wRiT0sfAgQN54YUXWLZsWZDcADB06NAmtf5NEIRdRwIqocnStWtXjjnmGKZOnRr8M5w6dSp9+vShS5cudZ6bkZHRoIAiGf8f3m9+85uUBcPnnnsul1xyCYsWLeKKK64I2oXDYc4555ygndaa8847j3HjxrFu3To6duzYaGO64IILUvZfeOGF3HLLLSxatKhB9191jH5w1aFDhxr3//DDD7X2tWbNGg477LCUQKw2OnXqlPL666+/BuCwww6r1rZbt27MmjWL0tJSsrOz6xx7RkYGBx54YLX9mzdvDl5/+eWXfPbZZykBXTKbNm2qc+zfffcdxcXFPPHEE7Vm51Xto+r9CoKw7yIBldCkGTJkCNdffz3/+9//qKio4L333uPhhx/e6Xm2bfPdd9/V6xotW7asc+1Ku3btAHcNVTKWZdGqVasgmGjZsiUZGRm0aNECy7JS2rZp0wZwA4/GCKhqG1PydRpC1fHvbL8xpkHX82mM2ZqaxlifcTuOQ48ePbjvvvtqbFs1mKyK4ziAO4s3dOjQGtv07Nkz5bXMTgnC/oMEVEKT5vzzz2f06NE8//zzlJWVEQ6HAymtLtavX1/vT//z58+v09n7qKOOAqjmIxWLxfj++++DGQ2tNb169WLJkiXEYrGUIO3bb78FqHX2I12OOuoonnzyyWpjauzrNAadO3fm/fffJx6P17n4vyYKCgoAWL16dbVjn3/+OQceeGDK7FRDx/nxxx9z4okn7jT7sqbjrVu3pnnz5ti23Wizo4Ig7DuIbYLQpDnwwAM55ZRTeO6555g6dSonn3xyNemmJvw1VPXZdraGql+/frRp04apU6dSXl4e7H/mmWewbZuTTjop2Hfeeedh2zZTpkwJ9pWXlzN16lS6d+8ezCylw9atW/n888/ZunVrsO/MM88kGo0yefLkYGYE4G9/+xtAypj2NoMHD+b777+vcWZxZzNbbdu2pVevXkyZMoXi4uJg/8qVK3n77bc59dRTG22cv/nNb/jmm2948sknqx0rKyujtLQ0eJ2dnZ0yHnBnwQYPHszLL7/MypUrq/VR3xlTQRD2TWSGSmjyDBkyJFiTdNttt9XrnMZcQxWNRvnLX/7C0KFDOfbYY7nkkktYt24dDz74IL/61a84++yzg7ZXX301f/vb3xg5ciRffPEFHTt25O9//ztff/01r732Wkq/r732Gh9//DEA8XicTz75hNtvvx2AM844I5CHZsyYwWWXXcbkyZMDvyPfiuHWW2/l5JNP5qyzzuLjjz/mySef5IILLuCYY45plHtvDIYMGcKzzz7L6NGj+eCDD/jVr35FaWkpc+bM4be//S1nnnlmnef/5S9/4ZRTTqGwsJBhw4YFtgm5ubmMHz++0cZ5ySWX8OKLLzJ8+HDmz59P3759sW2bzz//nBdffJFZs2Zx9NFHA+4M4Zw5c7jvvvto164dnTp1onfv3tx5553Mnz+f3r17c+WVV9K9e3e2bNnCsmXLmDNnTr2tPARB2PeQgEpo8px++ukccMABgU/Q3mDIkCFEIhHuvPNObrrpJlq0aMHVV1/NxIkTU9bnZGZmMm/ePG6++WaefvppSktL6dWrFzNnzmTgwIEpfb788sspM1kfffQRH330EeBmEFZdb1OVsWPHcsABB/DXv/6VG264ISXIakpYlsUbb7zBHXfcwbRp03j55Zdp1aoVv/zlL+nRo8dOz+/fvz9vvfUW48aN49ZbbyUcDnPcccdx1113Neqibq01r776Kvfffz/PPvssM2bMICsri0MOOYTrr7+en/zkJ0Hb++67j6uuuoqxY8dSVlbG0KFD6d27N3l5eXzwwQdMmDCBV155hUcffZRWrVrx05/+lLvuuqvRxioIQtNDmcZaTSoIu4lEIkG7du04/fTTeeqpp/b2cPYL+vXrRzwe55///CeRSIScnJy9PSTBIxaLUVJSwgsvvMC1117LkiVLgpkxQRCaLrKGSmjyvPrqq3z33XcMGTJkbw9lv2LRokW0bt2aCy+8cG8PRUjijTfeoHXr1jX6dgmC0HSRGSqhyfL+++/zySefcNttt3HggQeybNmyvT2k/YalS5cG1gqtW7fe6cJ8Yc/x3XffBWvrwDVPbd68+V4ckSAI9UECKqHJcumll/Lcc8/Rq1cvnnnmGQ4//PC9PSRBEARBqBEJqARBEARBEBqIrKESBEEQBEFoIBJQCYIgCIIgNBDxocKtwfXtt9/SvHnznZacEARBEH68GGPYtm0b7dq1SymW3tiUl5cTi8Uapa9IJEJGRkaj9CXUjgRUuPXPdlb4VBAEQRB81q9fT/v27XdL3+Xl5XQqaEbRJrtR+svPz2ft2rUSVO1mJKCCICX5l+p0wlZkJ62FPYqq8gnQODW3S7MvZXkzkf4nzBpmJpVlgVaV5yqV2s7vz2uj/OOW11Z7r71rGP94UhujtSu8KwXGoGwD8QQqkYCyCkwiAY4Dto2JxQhSSJykXBKt3GFpjYpGIRxGhSwIWaA1JhRKHbffSXI+itaV401+HjXlrCQfM8Ydi9/OcVD+fmMgYYPtgDFu3T7bdu/HOOB4+xwn9TpOA37Gwo+SlF9Tx4BxMN7XGn+HG0CCOO/wxm61sojFYhRtsvl66cHkNG/YLFjJNoeCo74iFotJQLWbkYCKysrxIRUmpMJ7eTRCClUDKhopoPK/V3UEVMpKCjCqBBzJ51YNqLRVc0Cl6xFQYcCxUI4F2rjHjQPKxigweP8cVNI/CaW8a2uUioAOo3TIHYfWGGs3B1QqKaBSDspJCqi0DcauDKiM7QXFDijj3o9ygOT7kYBKSA+T8vtjAAfjfU353Wqci7mX2QPLQ5o1VzRr3rDrOMgylj2FBFRJKK2q/ZMUmgb+m5cxu/5zUX5wo5Q7++TPQKnqP3elFIRCbuCj/eBHuef47bzgyCgFlsLRGiyFCWl3n3bPccIaowleGw1O2PvecgMto0A5Bitu0BWGUJlNuLgcVRFHVcQhFoeyMlQ8gbFtb2bIccdmWShLQzgCuc0wGVGcjBB2RggnYmFH3aDNeM/QDXgqYzKjwIRSxxK8ByfHbwZv9smNeZRtvFjIBN/ruBdQOQadcNzx295MleOgbMe9F9vGJGyUY0M8kTpTpbXMUglpoZQicADSCuyUg40+S7WnsI2D3cCh2w2Z1RfSQgIqQRAEQWiCOBicBs6wNfR8of6IbYIgCIIgCEIDkRmqmhC5r97saZuJXb6e9heKa1cei0ZRnlxWTdbz1jaZaMhb1K09eU5jLFfecxeYg+NLfBqM5cpmTsiT+iwwGuyIJ6dZXnsLnIj/GlB4kh9YFRAqM4R2hMhsFiJUZmOVJbBKY+gtClNegUok3MXqvnQZDqHCYcjMIN46h3hOmHgzi0SmIpGhsDNcmdGX8vwlS8pU7rMjYEKe/Kep/KhlKtsGUp8BZYOOu1+VY9zXCbBiBp0AnTDohMEqi6LjBm07qIRB2Q66LI6KJdzF9/EEZke5uwjfOBjbqZQyRfYTfuQ4OA1ZNRr0IewZJKASBEEQhCaIbQx2A9d/NfR8of6I5CcIgiAIgtBAZIZqJ4hzehPB94vaVRkoWe4LhVCRCIRDmFCl5OdKd16mnlY4mSEcS2NCCsdSkJydp92MODvsSn1OCC9Lzpf88GRAsKPghMGEDE7IeJKfwVjGzb6z3E+QKqHQFQqrXBHaobAzLEI7LMI7QkS2hcmI2yjtyX7gejqF3Xsx2Zk4zbMoa5tBea4m3lwRzwY7A+wM48p4yVYLfrakdo85Ucf9eGUZ0N6W3NYAtgJHuY4HtkLHFCqhArlPJRShcoWO422G0A4LK+5mAWrb3WeVhbEqHHRFwt20djP94nFX+rNtTDwhsp/QcJRumHfdXkYWpe9bSEAlCIIgCE0QB4MtAdU+g0h+giAIgiAIDURmqJIwjpEQcz9GKdeYU4VCmGjYlfzCFibsOoo7EcuV8zyJz860XPnOz86rKudpsKMKE6JS8rNIOW4sV3JzwgbjbVgGFXZQluNVtHF9no2tsOMWdkyTKNc4YU1oB4S3a+yoIrQtk5AxKMd4v6sKlZGBycrAyckkdkAGpXmaihaKeI4hkWUwUQeitmturoyb5edJf/61tXbIiibQyqCVQSmD5Ul+KkkmTNiahKOxbU0iYRGvCGFsBQkNCVf+S5RqN8sv7kqCoQzv+4SXCWhDqFy7cmB5CKvcIRzS6PIEVMRQ5TFX+nOMa2Aqsp+wKyiN0l75mX0Ykfz2LSSgEgRBEIQmiGT57VvIfIwgCIIgCEIDkRkqYf9H66DmHdqr4RcOYSKu5OeELTdTL+pLfAonrLCjGidUKfcZ7ZlfBnKecjP4qsp9lkmVBTMdV+oLeVJfyMEK2WhtvHKA7idIYxR22HbHkaGp0CESmdo1BtWKzE0hdHkEq8LNhjOOwmRGcZq5cl/5gWHKD1TEch3sZg4qM0Eo7BCOJCplPgVaO1jKELIcQpaNpQzRkCv5BY8MV/rzZUCAhKOJOxYViRAx22JHOIJta2xb4dgWTkKRCIdQMeXKfHH3WfoZgNp2jUDtqPvaimlCFQYnpAjtsLHKwugdYVRZBSaRQIHIfkK9SannV/3gPlnPzysj3uA+hD2DBFSCIAiC0ASxGyHLr6HnC/VHAipBEARBaILYxt0a2oewZ5CAqia8DCphH8c3A1XKzfDTyjP2tDCWhQlpV+4LeeadYe1m9IUVTijJtNOqrG/nhEgy9qwpq89U7lPucSxcw8yQn9lnUuQ+dwMwaA0m5GCHNDEDiZCFwsKKu0afJmphwiFUPIRyHEw0gt0sQiw3REWuJ/fl2OisBOFIglDIwdJOINspZYiEbELaIWzZRK0EIe0QUg4OCse4G+DttwPZL+FoYk4oeG07bkak7Whsx8a2NTFtcMIWdlzjxN3CgDrmmn06tpto6IQVKgF2AuwYGBXCztCEt2ussIWlNbq8AgOVsp8gCEITRwIqQRAEQWiCyBqqfQsJqARBEAShCeKgsGmYWuI08Hyh/khAtROMMVLPrylRn4yvJKkveO1n+Lk6m2sYorWrKWkwSrkSnVaYmn7eypPwlHLP8beqGAX+IlDPTNP42XNGYYxyZS9HBUMBhfZkQK0NrvRnsKNuBp0d0dhhN/PQWNqtPWi59+hEQthRTSJDkchUbk2+sINlOZ6s6JqG2p6Mp4zCMa4EGNJOityXcDSOUdhGo/170BDCldwco1MkQcsbq6UNjrFxLI3jKGwNtjYYLJywayZqNGjbrQNoNBBx6/85EbdOoCu3KsKW27feHkEZz8DUGLduoSDsCvt4PT9h30ECKkEQBEFogjjG3Rrah7BnkIBKEARBEJogdiNIfg09X6g/ElBVxTjuFLGwb+M6WAbZfVja+5ok+/ntkjG4UpNRKAdQnuTrN3cMBuVmnynAqaELB7dmnnHNOpXtyokAxmgcx2BM0nlePT0dZP8lfaT0pMVK41CFSbkv5WYpepmHADgK23Zf2LZO6c89zWBpB8vRWEqDhrhtkTCauG1hG/f+QtrNEAxr28vq08Qcy23raGzHk+eCR2mwLAfH1iht3IzHkJc0a8BRxlVDtSvzmRA4CXe8/tiVo1GJEKFIGJWwIZFwn5+Yewrpsp/U8xP2HSSgEgRBEIQmiMxQ7VtIQCUIgiAITZDkJJCG9CHsGUTbEgRBEARBaCAyQ5WMpNbu+2hduX7K0u56OK289RQ6df0UeAVTfUsB3AU/tmdp4P06aNw1VY7lLf8xBgflfhrR1Y3ztFek1Wh37RAVCmMrTMhbV6QNJuEvPHK/OJbxXNQriyU7cQ0JFbgwGO06k2O59gnJnzuVMShHoeIKE9NudpDlrmVKbui6tDsphY9toymLh10n9IS7PgoICihb3loqx7iu6AlbY3sWC5Ba3NlxVErlMOO5wRt/oZUBR7trqZQDSisc27V1UDbouEZHDYRDEPIKWetEGr8Awo+ZOgsk74OI5LdvITNUgiAIgtAEsdGNsu0qd955J0opbrjhhmBfeXk5I0eOpFWrVjRr1ozBgwezcePGlPPWrVvHoEGDyMrKok2bNtx0000kEqkfjBYsWMCRRx5JNBqlS5cuPPPMM7s8zqaCBFSCIAiC0AQxprK+5q5uZhfXUC1ZsoT/9//+Hz179kzZP2rUKF577TWmT5/OwoUL+fbbbzn77LOD47ZtM2jQIGKxGIsWLWLKlCk888wz3HrrrUGbtWvXMmjQII4//niWL1/ODTfcwBVXXMGsWbN27UE1EUTyqw0pkNy0cJxKB/Sd4dsKBHKfqv1nafCsD4xriaAUyjEoB7TtvqEZA0YbMMqV9zRYjsGxXIlBe2beRntfncoCymhX2jIJf58Jiirj2xkoXDlQWa5GqI37UcdWrvzoaYqOBY7l2SZo7f6OKuVdFFcyi7lyp7GVKy+m6oIYyxDTYfelMoFsVx4LE7ct4nELx9bum3CSnYOvkhpT+UyCbn1Zz7h2DcZWGFtDLcqLSXKaN8rgWAoVAifsbRGFCVso7z6N2JgI6aKVOFo2gO3bt3PRRRfx5JNPcvvttwf7t27dylNPPcW0adM44YQTAJg8eTLdunXjvffeo0+fPrz99tt8+umnzJkzh7y8PHr16sVtt93GmDFjGD9+PJFIhMcff5xOnTpx7733AtCtWzfeeecd7r//fgYOHLhX7rkxkHcqQRAEQWiC+GuoGroBlJSUpGwVFRW1XnfkyJEMGjSI/v37p+xfunQp8Xg8ZX/Xrl3p2LEjixcvBmDx4sX06NGDvLy8oM3AgQMpKSlh1apVQZuqfQ8cODDoY19FZqgEQRAEoQliG41tGjbvYXsTdR06dEjZP27cOMaPH1+t/QsvvMCyZctYsmRJtWNFRUVEIhFatGiRsj8vL4+ioqKgTXIw5R/3j9XVpqSkhLKyMjIzM+t9f00JCaiE/QdPEgxcxH25T+maC1z7upUxQYafUrhO6LZnmO/LaY4KMgKNxnVCt93sOsdSnot5paN5UExZg0pUyn9ucWXj9VHZl2OBsVypz/iSnwJsvFQ5r++QhpBbHNkYT9JTlVmKOoGXVUhqkWdvLFiGhFWZlRdLuBl/FRVh7ISFE3clO2z3mrYygTyndBUJJUmy9CU/HFV5vu09R8eVLZWD65Be9f+DNzZfJjW++3vIlf0qZVtxSxd2EaXB/LgLbK9fv56cnJzgdTQarbHN9ddfz+zZs8nIyNiTw9svEMlPEARBEJogDgoH3cDN/WCVk5OTstUUUC1dupRNmzZx5JFHEgqFCIVCLFy4kIceeohQKEReXh6xWIzi4uKU8zZu3Eh+fj4A+fn51bL+/Nc7a5OTk7PPzk6BBFSCIAiC0CRpzDVU9eHEE09kxYoVLF++PNiOPvpoLrroouD7cDjM3Llzg3NWr17NunXrKCwsBKCwsJAVK1awadOmoM3s2bPJycmhe/fuQZvkPvw2fh/7KiL5VcE4BqWlQPI+T00/v+QsQTddDWXc7D3jS1JJqWnal9kcNzsvULxUZaaachTKMqnFi63UTDbHkwCTBudJXARSoBM2lef60leo0gATBU5IuVtYoyzLzUq0dKWEZkAnPEnR8Qo6J6l0RrkFie2QRcIz4dTeTdkxCxPXrkyXUJVupVUy8oLXKbdjKi9jVKVEarvjUTaohLfPf/YqONUrSJ10unKfgVvQWlevPi0I9UUKJKdF8+bNOfzww1P2ZWdn06pVq2D/sGHDGD16NC1btiQnJ4drr72WwsJC+vTpA8CAAQPo3r07l1xyCXfffTdFRUWMHTuWkSNHBrNiw4cP5+GHH+bmm2/m8ssvZ968ebz44ovMnDlzz95wIyMBlSAIgiA0QRpnUXrjBpP3338/WmsGDx5MRUUFAwcO5NFHHw2OW5bF66+/zogRIygsLCQ7O5uhQ4cyYcKEoE2nTp2YOXMmo0aN4sEHH6R9+/b87W9/26ctE0ACKkEQBEFokrhrqBpYHLmB5y9YsCDldUZGBo888giPPPJIrecUFBTwxhtv1Nlvv379+Oijjxo0tqaGBFTCvkM65p7GAaydn+94RpoGlOPX9fM+0fkZdpabBeg6DptAgjLKPUdrKjP9LM+4038PU6C1qpTJgrp8SVmBSZmAgXRoGbcunnbPMQqcEDhht44fIa+xVp5E6GX6JUCjUgw9fcnQaOPVFNQ4DjgJ5dbVA4hpVFyjE6DsyvqBlfKmV48v6b6CR518LU/Cc41GlTuepD6VIbUfb59y3IzJ4Jq+3Gdpt56fINSTWuv5+Sa4grCb2KsLhQ4++GCUUtW2kSNHAo1XM0gQBEEQ9jWcRqjj50ju2R5jr85QLVmyBNuu9AZZuXIlJ510Eueeey7g1gyaOXMm06dPJzc3l2uuuYazzz6bd999F6isGZSfn8+iRYvYsGEDQ4YMIRwOM3HixL1yT4IgCILQGDTFNVRC7ezVgKp169Ypr++88046d+7Mcccd12g1g4T9jHoYOxpjUHi1vCwFxsEYFZh7mqS6fr6hp3eil92WJO15pp9Gu99rr8Zd8nCMduv/OY5nqJn8/udJbdXwzCwdS7lZfrZv7ulJgSEvW89yh4IyruQXAiesMWELjMGEFCZEpdmoAySSFLnkDDovi1CHAEe7WYTerVrlOsjG03alpGm0n9lXaUKa1HWtKAAHdNzL8rOT5EC/H+W28Q0/g+eicKVMq3LW2mgN9o/bmFFIk/2gnp/TCDNMTp1/qUJj0mTmAmOxGM899xyXX345SqlGqxlUExUVFdXqGgmCIAiCIOwqTSagevXVVykuLubSSy8FGq9mUE1MmjSJ3NzcYKta40gQBEEQ9ja2UY2yCXuGJpPl99RTT3HKKafQrl273X6tW265hdGjRwevS0pK3KCqqtbsGFd6MKbmWnBC0yI5i88xbpJfDesHlOMZUTq4OpSDK+/ZJvCQVAY3A86v7WcMykky4/TQxjX9NI4ra1U9DqlZbcnZf0aDsr26fo5CBRl+npRoKRxjgv6M5Rt7KpyQRjsaJ6RTagm62XX+faaok+7YHNAxUEZhEv6gwKrw5LmEb3Dqy4iVUl/wtbY/Be9igSpqlJfhVynrKeOOIfkZKZsgM9B/Xka7tfuM5ZmYKpVam1AQfgT4C8sb1odIfnuKJhFQff3118yZM4dXXnkl2Jefnx/UDEqepapaM+iDDz5I6atqzaCaiEajNdYxEgRBEARB2BWahOQ3efJk2rRpw6BBg4J9Rx11VKPUDBIEQRCEfRHH6EbZhD3DXp+hchyHyZMnM3ToUEKhyuHk5uY2Ss2gXUHq+e3jOA5Ga5Rte/qTdiXAZP3LAaWNJ+cBtvvzdmU4QINKGPerqawv50t/Psav96e9rDxdRRJTKqiB59f3C/pykmsCuuc6IRVk9jkh16TTsbwBKF9SVF4WnPbaq+C6gcznJH3v+ZX6xqFWTHnZiSbIDLTKFTpOINFBqvFocH6yZFlNgVOptf5MpdynkrL5VNKzgKTjJukZhVwDUmVZqbX8tK5XpqcgBPj1/PbBJFGR/PYt9npANWfOHNatW8fll19e7Vhj1AwSBEEQBEHY3ez1gGrAgAE1lwmg8WoGCYIgCMK+hgMNztKT+dw9x14PqJocRqS+fRrHcWu/+bKfA2jHq+2nq2f9mcrafEE9Pz+zT5kgKy2Q/nSl6SVQ2caXqqqaXybtN75BZrLZp/KlOlWZ9RdyXzth981Qm6Taesnn+HX8fNnQuJJditSWkj1XmV2nEpXZh8rxs/x8Y0+T1F5Vnlf1Xmr4M0mWNcEbQ1XZL6kdEBh/BlmAKinTz/Lq+Wnl1lYUhHSoau65j9XzaxxjT/l/tqeQJy0IgiAIgtBAZIZKEARBEJogjVPLT+ZN9hQSUAn7H76Mlyz7GePV+KNms0/jtfGK2wWZfH6NvED6c81eA1kv2Qk06WWKkWdVU0xVKb0FMqBn8Kk1OLZC2QYn4nYSrIGoIuElXbYyq89O2hyTYu5pfDNRo9DJMp5v7Jkw1Y09tQnOCwxKg9eV9xk8+mTJz886dJLG56Q8Hvx6fto2KTX9jOVmMRqtUVq7MrzU8xN+ZDgonKp/ZLvQh7BnkIBKEARBEJogMkO1byFPWhAEQRAEoYHIDNXOkHp++ya+rBfIfsb9WdaV4eMYFN7PW4EyBhxP71MKpY2bMeOYSnNKT6NS4EqBJJtfKhSuZKaqSGHJcplJeu1YypPqFHYs1UjTl8Xc4wZlu/fjt1e2QaNcCS1hUrLr/D6MrjQRTVYCdNyVCbUnFbrjUilSpdGu0Wk1CTD5sVeRNqGq7GdSxuMfdzMsU+VJtALLe3ha/vaEBqK8Ypb7EI1j7CnzJnsKCagEQRAEoQniGIXTUB+qBp4v1B8JXQVBEARBEBqIzFDVgtTz24dxHDcjDFyJr5bab0b5WpxLIDd50p+xNJ7FJwYDNmgc7zwvQS5ZBnZSM/2Mn/mXJAUGxwJpzOvdIsiK84er45WyWlCnLznTz7iyX3KdPIwnDdpeXT4nyagzyLxTKZIc+DX8TBWJ0KTWH7RUijzp1wJMeabaN/5UlR/XkqS+lP6DkyrvSTkmMFB1N+3+HJRCKeX1K/X8hDRRmn3RGdZpBMlPjD33HBJQCYIgCEITxDEap4FZeg09X6g/8qQFQRAEQRAaiMxQ1YTU89v3SZb9oHp2T/KP1zcCNX7Gnqdj2U5lxl+SAWeg8mncrMAq+DJgIO8lm1n6MpqXvRZkARrvPMvL1FOuDOeEvDp3VmV2nWN5WW9KuQmIyVKaMpUZc162n05SOox279ckZc0pYwJ5EGMqJcWkmnyB+WiK5FfZh98uMPzUlXJhMJ7k+oLVHpo7jkC69CRGLE/iU1LPT6g/SrmZ2bUc3Gfq+dko7AYaczb0fKH+SEAlCIIgCE0Qkfz2LeRJC4IgCIIgNBCZoRL2X6rKfjVRRe4L9oG73zGuH6Bf44+ktk6SJJaEwqRmD+pKo0y/W2O8LEDtCozG0/2UcWv3KQXKVp7JpmuwaUcViQywKjR2hZUyZlcu87IP7crsPm172XumMlMw0BiD+/WMQP1Mu6R+K7MYTYrU58p5qbKJmwnoZ+hRXfJzKmW9ZMNSfwwpdQr962gFIQtlaUxC6vkJu4BWQQbuvoZNwyU7+WvZc0hAJQiCIAhNEJH89i0koBIEQRCEJogUR963kICqKiZVrkk9JPX8mgS+jJeOuaOftVnFzLMaSXJfitGn6/FZzRCzxow196zK63kSV4oUaHnSn5PUn3JFRZ0wgcmn8jLenBCYLFBGoWyNcixvvwou5xtmajuplp9tXGNPX9lUCm1MNanNN/WsLvkl3ZFnPpps9pn6jMFxFEa7RqW+AWpyBl9wDSrv29TwPAPZMKQxlmvqGdTzE3NPYVfZB+v5CfsOEroKgiAIQhPEoHAauJk012A99thj9OzZk5ycHHJycigsLOTNN98Mjvfr1w/lVS7wt+HDh6f0sW7dOgYNGkRWVhZt2rThpptuIpFIpLRZsGABRx55JNFolC5duvDMM8/s8nNqKsgMlSAIgiA0QfaG5Ne+fXvuvPNODj30UIwxTJkyhTPPPJOPPvqIn/70pwBceeWVTJgwITgnKyur8nq2zaBBg8jPz2fRokVs2LCBIUOGEA6HmThxIgBr165l0KBBDB8+nKlTpzJ37lyuuOIK2rZty8CBAxt0v3sTCajqIKjnh7W3hyL4JGftpSv7eGaYRifJfsnyX9VMP0/+VSjwTC0rpb9UY8zaMFUv49flswmMQY1SlZKc5Wb8KeXV5HO8OoAa7EyDE/Jr3FkYS2FVOK48WIOZp/vVoJI+GCpVma3nduyfZ1Jkw6B9knGpL08Gkp+vojqVZp8Yr+af8Wr9UdkmMA5Nkjld01RVTfYz2utHe/Ke5WqkStVkpSoIO0dphdlHs/32JKeffnrK6zvuuIPHHnuM9957LwiosrKyyM/Pr/H8t99+m08//ZQ5c+aQl5dHr169uO222xgzZgzjx48nEonw+OOP06lTJ+69914AunXrxjvvvMP999+/RwIqy6rf/3Q7zYxiCagEQRAEoQniGIVTkzdLmn0AlJSUpOyPRqNEo9E6z7Vtm+nTp1NaWkphYWGwf+rUqTz33HPk5+dz+umn86c//SmYpVq8eDE9evQgLy8vaD9w4EBGjBjBqlWrOOKII1i8eDH9+/dPudbAgQO54YYbGnKr9cYYQ0FBAUOHDuWII45otH4loBIEQRCEJoiNxm7gUmf//A4dOqTsHzduHOPHj6/xnBUrVlBYWEh5eTnNmjVjxowZdO/eHYALL7yQgoIC2rVrxyeffMKYMWNYvXo1r7zyCgBFRUUpwRQQvC4qKqqzTUlJCWVlZWRmZjbonnfGBx98wFNPPcWDDz5Ip06duPzyy7nooos44IADGtSvBFS1IfX89g3qkv1S5MGkTDE/069qPb+q3Xh173wUlZJBXcJTkKnmZ/ZpVSkTGq8WoO8P6tXz8zqt7MOu3PzadolMUBETSGFGazKKKw07lZ18rkmqn2dSDDMrdUgqs/o82U8ZXDPTKrfnyp2VdQ2D+oZJ4w1kPF+yU1Q28rP8jDeeoF+FsZKyDpNNVpVby89Y/s9M6vkJ9Wd/qefXWKxfv56cnJzgdV2zU4cddhjLly9n69atvPTSSwwdOpSFCxfSvXt3rrrqqqBdjx49aNu2LSeeeCJr1qyhc+fOu/UeGoujjz6ao48+mvvvv5+XXnqJyZMnM2bMGE4//XSGDRvGSSedtEv9SsQgCIIgCE0QX/Jr6AYEWXv+VldAFYlE6NKlC0cddRSTJk3iZz/7GQ8++GCNbXv37g3Af/7zHwDy8/PZuHFjShv/tb/uqrY2OTk5u312KpmMjAwuvvhi5s6dy8qVK9m0aRMnn3wyW7Zs2aX+JKASBEEQhCaIg26UrcHjcBwqKipqPLZ8+XIA2rZtC0BhYSErVqxg06ZNQZvZs2eTk5MTyIaFhYXMnTs3pZ/Zs2enrNPaU/zvf//j9ttv56STTuLzzz/npptuSpnJSweR/ARBEARBAOCWW27hlFNOoWPHjmzbto1p06axYMECZs2axZo1a5g2bRqnnnoqrVq14pNPPmHUqFEce+yx9OzZE4ABAwbQvXt3LrnkEu6++26KiooYO3YsI0eODGbFhg8fzsMPP8zNN9/M5Zdfzrx583jxxReZOXPmHrnHWCzGjBkzeOqpp/j3v//NKaecwgMPPMApp5xS7wzAmpCAqj44ptKlWdj30Dpp3ZRbYNf4r+taS+GvqdKp66hqpUo/ylsjFay78j4oJhdaNt7iJmW8PX5b3zbBVuiEZ00QMpiQu4QokVDomMJs89dPGfdXVLlO6b4VgruRui4p2SndH6tjgiLKKWuuSDrN8ddPGVTS34NJWv+kvSLKvlO60ZXrsQJrBttdt2WUQimDg7eeTSWP0yu2rBXG0mBpKZAs7Dr76No72yjsBmb5pXv+pk2bGDJkCBs2bCA3N5eePXsya9YsTjrpJNavX8+cOXN44IEHKC0tpUOHDgwePJixY8cG51uWxeuvv86IESMoLCwkOzuboUOHpvhWderUiZkzZzJq1CgefPBB2rdvz9/+9rc95kHVtm1bmjdvztChQ3n00Udp06YNAKWlpSnt0p2pUqbWVXs/HkpKSsjNzaUfZxJS4SSPIu3+4/AXw4KUntnb6Bqmr3e2KN2yUNEIKhyGjCgmEsbJioKVFFDVtCg96Mf7Wt+yNckkeyx5v0NBSZbkY5YK9hutcEKKeHOLWLYm3lwRy4Hy1u4ArQpFuEQRKYbsTTbKAcfyytAo3ADMNq4PlVeCJjmgqlo+B7xF7HUEVKjKcRtFygeM5IDKWH4Q5AdU1BlQ+eVzUryx8Dy0KgyhchurNE5o01Yor8BUxDCJhBtQSekZYSek/HuzbffDjV96Zhf/9SVMnAX8k61bt+6yNLQz/P9JV/9rMNFm4Qb1VbE9zv879uXdOt59DZ30f6Sm/+l+mTnxoRIEQRCE/QBjNE4DndKNFEeuxvz583dLvxJQ1YQUSG6a1DQ75e+vbbYiabbRd9vG0p7EVNXGPEna8z69Gq+4cXA8Sf6rb+q1LxMmS38psp/CtS3Qxt3vFyz2Xc/joOMKHfcsBpKH4Mt9RrmzPtqVDV25kMAOAd+qoMpMUPAIE75TuglsFFIbVJ6nFJ5zvApeu7NW7t36FgnGc373xxkUSfY/9CmvCLR3XvIslVEKtKmU/HzZ1rO/MPI3KOwqUiD5R89xxx23W/qVgEoQBEEQmiA2CjvN4sY19SGkUtU1vjbSlUgloBIEQRCEJog7udzQ0jONNJj9iBYtWtSpNMkaqt2EcQxKaiM3fXZWKLlqYWStKw3Dq2a0merSH1SV/8CVAHcyrqTF4Mp40phj3AXx3vFA9ku6pvGlvIRCx8GqAKvcLRisY8p9XWGwKhyU7RYidsLuYnA3Y893S3cXmwcyoeOKjTVm+Tme1GdqcEo3uI7u/ptQcmFn3xHdv1cvuxGV1I+hUspMuA9RaeVJlOA/HOOPLWlxvrYUJmShfMlWEHYFpVHakQLJwv67huqbb75hzJgxvPnmm+zYsYMuXbowefJkjj76aMCNFMeNG8eTTz5JcXExffv25bHHHuPQQw8N+tiyZQvXXnstr732GlprBg8ezIMPPkizZs321m0JgiAIQoNwGmFRekPP3x/ZXWuo9uqT/uGHH+jbty/hcJg333yTTz/9lHvvvTelQOHdd9/NQw89xOOPP877779PdnY2AwcOpLy8PGhz0UUXsWrVKmbPns3rr7/Ov/71r5R6Q4IgCIKwr+GgGmUTUnEch7vuuou+fftyzDHH8Pvf/56ysrIG97tXZ6juuusuOnTowOTJk4N9nTp1Cr43xvDAAw8wduxYzjzzTACeffZZ8vLyePXVVzn//PP57LPPeOutt1iyZEkwq/XXv/6VU089lXvuuYd27drt+gClQPJ+gVJJhZE9U89kLyXjuLIb2pW8jFIpUl/QT5V91STAun5VqmSOKuNl9PlmlgZwVJDpF2T4JQw6rlx5r8w9X8chVGoIlxmscgflGBxLgdGYEJXZer5Zp+//VFdGYlWprxaT0mC/40pyypc9fW8rk2r+aZK1TGOCos3J11BeX34RaKDSHNRSmLCGkOVmZ1qWa7RlxNxT2Dl1FkgWfrTccccdjB8/nv79+5OZmcmDDz7Ipk2bePrppxvU716NFv7v//6Po48+mnPPPZc2bdpwxBFH8OSTTwbH165dS1FREf379w/25ebm0rt3bxYvXgzA4sWLadGiRRBMAfTv3x+tNe+//36N162oqKCkpCRlEwRBEISmhO+U3tBNSOXZZ5/l0UcfZdasWbz66qu89tprTJ06FaeBZsF7NaD673//G6yHmjVrFiNGjOC6665jypQpABQVFQGQl5eXcl5eXl5wrKioKLCN9wmFQrRs2TJoU5VJkyaRm5sbbB06dGjsWxMEQRCEBuGvoWroJqSybt06Tj311OB1//79UUrx7bffNqjfvSr5OY7D0UcfzcSJEwE44ogjWLlyJY8//jhDhw7dbde95ZZbGD16dPC6pKRk50GV1PNr+uws0y8pQy1tkmWDqplm9cn08+Sy5Iy+QPbDk9SMSVEGle3KflbMYCxF2CszpWOGcCmEdzjoCtvNnNNuFqHtDUYZAnktOXsvuFZd91iLPFhZYsb74vhZizVIf1VNT53Ka/v1CoOlHZZyzT79TL9A9nPNPh1LYUIaZVkorTGWBbYYMwqCsGskEgkyMjJS9oXDYeLxeIP63asBVdu2benevXvKvm7duvHyyy8DkJ+fD8DGjRtp27Zt0Gbjxo306tUraLNp06aUPhKJBFu2bAnOr0o0Gg2qXguCIAhCU8RBNdyHShalV8MYw6WXXpoSB5SXlzN8+HCys7ODfa+88kpa/e7VgKpv376sXr06Zd8XX3xBQUEB4C5Qz8/PZ+7cuUEAVVJSwvvvv8+IESMAKCwspLi4mKVLl3LUUUcBMG/ePBzHoXfv3nvuZgRBEAShETGNkKVnJKCqRk0K2MUXX9zgfvdqQDVq1Ch+8YtfMHHiRH7zm9/wwQcf8MQTT/DEE08AbobGDTfcwO23386hhx5Kp06d+NOf/kS7du0466yzAHdG6+STT+bKK6/k8ccfJx6Pc80113D++ec3MMOv9np+wj5Itbp9jURdcp+T1Kaq7OdLYLhSsnFw69olZbqphIO2tCf7QajUldmsmCG8wxDabmNV2K5UGHIHEmQvOklyn10le6+OpCe3jl/NDZT2Mhv9MXr3gjGV0p+fpeg6gSa1rew/qJOYVLfQlTtVYADq1/ULMv0sK8XcUymF2ZnEKwi1oTSYpp8l6phGmKGSRenVSHYWaEz2akB1zDHHMGPGDG655RYmTJhAp06deOCBB7jooouCNjfffDOlpaVcddVVFBcX88tf/pK33norRf+cOnUq11xzDSeeeGJg7PnQQw/tjVsSBEEQBGEf5Ouvv6a0tJSuXbuidfqLbfe6U/ppp53GaaedVutxpRQTJkxgwoQJtbZp2bIl06ZN2x3DEwRBEIS9gjil7x6efvppiouLU5LTrrrqKp566ikADjvsMGbNmpW2A4A86fpgRFbY69T304Lfrqb2VWU/t/JoIDnVi9okQ6Uqt53hGWgGMpzjymC+Aacry3ltvEw/HXeNPMM7DJHtDuFtCUI7EqiKOCqWQFXY6LjttXXQfh0/k3R/SQaftW3+8wiMQZ3UsaqkTED/XoKxetmEyvb68q9V9f4cd6vc559H5XghqOdnLAUh7Rl7aleukYxbYVdQGrUP/e74kl9DNyGVJ554IqUiy1tvvcXkyZN59tlnWbJkCS1atODPf/5z2v3u9RkqQRAEQRCEPcWXX36ZYgb+z3/+kzPPPDNYbjRx4kQuu+yytPuVGSpBEARBaIJILb/dQ1lZGTk5OcHrRYsWceyxxwavDznkkFqNwetCZqh2hnEAa2+PQmgIXg2/4HsCD8lUua8uZbeKlGeSX9cm89Xj44o/Dt84Vhnj1RIkkP+UrdAJV1LTCUOozCFUZqPLEqiKhJfV513S0m5dvGCgJsjsC+Q6P4svuV2S8WY1/AzFKmNMzRasIgUmm33W1J/fRrv1/fwMyOTaf27Goiv7OUnGnsrSmIR8FhTqR631/KqazzZBJMtv91BQUMDSpUspKCjg+++/Z9WqVfTt2zc4XlRURG5ubtr9SkAlCIIgCMKPhqFDhzJy5EhWrVrFvHnz6Nq1a+BjCe6M1eGHH552vxJQCYIgCEITRGaodg8333wzO3bs4JVXXiE/P5/p06enHH/33Xe54IIL0u5XAiph/yY526+KNFdN3tIE0pkru9UsB5hdMQet45xA9qvlmCv1eUOMG6wKGx2z0bEEKp7AaOWuktCgbMvTMv2CeLXIfVW/J+l5+DJh8thrkP0g6Vl4Bp4qUP4qZb2a7sm/jmsC6paCwCi3PqCufF5GG0wI17g0pCvNPbV3j2LuKdQXz/B2X0ICqt2D1rpOO6aqAdbzzz/PGWeckVKWpsZ+G22EgiAIgiAI+xlXX301Gzdu3Gk7maESBEEQhCaIzFA1DWpMaqgBCajqomo9P0/uMMagpM7fnsVx0jf3TEYpN/vNM99Mfo/x69G55/rX24m057erqU2y3FZbm1rwr+lmIBqMA8rxtDQHdNxBxR1U3IaEDY6DQmNsx82As70MvKQUvBrlvuTh7szY1Ps7qJqRmNI3fhHWyrbuvhpkxeRredmMylcZA3lSudKfUTghcMIaJ2JhVVgQskBL5q2w/+P64Da0OLKwp5CAShAEQRCaIDJDtW8ha6gEQRAEQRAaiMxQ1QPjGJR23Bpiwr5DULtPp9TaM0qlmFoax6CqTqvrekyU12TuWTU7rjbSkQONAUehbYNOOOi4AwkHbDvJuNPULdtVHXpy0+RzHer8mJUi+1U9ppNkP0iR/lKv5Z/gZTH60qZONfc0ym3joHAiGhO2MGE3y09ZGqO1+wwEIR2URmkHsw/86sgM1b6FBFSCIAiC0ASRgKppUFBQQDgc3mk7CagEQRAEQfjR8P3333PggQfWu/3KlSvr1U40LGG/JsjG1L6MpNz6cJ7058t/xnKzAE2yYWSSTLjTrfKCtQ+mJnluJzKdMkmbbcB2z1WOg3KMK71V6UNVzaKDFImumoGncevpKdu459bkk5nc1vE2kzo+HO98vw6hY6rfcy23G2T/JR9XrsmnscAJJcl+IQssy/3ZSratUA+qvg8kHdjzg0kDf4aqoVs6PPbYY/Ts2ZOcnBxycnIoLCzkzTffDI6Xl5czcuRIWrVqRbNmzRg8eHA1j6Z169YxaNAgsrKyaNOmDTfddBOJRCKlzYIFCzjyyCOJRqN06dKFZ555ZpefU7rk5eVx4oknMm3aNCoqKhqtXwmoBEEQBKEJYoxqlC0d2rdvz5133snSpUv58MMPOeGEEzjzzDNZtWoVAKNGjeK1115j+vTpLFy4kG+//Zazzz47ON+2bQYNGkQsFmPRokVMmTKFZ555hltvvTVos3btWgYNGsTxxx/P8uXLueGGG7jiiiuYNWtW4zy4nWCMIRKJcNlll9G2bVuuvfZali9f3uB+lamvY9V+TElJCbm5ufTjTEKqik6qlLeI0f0a+O808U82+yX19aHyUcotU2JZqJxmmEgYE41gohZOpFLtrurTlDKDs5P+a6S286ruDxbNe75Y2psxU7izZWHtfvVmz3TcQVfYWOUJ9I4YqjwG8QRYGhMOQTiEkx0N2rvX9O6vthkq76uyk/ykvFm8nd5vldcp9xC0qfoMSD2mvJknrXBC7r06YYUd1Tgh348LIiUO4dIEoZIK9LZyVGkZZtt2jG3LwnShXpjkv3PjuL877oG0+kmYOAv4J1u3biUnJ6eRR+ni/0/q+89rCGVHG9RXorSCd898uEHjbdmyJX/5y18455xzaN26NdOmTeOcc84B4PPPP6dbt24sXryYPn368Oabb3Laaafx7bffkpeXB8Djjz/OmDFj+O6774hEIowZM4aZM2emSGnnn38+xcXFvPXWWw263/qgtaaoqAitNVOmTOHpp5/m888/p1evXlxxxRVcdNFFu/SsZIYqXfaxWlACldP8VQMFL4vMeEGAsXSl/JckAda21UpNUmCab9rKl82qBj/JQZiu0n+amX7BeU7q+YHsV1X6qyrfOU6V83BlP9tBmSryX4ppp3+TlQarwYdoAyr5up7s54QVTtiV/Aj55p6+jCNvY8L+iYNqlA3cIC15q4/UZds2L7zwAqWlpRQWFrJ06VLi8Tj9+/cP2nTt2pWOHTuyePFiABYvXkyPHj2CYApg4MCBlJSUBLNcixcvTunDb+P3sac48MAD+d3vfseqVat455136NWrF2PGjKFt27YMGTIk7f7knUgQBEEQmiCNuYaqQ4cO5ObmBtukSZNqve6KFSto1qwZ0WiU4cOHM2PGDLp3705RURGRSIQWLVqktM/Ly6OoqAiAoqKilGDKP+4fq6tNSUkJZWVlDXpm9aEmhamwsJCnnnqKDRs28NBDD7FmzZq0+5UsP0EQBEHYz1m/fn2KjBWN1i4lHnbYYSxfvpytW7fy0ksvMXToUBYuXLgnhrlHqGulU3Z2NsOGDWPYsGFp9ysB1c4wpvo6EJB6fnuDdOr5VSVZgvPWKSVLTkHtOVPlHKrIVMFYDHWt9QzWKSlVvSZk1XGlnGdqrSHorlGqlCiDVl7mnUm+AbccXu3jqovk8daU8eejk67n3adCpRh/1uqFq7z78dd7BbJsDcNRCmMZHEvhhDQ6pFFae2saxdxT2EWUBlPXL/jeZ1cWldfUBxBk7dWHSCRCly5dADjqqKNYsmQJDz74IOeddx6xWIzi4uKUWaqNGzeSn58PQH5+Ph988EFKf34WYHKbqpmBGzduJCcnh8zMzPRvMk0mT55Mbm5uo/crkp8gCIIgNEH2hm1CjeNwHCoqKjjqqKMIh8PMnTs3OLZ69WrWrVtHYWEh4EpnK1asYNOmTUGb2bNnk5OTQ/fu3YM2yX34bfw+djdDhw6tc4ZuV5EZKkEQBEFogjTmDFV9ueWWWzjllFPo2LEj27ZtY9q0aSxYsIBZs2aRm5vLsGHDGD16NC1btiQnJ4drr72WwsJC+vTpA8CAAQPo3r07l1xyCXfffTdFRUWMHTuWkSNHBkHM8OHDefjhh7n55pu5/PLLmTdvHi+++CIzZ85s0L3uKsXFxUyfPp1169ZRUFDAueeeu0szWBJQ1ROp57ePUZfE5mfIJWX9GfDkrcqafDXKgP73lqpZCvSbJdsU1KRjJbdNTtZLGrcyxquNRzDWoA6hruEe/Ws6BixVbX+1+n3VBpJcg6926bGyX++rL/3V1L6mrFgrta6isTyZsGpWpKmUAR1LYUKelYRv7llXpqUg1IXSgEjFNbFp0yaGDBnChg0byM3NpWfPnsyaNYuTTjoJgPvvvx+tNYMHD6aiooKBAwfy6KOPBudblsXrr7/OiBEjKCwsJDs7m6FDhzJhwoSgTadOnZg5cyajRo3iwQcfpH379vztb39j4MCBe+Qezz77bC688ELOOeccVq1aRb9+/VBKccghh/DVV1/xpz/9iXnz5tGtW7e0+hUfKnbiQwWgLQDxomoK1HcNlb/+ybIgHEI1b+Z6UGWEMZEQdtSqbqOQvJwiKaBKCT6Ss/7r+tOpyfepFoKAKsmHCuUGEI6l3UBCK5Rj0DGn0oeqzPOi0gosCxMO4TSLYiztWkAod7zKdqqPI9mp3QHlWyD4z06pnQdUPv4zDM7byf369hSeRYUT0UFA5TqjKxIZvi+Vu2bMqjCEdziEt3teVCVlsKUYE4u7a6icpr0WRtj7pPhQgetDZZyaP1zUwZ70oTrypdFYDfShsksrWHbOfbt1vPsaLVu2ZNGiRXTt2pVTTz2VAw44gMmTJxOJRIjH44wYMYL169enbTQqM1SCIAiC0ATxKzI1tA8hlfLy8qDY8fLly5k5cyaRSASAcDjMzTffzM9//vO0+xX9qj408UwQoRa0N5voZ/jppBkUX2ryZkqCmaBQpbTkhL193oxPkI3mbbWafiaZhKYYhdaykZzlVhP+J2rfhFQr7950vWWvavX7/O+dGmbajC8R7tpbcdUZuZR6f8loKrP9gp9L6jng3bdVxdwzHAKdVM9PzD2F+rKP1fMTGp+ePXsyb948wM04/Prrr1OOf/3117uUbSgzVIIgCILQBHFQO12DWZ8+hFT+9Kc/MWTIEMLhMNdddx2jRo1i8+bNdOvWjdWrVzNu3DguueSStPuVgEoQBEEQmiB7I8vvx8CgQYN44oknuOGGG/j2228xxnDllVcCBO7wdTnJ14YEVMK+xa6ae/oLpi1Pwgv58hyBBOCkZNjh1qUzqrIGnVGVte/cVtWvE8hlSWsfGmkRgyv3GW/8GhWygmeRYo5ZmwyYLPXVdqw2alq8X8ePoV4GonhZi1XkvppwTT192c9Chy03SUQrSdYSBCFtBg8ezFlnncXSpUtZu3YtjuPQtm1bjjrqKJo3b75LfUpAJQiCIAhNEMco90NdA/sQasayLH7+85/v0gL0mpCAShAEQRCaIMk5JA3pQ6iZefPm8corr/DVV1+hlKJTp06cc845HHvssbvUn6TGNACx8NpLpOs5pLQnl+kg28+VkNysMfer97232RGNE/W+Riq/OqHKNilZgUnZgVipWX/UtvkyV/KWlIkY+EB50qTv2eRENE40hBMJYUK+yaWX9RfUKyT1a8rzSN3py27Jm2+4iSbFiBOl3Ne6Sn9pZkoF9xdk+VUZq6FSKvWz/EJJmX5+PT/Lkgw/YdcRo+b9gpycHP773/+mdc7w4cPp378/zz//PJs3b+a7775j6tSpHH/88Vx77bW7NA6ZoRIEQRCEJogsSq8f6U5uzJgxg8mTJ/P0008zdOjQwKTbcRyeeeYZRowYwUknncQZZ5yRVr97NTwfP348SqmUrWvXrsHx8vJyRo4cSatWrWjWrBmDBw+uVqF63bp1DBo0iKysLNq0acNNN91EIpHY07ciCIIgCI2KH1A1dBNSmTx5MqNHj+bSSy9NqXiitebyyy/nhhtu4Kmnnkq7370+3/nTn/6UDRs2BNs777wTHBs1ahSvvfYa06dPZ+HChXz77becffbZwXHbthk0aBCxWIxFixYxZcoUnnnmGW699da9cSuCIAiC0Gg4RjXKtr9z8cUXp1VWZ9myZfz617+u9fjZZ5/N0qVL0x5HvSS///u//0u745NOOqleTqOhUIj8/Pxq+7du3cpTTz3FtGnTOOGEEwA3quzWrRvvvfceffr04e233+bTTz9lzpw55OXl0atXL2677TbGjBnD+PHjAyv5xiIokIzVqP0Ku0Bd9gnJ63n8NRJ+cWHfGT2sPQsFfx+YpO6UAeV4lgmOQTluLT23KDLeSk9V3R7AMe5sq3ZtFpQxNRvt11ZMOGmsKLxxua+diLvgyLd7CAHKtlEJp5rze9B38lS4Uqn1+sD9VTYGU/WzlVXZR9X3Y2Wq9JXcn397NZ1T9bUxGOM+w7re8/01VpXr3pTrlm659RhVOnUHBcFDaZVSxFzYd7n//vvJyMiod/vvv/+e9u3b13q8ffv2bN68Oe1x1CugOuuss9LqVCnFl19+ySGHHLLTtl9++SXt2rUjIyODwsJCJk2aRMeOHVm6dCnxeJz+/fsHbbt27UrHjh1ZvHgxffr0YfHixfTo0YO8vLygzcCBAxkxYgSrVq3iiCOOSGvcgiAIgtBUkCy/2nEchzvuuIPHH3+cjRs38sUXX3DIIYfwpz/9iYMPPphhw4bVem4sFgtq+dVEKBQiFoulPaZ6L0ovKiqiTZs29WpbX1Os3r1788wzz3DYYYexYcMG/vznP/OrX/2KlStXUlRURCQSoUWLFinn5OXlUVRUFIwpOZjyj/vHaqOiooKKiorgdUlJSb3GKwiCIAh7Cjegauii9EYaTBPj9ttvZ8qUKdx9992ByznA4YcfzgMPPFBnQAVu+ZmsrKwaj+3YsWOXxlSvgGro0KFpFQqsr555yimnBN/37NmT3r17U1BQwIsvvrhLhQnry6RJk/jzn/+c3knGkRTbpkZ9XdOTCiSbpCLITtiTkCxPWrOS3rgCqY9A7lNGoRPGO6aCtP6UIsJGoWzPYd07R/myQrJCVsebnC9f+ZYLRoMTUthh12bACYGxLIylUPEwKu640qLnAh84j4NbB8yTNgKpjkqJLdinUuW7ZAd5fzz+ffoySdUaYzuV7ari4EmjSZpfbSbv2rNOCIpKa7C0+zcpbulCPVBKVWaDVf2dqSphC02eZ599lieeeIITTzyR4cOHB/t/9rOf8fnnn9d57rHHHsvq1at32iZd6hVQTZ48Oa1OH3vssbQHAtCiRQt+8pOf8J///IeTTjqJWCxGcXFxyizVxo0bgzVX+fn5fPDBByl9+FmANa3L8rnlllsYPXp08LqkpIQOHTrs0pgFQRAEYXcgtgm1880339ClS5dq+x3HIR6P13nuggULdsuY0ppyicfjhEIhVq5cuVsGs337dtasWRPU0wmHw8ydOzc4vnr1atatW0dhYSEAhYWFrFixgk2bNgVtZs+eTU5ODt27d6/1OtFolJycnJRNEARBEJoSppG2/ZHu3bvz73//u9r+l156qcHrpz/77DNuvPHGtM9Ly9gzHA7TsWNHbLtx5tdvvPFGTj/9dAoKCvj2228ZN24clmVxwQUXkJuby7Bhwxg9ejQtW7YkJyeHa6+9lsLCQvr06QPAgAED6N69O5dccgl33303RUVFjB07lpEjRxKNRhtljDXimNoL0Ap7ljpkP5WS7ec5pXsu6XbE3ZyQ8iQ0V0oLmvuynkOS7Ac64cmAXpaaciAl28+AjhtXHkuSCvFlsqA+8U5+fzxn9GTHdSfkyYBhhbEMRitC5SGU5aBsN5XQJGXneReq/NbfnfS7Gxx1Uo/5LubJGG+Hr3wHGVI1/C0YpVKl0GoNfOkUlO1Jibr6NYPmOkn2C7uSLZaFsjSm7g+jgiDsh9x6660MHTqUb775BsdxeOWVV1i9ejXPPvssr7/+etr9lZaW8sILL/DUU0/x3nvv0b17d+655560+kh7UdAf//hH/vCHP7Bly5Z0T63G//73Py644AIOO+wwfvOb39CqVSvee+89WrduDbipkKeddhqDBw/m2GOPJT8/n1deeSU437IsXn/9dSzLorCwkIsvvpghQ4YwYcKEBo9NEARBEPYmYuxZO2eeeSavvfYac+bMITs7m1tvvZXPPvuM1157jZNOOqne/bz77rtcfvnl5OXlcdVVV/GLX/yCTz/9dJeUOGXS9Gw/4ogj+M9//kM8HqegoIDs7OyU48uWLUt7EHubkpIScnNz6ceZhFQNqZRBfTSN0qpyISxVZkGEvUPVGSp/EbXleRVFwtAiBycripMVJpFpEcsN1WOGiqQZKuqYoaKWGSpvYbuh2gzVTufhk2aofO+leJbnMQVYcYNVYcjYEkPFKmeonIiVMkOlHOMeS/bbqWl2tcpsU00zVNUW4e/iDFVQw0+7dQFt3xNMV3qFBT+bMNhh96tOQKjcEC51iBbHiaz/AXaUYcrLMfEENNLMubD/kvLvzrbdWVbfKK6e/woTJs4C/snWrVt323IR/3/SIVP+gJVVf3+lmrB3lPPfoRN363j3NTZt2sQzzzzD008/zdatW7ngggu48MILKSws5OOPP65zyVBdpF3LL11Pqv2COkwYjTESVO1t/GLJfmBV088r6Z+1CWmvyK7CjoATJvjnnYxyqJSlPGlKx1UQUAVmn8YPsNx2RidlBtp+G8/A0h9fFWrK+vMNR/3Cwb7sFwQjgB3WWA6VgVBIu+2NG/gYL4svOUG1xmDJD4rqNPN0x26Ul+GYnBXpf5tkKBqYbVa9N5XUznuW1W7fv2d/rEGBZD8I1hhLu397yisMLQGVsCsoTc3uu02Axphh2k9nqBpCQUEB55xzDg8++CAnnXQSupEKrKcdUI0bN65RLiwIgiAIglBfDjjggHpPYNS1LKmgoIB33nmHjh07UlBQkFJDuCGkHVABFBcX89JLL7FmzRpuuukmWrZsybJly8jLy+Oggw5qlIEJgiAIwo8ZcUpP5YEHHmiUfj7//HPeffddnnrqKY455hh+8pOfcPHFFwMNW8aTdkD1ySef0L9/f3Jzc/nqq6+48soradmyJa+88grr1q3j2Wef3eXB7AsYx6CklF/TpJaMP6WUKykF9e7c9VJ2GHetTtiT/SKk1PMDKiU/T+LTMV/+o1LSMwTSlXLAirnHtQ3Kcr8HgvVWVafgA2nOu17lgUrZL3lDu+2MdiU+Y7vrtfwahe6zMO71ve9NssanVeoQqsmjVZ+rN2RPSg3kv6q3k9JPai3BqpKm8WU/nfS9J/FV+xlQ+XNxLHdtmRPWEPLWyFkaZav9Nj1c2E0ojdJOk67nJz5UqQwdOrTR+urbty99+/bloYce4vnnn2fy5MnYts1vf/tbLrzwQs4666wgQa6+pC0cjh49mksvvZQvv/wypRjhqaeeyr/+9a90uxMEQRAEQUgb27Z56aWXuO2227jtttt4+eWXSSQSafXRrFkzrrzyShYtWsSqVas46qijGDt2LO3atUt7PGkHVEuWLOHqq6+utv+ggw6qs36eIAiCIAhpYFTjbPshq1at4ic/+QlDhw5lxowZzJgxg6FDh3LooYfusvl4t27duOeee/jmm2/4xz/+kfb5aUt+0Wi0xmLCX3zxRdrTY/scUs9v3yM5ey2wv/CkNMs3inTlvkSmwVhUZpV5bf0sPuWAjilP7vMy+RKptgrKdmUpnfAkP9v9vqpdQuprz2LAt2rw9ytf5qsi0aWWDsSxFEorTwrzs+cU4LifmLRKkdyS5Tb3de2Gmu4zrHwGVS5feb7/XJMtG4yf3Wjcc6omUvn3ZqnK+7RquF//GtoE9hZOWGHCFipkVdqYaF2Z8SkINZBSz6/6wSa34EjWUNXOFVdcwU9/+lM+/PBDDjjgAAB++OEHLr30Uq666ioWLVpU775WrVqVYlhuWRZnn3122mNKOzo444wzmDBhQlArRynFunXrGDNmDIMHD057AIIgCIIgCOmwfPlyJk2aFART4GYB3nHHHXz00Ud1nvvvf/+bY445Jnjdp08fjjjiCHr16kWvXr3o2bMnc+bMSXtMaQdU9957L9u3b6dNmzaUlZVx3HHH0aVLF5o3b84dd9yR9gAEQRAEQagBKeZXKz/5yU/YuHFjtf2bNm2qsWhyMo8++iiXXHJJyr758+ezdu1a/vvf/3L99dfz2GOPpT2mtCW/3NxcZs+ezbvvvsvHH3/M9u3bOfLII+nfv3/aF9+nkXp+TZM6avsFc9/JbzKeYaSxvCy/kPFkJ4MJm1QpzICKKzezzwaVUK6c51C5z4ZQ2M0GtOKgEqATnrknSQagSWOouk9VHZ8nh/lSZAoKtz6hAhNS2BGNMgaVAGM0xjhelqN/MT+zTqVIdEFmXdXf6aRxm0AHrXJ9PBmxilTn1zBUxj1P6aTnH8iubl2+QO4LjDxrlv2MNoFzvLEs0Nqt55cQKV7Y/5Asv9qZNGkS1113HePHjw/q+7733ntMmDCBu+66K2VpUlWH+A8//JA//vGPKfvat29PQUEBAJdccgmDBg1Ke0xpB1TPPvss5513XpBy6BOLxXjhhRcYMmRI2oMQBEEQBEGoL6eddhoAv/nNbwLvKH993Omnnx68VkqlrI8Ct45wbm5u8HrKlCnk5+cHr1u2bMnmzZvTHlPaH+suu+wytm7dWm3/tm3buOyyy9IegCAIgiAItbAH5b5JkyZxzDHH0Lx5c9q0acNZZ53F6tWrU9r069cPpVTKNnz48JQ269atY9CgQWRlZdGmTRtuuummanYGCxYs4MgjjyQajdKlSxeeeeaZtMY6f/78YJs3bx7z5s2r8fW8efOqndu8eXPWrFkTvD777LPJysoKXq9du3aX6h6mPUNVW+26qhHffofU89vnMMagHON+arEdMAaVcFC2RtsGnVA4nkwXyFAWmLDBhBxUho0OGZQyKO0VH3Y0xlE4tnJlprhrKkkgAbpylBUDO+Z+1TGDclSqrOekSnvaG0Oq7GcC6ctYnqmlrsEkU/tmpZ5sZhTaGIztZU1bXh3BQN7z5T4CmS6QFKtRKfPVVG8Q/KxBas7yc1RlIWlPAky5pgY7ql1Zs6pZaFWJ05M/He9ZENKYkOUWwRb5XWgITbSe356W/BYuXMjIkSM55phjSCQS/OEPf2DAgAF8+umnZGdnB+2uvPJKJkyYELxODkZs22bQoEHk5+ezaNEiNmzYwJAhQwiHw0ycOBFwA5ZBgwYxfPhwpk6dyty5c7niiito27YtAwcOrNdYjzvuuHrfV1V69+7Ns88+S79+/Wo8/swzz9C7d++0+613QHXEEUcE0eiJJ55IKFR5qm3brF27lpNPPjntAQiCIAiCUAONsag8jfPfeuutlNfPPPMMbdq0YenSpRx77LHB/qysrBSJLJm3336bTz/9lDlz5pCXl0evXr247bbbGDNmDOPHjycSifD444/TqVMn7r33XsD1f3rnnXe4//776x1QAZSXl/PJJ5+wadMmnCqWKWeccUat540ePZr+/fvTqlUrbrrpJtq0aQO4C9rvuusunnvuOd5+++16j8On3gHVWWedBbipigMHDqRZs2bBsUgkwsEHHyy2CYIgCILQBKnqHxmNRolGo3We4y/vadmyZcr+qVOn8txzz5Gfn8/pp5/On/70p2CWavHixfTo0YO8vLyg/cCBAxkxYgSrVq3iiCOOYPHixdUS2QYOHMgNN9xQ7/t56623GDJkCN9//321YzWtm0rm+OOP569//SujRo3ivvvuIycnB6UUW7duJRQK8cADD3DCCSfUeyw+9Q6oxo0bB8DBBx/Meeedl1J25keHGHzuOxjHlZlsGxW30ZbGCmlCZSbpk5srdyUSbu09E3J3WWGHcCRBKGQTtmzCloOlHRyjsB1NwtaUx8I4jsKxNbatScQ1TiSMVa6wyhV2BVgVyjXsTJb0bFLMPJWtKs1BjVcn0FGB9OVYvumle35lDbykr9rNlsMYT04zbhadn6GHJwGGdKpMl5xhtxNULS6BQdagTtnp3VOy5GncbD3PwDMw6fS9QZM+kdeoVPhZj5bCCWl0yM30SzFuFYT60uTr+dWU2rsrfUCHDh1S9o4bN47x48fXepbjONxwww307duXww8/PNh/4YUXUlBQQLt27fjkk08YM2YMq1ev5pVXXgGgqKgoJZgCgtd+NZXa2pSUlFBWVkZmZuZO7+raa6/l3HPP5dZbb63WV3347W9/y+mnn85LL73El19+CcChhx7KOeecU+1Z1Ze011ANHTqU4uJinnvuOdasWcNNN91Ey5YtWbZsGXl5eRx00EG7NBBBEARBEJJoRMlv/fr1KQutdzY7NXLkSFauXMk777yTsv+qq64Kvu/Rowdt27blxBNPZM2aNXTu3LmBg60/GzduZPTo0bsUTPl06NCBUaNGNdqY0p5m+eSTT/jJT37CXXfdxT333ENxcTEAr7zyCrfcckujDUwQBEEQhMYhJycnZasroLrmmmt4/fXXmT9/Pu3bt6+zX3/x9n/+8x8A8vPzqxlu+q/9dVe1tcnJyanX7BTAOeecw4IFC+rVtj7ceeedQTyzq6Q9QzVq1CguvfRS7r77bpo3bx7sP/XUU7nwwgsbNJh9AuMA1t4ehVAXvrmn47gykGOj4gko12g8k0pLYVVorJjGqlBYMddk0s5QJBIG2wEnU+E4CksZIiGbrHCc3EgZIS/jL+Foyu2wK/8ZTdy2KE+E2BLNJr4jRKLMQpdrQmWupFdV8gMV1P/T8cpagNp2JbKU7EMviw+v3Jhlux87jVIoz+zSzwRUxq1X5oQU2oCjKuU+/GxALzOwUipMyqyrgUr5zf2mWqZhcpafV/8Qku7Fk/4wKkXCdCyFHSHo038GgTSoqJL9p0CZQPYzWqO0qpTgpZ6fsBOCen5aBca1TZY9vCjdGMO1117LjBkzWLBgAZ06ddrpOcuXLwegbdu2ABQWFnLHHXewadOmYLH37NmzycnJoXv37kGbN954I6Wf2bNnU1hYWO+xPvzww5x77rn8+9//pkePHoTD4ZTj1113Xb37Apg4cSK/+c1vaNGiRVrnJZN2QPXhhx/yxBNPVNt/0EEHBfqoIAiCIAgNpOonil3to56MHDmSadOm8c9//pPmzZsH/9Nzc3PJzMxkzZo1TJs2jVNPPZVWrVrxySefMGrUKI499lh69uwJwIABA+jevTuXXHIJd999N0VFRYwdO5aRI0cGs2LDhw/n4Ycf5uabb+byyy9n3rx5vPjii8ycObPeY33++ed5++23ycjIYMGCBSnWRUqptAOqWotmp0HaAVU0Gq2WLQDwxRdf0Lp16wYPSBAEQRCEPY9fv66qP9PkyZO59NJLiUQizJkzhwceeIDS0lI6dOjA4MGDGTt2bNDWsixef/11RowYQWFhIdnZ2QwdOjTFt6pTp07MnDmTUaNG8eCDD9K+fXv+9re/pWWZ8Mc//pE///nP/P73v0fXVm5sD5N2QHXGGWcwYcIEXnzxRcCNBNetW8eYMWPENkFoWhiDsW1XgSqvQNkOKp7AlMeJxG2ciEU4GsLOtEhkalTCIpGlvM2iwopQkaUDY7ywdohYNtlWjJC2sZTBNq4kCGAbRZkdZl24JT/syKSsLEKiIkTFDivIcgtMMv3af560Z1UoVMKT/LwagTpW2R4FjvfXqm0qk3+Um8FntMKxFE5IVUpr/rUcgnqARrtZdY6VlN2nPUPT5KzBqlQx7XT7NdXbJBtsGtxah7Y75uAZkHRNC+ywCjIetQ1YoO2kGoNV3yv9MVrK3bQWY09hv8QYaOjESTrn72yWpkOHDixcuHCn/RQUFFST9KrSr18/Pvroo/oPrgqxWIzzzjuv0YKpTz/9lHbt2jWoj7RHcu+997J9+3batGlDWVkZxx13HF26dKF58+bccccdDRqMIAiCIAgeDS070xhrsJooQ4cO5R//+Eej9BWLxVBK8c0337Bu3bpgS5e0Z6hyc3OZPXs277zzDp988gnbt2/nyCOPrGbSJQiCIAiCsDuwbZu7776bWbNm0bNnz2qL0u+7776d9vHll19y+eWXs2jRopT9tRVV3hlpB1Q+v/zlL/nlL3+5q6fvm1St5+fVJROaIH6mny/7VVRgEgmosFCWRpVVoEMWJhwiFAkTyQgRKo2SyLaIZ2ni2QrlWMSba2LNLOLZISqyQ0RDCWJhi6xQnKhOkGnFieo4Ie0QVjaOUYSVww8ZmWyNZVIai7CtLFqtJpdtKxxHYyc0JqFJlFmomELHfLlPoWOVNf58mUs5gCej+ZIdplI+c0KetOaf5H1baYYJiQz3qwl50p8FTpjKrL9kk00PP0MwWQ5Utqrext+8T8ZWPFnK9DP9SM0u1OBnPBoLlG1SjUt15bWVQ1AH0LG0a1JqaZTWGK0hzTdAQQhQGkwT+/3Zw4vS9yVWrFjBEUccAcDKlStTjtW3tu6ll15KKBTi9ddfp23btg2uybtLAdWSJUuYP39+jfVz6hMVCoIgCIJQN8pQa1HydPrYH5k/f36D+1i+fDlLly6la9eujTCiXQioJk6cyNixYznssMPIy8urlqooCIIgCEIjsId9qH5sdO/evcZagLtK2gHVgw8+yNNPP82ll17aaIPY1zCOQWmp59fk8WdPtcbEExBPVNZ9s2KuXKsttx5cKERGaSZORgQnK0y8WQidCBPLUcSbhYg3tyjPDvNVLERGZoyMcIJoKEGLjDKyQjGyQzEyrTiZOkbLSCnNw+XEMrdRZocpTURwvGl37X1cjNkhEkZTYYcoi4f5oTSTWEWYRIXlypIxhbVDV9b3cyozAk0MVELhWK75pcJ4MhiV9f7wDTBVYArq1s2DeDOFE/ZkvpBx90dM5bnKVBp8evIcCoyVtB/ASc3cw7us/09AOQpdrtA26ED6UykyZoBJuk9buf65JMl+VuU5xpMGTUhhLA2WBZblGjbKhzohXZp8PT+hNj788ENefPFF1q1bRywWSznm1xasi7vuuoubb76ZiRMn1mgOmlyqpz6kHVBprenbt2+6pwmCIAiCkA6yhqpWXnjhBYYMGcLAgQN5++23GTBgAF988QUbN27k17/+db368JPpTjzxxJT9e2xR+qhRo3jkkUd44IEH0j1VEARBEIT6IpJfrUycOJH777+fkSNH0rx5cx588EE6derE1VdfHZTB2RmNsQ4rmbQDqhtvvJFBgwbRuXNnunfvXm2KrD7TbIKwR0mS/rBt9/3F/+QRSIAWxGJY4TBWJEwoM4oVyybeLESsmSbeTBHPtijflklZRgalUYOJOBRlJwiFE2RG42RHY7TIKKNL8+/IDZURVQnCOkFY2VgYwiqBVgYLh7ixiJsQO5wI2+wMvtrRii0VWWytyGBbeZTy8jDx0ggkFNjKlcpiCh1XWNrNBDQ1/PUaT4V2lJvVhwEn4pp52lGwIxDPNdhRg4kYTNiBsIMVtbG0g2UZtHbQuvJdWCmDpQzhkNsmkC0TIWzHzV50jHLf+71sRsdRJBKaRHmYRExDQqHiGh335D/by1g0ld+7NfyoPEZSdqEmkAWNdgsaJjI1VlkIHQ2hKixXwrWRen7CTqm1np9SDXfSFPYIa9asYdCgQQBEIhFKS0tRSjFq1ChOOOEE/vznP++0j+OOO65Rx5R2QHXdddcxf/58jj/+eFq1aiUL0QVBEARhdyAzVLVywAEHsG3bNsCtJbxy5Up69OhBcXExO3bsqPW8Tz75hMMPPxytNZ988kmd1/DrE9aXtAOqKVOm8PLLLweRoSAIgiAIuwEJqGrl2GOPZfbs2fTo0YNzzz2X66+/nnnz5jF79uxqa6KS6dWrF0VFRbRp04ZevXpVzlZWYY+soWrZsiWdO3dO9zRB2PvUJAMZUykBJhJgVUAohNpRRiSeIJwZISMzTCIrjJ2pKdscIpGpsKMaO2qRyA5jRw0lmYbibJtNzWNkhWKEs2wOiJbSOrSNDuHNZKg4GcomjJNS+y+OZocTZk1mG76Nt2BTLIfvY83YXJHNptJmlMXCxOIhEnGLRGkYp0Jj0OiYCmr7+VJYYOCZbDarId4M7CgkMg12pkG1rCCSkSAzGiMrEiczHKd5uJyIZRNSDmFtE9EJwspBK9ewNKQdsnTMlS+Vg2002+2oJ11aJBwLB0XcsahwLGJOiPJEmO/KstlREaEiHiIeC2EnNPaOECqhvM1USoC2CqS/4J+A9rMXjWfs6cqdTkQR26bRsRA6HkGVx13Z1nbE3FMQfgQ8/PDDlJeXA26h5HA4zKJFi6oVa67K2rVrad26dfB9Y5J2QDV+/HjGjRvH5MmTycrKatTBCIIgCILgIVl+tdKyZcvge601v//97+t1XkFBQY3fNwZpB1QPPfQQa9asIS8vj4MPPrjaovRly5Y12uAEQRAE4ceKOKXXzrJlywiHw/To0QOAf/7zn0yePJnu3bszfvx4IpFIvfv69NNPa/SyOuOMM9IaU9oB1VlnnZXuKfXizjvv5JZbbuH6668PLBnKy8v53e9+xwsvvEBFRQUDBw7k0UcfJS8vLzhv3bp1jBgxgvnz59OsWTOGDh3KpEmTCIV2uUxh3Ziq5oZupojvWyHsYyTLgMZgHMeVjWJxsB30NgsdCWOFQxAJE9mSiRO1cCIaO6KJNdfYUUU8SxPL1cRahPgyqzWOUUR1ghbWDrJVjOY6TpYyZChFWGnCWFje70vcxGltfc134U1sijbnu0QOW+xsvs46kOJ4JiXxDLbFohSFc6gojWA7IZxyCyfsnq+Sb8FyTTv92n52GGIHONjNHHR2nKzsGF1afU/rjO20jmwjN1RGM6uc5rqMiLIJK5uwSpCtKwgrmwh2kKWYpRNYGGwUtlFsdaKUmghxE6LchIkZix1OlHInzDYng+12BmsjrSiJZVKaiLAjHmZHRYTtoQzsmIVToVEJ7XqQ2m62lTI1Z/jZUQPa+9uzFVa5IrRDo22wKsLosghKWyiVEHNPQfgRcPXVV/P73/+eHj168N///pfzzjuPs88+m+nTp7Njx456WTv997//5de//jUrVqxIWUvl/y/f7Wuoxo0bl+4pO2XJkiX8v//3/6qtqB81ahQzZ85k+vTp5Obmcs0113D22Wfz7rvvAu7NDho0iPz8fBYtWsSGDRsYMmQI4XCYiRMnNvo4BUEQBGGPIYvSa+WLL76gV69eAEyfPp3jjjuOadOm8e6773L++efXK6C6/vrr6dSpE3PnzqVTp0588MEHbN68md/97nfcc889aY9pl2unLF26lOeee47nnnuOjz76aFe7Yfv27Vx00UU8+eSTHHDAAcH+rVu38tRTT3HfffdxwgkncNRRRzF58mQWLVrEe++9B8Dbb7/Np59+ynPPPUevXr045ZRTuO2223jkkUeqTd0JgiAIgrB/YIzB8RSGOXPmcOqppwLQoUOHetfnW7x4MRMmTODAAw9Ea43Wml/+8pdMmjSJ6667Lu0xpT1DtWnTJs4//3wWLFhAixYtACguLub444/nhRdeCFbP15eRI0cyaNAg+vfvz+233x7sX7p0KfF4PLCGB+jatSsdO3Zk8eLF9OnTh8WLF9OjR48UCXDgwIGMGDGCVatWccQRR9R4zYqKCioqKoLXJSUlaY0ZpJ7ffokv//mZf8a4Rn9lnvFnKER42w4IWZhwCEIWmdlRN9uvWZiKXIuyVprinBw+jYfYHo9S3DwLjUOr0HayVYywco0+m6s4GcohrCCiFFEFLa1yMlSCVtZ2Sp0o7cLFbEk0Y0sim+9izbEdzfcqm7KYKzcaS6XKz8o18fQNPJ2owc4w0Lacls13kNdsOx2yf6BvzpccFP6BVnoHzXWcqDcGcD9hWSiydBiNJqwswPIuEMU2Dgls4sYm2ymj1KlghwlR7sl+jtHEVMiVBk31vw2lDMpfGJI0dqPcy/gfpo3l1hbEMpiQQWXYqJCDUuDYikSZRfyHMKFSRSRDY8IWSisx9xR2Db+eXxNLEFU0whqqRhlJ0+Poo4/m9ttvp3///ixcuJDHHnsMcDP3kmOCurBtm+bNmwNw4IEH8u2333LYYYdRUFDA6tWr0x5T2tHAtddey7Zt21i1ahVbtmxhy5YtrFy5kpKSkrQjuhdeeIFly5YxadKkaseKioqIRCJB0OaTl5dHUVFR0Kbqg/Nf+21qYtKkSeTm5gZbhw4d0hq3IAiCIAh7jwceeIBly5ZxzTXX8Mc//pEuXboA8NJLL/GLX/yiXn0cfvjhfPzxxwD07t2bu+++m3fffZcJEyZwyCGHpD2mtGeo3nrrLebMmUO3bt2Cfd27d+eRRx5hwIAB9e5n/fr1XH/99cyePZuMjIx0h9EgbrnlFkaPHh28LikpkaBKEARBaFqIbUKt9OzZkxUrVlTb/5e//AXLsoLXzz//PGeccQbZ2dnV2o4dO5bS0lIAJkyYwGmnncavfvUrWrVqxQsvvJD2mNIOqBzHqWaVABAOhwM9sz4sXbqUTZs2ceSRRwb7bNvmX//6Fw8//DCzZs0iFotRXFycMku1ceNG8vPzAcjPz+eDDz5I6Xfjxo3BsdqIRqNEo9F6j1UQBEEQ9jiyKD1tqk7QXH311fTu3bvGGaeBAwcG33fp0oXPP/+cLVu2cMABB+xS1n7aAdUJJ5zA9ddfz/PPP0+7du0A+Oabbxg1alSddu9VOfHEE6tFl5dddhldu3ZlzJgxdOjQgXA4zNy5cxk8eDAAq1evZt26dRQWFgJQWFjIHXfcwaZNm2jTpg0As2fPJicnh+7du6d7a/XHyNqp/ZqkDwYG3HVU8QToOFRUuD97S4PSWCURrEiYcGaU8NYMItsjJLLDlJc0Z3VxButaHMBXB7akWbiCTCtOyHMfzwmV08yqoLlVTjOrnDahEnd9FTYRZZOh4xykfqCFVUrLUDa5oR1sqmhGeSJEeTSCsULuB0/vDVcZMEphRyCRCYksg51to5vHOaztJg5ptpkuWRs5JLKJI6ObaKFDRFWYsEpdF+WVjqbcJLxHYYhjiBnD93aYUhOm1Mlih4lSbGdR6kTZ4UTYYUfZbkfZUJ7L9ng0sEn4YXsWibiFndA4Ce0Wei63UHGFFXNdz1VCgXLXTDme3YMJG4xlwDIQNlgRG205GAPGWBivqLK2QdkGbONamPiFbmX9lFBfpEDyfk1NZWV8Lr/8ch588MFgHRW4hqGlpaVce+21PP3002ldK+2o4OGHH6akpISDDz6Yzp0707lzZzp16kRJSQl//etf691P8+bNOfzww1O27OxsWrVqxeGHH05ubi7Dhg1j9OjRzJ8/n6VLl3LZZZdRWFhInz59ABgwYADdu3fnkksu4eOPP2bWrFmMHTuWkSNHygyUIAiCsG9jGmkTamTKlCmUlZVV219WVsazzz6bdn9pz1B16NCBZcuWMWfOHD7//HMAunXrlpKN11jcf//9aK0ZPHhwirGnj2VZvP7664wYMYLCwkKys7MZOnQoEyZMaPSxCIIgCMKeRJzSdw8lJSUYYzDGsG3bthSZ0LZt3njjjUD1Soe0Aqp4PE5mZibLly/npJNO4qSTTkr7gnWxYMGClNcZGRk88sgjPPLII7WeU1BQwBtvvNGo4xAEIFU20hpsG2PbriTg74vHwLJQZRHCZRVYOzJpEcmhfLOmokWEePMIn7Zshgk7lfPBypWxdMQmHEmQGY1zUO5WWkZLaR3ZzgHhHeRaZbQOlaA92/AMFSc7FCNi2SjLtRxQBnTCoBzjLjz1bBMS2Q52jk04p4LWLbbTu+VXHJaxgQ7hzbTU5VhAsZMgbhLsMBblxqLIzqHUcznf4UTZ5mRQ4YQpd8JUOCFK7SjrSg9geyzKjniYiniIWDyEbSsc28JJKExco3ZY6JhCxxU6DlaZImoDjvfGbkiR6pQDRhlMyJUr7Sg4UUgYjRNyLRNIQCLmPjyVUOgyTUapIqvIkLk5QeSHCnRpOSQS7vS+yDWCINRBixYtUEqhlOInP/lJteNKKf785z+n3W9aAVU4HKZjx45p27ELgiAIgpAmsih9tzB//nyMMZxwwgm8/PLLKYWWI5EIBQUFwRrxdEhb8vvjH//IH/7wB/7+97+nDEIQBEEQhEZEAqoGU1BQUM2Z4LjjjgNcE9COHTs2Wh3etAOqhx9+mP/85z+0a9eOgoKCat4Oy5Yta5SB7VNIgeT9n5qyxoxxJUDLAduGeBwdi9NMKTI3RYg3C5HIsog11ziW5VoWG1xpLgROJIIdhYoM+Kx1C5wsG6tZnOysCnIzyzk4ZzPNQjEydQwbzQ8VWeyIhXFiFqG4m3Toy2bgFhFOZBrsZg6R3AryWmzj4JzNdIpuooW1g3IT5utEJvNibdgUz+G7WHOKY27x5U2lzQIZLx63sMtCkFBuVl7ClfDC2zS6AqwYqARkxtxrK9uT8RIQqjDohEHHHVTCYMUcLwvRfVc3Ksnd3U/Ii2icsCKRqUlkKBIZEG+mMCHlZjKqyv51BYTKDeFSh2b/K8faWo4uLYOycpxEwv05SIafsKso7WZxC/sUX375JevWraOgoCAw+PRZuXJlred99tlnrF+/nl/+8pcAPPLIIzz55JOBt2ZyObz6kHZAddZZZ6V7iiAIgiAIaSKL0qszadIkfv7zn3PiiSfyww8/cO655zJv3jzAXfs0YMAAnn/++WpVVmripptu4q677gJgxYoVjB49mt/97nfMnz+f0aNHM3ny5LTGlnZANW7cuHRPEQRBEAQhXcQpvRqPPvooJ598MgA333wzW7ZsYenSpXTr1o3Vq1czfPhwbrzxRv72t7/ttK+1a9cGnpUvv/wyp59+OhMnTmTZsmVBseV0SDugWrJkCY7j0Lt375T977//PpZlcfTRR6c9iH0VKZD8IyfZANRxwHYgkUDbNjoSJhQJQziEEw27GX5JhoHGcgv6OhFNIsOi7MAQiawQ8WZhYtlZbMgyrG/dCiszQTQaJ2Q5VMRCVGyPYm0JEd6mCO1w5TUgkBHtTINuFueA5jtok7WNlpEdbIgfwNqKNmyOZ/NtWS4rvm1HbFsEVRoiVKbQFYrwdldCzIhBdtwQKjMp2Xg64RAqjWPFHVTcQSUclO242XuOA8a4BpvxBDiOm3noP5NktHKfgy+NK4WJhjGRECYSws4IYUc1iWwrRRq0KlwZUVfYWBU2qiKO/mE7JhbDxOKu1Cdyn5AGSqlU00elcStrNyFkDVU1vvvuu2D99pw5c5gyZQpHHHEEAD/72c94+OGHOf300+vVVyQSYceOHUFfQ4YMAVxzz5KSkrTHlnYkMHLkSNavX19t/zfffMPIkSPTHoAgCIIgCHufSZMmccwxx9C8eXPatGnDWWedxerVq1PalJeXM3LkSFq1akWzZs0YPHhwUPLNZ926dQwaNIisrCzatGnDTTfdRCKRSGmzYMECjjzySKLRKF26dOGZZ56p1xgLCgqCdVFKKUKh1Hkhy7KC+nw745e//CWjR4/mtttu44MPPmDQoEEAfPHFF7Rv375efSSTdkD16aefptTf8zniiCP49NNP0x6AIAiCIAjV8ddQNXSrLwsXLmTkyJG89957zJ49m3g8zoABA1IClFGjRvHaa68xffp0Fi5cyLfffsvZZ58dHLdtm0GDBhGLxVi0aBFTpkzhmWee4dZbbw3arF27lkGDBnH88cezfPlybrjhBq644gpmzZq10zFeeeWV3HTTTfznP//hmmuu4cYbb2TNmjVBv6NGjWLAgAH1ut+HH36YUCjESy+9xGOPPcZBBx0EwJtvvhnIiumgTF2FbmqgVatWvP7660E9PZ9FixYxaNAgfvjhh7QHsbcpKSkhNzeXfpxJSFUv/FyNQK7QKK3cqWKtvEP7l14tpIH2Pp9YFsqr9Yel3ddV5AWltds+ZGHCIZzmWTiZIezMEIlMi3i2puxATSIL7Aywo+65VrkiXAqRYkPGVoeMzTHssCaWG2JHa80PPW2iB5ZxYE4pB2aWkhGKs3FHc77fns324kz0D2Gaf6WJlLiZcqEyV0oLlSbQCU/KSzioWMKV64yplPA8OQ/bdu/FMZUZUf69+fuSaqNVy37VSd8rDaGQ+7xCIQiHMCELwqFKidQYVEXcvXbCdg08bQcqKtxx+L54IvcJaZLy78/xsnar/k5XIWHiLOCfbN26lZycnN0yLv9/0iG3TkRXKfabLk55Of+d8IddGu93331HmzZtWLhwIcceeyxbt26ldevWTJs2jXPOOQeAzz//nG7durF48WL69OnDm2++yWmnnca3335LXl4eAI8//jhjxozhu+++IxKJMGbMGGbOnJmSgXf++edTXFzMW2+9tdNxXXfddTz++ON07tyZr776ilgsRigUIpFIcOSRR/Laa6+Rn5+f1r3WxZ133snw4cN3utA97RmqAQMGcMstt7B169ZgX3FxMX/4wx8a3TldEARBEISGU1JSkrJVVFTs9Bz//7y/Zmnp0qXE4/GUUnNdu3alY8eOLF68GIDFixfTo0ePIJgCGDhwICUlJaxatSpoU7Vc3cCBA4M+dsZDDz3Exx9/zOWXX86ll17KFVdcwS233MJbb73FBx980KjBFMDEiRPZsmXLTtulvSj9nnvu4dhjj6WgoCBYCLZ8+XLy8vL4+9//nv5IBUEQBEGoTiPYJviL0jt06JCye9y4cYwfP77W0xzH4YYbbqBv374cfvjhABQVFRGJRKrN1OTl5VFUVBS0SQ6m/OP+sbralJSUUFZWRmZm5k5vq1u3bnTr1m2n7RqD+gp5aQdUBx10EJ988glTp07l448/JjMzk8suu4wLLrigmhupIPyoSM7682UoT+qq+udoPHlQKQWWhd5WihUKEQ6HMJEwJiNMdm4miSwLO8M1vnRCCmU7WDFDqNQmVGaj4jYmSaZWRpFIWGwty2BbeZR4wqLif82IbNG02AwZPzg0/3oHVmkMVRF3pTTbhljcMyp1XMnDz87z5A/jmMo3larSWj3ebOpsEYthtA6eRZAJmNS/sW1XkkkegydHCsJ+SyNm+a1fvz5F8otGo3WeNnLkSFauXMk777zTwAHsGS677DLuuOOOXSoZ01ikHVABZGdnc9VVVzX2WARBEARB2A3k5OTUew3VNddcw+uvv86//vWvlGy3/Px8YrEYxcXFKbNUGzduDGS2/Px8Pvjgg5T+/CzA5DZVMwM3btxITk7OTmenPvnkkxr3T506lTPPPJNDDjkEgJ49e9bjThuXegVU//d//8cpp5xCOBzm//7v/+pse8YZZzTKwARBEAThR80e9qEyxnDttdcyY8YMFixYQKdOnVKOH3XUUYTDYebOncvgwYMBWL16NevWrQsS1QoLC7njjjvYtGkTbdq0AWD27Nnk5OQEJpqFhYW88cYbKX3Pnj27WrJbTfTq1au6h5jH4MGDgyQY297znmL1CqjOOussioqKAl+K2thbN7HHMSZVkkg5JPX8fvTUJENpnbrfN/gESCTcTSlX7rIslLaIbM0gYrlZgG42oFWZ9ZZwZTkTDWHClls/LwHWdo1NlO1bI6i4IrRdc8B/IXOLTXRLnHBxOfr7rZh43MuWS5LSahhfve6tMTCm8llANclvj4xBEKBJ1fPb06VnRo4cybRp0/jnP/9J8+bNgzVPubm5ZGZmkpuby7Bhwxg9ejQtW7YkJyeHa6+9lsLCQvr06QO4iWvdu3fnkksu4e6776aoqIixY8cycuTIQGYcPnw4Dz/8MDfffDOXX3458+bN48UXX2TmzJk7HWPPnj1p374999xzTzCbZYzh0EMP5c033+TQQw9N8wk1HvXK8nMcJ4g0HcepdftRBFOCIAiCsB/y2GOPsXXrVvr160fbtm2D7R//+EfQ5v777+e0005j8ODBHHvsseTn5/PKK68Exy3L4vXXX8eyLAoLC7n44osZMmQIEyZMCNp06tSJmTNnMnv2bH72s59x77338re//Y2BAwfudIwffPABXbp0YfDgwWzZsoWCggIOPvhgANq1a0dBQQEFBQWN91CAX/3qV/VaKL9La6gEQRAEQdi/qE82W0ZGBo888giPPPJIrW0KCgqqSXpV6devHx999FHaY4xEIjzwwAO8+eabnHHGGfz2t79lzJgxafdTF4lEgm+//ZaOHTsC7PRefHYpoFqyZAnz589n06ZNOFWm3++7775d6XKfJajnh7W3hyI0ZarKVDXIVsFbmfJkr4qKlKw35RmEBigFzbLQYYtQWYjIdk3Gdxqn2EInIFQGkRJDztpyQlvL0NvKoLwCU7qjMguxtsy9Pc3evr4gAEorjNPQRUuNiNTyq5VTTjmFDz/8kMsuu4w333yzUftetWoVRx55ZNqqW9oB1cSJExk7diyHHXYYeXl5KW/wsnZIEARBEBqHPb2Gal8jLy+PN954g4ceeohWrVrtNuf6+pJ2QPXggw/y9NNPc+mll+6G4QiCIAiCINSf6667juuuu67e7WuqR5xMWVnZLo0j7YBKa03fvn136WL7HcZxM0IEoaHUJAEaU5n9B6A1Bm8m2KshqUIhdMgibGlwDMpxTT6tmENoh0NoW5xwUTGUlbuZffEExs+kE5lN+JGTkn6vFdgpB+tlWrvbaQJDaErszLrJpy4Lp08//ZTzzz+/mi2Ez4YNG/jiiy/SHlvaAdWoUaN45JFHeOCBB9K+mCAIgiAI9UTWUFWjLusmn51ZOB1++OH07t2bESNG1Hh8+fLlPPnkk2mPLe2A6sYbb2TQoEF07tyZ7t27Vys3k5w+KQiCIAiC0FhUTYTbFfr27cvq1atrPd68eXOOPfbYtPtNO6C67rrrmD9/PscffzytWrWSheiCsLuopWaeAc8EVEN5BcoYrISN3hEnsjXsGn/GEqjyOKoihtle6kp9ti317wRhH0IWpe8eHnzwwTqPd+7cmfnz56fdb9oB1ZQpU3j55ZcZNGhQ2hcTBEEQBKGeiORXL3Jycli+fHlQx29vkXZA1bJlSzp37rw7xiIIgiAIgpAW9TEkrYkPPviAxYsXByV28vPzKSws5Oc///ku9Zd2QDV+/HjGjRvH5MmTycrK2qWL7hdUrefnGDdLBKnnJ+wmkqU6rcG2oaLCzdqriKFDlmsEagzYNibhZvSZeKLpGHgKwr5AE6nnJ5Lf7mHTpk0MHjyYd999l44dO5KXlwfAxo0bGTVqFH379uXll18OSu7Vl7QDqoceeog1a9aQl5fHwQcfXG1R+rJly9LtUhAEQRCEqojkVy8uvvjitEw9f/vb32LbNp999hmHHXZYyrHVq1dz+eWXM3LkSKZPn57WONIOqOqTsigIgiAIgrAneOyxx9JqP2vWLP71r39VC6YADjvsMB566CH69euX9jjSDqjGjRuX9kX2d4xjUFLKT9iTeNKdSSRc6S/ZABRvTYHjiNQnCOmgNEo7Taeen8xQ1cncuXO5//77+eyzzwDo1q0bN9xwA/3796/zvGg0SklJSa3Ht23bRjQaTXs8YvMtCIIgCE0Qfw1VQ7f9kUcffZSTTz6Z5s2bc/3113P99deTk5PDqaeeyiOPPFLnueeddx5Dhw5lxowZKYFVSUkJM2bM4LLLLuOCCy5Ie0z1mqFq2bIlX3zxBQceeGC9Ou3YsSP//ve/KSgoSHtAgiAIgiAgM1R1MHHiRO6//36uueaaYN91111H3759mThxIiNHjqz13Pvuuw/HcTj//PNJJBJEIhEAYrEYoVCIYcOGcc8996Q9pnoFVMXFxbz55pvk5ubWq9PNmzfXafu+XyH1/IS9iS/lGVP9fVNkPkHYKSn1/IR9huLiYk4++eRq+wcMGMCYMWPqPDcajfLYY49x1113sXTp0hTbhKOOOiqtBe7J1HsN1dChQ3fpAoIgCIIg7AIyQ1UrZ5xxBjNmzOCmm25K2f/Pf/6T0047rV595OTkcPzxxzfamOoVUDVG7RxBEARBEOqP+FCl8tBDDwXfd+/enTvuuIMFCxZQWFgIwHvvvce7777L7373uzr7Wbx4MZs3b04JvJ599lnGjRtHaWkpZ511Fn/961/TXpi+V7Wqxx57jJ49e5KTk0NOTg6FhYW8+eabwfHy8nJGjhxJq1ataNasGYMHD2bjxo0pfaxbt45BgwaRlZVFmzZtuOmmm0gkEnv6VgRh7+I41TdBEIT9iPvvvz/YnnrqKQ444AA+/fRTnnrqKZ566ilWrVpFixYtePrpp+vsZ8KECaxatSp4vWLFCoYNG0b//v35/e9/z2uvvcakSZPSHl/atgmNSfv27bnzzjs59NBDMcYwZcoUzjzzTD766CN++tOfMmrUKGbOnMn06dPJzc3lmmuu4eyzz+bdd98FwLZtBg0aRH5+PosWLWLDhg0MGTKEcDjMxIkT9+atCYIgCELDEMkvhbVr1zZKP8uXL+e2224LXr/wwgv07t2bJ598EoAOHTowbtw4xo8fn1a/ezWgOv3001Ne33HHHTz22GO89957tG/fnqeeeopp06ZxwgknADB58mS6devGe++9R58+fXj77bf59NNPmTNnDnl5efTq1YvbbruNMWPGMH78+GDlviAIgiDsa4jkt3v44YcfgnIzAAsXLuSUU04JXh9zzDGsX78+7X73akCVjG3bTJ8+ndLSUgoLC1m6dCnxeDzFoKtr16507NiRxYsX06dPHxYvXkyPHj1SHszAgQMZMWIEq1at4ogjjqjxWhUVFVRUVASv6zL4qpM66vkJgiAI+zBKg/mRZKvvg1x++eV1Hq9L9svLy2Pt2rV06NCBWCzGsmXL+POf/xwc37ZtW7WyevVhrwdUK1asoLCwkPLycpo1a8aMGTPo3r07y5cvJxKJ0KJFi5T2eXl5QYpjUVFRSjDlH/eP1cakSZNSHp4gCIIgNDlE8quVH374IeV1PB5n5cqVFBcXB6pWbZx66qn8/ve/56677uLVV18lKyuLX/3qV8HxTz75hM6dO6c9prQDqhNOOIHjjjuuWgmaH374gcGDBzNv3ry0+jvssMNYvnw5W7du5aWXXmLo0KEsXLgw3WGlxS233MLo0aOD1yUlJXTo0GG3XlMQBEEQ0kICqlqZMWNGtX2O4zBixIidBkO33XYbZ599NscddxzNmjVjypQpKUuEnn76aQYMGJD2mNIOqBYsWMCKFSv46KOPmDp1KtnZ2YDrMLorgVAkEqFLly4AHHXUUSxZsoQHH3yQ8847j1gsRnFxccos1caNG8nPzwdcE64PPvggpT8/C9BvUxPRaHSX6vTUiRh8CoIg7Ps0tXp+Qr3RWjN69Gj69evHzTffXGu7Aw88kH/9619s3bqVZs2aYVmpxXinT59Os2bN0r9+2mcAc+bMoaioiD59+vDVV1/tShe14jgOFRUVHHXUUYTDYebOnRscW716NevWrQs8JwoLC1mxYgWbNm0K2syePZucnBy6d+/eqOMSBEEQhD2JaqTtx8SaNWvqbZ2Um5tbLZgCt9zeriS17dIaqrZt27Jw4UIuu+wyjjnmGKZPn063bt3S7ueWW27hlFNOoWPHjmzbto1p06axYMECZs2aRW5uLsOGDWP06NG0bNmSnJwcrr32WgoLC+nTpw/gWsx3796dSy65hLvvvpuioiLGjh3LyJEjG38GShAEQRD2JCL51Urysh0AYwwbNmxg5syZaVV2+fDDD3nxxRdZt24dsVgs5dgrr7yS1pjSDqiUl9UWjUaZNm0at99+OyeffPJOa+fUxKZNmxgyZAgbNmwgNzeXnj17MmvWLE466STANfHSWjN48GAqKioYOHAgjz76aHC+ZVm8/vrrjBgxgsLCQrKzsxk6dCgTJkxIeywNwjhA9ShXEARBaPoE9fy0crO1Kw+42dx7a1xim1ArH330UcprrTWtW7fm3nvv3WkGoM8LL7zAkCFDGDhwIG+//TYDBgzgiy++YOPGjfz6179Oe0zKpFkVUmtNUVERbdq0Cfa9/PLLDB06lLKysn2yKHJJSQm5ubn040xCKs1USS/AVJblrqHybBOU+rFNtAqCIOy7BP8KHQPGW0NlnGoBVcLEWcA/2bp16y4X0d0Z/v+knw6fiBXNaFBfdkU5qx7/w24d795gx44dGGOCddxfffUVr776Kt26dWPgwIH16qNnz55cffXVjBw5kubNm/Pxxx/TqVMnrr76atq2bZu2G0Daa6jWrl1L69atU/YNHjyY999/f6d274IgCIIg1BPTSNt+yFlnncXf//53AIqLi+nTpw/33nsvZ511Fo899li9+lizZg2DBg0C3AS50tJSlFKMGjWKJ554Iu0xpR1QFRQU1Dj78tOf/jQt3VIQBEEQhJ0gwVSNLFu2LPCOeumll8jLy+Prr7/m2WefTSmiXBcHHHAA27ZtA+Cggw5i5cqVgBug7dixI+0xSZ6/IAiCIAgA/Otf/+L000+nXbt2KKV49dVXU45feumlKKVStpNPPjmlzZYtW7jooovIycmhRYsWDBs2jO3bt6e0+eSTT/jVr35FRkYGHTp04O67705rnDt27KB58+YAvP3225x99tlorenTpw9ff/11vfo49thjmT17NgDnnnsu119/PVdeeSUXXHABJ554YlrjAQmoBEEQBKFJ4i9Kb+iWDqWlpfzsZz/jkUceqbXNySefzIYNG4Lt+eefTzl+0UUXsWrVKmbPns3rr7/Ov/71L6666qrgeElJCQMGDKCgoIClS5fyl7/8hfHjx6cls3Xp0oVXX32V9evXM2vWrMCIc9OmTfVeK/bwww9z/vnnA/DHP/6R0aNHs3HjRgYPHsxTTz1V77H47PXSM4IgCIIg1MBesE045ZRTUgoF10Q0Gq3VPPuzzz7jrbfeYsmSJRx99NEA/PWvf+XUU0/lnnvuoV27dkydOpVYLMbTTz9NJBLhpz/9KcuXL+e+++5LCbzq4tZbb+XCCy9k1KhRnHjiiYE/5dtvv11rHd+qtGzZMvhea83vf//7ep1XGzJD1VCqJkl6KbdpJk8KgiAIwm6jpKQkZauoqNjlvhYsWECbNm047LDDGDFiBJs3bw6OLV68mBYtWgTBFED//v3RWvP+++8HbY499tgU88yBAweyevXqajX6auOcc85h3bp1fPjhh7z11lvB/hNPPJH777+/3veyZs0axo4dywUXXBCYhL/55pusWrWq3n34SEAlCIIgCE2QxpT8OnToQG5ubrBNmjRpl8Z08skn8+yzzzJ37lzuuusuFi5cyCmnnBJYJlW1VQIIhUK0bNmSoqKioE1eXl5KG/+136Y+5Ofnc8QRR6B1ZSjz85//nK5du9br/IULF9KjRw/ef/99XnnllWCd18cff1ytXnF9EMlPEARBEJoijSj5rV+/PmVt0a5WE/HXHAH06NGDnj170rlzZxYsWLBLC7n3Jr///e+5/fbbGT16dLDAHeCEE07g4YcfTrs/maFqJAITOEEQBGHfRmmU3r/MmXNyclK2xirPdsghh3DggQfyn//8B3BnjZLr6wIkEgm2bNkSrLvKz89n48aNKW3817WtzdodrFixokZH9DZt2vD999+n3Z8EVIIgCILQBNkbWX7p8r///Y/NmzfTtm1bAAoLCykuLmbp0qVBm3nz5uE4Dr179/7/7d17WFVlvgfw79rA3tzkKrAlUXFS8IKX0BBv6ciIiqlHJ9NQSDmaBSZZak6m5kzqeBwzO46eOpOaaZrPMStrNAKvhKCMW1GMMcNAZWMOAWJy3e/5g2HFFjQ3+w7fz/Osp1jrXe9+3xXs9eu9ymmOHz+OmpoaOU1KSgpCQkLg7e1t3gI34uXlhaKioibnz549i0ceecTg/BhQERER2SIrrJReUVEBjUYDjUYDoH53FI1Gg4KCAlRUVGDRokU4deoUrl69itTUVEycOBGPPvqovN1Ljx49MGbMGMyZMwdZWVlIT09HUlISpk2bhsDAQADAM888A6VSiYSEBFy8eBF79+7F22+/3WTDY3ObNm0alixZAq1WC0mSoNPpkJ6ejldeeQVxcXEG58eAioiI2jx5B5B7u/qsuS+rFQKqM2fOoH///vLSAwsXLkT//v2xfPlyODg44Pz585gwYQK6d++OhIQEhIeH48SJE3pdiLt27UJoaChGjRqFcePGYejQoXprTHl6euKrr75Cfn4+wsPD8fLLL2P58uUPvWSCqaxevRqhoaEICgpCRUUFevbsieHDh2Pw4MFYtmyZwfkZvDlya2TU5shA/R9cQ587N0gmIrJLTTZI/vfMtcbL41hyc+Q+z66Gg9LIzZGrK3F+e+vbHNlYQggUFhbCz88Pt27dQk5ODioqKtC/f39069atRXlylh8REZENMsUYKHOPobJXQgg8+uijuHjxIrp164agoCCj82SXHxERkS2yQpdfW6FQKNCtWze9RUmNztNkORERERHZibVr12LRokW4cOGCSfJjlx8REZENkoSAZOQwZ2Pvb83i4uLw888/o2/fvlAqlXBxcdG7XlJSYlB+DKhMQQig8fhznQAUEoQQHJhORGSvJIV1F2y2wubIbcnGjRtNmh8DKiIiImpz4uPj73vN0NYpgGOoiIiIbJI9rJTe2nz11VeYOnUqV0q3Nu7nR0TUSkg28HrkLD+L+OGHH7BixQp06dIFTz31FBQKBT744AOD82GXHxEREbUp1dXV2L9/P/73f/8X6enpiIqKwrVr13D27FmEhYW1KE8GVERERDaIC3uax/z58/HRRx+hW7dumDFjBvbu3QtfX184OTnBwcGhxfkyoDIVobONJmIiIjKOQqqfrd1AkvS2n7EYzvIziy1btmDJkiV49dVX0a5dO5PlywiAiIjIBnFQunns3LkTWVlZ6NChA55++mkcPHgQdQ37NhqBARURERG1GdOnT0dKSgpycnIQGhqKxMREqNVq6HQ65ObmtjhfBlRERES2iLP8zCo4OBhvvPEGrl69ig8//BBTpkzBjBkz0LFjR7z44osG58cxVERERDaKXXbmJ0kSoqOjER0djZKSEnzwwQfYtm2bwfmwhYqIiIgIgI+PD5KTk3Hu3DmD72ULlZlxPz8iIjtmzf38hDB+diE3R36ga9eu4bPPPkNBQQGqq6vl85Ik4S9/+YtBeTGgIiIiskFch8q8UlNTMWHCBHTt2hXffvstevfujatXr0IIgccee8zg/NjlR0RERG3O0qVL8corryAnJwfOzs74v//7PxQWFuKJJ57AU089ZXB+DKhMjPv5ERG1DpLCysM1OMvPrC5duoS4uDgAgKOjI+7evQt3d3esWrUKf/7znw3OjwEVERGRDZJ0pjmoeW5ubvK4qQ4dOuDKlSvytVu3bhmcH8dQERERUZszaNAgnDx5Ej169MC4cePw8ssvIycnB/v378egQYMMzs+qLVRr1qzBwIED0a5dO/j7+2PSpEnIy8vTS1NZWYnExET4+vrC3d0dU6ZMQXFxsV6agoICxMTEwNXVFf7+/li0aBFqa2stWZV67OojIrJbD5yRbY3Z2uzyM6sNGzYgIiICAPDGG29g1KhR2Lt3L7p06YK//e1vBudn1RaqY8eOITExEQMHDkRtbS3+8Ic/YPTo0cjNzYWbmxsA4KWXXsIXX3yBffv2wdPTE0lJSZg8eTLS09MBAHV1dYiJiYFarcY333yDoqIixMXFwcnJCatXr7Zm9YiIiFqMs/zMq2vXrvK/u7m5YevWrUblJwlhO4tU/Pjjj/D398exY8cwfPhwlJWVwc/PD7t378bvf/97AMC3336LHj16ICMjA4MGDcLf//53jB8/Hjdu3EBAQAAAYOvWrViyZAl+/PFHKJXKX/3c8vJyeHp6YgQmwlFyalnhG/7vRVLUD2R0cGh0ietQERHZA/mV+O8JRnoTjYRArajBUXyKsrIyeHh4mKUMDe+kxyf8EY5OzkblVVtTiazPXjdree3V6dOnodPp5FaqBpmZmXBwcMCAAQMMys+mBqWXlZUBqF+pFACys7NRU1ODqKgoOU1oaCg6deqEjIwMAEBGRgbCwsLkYAoAoqOjUV5ejosXLzb7OVVVVSgvL9c7TE5nM3EqEREZytoz/MjsEhMTUVhY2OT89evXkZiYaHB+NhNQ6XQ6JCcnY8iQIejduzcAQKvVQqlUwsvLSy9tQEAAtFqtnKZxMNVwveFac9asWQNPT0/5CAoKMnFtiIiIjNPQ5WfsQc3Lzc1tdgHP/v37Izc31+D8bCagSkxMxIULF7Bnzx6zf9bSpUtRVlYmH81FqERERFbFQelmpVKpmkxyA4CioiI4Oho+xNwmAqqkpCQcPHgQR44cQceOHeXzarUa1dXVKC0t1UtfXFwMtVotp7n3gTT83JDmXiqVCh4eHnqH0R4wFM2GhqkREZGhJJt4VZKJjR49Wm5gaVBaWoo//OEP+N3vfmdwflb9LRFCICkpCZ988gnS0tIQHBysdz08PBxOTk5ITU2Vz+Xl5aGgoACRkZEAgMjISOTk5ODmzZtympSUFHh4eKBnz56WqQgREZGJscvPvNavX4/CwkJ07twZI0eOxMiRIxEcHAytVmvwxsiAlZdNSExMxO7du/Hpp5+iXbt28pgnT09PuLi4wNPTEwkJCVi4cCF8fHzg4eGB+fPnIzIyUl50a/To0ejZsydmzpyJdevWQavVYtmyZUhMTIRKpbJm9YiIiFpOiAf2fjx0HtSsRx55BOfPn8euXbtw7tw5uLi4YNasWZg+fTqcnAyf8W/VFqotW7agrKwMI0aMQIcOHeRj7969cpq33noL48ePx5QpUzB8+HCo1Wrs379fvu7g4ICDBw/CwcEBkZGRmDFjBuLi4rBq1SprVAnAv/fzIyIi+9awDE4bcvz4cTz55JMIDAyEJEk4cOCA3nUhBJYvX44OHTrAxcUFUVFRuHz5sl6akpISxMbGwsPDA15eXkhISEBFRYVemvPnz2PYsGFwdnZGUFAQ1q1bZ+6qNcvNzQ1z587F5s2bsX79enkdy5awagvVw4wtcnZ2xubNm7F58+b7puncuTO+/PJLUxaNiIjIqqyxsOedO3fQt29fzJ49G5MnT25yfd26ddi0aRN27NiB4OBgvP7664iOjkZubi6cnevXzIqNjUVRURFSUlJQU1ODWbNmYe7cudi9ezeA+nW2Ro8ejaioKGzduhU5OTmYPXs2vLy8MHfuXOMqbKArV65g48aNuHTpEgCgZ8+eWLBgAX7zm98YnBf38iMiIrJFppilZ+D9Y8eOxdixY5vPSghs3LgRy5Ytw8SJEwEAH3zwAQICAnDgwAFMmzYNly5dwqFDh3D69Gl5Ycx33nkH48aNw/r16xEYGIhdu3ahuroa77//PpRKJXr16gWNRoMNGzZYNKA6fPgwJkyYgH79+mHIkCEAgPT0dPTq1Quff/65wQPTOXXB1LifHxGR3bK5/fxsSH5+PrRard5i256enoiIiNBbbNvLy0tvlfGoqCgoFApkZmbKaYYPH663k0l0dDTy8vLw008/Wag2wKuvvoqXXnoJmZmZ2LBhAzZs2IDMzEwkJydjyZIlBufHgIqIiMgGmXKW3727g1RVVRlcnoaJY80tpt14sW1/f3+9646OjvDx8TFqQW5zuHTpEhISEpqcnz17tn0v7ElERESN6IRpDgBBQUF6O4SsWbPGypWzPj8/P2g0mibnNRpNk6DwYXAMlTnpBPeDIiKiljHhGKrCwkK9RaxbsqxQw2LZxcXF6NChg3y+uLgY/fr1k9M0XhcSAGpra1FSUmLUgtzmMGfOHMydOxfff/89Bg8eDKB+DNWf//xnLFy40OD8GFARERG1cqbYFSQ4OBhqtRqpqalyAFVeXo7MzEw8//zzAOoX2y4tLUV2djbCw8MBAGlpadDpdIiIiJDTvPbaa6ipqZGXKEhJSUFISAi8vb2NKqMhXn/9dbRr1w5/+ctfsHTpUgBAYGAgVq5ciRdffNHg/NjlR0REZIMkmGAMlYGfWVFRAY1GI3eF5efnQ6PRoKCgAJIkITk5GX/605/w2WefIScnB3FxcQgMDMSkSZMAAD169MCYMWMwZ84cZGVlIT09HUlJSZg2bRoCAwMBAM888wyUSiUSEhJw8eJF7N27F2+//XaLWoVaqra2Fjt37sQzzzyDa9euyXv7Xrt2DQsWLHjw5IT7YAsVERGRLbLCSulnzpzByJEj5Z8bgpz4+Hhs374dixcvxp07dzB37lyUlpZi6NChOHTokLwGFQDs2rULSUlJGDVqFBQKBaZMmYJNmzbJ1z09PfHVV18hMTER4eHhaN++PZYvX27RJRMcHR0xb948ef2pdu3aGZ2nJLhzL8rLy+Hp6YkRmAhHqWUrpMokqX51XQeH+p8bjaFqScRLRESWJb8WdQIQul92vxA61OqqcRSfoqyszOgutPtpeCcNGbUSjo7Ov37DA9TWViI9daVZy2uvRowYgeTkZLl1zVhsoSIiIrJB1lgpvS154YUX8PLLL+PatWsIDw+Hm5ub3vU+ffoYlB8DKiIiIltkhZXS25Jp06YBQLMD0CVJQl1dnUH5MaAyF6EDJI75JyKya5ICkkLHTe9bofz8fJPmx4CKiIjIBklCQDJymLOx97dm7u7u8PX1BVC/Ttd7772Hu3fvYsKECRg2bJjB+bEJhYiIyBbpTHSQnpycHHTp0gX+/v4IDQ2FRqPBwIED8dZbb+Hdd9/FyJEjceDAAYPzZUBlDtwgmYjIbnFGduu2ePFihIWF4fjx4xgxYgTGjx+PmJgYlJWV4aeffsJzzz2HtWvXGpwvu/yIiIhsELv8zOP06dNIS0tDnz590LdvX7z77rt44YUXoFDUtzHNnz8fgwYNMjhfBlRERES2iLP8zKLxvoLu7u5wc3PT2/LG29sbt2/fNjhfBlRERETNUUj1i3taixVWSm8r7u3WNUU3LwMqIiIialOeffZZqFQqAEBlZSXmzZsnL+xZVVXVojwZUBEREdkgrpRuHvHx8Xo/z5gxo0mauLg4g/NlQGVqQtTv59dAJ/T28yMiIjtl6cWa2eVnFtu2bTNLvlw2gYiIiMhIbKEiIiKyQZKu/jA2D7IMBlRmInQCkoL7+RER2T1r7efHLj+7wrc9ERERkZHYQkVERGSLuLCnXWFARUREdA9JkiCa6y6TJIsFKdx6xr6wy4+IiIjISGyhIiIiskUclG5XGFBZAhf3JCKyT9bcz08AMHbZA8ZTFsOAioiIyAZxDJV94RgqIiIiIiOxhcochACa6eETQkCS2PVnFIUC0HHpXyJqAwRMMIbKJCWhh8CAioiIyBZxULpdYZcfERERkZGsGlAdP34cTz75JAIDAyFJEg4cOKB3XQiB5cuXo0OHDnBxcUFUVBQuX76sl6akpASxsbHw8PCAl5cXEhISUFFRYcFa3J/QCUCwe8okFIr6g4jIGiQFJEvP1taZ6CCLsOob6s6dO+jbty82b97c7PV169Zh06ZN2Lp1KzIzM+Hm5obo6GhUVlbKaWJjY3Hx4kWkpKTg4MGDOH78OObOnWupKhAREZlFwyw/Yw+yDKuOoRo7dizGjh3b7DUhBDZu3Ihly5Zh4sSJAIAPPvgAAQEBOHDgAKZNm4ZLly7h0KFDOH36NAYMGAAAeOeddzBu3DisX78egYGBFqsLERERtV0224eSn58PrVaLqKgo+ZynpyciIiKQkZEBAMjIyICXl5ccTAFAVFQUFAoFMjMzLV5mPezqM53GXX2c4UdElmathZkbBqUbe5BF2OwsP61WCwAICAjQOx8QECBf02q18Pf317vu6OgIHx8fOU1zqqqqUFVVJf9cXl5uqmITERGZBmf52RWbbaEypzVr1sDT01M+goKCrF0kIiIiq1u5ciUkSdI7QkND5euVlZVITEyEr68v3N3dMWXKFBQXF+vlUVBQgJiYGLi6usLf3x+LFi1CbW2tpaticTYbUKnVagBo8h+quLhYvqZWq3Hz5k2967W1tSgpKZHTNGfp0qUoKyuTj8LCQhOXnkyCM/uIqC2zUpdfr169UFRUJB8nT56Ur7300kv4/PPPsW/fPhw7dgw3btzA5MmT5et1dXWIiYlBdXU1vvnmG+zYsQPbt2/H8uXLTfJIbJnNvq2Cg4OhVquRmpoqnysvL0dmZiYiIyMBAJGRkSgtLUV2dracJi0tDTqdDhEREffNW6VSwcPDQ+8gIiKyKVZaNsHR0RFqtVo+2rdvDwAoKyvD3/72N2zYsAG//e1vER4ejm3btuGbb77BqVOnAABfffUVcnNz8eGHH6Jfv34YO3Ys/vjHP2Lz5s2orq424mHYPqsGVBUVFdBoNNBoNADqB6JrNBoUFBRAkiQkJyfjT3/6Ez777DPk5OQgLi4OgYGBmDRpEgCgR48eGDNmDObMmYOsrCykp6cjKSkJ06ZN4ww/IiKya9ZaNuHy5csIDAxE165dERsbi4KCAgBAdnY2ampq9CaLhYaGolOnTnqTxcLCwvTGP0dHR6O8vBwXL1408onYNqsOSj9z5gxGjhwp/7xw4UIAQHx8PLZv347Fixfjzp07mDt3LkpLSzF06FAcOnQIzs7O8j27du1CUlISRo0aBYVCgSlTpmDTpk0Wr8uv0glAIXE/PyIieyYp7HJ/vHsnX6lUKqhUqibpIiIisH37doSEhKCoqAhvvPEGhg0bhgsXLkCr1UKpVMLLy0vvnnsnizU3mazhWmtm1YBqxIgREA+IniVJwqpVq7Bq1ar7pvHx8cHu3bvNUTwiIiLrMeEsv3snX61YsQIrV65skrzx2pB9+vRBREQEOnfujI8//hguLi7GlaWVs9llE4iIiNo0nQAkIwMqXf39hYWFeuOFm2udao6Xlxe6d++O7777Dr/73e9QXV2N0tJSvVaqeyeLZWVl6eXRMLnsQZPFWgObHZTeWnA/vxZqbnYfF/UkImuS7PeVee9ErIcNqCoqKnDlyhV06NAB4eHhcHJy0psslpeXh4KCAr3JYjk5OXoz8FNSUuDh4YGePXuatlI2hi1UREREtsgKC3u+8sorePLJJ9G5c2fcuHEDK1asgIODA6ZPnw5PT08kJCRg4cKF8PHxgYeHB+bPn4/IyEgMGjQIADB69Gj07NkTM2fOxLp166DVarFs2TIkJiY+dBBnrxhQERER2SRTbB1j2P3Xrl3D9OnT8a9//Qt+fn4YOnQoTp06BT8/PwDAW2+9JU8Aq6qqQnR0NP7617/K9zs4OODgwYN4/vnnERkZCTc3N8THxz9wLHRrIYkHjQpvI8rLy+Hp6YkRmAhHyck0mTbM5JMUkBRSfVPxv/eD4iy/B7jfQp7s7iMiK5Bfkf8ei1RTW4mjuv0oKysz2xqGDe+kqK4vwlFhXKtOra4KX3+/yazlpXpsoSIiIrJF3MvPrjCgIiIiskU6AaMXvdIxoLIU+52yQK0Pu/uIyFYpOFSDHowtVERERLZI6IxfdofL9lgMAyoiIiJbxDFUdoUBlbkI8ctMvyaXuJ9fE+zuIyLSxzFUdoVjqIiIiIiMxBYqIiIiW8QuP7vCgMoChE5AUugAOFi7KLaJ3X1EZCckhQRY6qtJwAQBlUlKQg+BXX5ERERERmILFRERkS1il59dYUBFRERki3Q6GN2/yKETFsMuP3Pjomr3p1Dcf/wUEZEN4BI39LDYQkVERGSL2OVnVxhQERER2SIGVHaF/S2WxBVrf/FrXX3s9yciW8MNkukB2EJFRERki7j1jF1hQEVERGSDhNBBGDmxydj76eExoDInbpDcvAd197Grj4hsjCRJENYYiySE8S1MHENlMRxDRURERGQktlARERHZImGCMVRsobIYBlQWInQCEvdGZncfEdkludtPsmDHjk4HSEZ+L3IMlcWwy4+IiIjISGyhIiIiskXs8rMrDKgsQegs20xsi7iQJxGRQYROB2Fklx+XTbCcNv6WJyIiIjIeW6iIiIhsEbv87AoDKkvTCe4H1Ri7+ojITkiSZNnvb50AJAZU9oJdfkRERERGYgsVERGRLRICgLHrULGFylIYUJnbA/bzaxPuN7uPXX1EZIiG75I29N0hdALCyC4/q+xB2Ea1mi6/zZs3o0uXLnB2dkZERASysrKsXSQiIqKWEzrTHAbi+7RlWkVAtXfvXixcuBArVqzAP/7xD/Tt2xfR0dG4efOmtYtGRERkN/g+bblWEVBt2LABc+bMwaxZs9CzZ09s3boVrq6ueP/9961dNH1tbYG15rr7dLo21WRPZBYKxa8f9uBhymxP9TExoRMmOQxhN+9TG2T3v6XV1dXIzs5GVFSUfE6hUCAqKgoZGRnN3lNVVYXy8nK9g4iIyKZYuMuvJe9T+oXdD0q/desW6urqEBAQoHc+ICAA3377bbP3rFmzBm+88UaT87WoMXoNteZJABSQRP0/IST5bKsmmonX21orHZE5NPe31SSNHfyt3VuP5sr8MGksqFbU1BfDAoO9TfFOqkV9ee9tOFCpVFCpVHrnWvI+pV/YfUDVEkuXLsXChQvln/Pz89GvXz+cxJfm+cCGxW7t4PuNiIh+3e3bt+Hp6WmWvJVKJdRqNU5qTfNOcnd3R1BQkN65FStWYOXKlSbJn+rZfUDVvn17ODg4oLi4WO98cXEx1Gp1s/fcG5l37twZAFBQUGC2PxBbVF5ejqCgIBQWFsLDw8PaxbEY1pv1bgtYb/PUWwiB27dvIzAw0OR5N3B2dkZ+fj6qq6tNkp8Qon6V90bubZ0CWvY+pV/YfUClVCoRHh6O1NRUTJo0CQCg0+mQmpqKpKSkh8pD8e8Bj56enm3qi6eBh4cH692GsN5tC+ttepb4H29nZ2c4Ozub/XMaM8X7tC2z+4AKABYuXIj4+HgMGDAAjz/+ODZu3Ig7d+5g1qxZ1i4aERGR3eD7tOVaRUD19NNP48cff8Ty5cuh1WrRr18/HDp0qMnAOiIiIro/vk9brlUEVACQlJTU4iZJlUqFFStWNNun3Jqx3qx3W8B6s95kGGPep22ZJLjRDxEREZFR7H5hTyIiIiJrY0BFREREZCQGVERERERGYkBFREREZKQ2H1Bt3rwZXbp0gbOzMyIiIpCVlWXtIj20NWvWYODAgWjXrh38/f0xadIk5OXl6aWprKxEYmIifH194e7ujilTpjRZBbegoAAxMTFwdXWFv78/Fi1ahNraWr00R48exWOPPQaVSoVHH30U27dvN3f1HtratWshSRKSk5Plc6213tevX8eMGTPg6+sLFxcXhIWF4cyZM/J1IQSWL1+ODh06wMXFBVFRUbh8+bJeHiUlJYiNjYWHhwe8vLyQkJCAiooKvTTnz5/HsGHD4OzsjKCgIKxbt84i9WtOXV0dXn/9dQQHB8PFxQW/+c1v8Mc//lFvL7XWUO/jx4/jySefRGBgICRJwoEDB/SuW7KO+/btQ2hoKJydnREWFoYvvzTTtlx4cL1ramqwZMkShIWFwc3NDYGBgYiLi8ONGzf08rDHelMrJNqwPXv2CKVSKd5//31x8eJFMWfOHOHl5SWKi4utXbSHEh0dLbZt2yYuXLggNBqNGDdunOjUqZOoqKiQ08ybN08EBQWJ1NRUcebMGTFo0CAxePBg+Xptba3o3bu3iIqKEmfPnhVffvmlaN++vVi6dKmc5vvvvxeurq5i4cKFIjc3V7zzzjvCwcFBHDp0yKL1bU5WVpbo0qWL6NOnj1iwYIF8vjXWu6SkRHTu3Fk8++yzIjMzU3z//ffi8OHD4rvvvpPTrF27Vnh6eooDBw6Ic+fOiQkTJojg4GBx9+5dOc2YMWNE3759xalTp8SJEyfEo48+KqZPny5fLysrEwEBASI2NlZcuHBBfPTRR8LFxUX8z//8j0Xr2+DNN98Uvr6+4uDBgyI/P1/s27dPuLu7i7fffltO0xrq/eWXX4rXXntN7N+/XwAQn3zyid51S9UxPT1dODg4iHXr1onc3FyxbNky4eTkJHJycixe79LSUhEVFSX27t0rvv32W5GRkSEef/xxER4erpeHPdabWp82HVA9/vjjIjExUf65rq5OBAYGijVr1lixVC138+ZNAUAcO3ZMCFH/ZeTk5CT27dsnp7l06ZIAIDIyMoQQ9V9mCoVCaLVaOc2WLVuEh4eHqKqqEkIIsXjxYtGrVy+9z3r66adFdHS0uav0QLdv3xbdunUTKSkp4oknnpADqtZa7yVLloihQ4fe97pOpxNqtVr813/9l3yutLRUqFQq8dFHHwkhhMjNzRUAxOnTp+U0f//734UkSeL69etCCCH++te/Cm9vb/k5NHx2SEiIqav0UGJiYsTs2bP1zk2ePFnExsYKIVpnve8NLCxZx6lTp4qYmBi98kRERIjnnnvOpHVsTnOB5L2ysrIEAPHDDz8IIVpHval1aLNdftXV1cjOzkZUVJR8TqFQICoqChkZGVYsWcuVlZUBAHx8fAAA2dnZqKmp0atjaGgoOnXqJNcxIyMDYWFheqvgRkdHo7y8HBcvXpTTNM6jIY21n1NiYiJiYmKalK211vuzzz7DgAED8NRTT8Hf3x/9+/fHe++9J1/Pz8+HVqvVK7OnpyciIiL06u3l5YUBAwbIaaKioqBQKJCZmSmnGT58OJRKpZwmOjoaeXl5+Omnn8xdzSYGDx6M1NRU/POf/wQAnDt3DidPnsTYsWMBtN56N2bJOtra7/29ysrKIEkSvLy8ALSdepPta7MB1a1bt1BXV9dkOf2AgABotVorlarldDodkpOTMWTIEPTu3RsAoNVqoVQq5S+eBo3rqNVqm30GDdcelKa8vBx37941R3V+1Z49e/CPf/wDa9asaXKttdb7+++/x5YtW9CtWzccPnwYzz//PF588UXs2LFDr9wP+p3WarXw9/fXu+7o6AgfHx+Dno0lvfrqq5g2bRpCQ0Ph5OSE/v37Izk5GbGxsXplam31bsySdbxfGms/A6B+bOSSJUswffp0eePjtlBvsg+tZuuZti4xMREXLlzAyZMnrV0UsyssLMSCBQuQkpJi8d3YrUmn02HAgAFYvXo1AKB///64cOECtm7divj4eCuXznw+/vhj7Nq1C7t370avXr2g0WiQnJyMwMDAVl1v0ldTU4OpU6dCCIEtW7ZYuzhETbTZFqr27dvDwcGhycyv4uJiqNVqK5WqZZKSknDw4EEcOXIEHTt2lM+r1WpUV1ejtLRUL33jOqrV6mafQcO1B6Xx8PCAi4uLqavzq7Kzs3Hz5k089thjcHR0hKOjI44dO4ZNmzbB0dERAQEBrbLeHTp0QM+ePfXO9ejRAwUFBQB+KfeDfqfVajVu3rypd722thYlJSUGPRtLWrRokdxKFRYWhpkzZ+Kll16SWydba70bs2Qd75fGms+gIZj64YcfkJKSIrdOAa273mRf2mxApVQqER4ejtTUVPmcTqdDamoqIiMjrViyhyeEQFJSEj755BOkpaUhODhY73p4eDicnJz06piXl4eCggK5jpGRkcjJydH7Qmr4wmp4eUdGRurl0ZDGWs9p1KhRyMnJgUajkY8BAwYgNjZW/vfWWO8hQ4Y0WRbjn//8Jzp37gwACA4Ohlqt1itzeXk5MjMz9epdWlqK7OxsOU1aWhp0Oh0iIiLkNMePH0dNTY2cJiUlBSEhIfD29jZb/e7n559/hkKh/1Xl4OAAnU4HoPXWuzFL1tHWfu8bgqnLly/j66+/hq+vr9711lpvskPWHhVvTXv27BEqlUps375d5Obmirlz5wovLy+9mV+27Pnnnxeenp7i6NGjoqioSD5+/vlnOc28efNEp06dRFpamjhz5oyIjIwUkZGR8vWG5QNGjx4tNBqNOHTokPDz82t2+YBFixaJS5cuic2bN9vMsgkNGs/yE6J11jsrK0s4OjqKN998U1y+fFns2rVLuLq6ig8//FBOs3btWuHl5SU+/fRTcf78eTFx4sRmp9b3799fZGZmipMnT4pu3brpTTEvLS0VAQEBYubMmeLChQtiz549wtXV1WrLJsTHx4tHHnlEXjZh//79on379mLx4sVymtZQ79u3b4uzZ8+Ks2fPCgBiw4YN4uzZs/JsNkvVMT09XTg6Oor169eLS5cuiRUrVph1+YAH1bu6ulpMmDBBdOzYUWg0Gr3vucYz9uyx3tT6tOmASggh3nnnHdGpUyehVCrF448/Lk6dOmXtIj00AM0e27Ztk9PcvXtXvPDCC8Lb21u4urqK//iP/xBFRUV6+Vy9elWMHTtWuLi4iPbt24uXX35Z1NTU6KU5cuSI6Nevn1AqlaJr1656n2EL7g2oWmu9P//8c9G7d2+hUqlEaGioePfdd/Wu63Q68frrr4uAgAChUqnEqFGjRF5enl6af/3rX2L69OnC3d1deHh4iFmzZonbt2/rpTl37pwYOnSoUKlU4pFHHhFr1641e93up7y8XCxYsEB06tRJODs7i65du4rXXntN74XaGup95MiRZv+e4+PjhRCWrePHH38sunfvLpRKpejVq5f44osvrFLv/Pz8+37PHTlyxK7rTa2PJESj5YaJiIiIyGBtdgwVERERkakwoCIiIiIyEgMqIiIiIiMxoCIiIiIyEgMqIiIiIiMxoCIiIiIyEgMqIiIiIiMxoCKysqtXr0KSJEiShH79+pkkL41GY5Ky2bsRI0bIz5bPhIjMiQEVkY34+uuvm+wlZqigoCAUFRWhd+/eJiqVZT377LOYNGmSyfLbv38/srKyTJYfEdH9MKAishG+vr5NNn41lIODA9RqNRwdHVt0f3V1tVGfbysa6uHj4wM/Pz8rl4aI2gIGVEQm9OOPP0KtVmP16tXyuW+++QZKpdLg1qeG1prVq1cjICAAXl5eWLVqFWpra7Fo0SL4+PigY8eO2LZtm3xPc11+Fy9exPjx4+Hh4YF27dph2LBhuHLlit5nvPnmmwgMDERISAgAICcnB7/97W/h4uICX19fzJ07FxUVFUaVDQAKCwsxdepUeHl5wcfHBxMnTsTVq1cBACtXrsSOHTvw6aefyt10R48e/dX7HlQPIiJLYUBFZEJ+fn54//33sXLlSpw5cwa3b9/GzJkzkZSUhFGjRhmcX1paGm7cuIHjx49jw4YNWLFiBcaPHw9vb29kZmZi3rx5eO6553Dt2rVm779+/TqGDx8OlUqFtLQ0ZGdnY/bs2aitrZXTpKamIi8vDykpKTh48CDu3LmD6OhoeHt74/Tp09i3bx++/vprJCUlGVW2mpoaREdHo127djhx4gTS09Ph7u6OMWPGoLq6Gq+88gqmTp2KMWPGoKioCEVFRRg8ePCv3ne/ehARWZS1d2cmao1eeOEF0b17d/HMM8+IsLAwUVlZed+0+fn5AoA4e/as3vn4+HjRuXNnUVdXJ58LCQkRw4YNk3+ura0Vbm5u4qOPPmo2r6VLl4rg4GBRXV3d7GfHx8eLgIAAUVVVJZ979913hbe3t6ioqJDPffHFF0KhUAitVtvisu3cuVOEhIQInU4np6mqqhIuLi7i8OHDcr4TJ07UK+PD3ndvPRrc7/kSEZlSywZaENEDrV+/Hr1798a+ffuQnZ0NlUrVonx69eoFheKXhuSAgAC9AecODg7w9fXFzZs3m71fo9Fg2LBhcHJyuu9nhIWFQalUyj9funQJffv2hZubm3xuyJAh0Ol0yMvLQ0BAQIvKdu7cOXz33Xdo166d3udXVlbKXZDNedj77q0HEZElMaAiMoMrV67gxo0b0Ol0uHr1KsLCwlqUz72BkCRJzZ7T6XTN3u/i4vKrn9E4cDJn2SoqKhAeHo5du3Y1yetBA8cf9r6W1oOIyBQYUBGZWHV1NWbMmIGnn34aISEh+M///E/k5OTA39/f4mXp06cPduzYgZqamge2UjXWo0cPbN++HXfu3JGDlPT0dCgUCqMGez/22GPYu3cv/P394eHh0WwapVKJuro6g+8jIrI2DkonMrHXXnsNZWVl2LRpE5YsWYLu3btj9uzZVilLUlISysvLMW3aNJw5cwaXL1/Gzp07kZeXd997YmNj4ezsjPj4eFy4cAFHjhzB/PnzMXPmTLm7ryViY2PRvn17TJw4ESdOnEB+fj6OHj2KF198UR643qVLF5w/fx55eXm4desWampqHuo+IiJrY0BFZEJHjx7Fxo0bsXPnTnh4eEChUGDnzp04ceIEtmzZYvHy+Pr6Ii0tDRUVFXjiiScQHh6O995774GtVa6urjh8+DBKSkowcOBA/P73v8eoUaPw3//930aVxdXVFcePH0enTp0wefJk9OjRAwkJCaisrJRbnubMmYOQkBAMGDAAfn5+SE9Pf6j7iIisTRJCCGsXgqgtu3r1KoKDg3H27Fmjt56hpvh8icgS2EJFZCMGDx6MwYMHW7sYrcrYsWPRq1cvaxeDiNoAtlARWVltba286rdKpUJQUJB1C9SKXL9+HXfv3gUAdOrUicsqEJHZMKAiIiIiMhK7/IiIiIiMxICKiIiIyEgMqIiIiIiMxICKiIiIyEgMqIiIiIiMxICKiIiIyEgMqIiIiIiMxICKiIiIyEgMqIiIiIiM9P8GymJ8UhVPmwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHFCAYAAADbiAxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmsRJREFUeJzs3XucTfX++PHXZ6219577MIMZI6FSEZ2kcukU5R45HZUOJapTikNESnVO6ojoQuj4VUchldNN9xycyvkWIpcTchxJbhnEmPvsy1qf3x9rZrONYfZcGPV+Ph77kb3WZ332Z+0Rb5/1eX/eSmutEUIIIYQQlWKc6gEIIYQQQvwSSFAlhBBCCFEFJKgSQgghhKgCElQJIYQQQlQBCaqEEEIIIaqABFVCCCGEEFVAgiohhBBCiCogQZUQQgghRBWQoEoIIYQQogpIUCVEOW3fvp3bb7+djIwMfD4fDRo04Pe///0x277//vt06NCBpKQk4uPjueCCC3jxxRdLtVuyZAnt2rUjLi6OOnXqMGjQIPbt21fuMc2fP5+LLrqImJgYMjIyGDFiBHl5eSe8bvbs2Silwq+ff/653J9Z3r5//PHHKuuzplm2bBnjxo3j0KFD1dL/iBEjwj+bhISEavkMIUTVk6BKiHLYsGEDrVu3ZsOGDTz99NMsXryYZ599ltq1a5dq++STT9KnTx9atGjBm2++yQcffMCQIUMIBAIR7ZYuXUqPHj1IS0vj/fff57nnnmPJkiV06tQJv99/wjG99tpr9OvXj0svvZRPP/2URx99lNmzZ9OnT59y39e7777L8uXLqVWrVrmvOZGePXuyfPly6tevX2V91jTLli3jscceq7agauTIkSxfvpxrrrmmWvoXQlQTLYQ4Lsdx9EUXXaQvuugiXVRUdNy233zzjTYMQ0+aNOmE/V566aW6efPmOhgMho999dVXGtB/+9vfjnttKBTS9evX1127do04/tprr2lAf/LJJ8e9/pVXXtGA3rZt2wnHeSrl5+ef6iEc01NPPVUt39/R9ztw4EAdHx9fpZ8hhKg+MlMlaqT/+7//QynFG2+8Uerc3LlzUUqxatWqkzKWf//736xbt44RI0bg8/mO23bGjBn4fD6GDRt23Ha7d+9m1apVDBgwAMuywsfbt2/Pueeey4IFC457/YoVK9izZw+33XZbxPEbb7yRhISEE15/PB07dqRFixYsX76c9u3bExsbS+PGjXnllVcA+Pjjj7n44ouJi4ujZcuWLFy4MOL6sh7/LVy4kE6dOpGcnExcXBzNmjVj4sSJ4fODBg0iISGB9evX07VrVxITE+nUqRMABw8eZMiQITRo0ACv18tZZ53Fww8/XGpGTynFn/70J1555RXOO+88YmNjueSSS1ixYgVaa5566imaNGlCQkICV199Nd9//32p+y+ZLUxKSiIuLo7LL7+cf/3rX+Hz48aN4/777wegSZMm4cd0X3zxRbjNP/7xD9q1a0d8fDwJCQl069aNtWvXRnzO8e5XCHF6kqBK1EhXXHEFrVq14vnnny91bsaMGVx66aVceumlx+0jFAqV66W1Pm4///73vwFITEzkmmuuISYmhoSEBHr16sV///vfUm2bNWvGO++8w3nnnYdpmpxxxhk8+OCDEY//NmzYAMCFF15Y6vMuvPDC8PmylHW9x+Ph/PPPP+H1J5KZmcltt93GH//4R95//31atmzJ7bffzuOPP87YsWMZM2YM77zzDgkJCVx33XX89NNPx+1v1qxZXHPNNTiOw//7f/+PDz/8kOHDh7Nr166IdoFAgN69e3P11Vfz/vvv89hjj1FUVMRVV13F3Llzue+++/j444+55ZZbmDx58jEfdX700Uf8/e9/58knn+SNN94gNzeXnj17MmrUKL766itmzJjBiy++yHfffcf1118f8fOfN28eXbt2JSkpiTlz5vDmm2+SkpJCt27dwoHVH//4x3DQXPL4dPny5Vx88cUATJgwgX79+tG8eXPefPNNXn31VXJzc7niiiv47rvvTni/QojT2CmeKROiTCWPqNauXRs+tnLlSg3oOXPmHPfabdu2aaBcr88///y4fQ0ePFgDOikpSd9xxx16yZIl+tVXX9WNGjXSderU0T/99FO4rc/n04mJibp27dp6xowZ+rPPPtMPP/ywNk1T9+/fP9yu5DHd8uXLS33eXXfdpb1e73HH9MQTT2hA79mzp9S5rl276nPPPfe41x/v8V+HDh00oL/55pvwsQMHDmjTNHVsbKzevXt3+Pi6des0oKdNm1Zm37m5uTopKUn/9re/1Y7jlDmmgQMHakC//PLLEcf/3//7fxrQb775ZsTxSZMmaUAvWrQofAzQ6enpOi8vL3zsvffe04C+6KKLIj5/6tSpGtDffvut1tp99JaSkqKvvfbaiM+xbVv/5je/0Zdddln4WFmP/3bs2KEty9LDhg2LOJ6bm6vT09N13759T3i/R38n8vhPiNPH4ecOQtQw/fr144EHHuD555/npZdeAmD69OnUrVuXm2666bjXZmRklPvx4HnnnXfc847jANCuXTv+/ve/h4+3aNEiPJs2fvz4cNvc3FzeeOMN/vCHPwBw1VVXkZ+fz9SpU3nsscc455xzwn0opY75mWUdL2+78l5flvr169O6devw+5SUFOrVq0fjxo3JyMgIH2/WrBngZkaWZdmyZeTk5DBkyJByjev666+PeP/ZZ58RHx/PDTfcEHF80KBBPPDAA/zrX/+iS5cu4eNXXXUV8fHxpcbYo0ePiM8/cuwtW7Zk2bJlHDx4kIEDBxIKhSI+q3v37kyePJn8/PyIvo/2z3/+k1AoxK233hrRR0xMDB06dODzzz8/4f0KIU5fElSJGsvn8zF48GCeeeYZnnrqKYLBIG+++Sb33XffCdc2eb1eLrroonJ9jmmaxz2fmpoKQLdu3SKOX3TRRdSvX581a9ZEtM3MzCzVtkePHkydOpU1a9ZwzjnnhPs8cOBAqc87ePAgKSkp5RrTgQMHSEtLi/r6EznW9V6vt9Rxr9cLQFFRUZl97d+/H4AzzjjjhJ8bFxdHUlJSxLEDBw6Qnp5eKiCrV68elmWV+g7LGuOJxr53716AUsHbkQ4ePHjcoKqkj7IeTRtG5IqLY92vEOL0JUGVqNHuuecennzySV5++WWKiooIhULcfffdJ7zuxx9/pEmTJuX6jM8//5yOHTuWef5Y655KaK0j/qK88MILyczMPGY7OPyXaosWLQBYv359qbT59evXh8+XpWXLluG2zZs3Dx8PhUL897//pV+/fse9/mSqW7cuQKn1U8dyrJms1NRUvv76a7TWEef37dtHKBSiTp06VTLOkn6mT59O27Ztj9nm6AC2rD7efvttGjVqdMLPrOyMohCiZpGgStRo9evX58Ybb+Rvf/sbgUCAa6+9ljPPPPOE11Xl478ePXoQFxfHp59+ysiRI8PH16xZQ2ZmZsRfwNdffz2LFi3i008/pX///uHjn3zyCYZhhGcwGjRowGWXXca8efMYPXp0eLZsxYoVbN68mREjRhx3TG3atKF+/frMnj074lHo22+/TV5eXlR7VVW39u3bk5yczP/7f/+PP/zhD1EHEp06deLNN9/kvffei9hsde7cueHzVeHyyy+nVq1afPfdd/zpT386btuSmdLCwsKI4926dcOyLLZu3SqP9YT4FZKgStR49957L23atAEIp/WfiNfr5ZJLLqmSz69VqxaPP/44o0ePZtCgQfTr14/MzEz+/Oc/c+aZZzJkyJBw29tuu40XXniBIUOG8PPPP9O8eXOWLFnC888/z5AhQyJmLyZNmkSXLl248cYbGTJkCPv27ePBBx+kRYsWEVslbN++nbPPPpuBAwcya9YswH1kOXnyZAYMGMDgwYPp168fW7ZsYcyYMXTp0oXu3btXyb1XhYSEBJ555hn++Mc/0rlzZ+68807S0tL4/vvv+c9//sOMGTOOe/2tt97K888/z8CBA/nxxx9p2bIlX375JRMmTOCaa66hc+fOVTbO6dOnM3DgQA4ePMgNN9xAvXr12L9/P//5z3/Yv38/M2fOBA7PFD733HMMHDgQj8fDeeedR+PGjXn88cd5+OGH+eGHH+jevTu1a9dm7969rFy5kvj4eMnwE+KX7BQvlBeiXBo3bqybNWt2Ssfw0ksv6RYtWmiv16tTU1P1zTffrHfu3Fmq3YEDB/TgwYN1Wlqa9ng8+txzz9VPPfWUtm27VNtFixbptm3b6piYGJ2SkqJvvfVWvXfv3og2JZmMAwcOLHX966+/ri+88ELt9Xp1enq6Hj58uM7NzT3hvZwo+++CCy4odbxRo0a6Z8+epY4DeujQoSfs+5NPPtEdOnTQ8fHxOi4uTjdv3jxik9TjZbodOHBA33333bp+/frasizdqFEjPXbs2FKbsR49Fq0Pf39PPfVUxPHPP/9cA/qtt96KOL506VLds2dPnZKSoj0ej27QoIHu2bNnqXZjx47VGRkZ2jCMUlmk7733nr7qqqt0UlKS9vl8ulGjRvqGG27QS5YsKdf9RtNGCFFzKK1PsEmPEKfYt99+y29+85vwbI+ovNmzZ3Pbbbfx/fff06hRo4gNSMWp5zgOjuNwxx138M4775SrnqMQ4tSTzT9FjbV161Y+++wz7rrrLurXr8+gQYNO9ZB+cc455xw8Hk+VFlQWlXfffffh8XjC68aEEKcHmakSNdagQYN49dVXadasGS+88AKXX375qR7SL8aBAwfYtm1b+P1FF10ks1U1yM6dO8PbM5imSatWrU7xiIQQ5SFBlRBCCCFEFZDHf0IIIYQQVUCCKiGEEEKIKiBBlRBCCCFEFZCVqbjpyz/99BOJiYlSNkIIIcRxaa3Jzc0lIyOjVD3HqlRUVEQgEKh0P16vl5iYmCoYkTgRCaqAn376iYYNG57qYQghhDiN7Ny5s1yFwiuiqKiIJo0SyNxnV7qv9PR0tm3bJoHVSSBBFZCYmAjAFdZ1WKb3FI9GHO3IycOqyFVVClR8PJgmymOBabgHtQZ/EG07KJ8HHReLjvGA1mjTRGmNthSO5dbpc3wmVn4AxzKxYy20pQjGm5iFDp68IIFkL8F4AxQ4HoUR1KDA9ijsGDACgILCOgrHA6FEjZWjiDmoqbsml0AtH47XwHfQj7U/BydzX8R9lHwX4e/HNDHqpBCsX5uCdB/BeINAoiL2gEPIpwgkuQ19hzSGrQnFKqwCjTfXoaCeSTBeEYoFwwarABwLggnur725Gsdy78PxuO/NIlBa41gKM6ixLUX8ngCOZRBMMDCDmvgfclHBEKHacRi2A4CR50cV+aEogPYXoW0H7OK/OBynSn7G4lfO0ehQsGr+wDiGEEG+5JPw3x3VIRAIkLnPZvvqxiQlVnw2LCfXoVHrHwkEAhJUnQQSVHG4UrylPFjKc4pHI4525CNZTeX/kFRKoQwvGCbK8IBxRFBlKLR2UIYXbfrQ5lFBlWkcDqosE6v4vbLcoEp7TMyQg2WZOB4v2uMGVbZXYaLRCvAq8BYvaFRg+hTKA06MxvQrTK/GMgM4VgyOx8CyFJbhx1GRAX/JdxH+fpSJYfjQVgyWxw3ITJ/C9Dhor8L0ue1MrxtUaa/CDGksj4PpNXF8Cu1zgyozhDsmH5g2mH6NskB53bGafo3puEGVstx7w6OwLAPHY6A9BibufSjHBCsGg+KgygRlAAZo5aCVA6o4qFJOlfyMxa+cKv5/rbp+L4X/QVP9y0USEhUJiRX/HAdZ0nIySVAlhBBC1FC2drArERva2qm6wYgTkqBKCCGEqKEcNE4lZtwqc62InmypIIQQQggAxo0b5y6ROOKVnp4ePq+1Zty4cWRkZBAbG0vHjh3ZuHFjRB9+v59hw4ZRp04d4uPj6d27N7t27Ypok5WVxYABA0hOTiY5OZkBAwZw6NChk3GL1Upmqo6gbRvMUz0KcTxKKSpdWck0oXYyKIW2TLTXQpvKXVdla4xACH/deBxLYceY6JLfEwq0odCG+1/HAvASjFPYMe5x2wfebANtWNixCsd0jwVqaawCA8er3ZcFZpHCjnXQXg1K40kKUFjXoijDwvEmo00IxoNZ5CHmQDx138nC8ftL3Y7WGiM2BjLSyPxtKkWpimCSJhTvoONs8g94UA6E4hyoFSD3kBcjoNAejQoq7GQNRhBPfBDDdCgs9KCDBpgay2fjWDb5AQunyAQDrJgQeT/7MAsNlKPQChwvOPEhQmu9aEsRigM0BONqEZcZxJ9iEfIptKkw/fFYRQ7enBDWIT8qaGNk50EwiA4GociPDoUq9zMWv26GQpnmL+L3kYNDZR7gVeTqCy64gCVLloTfm+bhvxgnT57Ms88+y+zZszn33HMZP348Xbp0YfPmzeGF+yNGjODDDz9k/vz5pKamMmrUKHr16sXq1avDffXv359du3axcOFCAO666y4GDBjAhx9+WIm7PfUkqBJCCCFqKFtr7Er8Q7Ii11qWFTE7VUJrzdSpU3n44Yfp06cPAHPmzCEtLY3XX3+dwYMHk52dzaxZs3j11Vfp3LkzAPPmzaNhw4YsWbKEbt26sWnTJhYuXMiKFSto06YNAC+99BLt2rVj8+bNnHfeeRW+31NNHv8JIYQQImzLli1kZGTQpEkT/vCHP/DDDz8AsG3bNjIzM+natWu4rc/no0OHDixbtgyA1atXEwwGI9pkZGTQokWLcJvly5eTnJwcDqgA2rZtS3JycrjN6UpmqoQQQogaqqoWqufk5EQc9/l8+Hy+Uu3btGnD3LlzOffcc9m7dy/jx4+nffv2bNy4kczMTADS0tIirklLS2P79u0AZGZm4vV6qV27dqk2JddnZmZSr169Up9dr169cJvTlQRVQgghRA3loLGrIKg6umrIo48+yrhx40q179GjR/jXLVu2pF27dpx99tnMmTOHtm3bAqX359Jan3DPrqPbHKt9efqp6SSoEkIIIX7hdu7cSVJSUvj9sWapjiU+Pp6WLVuyZcsWrrvuOsCdaapfv364zb59+8KzV+np6QQCAbKysiJmq/bt20f79u3Dbfbu3Vvqs/bv319qFux0I0HVkZzK11gSVa8y/3qJ2I29eMGm8npxEmLBdLP9sAxsn+m+d0AHTYpSPRi2dkvKeN0+lMbdpVnhZtP5FNqCYHxxJqAC2wvagFCcwva5x0KJGjvBxolTGEUKJ0ajDbesi/Y4KK+DLjIJ5rk7puu4EDnnAMlBdNBA5VsEkxR1vR44RvafUgrduAE/daxFTssABNxd3FWMDY6ChoUEs73uMUDH2TiWgY4LkVInl7NrH+DbnzKIiwngD1puO6+DaTlorUhNygegMOCh0O/FMBwKEk10wIMdA9rjkNLwEIGQRW6TZEy/xvGC7XV3oDdCHmwPBJLc79JTAIV1LTx5Jp46bgUDT34iZpGDlRfA2nsI+6iSPEJETR1RKeE0VlWP/5KSkiKCqvLy+/1s2rSJK664giZNmpCens7ixYtp1aoV4JbTWbp0KZMmTQKgdevWeDweFi9eTN++fQHYs2cPGzZsYPLkyQC0a9eO7OxsVq5cyWWXXQbA119/TXZ2djjwOl1JUCWEEELUUCc7+2/06NFce+21nHnmmezbt4/x48eTk5PDwIEDUUoxYsQIJkyYQNOmTWnatCkTJkwgLi6O/v37A5CcnMwdd9zBqFGjSE1NJSUlhdGjR9OyZctwNmCzZs3o3r07d955Jy+88ALgbqnQq1ev0zrzDySoEkIIIUSxXbt20a9fP37++Wfq1q1L27ZtWbFiBY0aNQJgzJgxFBYWMmTIELKysmjTpg2LFi2KKC49ZcoULMuib9++FBYW0qlTJ2bPnh2x39Vrr73G8OHDw1mCvXv3ZsaMGSf3ZquBBFVCCCFEDeUUvypzfTTmz59/3PNKKcaNG3fMRe4lYmJimD59OtOnTy+zTUpKCvPmzYtydDWfBFVCCCFEDWVXMvuvMteK6ElQJYQQQtRQtnZflblenDyyo7oQQgghRBWQmSrxi6VME+X1HD5Q5He3VTANlOOgLQsst8hvyXYKGOD4TAxb41gKT4GDNky0AY6lUI4GTXFRZcABIwRmkcb2lRRVVqji3Tm0cgsna0zsWI1ZoMBR2LVCqFwD5TfRpgk+B1VoQFIIZTo4Xo1paWy/u+1CKM5A+XyovPzSBaUNg8KMeIpSNcrUaAVWjknI0GArHI8CU2Pkm+igB0+uQSheE5vo56K6P7G7IJlAgbudQyhkuvdnG9iOQjuKoqBFWkIeew8ko5QGTAgZOB7QCSGwFTm5ccTEBggl2egCAxyFEVTYMVBQx8Aq0mijuNCyUVxo2qvw1zKxCjSFqQZWIVh+DwkeE3P/AbfAuRAV9Qspqnyy11SJypGgSgghhKihHBQ2Fd9l3KnEtSJ68vhPCCGEEKIKyEyVEEIIUUM52n1V5npx8khQJYQQQtRQdiUf/1XmWhE9efwnhBBCCFEFZKbqaI4GQyL7mkwpVToD7hhtlGWBz+e29weOOGm4RVa1uwGMwnD/qwEHbJ+JWehArIGywZdt43gUoRg3U1DZ+nCh1iN+qzheNxNQOaBs8OSBttwsQbNQ4eQXZwUqjbnXwggpDD/4UzRmjukWZA54sOMdrGwTnWdgOe4H2HEOTmoSZB2Co7PiTJNQrIEnXxE66MFTqDACChWy3Ay8XBO8GiOgsLINHEtjFinSknPxOxY7DtZGhxT+HB+qyMTwu5l7jqVRjiLLSCQ7Nw7noBcVVDhxbj6RckDlWG5mZIFJQR2FchQqpDACoE3QhiaQrDADYAbc/kKxuBmGptuHEVLYXlDa/V6L6npJ8PmgsPCEP2chjusXUFRZZqpOLxJUCSGEEDWUoxWOrkT2XyWuFdGTx39CCCGEEFVAZqqEEEKIGkoe/51eJKgSQgghaigbA7sSD5WkLsHJJUGVEEIIUUPpSq6p0rKm6qSSoOoo2rZRhnwtNY3WGqXK94eDUgoMA0wTVfxfnZsXziRTlol2QIXcLDbtOBght29tGhi2g9IKpd3afVaBTSjOxOOo4vp/oE33pCffIZjg1gY0bAjGK0y/xgiBVaQJxilCsQrL1mhLgYbYfW7mWygGjCAYQTc7LhQHnlyFk2W4n2G52YL+2m6WYVH9BGK2maWy/5TXQ+6Z7hh8BwwM2x23EVBYhWAXuPX/lA3xP2myz3Wv230gmR931gUHPPvdGokq5GbjKRu3ZqDSqD1evIcUgdoaK18RsBVGqPi7KVI4HremYZHhxSowMAsVKgShBI3hV5h+NwPSm6sJxSqC8W7WHwocC0y/WxcQ3OPaUKiEeHQgAKd53TZxiv1C6v+J04dED0IIIUQNJWuqTi8SVAkhhBA1lK0NbF2JNVWn7xZdpyXZUkEIIYQQogrITJUQQghRQzkonErMfzjIVNXJdEpnqho3buyWEznqNXToUMBdnDxu3DgyMjKIjY2lY8eObNy4MaIPv9/PsGHDqFOnDvHx8fTu3Ztdu3aditsRQgghqlTJmqrKvMTJc0qDqlWrVrFnz57wa/HixQDceOONAEyePJlnn32WGTNmsGrVKtLT0+nSpQu5ubnhPkaMGMGCBQuYP38+X375JXl5efTq1Qv76Ppo5eXYbv0/UeNEXQfOttEhu7jGn/v7QSkFlgWmAscJ1wRTQRsVdH/2Kuhg+G3MQhsjqNGmwgw4GEGNEdCYfgfDrzGDGk9OEDPg4Ml38OY5WAUaq1DjzXPwZtvEHHKIPeDgzdP4shy8ORpvrsaTp/HmaDz5mvg97nFPLph+SNitiTmo8WaDVehmFRoFBnsv9aLiYkvdpoqLI7+Bg2O59QY9uWAVgO+QxvRrPPmEX958ByvPzWC098Rh7fPg3ePBd1AR87PCKlDE79Io2+3Dk6vcVx5Yue4fzp5ct60nV2HlgSdH4SmAmH0mnmy37p9y3HqHMQc1ZhE4Xjeb0irUWIXFNf+Ch19WgQYNVqEDGpzaCSivt9wZn0KUqaT+nxAnwSl9/Fe3bt2I908++SRnn302HTp0QGvN1KlTefjhh+nTpw8Ac+bMIS0tjddff53BgweTnZ3NrFmzePXVV+ncuTMA8+bNo2HDhixZsoRu3bqd9HsSQgghqkrlF6rLJMHJVGMWqgcCAebNm8ftt9+OUopt27aRmZlJ165dw218Ph8dOnRg2bJlAKxevZpgMBjRJiMjgxYtWoTbHIvf7ycnJyfiJYQQQtQ07pqqyr3EyVNjgqr33nuPQ4cOMWjQIAAyMzMBSEtLi2iXlpYWPpeZmYnX66V27dpltjmWiRMnkpycHH41bNiwCu9ECCGEEL9GNSaomjVrFj169CAjIyPi+NFrKsqzs/aJ2owdO5bs7Ozwa+fOnRUfuBBCCFFNnOLafxV9VSZzUESvRmypsH37dpYsWcK7774bPpaeng64s1H169cPH9+3b1949io9PZ1AIEBWVlbEbNW+ffto3759mZ/n8/nw+XxVfRtCCCFElZI1VaeXGhHCvvLKK9SrV4+ePXuGjzVp0oT09PRwRiC4666WLl0aDphat26Nx+OJaLNnzx42bNhw3KDqRHRFMwdFjaC1Bsdxf47BADoQLN2oZCbT1hhFIYzCIDhghByMoIMKuS8j6NYHNALur82AgwppNxswoFEaNyswqPHkOcRm2fhyHKx8B8PWWPk23lwbb66bHegpcDADGuWAp1BjFWm8R2QOevI1vhwHx6Pw5GoMP3iz3Gw91SobFeM76jYUwTNS8TbOA8OtN2gGdHHmX3FmXb7Gk6sxizSBBAOrAEy/wspTxBxU7q8L3Xa+Q5qU/xYWZ/65GYS+g27twdifNVYBxO53sxc9BWAVFWcJ5mliDrgZi0bQzWI0A+5/rUKNYwIavDkaX5bGm62Lz4FjghEqbh906wOGkmPdTEfTrObfLeIXr7j+3+nKKZ5tqsxLnDynfKbKcRxeeeUVBg4ciGUdHo5SihEjRjBhwgSaNm1K06ZNmTBhAnFxcfTv3x+A5ORk7rjjDkaNGkVqaiopKSmMHj2ali1bhrMBhRBCCCFOhlMeVC1ZsoQdO3Zw++23lzo3ZswYCgsLGTJkCFlZWbRp04ZFixaRmJgYbjNlyhQsy6Jv374UFhbSqVMnZs+ejXka/8tECCGEALC1wtaVKKhciWtF9E55UNW1a9cyN3VUSjFu3DjGjRtX5vUxMTFMnz6d6dOnV9MIhRBCiFOjZMF5xa+XNVUnkzxsFUIIIYSoAqd8pkoIIYQQx+ZoA6cS2X+OZP+dVBJUHYtjF6ckybPo05XWGmW7E9/K0YcfMRsGhEJo5WbUYYB2FJgK5TgQcNCG4ZYLsx0IKhyPidIaw6/RHgOckg8BrcAsclCOxgg4mEUGjlXctwKryCYUa2IWgh1rYPo1ytGYRSo8T6xsMJRb+87xKEy/Q9xe99fumBXBBEiKK4JjZDLasRaO42CEwJOvMQOgbDeLTjluZp1WoLT7XTiWgRFSbk0+j8ayFKbfrdGnHI2Z58ebG4sRAiOkcUzltit0x+jN1TgehXLcGoGhOOVm+/nBMd2MSLMIQvEKx3Lr/FmF7n1bRRrbZ4bHWDI+pd3+7eJ79qd48PwcjyoodGs4yl8MojLU6ftQRh7/nV5O399pQgghhBA1iMxUCSGEEDWUQ+Uy+JwTNxFVSIIqIYQQooaq7AaesvnnySXfthBCCCFEFZCZKiGEEKKGqnztP5k7OZkkqBJCCCFqKAeFQ2XWVEkW+8kkQVUZtG2jDPl6aipVXBD5eKn24W0VjmyjFDpkg2VA0HYLK5dUNLLd9nhMsHG3X9DFKxKUQoUctKPB0W6RVkeD1hh+twC3EbAx/CHseM/h1aGOxgw6brHmoLv1AoA2FNpSOKZCWwaeghCGbeJ4FEZQ48u2CSSZqOLa3laBYt+mutR2clFKRdyT9+d8HMeLMt1ixtpwtynwFOji7R5Al9yjBo9X4c3TaEXxtg8OttfdVgHAifXgy3HQyi3QjHavdyyFJx88hQ5BDKwiQGuUY7hFom33ejtQ/LOx3K0c0O5YjJC7jYJVVPwdlOwYYWu0ofDkOwSSTIyQu51EqFYcnpxYdCAAoVD5f3MIcbTTeHscmak6vci3LYQQQghRBWQqRgghhKihKr/5p8ydnEwSVAkhhBA1lKMVTmX2qarEtSJ6EsIKIYQQQlQBmakSQgghaiinko//ZPPPk0uCqrJIUeVfBK21WyiZ4ozB4ow+bSo30VhrN1PPdAsca0xU0EabJuC42YG2BkO7GYDB4nQ8x80GRLvHUcr9tdYYhcWZaoYCR6MKHbRpYIQccBwwDByPgQoBPhNCNiroYALKLv4DUINV6KANBRh4cxVndN6F3SQdc3MQAoFwoWEzOx/txGD73KLFoRgDq8jBLL7eKgzhWG6/2lRYRRrHUqDAU+BgBDWeHMfNaLQ1jsfEm+NmHxoB97w2QFsGVqE7No92v1Mj5BZCNoLFYzXACBmgwAxCMFZh2BpfthPODjQDjlvQWhcXUC6+V7PIxvQpHMt9BWp7MfOTUEVF6DzJ/hOVVPL/6GnG0QZOJTL4KnOtiJ5820IIIYQQVUBmqoQQQogaykZhV2IDz8pcK6InQZUQQghRQ8njv9OLfNtCCCGEEFVAZqqEEEKIGsqmco/w7KobiigHCaqOQ+r/1XxH18E7liPPK9NAWRbaNNz6f1qjgkHQJlod/oNL2TZoA61A6SN/XVy3riQ50LbBMNCme60KOeG6f8opzh4EtIdwpqGybYwjx2Q7KA22oTBwUAEH7TVQBRrba2AZbu2/FrV+4oM+Damz7jyS/5eHsXU3uqAAAkFCOV68GsyAxpMXwiq0QYHtM8EBs8hGK3C8JlbB4axFI+CAojgz73AdQ9MP3hww/TYqVFwT0KNBgWMqlHa/O6P4nFkQwvGZOF4DrTTacusQerRGObh9KFAOeHLcsTkeA+V+tXjyQjiWQtmgDFAaHK8imBKHLysO8vIr/HtECABlmujTsIakPP47vUjEIIQQQtRQUlD59CLfthBCCCFEFZCZKiGEEKKG0iicSqyp0rKlwkklQZUQQghRQ8njv+oxd+7ccrW79dZbo+pXgiohhBBC/KoMGjSIhIQELMsqM9lJKSVBVZWS+n+nheNlAKqS7Dut3bp/pglxsaC1W/+vJN/YccA03ew+pcB2wCjO4LM12gRVnOFXktGnbNvN9HMclC4+Z2uUtt0sQKXcrMCImoHFqYHF7Y2g7fbnOBgB3Pp7QRvb8qIcjeXYaEPhKdC8v/lCMn6TScKlfjZtOoPmE+OhoABd5Cdpk0WgNqDACDrhzzeUE65JqBw3m8+wHRzTANzvzPYZeA8FQBePp/j7UoHimolao2zt1kT0mOA1wLZRTnEbQ7njDjmY2q0D6Gb2aUKx7ndq2Bpd0qYwhBFysOMsnICBHWOAJnyNFXSwYw20UgQTLTy1E1D7fz5hlqcQx6WM07L+n6MVjq7430GVufaXrFmzZuzdu5dbbrmF22+/nQsvvLBK+pV5QSGEEKKGsjEq/RKlbdy4kY8//pjCwkKuvPJKLrnkEmbOnElOTk6l+pVvWwghhBC/Om3atOGFF15gz549DB8+nDfffJP69etz88034/f7K9SnBFVCCCFEDVXy+K8yr4qaOHEiSilGjBgRPqa1Zty4cWRkZBAbG0vHjh3ZuHFjxHV+v59hw4ZRp04d4uPj6d27N7t27Ypok5WVxYABA0hOTiY5OZkBAwZw6NChCo+1MmJjY7n11lt57LHHuOyyy5g/fz4FBQUV6kuCKiGEEKKGcjAq/aqIVatW8eKLL5ZaazR58mSeffZZZsyYwapVq0hPT6dLly7k5uaG24wYMYIFCxYwf/58vvzyS/Ly8ujVqxe2fbhoTv/+/Vm3bh0LFy5k4cKFrFu3jgEDBlTsS6qE3bt3M2HCBJo2bcof/vAHLr30UjZu3Ejt2rUr1J8EVUIIIYQIy8vL4+abb+all16KCC601kydOpWHH36YPn360KJFC+bMmUNBQQGvv/46ANnZ2cyaNYtnnnmGzp0706pVK+bNm8f69etZsmQJAJs2bWLhwoX8/e9/p127drRr146XXnqJjz76iM2bN5+Ue3zzzTfp0aMHTZs2ZdWqVTzzzDPs3LmTyZMnc/7551e4X8n+OwGp/3d6KE8NQEwT5fXiJMWVXARoMN1/W6ijr9e6OAvwiMy+YAjtsVCh4vYl2YIhjVbKzRY8Yrpd2dp9axT37QCmKj5e/PlWcYaiaWCEHPecqTCCbuahcjSefAe1I5Y9QFpKDsQ46CK/e9+BALW3BDl4vgcj6GbaKUejDTALQ+GMQK1AKwOj0MYwFLr4ZQQdN5Mv5H4egMIBy3CPFWf/YRlox60PaARsdPF5bRk4PtPNBHQ0GAqzuM/DNRE1Co1hOxiBECpo4ykIEEqOwY7xunX/NMX1FUEXf+ehGEWgTjzerSachnXbRA1iqNOy/p+tFXYlHuFV5NqhQ4fSs2dPOnfuzPjx48PHt23bRmZmJl27dg0f8/l8dOjQgWXLljF48GBWr15NMBiMaJORkUGLFi1YtmwZ3bp1Y/ny5SQnJ9OmTZtwm7Zt25KcnMyyZcs477zzKni35feHP/yBM888k5EjR5KWlsaPP/7I888/X6rd8OHDo+pXogUhhBCihqqqLRWOzmrz+Xz4fL5S7efPn8+aNWtYtWpVqXOZmZkApKWlRRxPS0tj+/bt4TZer7fU47O0tLTw9ZmZmdSrV69U//Xq1Qu3qW5nnnkmSqnwDNuxKKWiDqpO+eO/3bt3c8stt5CamkpcXBwXXXQRq1evDp+vqkVxQgghxOlGawOnEi9dvKN6w4YNw4vCk5OTmThxYqnP2rlzJ/feey/z5s0jJiamzDGV7P93eIy61LHS9xHZ5ljty9NPVfnxxx/Ztm3bcV8//PBD1P2e0qAqKyuLyy+/HI/Hw6effsp3333HM888Q61atcJtqmpRnBBCCPFrtXPnTrKzs8OvsWPHlmqzevVq9u3bR+vWrbEsC8uyWLp0KdOmTcOyrPAM1dGzSfv27QufS09PJxAIkJWVddw2e/fuLfX5+/fvLzULdro5pY//Jk2aRMOGDXnllVfCxxo3bhz+9dGL4gDmzJlDWloar7/+OoMHDw4vinv11Vfp3LkzAPPmzaNhw4YsWbKEbt26ndR7EkIIIaqKjcKuRFHkkmuTkpJISko6bttOnTqxfv36iGO33XYb559/Pg888ABnnXUW6enpLF68mFatWgEQCARYunQpkyZNAqB169Z4PB4WL15M3759AdizZw8bNmxg8uTJALRr147s7GxWrlzJZZddBsDXX39NdnY27du3r/C9RmPatGnlandaran64IMP6NatGzfeeCNLly6lQYMGDBkyhDvvvBOoukVxQgghxOnI0ZUrNeNEUZUnMTGRFi1aRByLj48nNTU1fHzEiBHhLQiaNm3KhAkTiIuLo3///gAkJydzxx13MGrUKFJTU0lJSWH06NG0bNkyPPHRrFkzunfvzp133skLL7wAwF133UWvXr1OyiJ1gClTppywTUXWVJ3SoOqHH35g5syZ3HfffTz00EOsXLmS4cOH4/P5uPXWW6tsUdzR/H5/xG6px92W3rGR9fw1Q0WetR+ZEahMA7we7FgPynGz9rRSYBiocC3A4vZGcY0w0wjXClPazf7DMiM/Qyn3nNbokr6K/0vIBo/lZv0dfT/Fj6d1cd8o3DEUOpgFQSjOzjMDDtpU+A4pAk4sPwUNan3jRRcUoGJ8qIQE4r4/iO2rgy65J3AzCf022mdCcU0+bTvggOEP4sR5I2qhqdARgwwW1wx0Do8TW2HYIbcmYsn3VHytURgqvicHJ8aDst2+jJL6gfYRmZIO7n8DAYyAB1XysVpjOIBTkr2osL2KQC0LX2wM5OVL/T9ROadp/b+aZMyYMRQWFjJkyBCysrJo06YNixYtIjExMdxmypQpWJZF3759KSwspFOnTsyePRvTPPxn52uvvcbw4cPDEyK9e/dmxowZJ+0+tm3bVi39ntJowXEcLrnkEiZMmABAq1at2LhxIzNnzoyoDF0Vi+KONHHiRB577LFKjl4IIYSoXiULzitzfWV88cUXEe+VUowbN45x48aVeU1MTAzTp09n+vTpZbZJSUlh3rx5lRpbZWmt+f777wkGg5x77rlYVuVDolO6UL1+/fo0b9484lizZs3YsWMH4C5mg8ovijva2LFjIxbs7dy5s0ruRwghhKhKDqrSL1Hajz/+yEUXXcT5559Py5YtOeeccyJ2HqioUxpUXX755aV2T/3f//5Ho0aNAGjSpEl4UVyJkkVxJYvZjlwUV6JkUVxZC958Pl940V55Fu8JIYQQ4pfjgQceoKioiFdffZW33nqL+vXrc88991S631P6+G/kyJG0b9+eCRMm0LdvX1auXMmLL77Iiy++CBAu5FjZRXFCCCHE6ehU7Kj+a/B///d/vPHGG3To0AGAyy67jEaNGlFYWEhsbGyF+z2lQdWll17KggULGDt2LI8//jhNmjRh6tSp3HzzzeE2VbUoTgghhDjdnOo1Vb9UmZmZETX+zjjjDGJjY9m7d2/E1k7ROuVpbb169aJXr15lnq+qRXFCCCGEEODGFoYRGXAahlHpDONTHlQJUR7l2U7hhEWVlYH2etBeA/NQEdpjohzHLYIM4Cgo/rU23XPaMlD+EMoJgWmgj9xOoWSLAFOhSzbvN0A77hYLOMXbEpRsQeA4aI+7vYEKOeH37tYL7jYK2nK3YjD8IbTXKi7SrDECDt5DbhHmpP/zkfbRVhzbRtVKxqmViJFXQNK6TPIuSAOFWyDZb7v34BT/weE47vYFSrlbPdgad0MHd0uHwwWh3fGpkBPeZkIrBSZufxju8aDtbh0RtIuLU+NuwRC0USU7UwRsd/sKR6NNw/08A7dysmGgAiG3cLSm+Jwq3s7C/c4sv1tUmVpJUFgkRZVF5ZyGRZUdKln7TxaqH5PWmnPPPTfi75a8vDxatWoVEWwdPHgwqn4lqBJCCCFqKF3JDD4tQdUxHVnJpSpJUCWEEELUUI6u5EyVLFQ/poEDB1ZLvxJUCSGEEOJXr6ioiH/84x/k5+fTpUsXmjZtGnUfElQJIYQQNZRk/1WP+++/n0AgwHPPPQe4e2C2a9eOjRs3EhcXx5gxY1i8eDHt2rWLql/5toUQQogaquTxX2VeorRPP/2UTp06hd+/9tprbN++nS1btpCVlcWNN97I+PHjo+5XgqryiKbMtzi5jPL9FlZKudl7Pm84Qw27OAuvOPtDOY7bn2G4vw7ZbtaeoUo6OVxMWWuwHTcrTin3/yQDt+/iTDoMAzxWRDFh7bUOj7nkvyUZi46DCoTcosiWgWO551VIYwYdjCAYIUj9Ng8nJxetNbqgEKOgCG2Z6LwCzCLbLWLsaLcQsu0WJz5cHNn9LO31uJmPxYWgOeK/GMbh76Rk7BQXVi4pHO0xw8dU0Ha/R7s409HRaOXejxGw3bFot9gyhjpcXNp0MyuNgDsOw9bF49YoGxxLYYQ0tkcRqpeEiourUFFtISKow7+/xa/Xjh07IsrkLVq0iBtuuIFGjRqhlOLee+9l7dq1UfcrQZUQQghRQ0ntv+px9J5UK1asoG3btuH3tWrVKlVTuFz9VsnohBBCCFHl5PFf9Tj//PP58MMPAdi4cSM7duzgqquuCp/fvn07aWlpUfcrC9WFEEII8aty//33069fPz7++GM2btzINddcQ5MmTcLnP/nkEy677LKo+5WgSgghhKihZJ+q6nH99dfzySef8PHHH9O1a1eGDRsWcT4uLo4hQ4ZE3a8EVUIIIUQNJUFV9encuTOdO3c+5rlHH3004v2QIUN4/PHHqVOnznH7lDVV5aBt+8SNRLUqb5HLMrPDTBPl86FjPShH48R6DvdtGegjMt60xyyu6WcczuIz3f9VtGGEs/PcOnXFnRwjC7GknTZVuP+Smn9HDTrcjzaLs+pCDnachRFyULZTnAEI8T85WDv3R/ShPZbbxutBOaAtt36eNk03Gy9QXOfMVIezFY/kOG4GX37R4exAVdy2RHFmY0l7HH1E1mJxH44TzhYsqf0X/rV2sxDduoD68PhLjoc0Kui4GYAajKCDYylsr4Fha/LPiIW6tVFe77F/vkKUV3H9PyGiMW/ePHJyck7YTmaqhBBCiBpKZqpqhvL+w16CKiGEEKKG0lDJgsriZJKgSgghhKihZKbq9CJrqoQQQgghqoDMVAkhhBA1lMxUnV4kqCoPxwbHPFwDTpwSWuvS2X0l9fqOzqg7ijJN8HpwLKO4Bp0BBmhtulluFhC0oTi7D48JmBBy+3Wz/YxwDb+ja+SFjxsa7RwxRluD6R7Hb6Mcx83KK/6vsjUax82gK5k3Lq75Z+UHwzX7MMEIFa+OODJzSTuoQNC9/+K6hOGsPVOBXVLvz3Y/T7kZeOEswJCbtUcgiAqG0JaJChLZj1LhmoYUj8HMD6DNI47boE2Ks/0UuvhelOOgLcLtVMnPDDeTUlngeA2MIhtlO2jtZi9qy0RpcCxQNhTUMfBlJBKbnYcKhSQjV1SOOn0e0khQVTPccsstJCUlnbDd6fM7SwghhBCiCqxevTqq9jNnzjzhHlUgQZUQQghRY0ntv+px6aWXcvbZZzNhwgR2795dZf1KUCWEEELUUFqrSr/EsXXq1Ilp06bRuHFjevXqxXvvvYddyaUFElQJIYQQ4ldn/Pjx7Nq1i/nz56O15oYbbqBBgwY88MADbN68uUJ9SlAlhBBC1FAOqtIvUTbLsrj++uv5+OOP2b59O0OHDuXtt9+mefPmXHnllVH3J0FVOUm2UQ13RO29sur/6Ri3bpyyNVrh1uQzFVgGjtcCw8DxmmAZbs0+y3Dr5XlMtNdy23JETT9PcRae1m6WX0lGnXlkTUCOOG6gTdPtz2MersV3ROafOqIUggo5h2sMao0RAn+SwklJPHxPtpu5h+3W4zNs53AfWodrCeK4mXgRWZJah+9VFV8fPg7ufRS/V0dfV5yVeORnldQNDN938T3ggLJtVNA+/PnF9Q4dn4dQjBn+bkvGqhWYfgcj6PbpeKEgzYOdXhvlPVy3UYgKOY0yuWVNVfU41t8TDRo04M9//jNbt25l0aJFNGzYMOp+ZUsFIYQQQvyqnKiWX6dOnejUqVPU/UpQJYQQQtRQlV1sLgvVj+3zzz8nJSWlyvuVoEoIIYSooWTzz+rRoUOHaulXgiohhBCihpKZqurh9/sxDAOPx12juXXrVl5++WV27NhBo0aNuOOOO2jSpEnU/cpCdSGEEEL8qvTo0YMPP/wQgK+++ooLLriAjz76iGAwyCeffEKLFi1Yvnx51P3KTFV5Sf2/GuG49f/KqAGolALTdDPvTIWDm1FnBGycGA/aUjim++8LN9sONyMPUJ4j6uwpMJxQuDafNjic+WeAE2NhhBw3Ey7khP/J4tbIU+B1x620Rnstt411xL1ojVYqMtMO0KZRnP3n1tUraJRE/A4fFPmhJCtVKTCKswlL1l8WZxWG+ww66BgP2jyclReRwWiow7UMQ/bhGodKRdQBVMWfeWSmYsl12jRRQRuFA3bx/RRnBoYzHQFM3DqLPvdnYseYEXUU3aw/9wYcjwIFRakG+Y0SSPo5CRUISkauqJyS3981nK7k4z+ZqTq2tWvX8pvf/AaAhx9+mCFDhvDss8+Gz//5z3/m/vvv58svv4yqX5mpEkIIIWoozeFdTCr0OtU3UEMFg0GCQbd6/H//+18GDhwYcX7QoEH85z//ibpfCaqEEEII8avSpk2b8OO/s88+u1QAtW7dugplB8rjPyGEEKKGclCoSuyKLjuqH9v48ePp0aMH+fn59OvXj1GjRrFlyxaaNWvG5s2bmTZtGmPHjo26XwmqhBBCiBpKsv+qR7t27fj000+57777+PrrrwF44oknAMjIyGDcuHHce++9UfcrQZUQQgghfnXatWvH8uXL2b9/Pz/88AOO41C/fn0aN25c4T5P6ZqqcePGoZSKeKWnp4fPa60ZN24cGRkZxMbG0rFjRzZu3BjRh9/vZ9iwYdSpU4f4+Hh69+7Nrl27TvatCCGEEFVOav9Vv7p169KmTRvatWtXqYAKasBC9QsuuIA9e/aEX+vXrw+fmzx5Ms8++ywzZsxg1apVpKen06VLF3Jzc8NtRowYwYIFC5g/fz5ffvkleXl59OrVC7sa0q0lhbtm0FqXrtt0VLHgiG0XSootFxc31l4DO8bEsQyCiR6CcRbBRJNALS/+FA/BBItQvPsKJnuxYy3sWAvHZ+LEebB95uFXjIUTa2EneIv7tXC8bsFkx2u6hZdNtzCzE2O570sKMluGW9RZuYWdtWW4BY69FtpbPIns6PC2BgDKhp9bWujGDVAJ8ajEBLBMKN4SwrHU4a0OSraGMCO3bUC5RaJRyt0OAtAey912wjDCxZ8x3C0m7ESfOy6PiY71hIs06+KtFsL3U7zdgipJOzqisHTJ1grhP3G0dre3KN7SwS4uqqyKizqHt2EwFMpx7zuYAHnpJnbdZCmqLCpNmeaJG9UAlcr806fFrhFVYteuXTjH2FLneBzH4eWXX6ZXr160aNGCli1b0rt3b+bOnXvC2oBlOeVBlWVZpKenh19169YF3L84p06dysMPP0yfPn1o0aIFc+bMoaCggNdffx2A7OxsZs2axTPPPEPnzp1p1aoV8+bNY/369SxZsuRU3pYQQgghTpLmzZvz448/lru91prevXvzxz/+kd27d9OyZUsuuOACtm/fzqBBg/j9739foXGc8qBqy5YtZGRk0KRJE/7whz/www8/ALBt2zYyMzPp2rVruK3P56NDhw4sW7YMgNWrVxMMBiPaZGRk0KJFi3CbY/H7/eTk5ES8hBBCiJqmZKF6ZV6/BtHOLM2ePZt///vf/Otf/2Lt2rW88cYbzJ8/n//85z8sWbKEzz77jLlz50Y9jlMaVLVp04a5c+fyz3/+k5deeonMzEzat2/PgQMHyMzMBCAtLS3imrS0tPC5zMxMvF4vtWvXLrPNsUycOJHk5OTwq2HDhlV8Z0IIIUTlSVBVPd544w0eeughrrrqqlLnrr76ah588EFee+21qPs9pUFVjx49uP7662nZsiWdO3fm448/BmDOnDnhNkeXJDlmmZKjnKjN2LFjyc7ODr927txZibsQQgghqocsVC+fhx56KKrNOr/99lu6d+9e5vkePXpUaEf1cm2p8MEHH0TdcZcuXYiNjY3qmvj4eFq2bMmWLVu47rrrAHc2qn79+uE2+/btC89epaenEwgEyMrKipit2rdvH+3bty/zc3w+Hz6fL6qxCSGEEKLmCQQC9OnTh4SEhHJfc/DgwVJPwo6UlpZGVlZW1GMpV1BVEuCUl1KKLVu2cNZZZ0V1nd/vZ9OmTVxxxRU0adKE9PR0Fi9eTKtWrQD3i1u6dCmTJk0CoHXr1ng8HhYvXkzfvn0B2LNnDxs2bGDy5MlRfXa5SFHlGuXoZ+jh2cljFVY+4mcWijFxPAa21yCQbGL6NYFEA8cEpSku5utm0hkhjTdfYXsNTL+Dso8oJKxB2W6hY9trhOd9zUIHbTpuNlvIQTkax3Az5IyggxGw3eLC4cLMh7PecLSbLagIF+3SpoG2FKbfwQgaoGFn91qkrYrFt/0gTkIsqsCPKvTjeA3MoONm24E7Jq3CBZeLvyi0ZeD4LIxAcUar1+PWGPOY4DgR50qyE3FwU4ksw32kUFxIOpxdaRUXXlZO8X25x0uy/rQq+YIO35dyNLG788lvkoDjNdxi00cUcFZaYwSLu9Tg+KAoLZb4/UlQWHTi3yRClEUZp0VR5cpm8NXw26uUgoIChg0bFn669b///Y+zzjqL4cOHk5GRwYMPPljmtbZtY1llh0CmaRIKhaIeU7k3/8zMzKRevXrlapuYmFiudqNHj+baa6/lzDPPZN++fYwfP56cnBwGDhyIUooRI0YwYcIEmjZtStOmTZkwYQJxcXH0798fgOTkZO644w5GjRpFamoqKSkpjB49Ovw4UQghhDiduUFVZXZUr8LB1DBjx47lP//5D1988UXEo7zOnTvz6KOPHjeo0lozaNCgMp9a+f3+Co2pXEHVwIEDo3qUd8stt5CUlHTCdrt27aJfv378/PPP1K1bl7Zt27JixQoaNWoEwJgxYygsLGTIkCFkZWXRpk0bFi1aFBG0TZkyBcuy6Nu3L4WFhXTq1InZs2djniZ7kAghhBAieu+99x7/+Mc/aNu2bcQ66ubNm7N169bjXjtw4MAT9n/rrbdGPaZyBVWvvPJKVJ3OnDmzXO3mz59/3PNKKcaNG8e4cePKbBMTE8P06dOZPn16NEMUQgghajyp/Ve2/fv3H/MJWn5+/gkT2qKNa8orquy/UCiEZVls2LChWgYjhBBCiMN0Fbx+qS699NLwrgFweF3tSy+9RLt27Srcr+M4fPjhh1GvJ4coCypblkWjRo2qpQSMEEIIIUR5TZw4ke7du/Pdd98RCoV47rnn2LhxI8uXL2fp0qVR97dlyxZefvll5syZQ1ZWFt26dYu6j6iCKoBHHnmEsWPHMm/evKj2hPil0LaNMqL+2sRJUJINeMxJX6XcmnWGm20XilWgDAIJCtOjCMZBMFGhDTCCCk++prCOwgwogjmqOBNQYRaBYWu3xp4NnkI3082x3GvR4FUK5RhuZmBxPTvHY6CV+9mO1whnt2nD7c99A0bQwfEckTUHxVl37ssMajz5ipxLisje7yNtcwDlaLRlgtYE4w2UbeIJOKjQEVl4HhNCCgy35mBJ/T/tFNcCNN0MwZKsP20ZaNsJj0N7TFTQdmv2edzPUtjutUqBqdwsRg0at6ahURTC8ZoQdKBkjeMRc+NuvUAws/MJxSRiBAxUSLuZkCWJiiHAdDMyDVsRioG8DAvf/lqozH2V/00jfr0MhTJNdAUyvE4mefxXtvbt2/PVV1/x9NNPc/bZZ7No0SIuvvhili9fTsuWLcvVR2FhIW+++SazZs1ixYoV2LbNlClTuP3226PaoqFE1NHBtGnT+P7778nIyKBRo0bEx8dHnF+zZk3UgxBCCCHEMVT2Gd4v+fkf0LJly4gNw8tr5cqV/P3vf+cf//gH5557LrfccgtvvfUWZ5xxBp07d65QQAUVCKoq8oxRCCGEEBVQ2VIzv7CZqmhq9R5vF4L27dszbNgwVq5cyXnnnVcVQwMqEFQ9+uijVfbhQgghhBDlVatWrXKXqjve+u+rr76aWbNmsW/fPgYMGEC3bt1O2G95VGhx0KFDh3j77bfZunUr999/PykpKaxZs4a0tDQaNGhQ6UEJIYQQQnZUP9rnn39eJf0sWrSInTt38sorr3DPPfdQWFjITTfdBJSuORyNqIOqb7/9ls6dO5OcnMyPP/7InXfeSUpKCgsWLGD79u3MnTu3woMRQgghxGGyUD1Shw4dqqyvhg0b8pe//IW//OUvLF68mJdffhnLsvjd737HDTfcwA033MDFF18cVZ9RB1X33XcfgwYNYvLkyRE7m/fo0SNcPuYXzbGp4ASfOFmOrvsHqJgYMHCzyzTFWWo6nLVnxyiCiRrH65Z3jPlZUdgghHIU/lwDbWiUA54cN0vO9oE3B4ps060B6IDtc/u1DyiMoMZTWJzJpnHrANoaOxYcU2EGNMp2s9xKhqsthREozrizNRjFGYQht46g7TNQDph+jS6w8OVqsG0otFGxMeikeAIJBt5cB5SbXadsjfYYUJzlh6nCx1XQLr4XEzDdLEJD4XhNtAInxuOO64jahCrkYMdZqJDGUCpcJ1AfUduwJHuxpGagstwafzjazbiyD//T2/GaOImxBGMVvuzD/6TWCjdj0gKKywkafrATobCuIq9RHEkbTLRs7yIq4zSp/yfKlpWVxaxZs9i0aRNKKZo1a8Ztt90W9e4EXbp0oUuXLmRlZTFv3jxefvllJk2aFPUWUlFt/gmwatUqBg8eXOp4gwYNyMzMjLY7IYQQQpRFq8q/ojBz5kwuvPBCkpKSSEpKol27dnz66aeHh6M148aNIyMjg9jYWDp27MjGjRsj+vD7/QwbNow6deoQHx9P79692bVrV0SbrKwsBgwYQHJyMsnJyQwYMIBDhw5FNdalS5fSuHFjpk2bRlZWFgcPHmTatGk0adKkQvtUAdSuXZthw4axdu1aVq1aFfX1UU+5xMTEHHP1/ebNm6lbt27UAxBCCCHEsZ3sNVVnnHEGTz75JOeccw4Ac+bM4Xe/+x1r167lggsuYPLkyTz77LPMnj2bc889l/Hjx9OlSxc2b94cfno1YsQIPvzwQ+bPn09qaiqjRo2iV69erF69OlyXt3///uzatYuFCxcCcNdddzFgwAA+/PDDco916NCh3HTTTcycOTPcr23bDBkyhKFDh56w+ktOTk44Q/CTTz4hdMSeZZZlcc0115R7LOHror3gd7/7HY8//jhvvvkm4C7o2rFjBw8++CDXX3991AMQQgghRM1w7bXXRrx/4oknmDlzJitWrKB58+ZMnTqVhx9+mD59+gBu0JWWlsbrr7/O4MGDyc7OZtasWbz66qt07twZgHnz5tGwYUOWLFlCt27d2LRpEwsXLmTFihW0adMGOFxaZvPmzeXe4mDr1q2888474YAKwDRN7rvvvhOu7/7oo4/485//zNq1awG46aabyM/PD59XSvGPf/yDG264oVxjKRH147+nn346XMSwsLCQDh06cM4555CYmMgTTzwRbXdCCCGEKMspLP5n2zbz588nPz+fdu3asW3bNjIzM+natWu4jc/no0OHDixbtgyA1atXEwwGI9pkZGTQokWLcJvly5eTnJwcDqgA2rZtS3JycrhNeVx88cVs2rSp1PFNmzZx0UUXHffaF198kT/96U8Rx77//nscx8FxHCZOnMjLL79c7rGUiHqmKikpiS+//JLPPvuMNWvW4DgOF198cTgiFUIIIUTVqKrsv6OX7fh8Pnw+3zGvWb9+Pe3ataOoqIiEhAQWLFhA8+bNwwFPWlpaRPu0tDS2b98OQGZmJl6vl9q1a5dqU7LuOjMzk3r16pX63Hr16kW1Nnv48OHce++9fP/997Rt2xaAFStW8Pzzz/Pkk0/y7bffhtteeOGFEdd+++23/OUvfymz7x49evD000+Xeywlog6q5s6dy0033cTVV1/N1VdfHT4eCASYP38+t956a9SDEKIqlWz8FuY4YNsYRSEwDMwiN0tNKzBsi0CCgeMFFVIoU6OAYIJGxYcwPQ6hJAOlNI7fxGkUIiYmiM9wyDkYj3HICmen2Yk2mBr7ey9WoSJQpDH9oM3i7LUgOMXZbFahm4XoWKBsMEJudqFjmRghjeNRGMUZgrbXAAMcj8KxIJCo8NQqIna/5dbUs92afKFasQDhDELtMYHiOn4alOGgPSaOx3DrCjqgHI0dc3jqXFuGWzPQUOBoDFtj+0xUyEFpEyPkEEj0YBbZmJYCB2yfEa4daPsMtKEwbE0o1kQV1zM0Qk643qHSGmwNpsKONdh/WS1sn1tf0VSEMxcdX3E9QdutAWgVaexYRTBek59ukmxZkv0nKuc0qf9XFRo2bBjx/tFHH2XcuHHHbHveeeexbt06Dh06xDvvvMPAgQMjFn4fvY9TqT9zj+HoNsdqX55+jtSvXz8AxowZc8xzSqkyNwLNzMwkNTU1/P7zzz+P+I4SEhLIzs4u91hKRB1U3XbbbXTv3r1UlJmbm8ttt90mQZUQQghRlapgx4edO3dGlG0pa5YKwOv1hheqX3LJJaxatYrnnnuOBx54AHADkvr164fb79u3Lzx7lZ6eTiAQICsrK2K2at++fbRv3z7cZu/evaU+d//+/aVmwY5n27Zt5W57tJSUFLZu3UqTJk0A9z6PtGXLlqi3ZYAKrKkqK5LctWsXycnJUQ9ACCGEEMdW8vivMi8gvEVCyet4QVXpMWj8fj9NmjQhPT2dxYsXh88FAgGWLl0aDphat26Nx+OJaLNnzx42bNgQbtOuXTuys7NZuXJluM3XX39NdnZ2uE15NGrUqNyvo1155ZVMmzatzL6nTZvGlVdeWe6xlCj3TFWrVq1QSqGUolOnTljW4Utt22bbtm1079496gEIIYQQogyVXGwe7bUPPfQQPXr0oGHDhuTm5jJ//ny++OILFi5ciFKKESNGMGHCBJo2bUrTpk2ZMGECcXFx4c2/k5OTueOOOxg1ahSpqamkpKQwevRoWrZsGV573axZM7p3786dd97JCy+8ALhbKvTq1Svq4sa7d+/mq6++Yt++fThHbfw8fPjwMq974IEHaNeuHTfeeCNjxozh3HPPBdztoSZNmsSSJUuiWjRfotxB1XXXXQfAunXr6NatGwkJCeFzXq+Xxo0by5YKQgghxGls7969DBgwgD179pCcnMyFF17IwoUL6dKlC+CuXyosLGTIkCFkZWXRpk0bFi1aFFFhZcqUKViWRd++fSksLKRTp07Mnj07YuuD1157jeHDh4ezBHv37s2MGTOiGusrr7zC3XffjdfrJTU1tdSareMFVa1ateIf//gHf/zjH3n33XcjztWuXZv58+dHXaIGogiqHn30UQAaN27MTTfdRExMTNQfJoQQQohoFGdvVOr68ps1a9bxe1OKcePGlbnIHdxNwqdPn8706dPLbJOSksK8efOiGtvRSur2jR07FsOIejUTv/vd7+jSpQv//Oc/2bJlCwBNmzala9euxMfHV2hMUS9UHzhwIIcOHWLevHls3bqV+++/n5SUFNasWUNaWhoNGjSo0EBOK8U1zETNVbL2T2uN1honLx8DMPO9GDlecBxUyCbGMgnVSSRQy4svy8TxKNAQjFfkJHoJxdsQVBDnZvY1rJtFg/hs0nw5bEjMYEdibbyeEJZpc3btA5ybsI/Xzcsg38LMNbAKVDj7T5satEKbGm+2gWOBttzMNk++mwVoBjQq5GYM+rIdlHaz4myPwlPoEIw3CMVDMM+LVsVbLcf4IBAkr2Es2nSzBA3bQNvudxBM9Li1/hz3nB3jZuiBm3UYijXcfpQiFOPWLdQGGHbxuA3Qyv1ulK2xfQojaOLLtbG97n2AO/ZAgoERdGsahmIVVoHGKjIwbF3cr1trEdy+Q7EGwQSF4YdgvJtFWFIv0bFU+PPNgEZphenH/Q4tUIkJqFBIMgBF5dT0+n8n+fHf6aSgoIA//OEPFQqoSsTFxfH73/++ysYU9Ui+/fZbzj33XCZNmsTTTz8drtWzYMECxo4dW2UDE0IIIYQoyx133MFbb71VZf0NGTKEn3/+uVJ9RD1TNXLkSAYNGsTkyZMjnqH26NEjvFBNCCGEEFVAZqrKNHHiRHr16sXChQtp2bIlHo8n4vyzzz4bVX/z5s1j9OjR1KlTp8Jjijqo+uabb3jxxRdLHW/QoEFUO6EKIYQQ4gS0cl+Vuf4XasKECfzzn/8MZwyeaHPRE9FV8Ag46qAqJiam1Hb34KYh1q1bt9IDEkIIIYQ4kWeffZaXX36ZQYMGneqhhEW9pup3v/sdjz/+OMFgEHCjwR07dvDggw/KlgpCCCFEFdK68q9fKp/Px+WXX15l/eXm5nLWWWdVqo+oZ6qefvpprrnmGurVq0dhYSEdOnQgMzOTdu3a8cQTT1RqMEIIIYQ4gqypKtO9997L9OnTj7szenk4jsP3339/zA1Eo91VPeqgKikpiS+//JLPPvuMNWvW4DgOF198cXin1F8DbdsoI+qvTpxkRz4f14EATlYQjki91Y4DhoG192csn4/4uOK910I2OiEOb25dAokeUBBMtLBjYLuRSmZcEqbpoDUEAxaOo0irVYSjFd9mN6B545/IKoolzhMkMyeRwkIvCjAtN/W/blI++w4l4NjuRnimZVOQ40MVGXizDKx8heOBYIIJGpQG2we+LINAksKO0Rg+m1CcB52fjyIeHQiyv7Ui6XvQlnKLINvu/WvLLVxsew20AcFYRShWYce62xWgcQs2W+BPcTALFaEETcw+97tyiyKDP0WjlbudAYA3ywpveWDHalTIcLePsFV4DtwsUphFYPo1Rshd3qHs4iLTxVs2KBscDwQS3K0jzIC7JYNjKlBge9ztHdz+NGZhcQHrerUx8vPRhbKlgqiEX1FR5V+alStX8tlnn/HRRx9xwQUXlFqofvSmnseyYsUK+vfvz/bt20utqTpWIeYTqXBkcPXVV3P11VdX9HIhhBBCnIgsVC9TrVq16NOnT6X6uPvuu7nkkkv4+OOPqV+/foUWuB+pQkHVypUr+eKLL445VRZtCqMQQgghjk0Vz1ZX5vpfqldeeaXSfWzZsoW3336bc845pwpGVIGgasKECTzyyCOcd955pKWlVTqFUQghhBBlkDVV1apNmzZ8//33py6oeu6552pcCqMQQgghfn3efvtt3nzzTXbs2EEgEIg4t2bNmhNeP2zYMEaNGkVmZuYxNxC98MILoxpP1EGVYRhVmsIohBBCiDLImqoyTZs2jYcffpiBAwfy/vvvc9ttt7F161ZWrVrF0KFDy9VHyVZQt99+e/hYSd3Yk7JQfeTIkTz//PNMnTo12kt/ORwbHFOKKp9mtNZw9P8gtu0W5PX7Ubm5h48fOEidnDyIdTMCdayPYEoc/lQPIZ8X26sIJCmMWPDkaw4mJ5BdWB/DhiZ9t9AqdTeNYn9mZ3IKqZ58ckIxNI45QKJZCMAhOw6/48HWBmd4D/C/ovpsyM7gu5/SKQiaWB4bv23g+E3MQxbKVgSSIRTvoL0aj9fGjvHiFBahivyo+Di8WQo7BkIxBoZHh7Ps8uq7WYZFdRSheI1WEEoOgc/G9DpYHjfrSSmItWwsw8HnCXEwPZ4WDX5ie3Zt/EEPGYl51I3Nw2vYeAybTQfTKAx4KPJ7OCP1EI5WFAY92I6BZdpk5caRn+cDB8xsC8fnZvVZuQZGAFRI4ckH2+t+5Y5HYRUBeRCKBa3cLELH42YYKsctPh2KAzsWcs5NpHZWMioQlKLKonJqclFlefxXpr/97W+8+OKL9OvXjzlz5jBmzBjOOuss/vKXv3Dw4MFy9bFt27YqHVPUQdXo0aPp2bMnZ599Ns2bN69QCqMQQgghRGXs2LGD9u3bAxAbG0tu8T+MBwwYQNu2bZkxY8YJ+2jUqFGVjinqoGrYsGF8/vnnXHXVVaSmpsridCGEEKK6yExVmdLT0zlw4ACNGjWiUaNGrFixgt/85jds27btuHX8PvjgA3r06IHH4+GDDz447mf07t07qjFFHVTNnTuXd955h549e0Z76XFNnDiRhx56iHvvvTf8aFFrzWOPPcaLL75IVlYWbdq04fnnn+eCCy4IX+f3+xk9ejRvvPEGhYWFdOrUib/97W+cccYZVTo+IYQQ4qSToKpMV199NR9++CEXX3wxd9xxByNHjuTtt9/mm2++Oe7+Vddddx2ZmZnUq1eP6667rsx2J2VNVUpKCmeffXa0lx3XqlWrePHFF0utsp88eTLPPvsss2fP5txzz2X8+PF06dKFzZs3k5iYCMCIESP48MMPmT9/PqmpqYwaNYpevXqxevVqTNOs0nEKIYQQomZ48cUXw3tl3n333aSkpPDll19y7bXXcvfdd5d53ZH7ax6912ZlRV1Qedy4cTz66KMUFBRUyQDy8vK4+eabeemll6hdu3b4uNaaqVOn8vDDD9OnTx9atGjBnDlzKCgo4PXXXwcgOzubWbNm8cwzz9C5c2datWrFvHnzWL9+PUuWLKmS8QkhhBCnTEn2X2Vev1CGYWBZh+eG+vbty7Rp0xg+fDher/eUjCnqmapp06axdetW0tLSaNy4camF6uXZF+JIQ4cOpWfPnnTu3Jnx48eHj2/bto3MzEy6du0aPubz+ejQoQPLli1j8ODBrF69mmAwGNEmIyODFi1asGzZMrp163bMz/T7/fj9/vD7nJycqMYMUv/vl+joZ/BO1iHIKn5jmnh2mngMBaYJloWK8aET4lB5BWCaaEOhE2JZ27IxPzf+mR+8qViGw2/r/4/vi9LxGUG2++tQ4Hi5LP4H9ocSSTSLONuzjxgjyJm+AzRN3IehNJty0mlVaycFtpdvsxoQ0gbbdtdBGRrD1FiWjS7OPtVaQyCIN9fNmvMnGRi2W8vPsSDrNzZ4HeKSC0lPKKBx0gHaJ2/FxqBlzE4cbfBff312BVI4w3uQ5jG7yQwls7HwDB6ru5F38pKoa+UQo4LuV4EmX3spquNhZcHZ/OSvReuEH8l1Ytjtr43PcLMJ99ROZvOhethasT82idiYAD5PiKx9iagiE2wFykDZxbUDbTcDUBuKolQwi8AIuTUHlQOBFBsjMYjjN6ldN5f9MSnE7auD9+Ahyf4TlVOD6//JjuplW7hwIQkJCfz2t78F4Pnnn+ell16iefPmPP/88xETNceTn5/P0qVLj7nX1fDhw6MaU9RRwfGeP0Zr/vz5rFmzhlWrVpU6l5mZCUBaWlrE8bS0NLZv3x5u4/V6S31xaWlp4euPZeLEiTz22GOVHb4QQgghTpH777+fSZMmAbB+/Xruu+8+Ro0axWeffcZ9991XrjI2a9eu5ZprrqGgoID8/HxSUlL4+eefiYuLo169etUfVD366KPRXnJMO3fu5N5772XRokXExMSU2e7o7MKSDbmO50Rtxo4dy3333Rd+n5OTQ8OGDcs5ciGEEOIkkYXqZdq2bRvNmzcH4J133uHaa69lwoQJrFmzhmuuuaZcfYwcOZJrr72WmTNnUqtWLVasWIHH4+GWW27h3nvvjXpMUa+pKrF69WrmzZvHa6+9xtq1ayt0/b59+2jdujWWZWFZFkuXLmXatGlYlhWeoTp6xmnfvn3hc+np6QQCAbKysspscyw+n4+kpKSIlxBCCCFOH16vN7y+e8mSJeGlQCkpKeVe1rNu3TpGjRqFaZqYponf76dhw4ZMnjyZhx56KOoxRR1U7du3j6uvvppLL72U4cOH86c//YnWrVvTqVMn9u/fX+5+OnXqxPr161m3bl34dckll3DzzTezbt06zjrrLNLT01m8eHH4mkAgwNKlS8ObfbVu3RqPxxPRZs+ePWzYsCHcRgghhDhdKQ6vq6rQ61TfQDX67W9/y3333cdf//pXVq5cGd7q6X//+1+5t1XyeDzhJ1tpaWns2LEDgOTk5PCvoxF1UDVs2DBycnLYuHEjBw8eJCsriw0bNpCTkxPVs8fExERatGgR8YqPjyc1NZUWLVqglGLEiBFMmDCBBQsWsGHDBgYNGkRcXBz9+/cH3Ju+4447GDVqFP/6179Yu3Ytt9xyCy1btqRz587R3poQQgghThMzZszAsizefvttZs6cSYMGDQD49NNP6d69e7n6aNWqFd988w0AV111FX/5y1947bXXGDFiBC1btox6TFGvqVq4cCFLliyhWbNm4WMlK+2PzMKrCmPGjKGwsJAhQ4aEN/9ctGhReI8qgClTpmBZFn379g1v/jl79uzq36NK6v/94kVkA4ZCpTKDlFKw96glC6ZJ07lNOdgsnewEBQoeOL8hGGDmmPgOGKDhvYR2OB4IJdlYSQG0ViQn5XN27QM0ijtInBXAp0L8FKxFi1o/0TjmAOsSGrL5UD0O5sURDFgk7DhiW5NgkKTtIX5uYVGQrlDarZdXmObQudVGrktdzYFQAqbStI/Zzk92HC/s7Uhj735sbbDNX5ef/QkU2h5+DiXyTVYjCkMeHtEGi3afz2X1drAhqz7bf6xLzG4PgdoOqq4fJ2hg/Oxhofc3GH4DIwieXIVVAIYNRkBjhKBuoSYUGwMaUjwQilfgQNIOGzPgkF/PIpjg/r9k+yBQy8F30EBb4Hg1OIqYOoUYhoN/byK5+1NI/9rBuzMLfVS2jhAVoiq8GqZ6SUHlMp155pl89NFHpY5PmTIl4v2TTz7J3XffTa1atUq1nTBhQri8zV//+lcGDhzIPffcwznnnMPLL78c9ZiiDqocxym1jQK4U2iV3UTriy++iHivlGLcuHGMGzeuzGtiYmKYPn0606dPr9RnCyGEEDWOLFSvtAkTJtC3b99jBlWXXHJJ+Nd169blk08+qdRnRR2aX3311dx777389NNP4WO7d+9m5MiRdOrUqVKDEUIIIYSoSserA3j11Vdz6NChUsdzcnK4+uqro/6sqIOqGTNmkJubS+PGjTn77LM555xzaNKkCbm5uTJbJIQQQlQlXQUvUaYvvvii1IafAEVFRfzf//1f1P1F/fivYcOGrFmzhsWLF/Pf//4XrTXNmzeXheFCCCFEFZMd1avHt99+G/71d999F7F9k23bLFy4MLzwPRpRBVWhUIiYmBjWrVtHly5d6NKlS9QfKIQQQghxKl100UUopVBKHfMxX2xsbIWevkUVVFmWRaNGjbClzhYg9f9+7Y75nD4Uwly3hXr/9aGKC3o69WqjDQMjtwCVX+i2sywwDXR8LE6sh2CSj1B8LbbVTeW7uopgoubbwvMJJmlqt/iZTXHp7M9PoMDvoTDXB34T8+f9OEeMJfanfPxXJuHEORAfwvTadDhrKx1r/ZdcO5Zv8pqwdNc55GQmkvg/i4TdDg82aoEKQcJPDsE4hTfXwZtjYxW5/4+vDKSSEgixIe1C4n7Mpnn2brTfj4qJAY8FjoMu8qMsC2wbbTsQLJ5Kdw5/PxFVDrwe9/pQCF1QCIYiPjYWnRiP9noIpcbi3+LBKgwRTDCJ2R9AhRy0ZWFlF2Lk7kHn5qELi9C2fdz1EkKUW03N5JaF6tVi27ZtaK0566yzWLlyJXXr1g2f83q91KtXr0K7CEQdETzyyCOMHTuWefPmkZKSEvUHCiGEEKKcJKiqtCuuuILY2NiIY40aNQKo9K4FR4s6qJo2bRrff/89GRkZNGrUiPj4+Ijza9asqbLBCSGEEEIcTygU4vPPP2fHjh00atSIq666KmKW6XjbJMyZM4c6deqEd2MfM2YML774Is2bN+eNN94IB1/lFXVQdd1110V7iRBCCCEqQBaqlzZ8+HC6detGz5492bVrF126dGHLli3UqVOHn3/+mebNm/Ppp5+Wa6H5hAkTmDlzJgDLly9nxowZTJ06lY8++oiRI0fy7rvvRjW2qIOqRx99NNpLhBBCCFERsqN6KW+//Tb33HMPAKNGjeKMM87g//7v/6hTpw4HDx5k4MCBjBgxgrfeeuuEfe3cuZNzzjkHgPfee48bbriBu+66i8svv5yOHTtGPbao96latWoVX3/9danjX3/9dbh+jhBCCCGqgOxTVUpWVhYxMTEALFu2jCeeeII6deoAkJKSwsSJE0tVaClLQkICBw4cAGDRokXh7aFiYmIoLCyMemxRz1QNHTqUMWPG0KZNm4jju3fvZtKkSccMuH6xpP6fOAYdCqHzQkA+ACrrEAr3zzbniEy1kmw4BXgNA69SxHu9YFkon5s5aNetReEZtcmOTSXW7+D1Kmo7UFTLQBVFblinTQM7JUhiaj61YosAKLQ9TJhzE8lb3ay+jN25nHFgFzo/H2071Apn7dko03TrGx5j4WbsJgPnyKzf3Lzov5eSX/j9pa8vLEJlHQLDwNqmwn8wxRw1Jq01knssqo1SINmkNd65557LypUradKkCYmJieTk5EScz83NLfcC9C5duvDHP/6RVq1a8b///S+8tmrjxo00btw46rFFPVP13XffcfHFF5c63qpVK7777ruoByCEEEKIYytZU1WZ1y/NyJEjGT16NF988QVjx45l+PDh/Otf/+Knn37i888/Z/DgwfTp06dcfT3//PO0a9eO/fv3884775CamgrA6tWr6devX9Rji3qmyufzsXfvXs4666yI43v27MGyZM8mIYQQosrIlgqlDBo0iIMHD9KzZ0939tq26dq1a/h87969mTJlSrn6qlWrFjNmzCh1/LHHHot4P2TIEB5//PHwY8ayRB0FdenShbFjx/L++++TnJwMwKFDh3jooYdkh3UhhBBCVLv77ruP22+/ncWLF/PDDz/gOA7169fn8ssvp2nTplX+efPmzWP06NFVH1Q988wzXHnllTRq1IhWrVoBsG7dOtLS0nj11VcrNlohhBBClFbZR3i/wJmqErVq1eLGG288KZ9V3soNUa+patCgAd9++y2TJ0+mefPmtG7dmueee47169fTsGHDqAcqhBBCiDJI9l+53Xbbbfz000+ndAwVWgQVHx/PXXfdVdVjEUIIIYQ4rm+//faYx1977TV+97vfhdd8X3jhhSdzWEA5g6oPPviAHj164PF4+OCDD47btnfv3lUysNOFFFUWJ1LWtHHE8eLtCnQoFNFGHcwi7n8KDHdSuWQbhqT0uui8yG0JlO2AhrxdSYT21CYuU7Mzpx6NPt+MLixyU8UdB/uIz9WBw9syHP3ZEU5CEXWtdanPOe6YhKhi4W1FahJZqF7KRRddhFLqmH+2Xn/99eEC7vZJ+HPraOWKBq677joyMzOpV6/eccvUnKqbEEIIIX6JpExNaRdeeCFnnHEGTz/9dLhQstaapk2b8umnn1bLQvXyKteaKsdxqFevXvjXZb0koBJCCCFEdVq5ciXnnHMO119/PQcPHqRRo0bhjTozMjJo1KhR1IWQT+SWW24hKSnphO2iXqguhBBCCHGqeL1epk6dytNPP03v3r2ZOHFiuXdQL6/8/Hz+/e9/h9/PnDnzhNspQAUXqq9cuZIvvviCffv2lbqRZ599tiJdCiGEEOJosqaqTD169OCbb77htttu45NPPqnSvr///nuuuuqqqJ/ARR1UTZgwgUceeYTzzjuPtLS08MJZIOLXQgghhKgcWVN1fGlpaXzyySdMmzaNOnXqlOsRXXWKOqh67rnnePnllxk0aFA1DOc0JEWVRTXSR2fDFf9X7dpT6pz5cw6N34olZnc2xs9Z6KIidDCEEwqVmSkjhDiCMqSo8mlq+PDhDB8+vNztU1JSjnu+omvEow6qDMPg8ssvr9CHCSGEECJKEuNFONHWTiWOt8WT3+/nnnvuoWXLlsc8v3379lL1/8oj6qBq5MiRPP/880ydOjXqDxNCCCFEFGRNVSnH29qpxIm2eLroooto2LAhAwcOPOb5//znPycnqBo9ejQ9e/bk7LPPpnnz5ng8nojz7777btSDEEIIIYQoj6rI9OvZsyeHDh0q83xKSgq33npr1P1GHVQNGzaMzz//nKuuuorU1FRZnC6EEEJUE1moXj0eeuih455v2LAhr7zyStT9Rh1UzZ07l3feeYeePXtG/WFCCCGEiII8/iuXpKQk1q1bF677d6pEHVSlpKRw9tlnV8dYTltS/0+cbEdn/gE4+w8Qs/9Aqfp+FZlNVqZ5zM8Q4hfNUDWz/p84oYpkN2utWbJkCcuWLSMzMxOlFGlpaVx++eV06tSpQn92Rr2j+rhx43j00UcpKCiI+sOEEEIIUX4lj/8q8xKl7d69m4svvpgePXqwYMECfvjhB77//nsWLFhA9+7dueSSS9i9e3fU/UY9vTJt2jS2bt1KWloajRs3LrVQfc2aNVEPQgghhBDHII//yqW8tflKDBkyhJSUFHbu3En9+vUjzu3Zs4dbbrmFoUOH8t5770U1jqiDqvKkMgohhBBCnCwzZ86Mqv2//vUvvvrqq1IBFUD9+vV5+umnueKKK6IeR9RB1aOPPhr1hwghhBCiAmSm6rj+9a9/MWXKFDZt2oRSivPPP58RI0bQuXPn414XGxvLwYMHyzyflZVFbGxs1OOJek2VEEIIIU6Ok72mauLEiVx66aUkJiZSr149rrvuOjZv3hzRRmvNuHHjyMjIIDY2lo4dO7Jx48aINn6/n2HDhlGnTh3i4+Pp3bs3u3btimiTlZXFgAEDSE5OJjk5mQEDBhx376ijzZgxg+7du5OYmMi9997L8OHDSUpK4pprrmHGjBnHvfYPf/gDAwcO5O233yY7Ozt8PDs7m7fffpvbbruN/v37l3ssJcoVVKWkpPDzzz+Xu9MzzzyT7du3n7DdzJkzufDCC0lKSiIpKYl27drx6aefhs9X1Q+u2jmSJSVOPW3b7uuoLBitddSZMZL5J361Sur/1RS6Cl5RWLp0KUOHDmXFihUsXryYUChE165dyc/PD7eZPHkyzz77LDNmzGDVqlWkp6fTpUsXcnNzw21GjBjBggULmD9/Pl9++SV5eXn06tUrYpfz/v37s27dOhYuXMjChQtZt24dAwYMKPdYJ06cyJQpU3jjjTfCtf9ef/11pkyZwoQJE4577TPPPEPPnj25+eabSUlJITY2ltjYWFJSUrj55pvp2bMnTz31VBTfnEvpcvxpaxgGc+bMITk5uVyd9uvXj/Xr159wv4gPP/wQ0zQ555xzAJgzZw5PPfUUa9eu5YILLmDSpEk88cQTzJ49m3PPPZfx48fz73//m82bN5OYmAjAPffcw4cffsjs2bNJTU1l1KhRHDx4kNWrV2OaZrnGm5OTQ3JyMh35HZbynPiCY1A+X4WuE0IIUYM4Gh0KHreockgH+YL3yc7OjmpxdDRK/l46b8QETF9Mhfux/UVsnvpQhce6f/9+6tWrx9KlS7nyyivRWpORkcGIESN44IEHAHdyIy0tjUmTJjF48GCys7OpW7cur776KjfddBMAP/30Ew0bNuSTTz6hW7dubNq0iebNm7NixQratGkDwIoVK2jXrh3//e9/Oe+88044tsTERNauXRuOIUps2bKFVq1akZeXd8I+cnJyWL16NZmZmQCkp6fTunXrCv9cy72mqqz6OJVx7bXXRrx/4oknmDlzJitWrKB58+ZMnTqVhx9+mD59+gBu0JWWlsbrr78e/sHNmjWLV199Nfz8dN68eTRs2JAlS5bQrVu3Kh+zEEIIcdKc4jVVJY/GUlJSANi2bRuZmZl07do13Mbn89GhQweWLVvG4MGDWb16NcFgMKJNRkYGLVq0YNmyZXTr1o3ly5eTnJwcDqgA2rZtS3JyMsuWLStXUNW7d28WLFjA/fffH3H8/fffLxVflCUpKYmrrrqqXG3Lo1xBVVXU2TkR27Z56623yM/Pp127dlX2gxNCCCFOV1VVpiYnJyfiuM/nw3eCJyxaa+677z5++9vf0qJFC4DwjE5aWlpE27S0tPCyn8zMTLxeL7Vr1y7VpuT6zMxM6tWrV+oz69WrF25zLNOmTQv/ulmzZjzxxBN88cUXtGvXDnBnu7766itGjRp13Hv7+uuvOXjwID169Agfmzt3Lo8++ij5+flcd911TJ8+/YTf0dFO+Tbg69evp127dhQVFZGQkMCCBQto3rw5y5YtAyr/gzsWv9+P3+8Pvz/6N5sQQgjxS9KwYcOI948++ijjxo077jV/+tOf+Pbbb/nyyy9LnTt6t3Gt9Ql3ID+6zbHan6ifKVOmRLyvXbs23333Hd999134WK1atXj55Zd55JFHyuxn3LhxdOzYMRxUrV+/njvuuINBgwbRrFkznnrqKTIyMk74HR3tlAdV5513HuvWrePQoUO88847DBw4kKVLl4bPV8UP7mgTJ07kscceq9zAhRBCiOpWRY//du7cGbFO6EQzMMOGDeODDz7g3//+N2eccUb4eHp6OuBOahy5x9O+ffvCkyDp6ekEAgGysrIiJj327dtH+/btw2327t1b6nP3799fajLlSNu2bTvuuMtr3bp1/PWvfw2/nz9/Pm3atOGll14C3CC0PIHn0U75lgper5dzzjmHSy65hIkTJ/Kb3/yG5557LuIHd6SyfnBltTmWsWPHkp2dHX7t3Lmziu9KCCHEaam4/l9NUVVbKpRk2Ze8ygqqtNb86U9/4t133+Wzzz6jSZMmEeebNGlCeno6ixcvDh8LBAIsXbo0HDC1bt0aj8cT0WbPnj1s2LAh3KZdu3ZkZ2ezcuXKcJuvv/6a7OzscJvqlJWVFREnLF26lO7du4ffX3rppRWKDU75TNXRtNb4/f6IH1yrVq2Awz+4SZMmAZE/uL59+wKHf3CTJ08u8zPK8yxZCCGE+LUZOnQor7/+Ou+//z6JiYnhiY3k5GRiY2NRSjFixAgmTJhA06ZNadq0KRMmTCAuLi68r1NycjJ33HEHo0aNIjU1lZSUFEaPHk3Lli3DSWXNmjWje/fu3HnnnbzwwgsA3HXXXfTq1atci9QBbr/99uOef/nll8s8l5aWxrZt22jYsCGBQIA1a9ZEPMHKzc0tVYavPE5pUPXQQw/Ro0cPGjZsSG5uLvPnz+eLL75g4cKFVfaDE0IIIU5bJzn7r6TcS8eOHSOOv/LKKwwaNAiAMWPGUFhYyJAhQ8jKyqJNmzYsWrQovNURuGufLMuib9++FBYW0qlTJ2bPnh2x1dFrr73G8OHDw8lmvXv3PuGmnUc6+ilVMBhkw4YNHDp0iKuvvvq413bv3p0HH3yQSZMm8d577xEXFxdRlubbb7/l7LPPLvdYSkQdVF199dV06NChVLmarKwsrr/+ej777LNy97V3714GDBjAnj17SE5O5sILL2ThwoV06dIFqLofnBBCCHFaOslBVXk2ClZKMW7cuOOuN4qJiWH69OlMnz69zDYpKSnMmzcvugEeYcGCBaWOOY7DkCFDTrhP5vjx4+nTpw8dOnQgISGBOXPm4PV6w+dffvnliJ0Fyqtcm38eyTAMUlNTufzyy3nttdeIj48H3AApIyMjYrfU04Vs/imEECLMttGhUJmnT+bmn82GVH7zz01/q/jmn6ejzZs307FjR/bs2XPCttnZ2SQkJJSaiDl48CAJCQkRgVZ5VGih+pIlS8jMzKRt27b8+OOPFelCCCGEECegquD1a7N161ZCxwmKj5ScnHzMJ1spKSlRB1RQwTVV9evXZ+nSpdx+++1ceumlvPXWWzRr1qwiXf1yOBqMX+NvXyGE+IUpqf8XZc3ManGKd1Svye67776I91pr9uzZw8cffxxVFZhVq1bx1ltvsWPHDgKBQMS5d999N6oxRR1Ulez/5PP5eO211xg/fjzdu3cP1wASQgghRNWoqh3Vf4nWrl0b8d4wDOrWrcszzzxzwszAEvPnz+fWW2+la9euLF68mK5du7JlyxYyMzP5/e9/H/WYog6qjl6C9cgjj9CsWbNqqQ0ohBBCCHEsH3/8MVrr8NruH3/8kffee49GjRphWeULbyZMmMCUKVMYOnQoiYmJPPfcczRp0oTBgwdHbG5aXlGvqdq2bRt169aNOHb99dfz9ddfH3dPCCGEEEJESVfB6xfquuuu49VXXwXg0KFDtG3blmeeeYbrrrsuvDXEiWzdupWePXsC7hO4/Px8lFKMHDmSF198MeoxRR1UNWrU6JglYC644AKZrRJCCCGqmgRUx7RmzZrw3lJvv/12uDbw3LlzIwovH09KSgq5ubkANGjQgA0bNgBukFZQUBD1mGrcjupCCCGEECdSUFAQ3rdy0aJF9OnTB8MwaNu2Ldu3by9XH1dccQWLFy+mZcuW9O3bl3vvvZfPPvuMxYsX06lTp6jHJEGVEEIIUUPJQvWynXPOObz33nv8/ve/55///CcjR44E3Pq/5d2Ta8aMGRQVFQFuXWCPx8OXX35Jnz59+POf/xz1mCSoqiLatlGGfJ1CCHHaKy6qfLwNQE8a2VKhTH/5y1/o378/I0eOpFOnTrRr1w5wZ61KagafSEpKSvjXhmEwZswYxowZU+ExVWjzTyGEEEKIU+mGG25gx44dfPPNNyxcuDB8vFOnTkyZMqXc/WzdupVHHnmEfv36sW/fPgAWLlzIxo0box6TBFVCCCFEDVXy+K8yr1+y9PR0WrVqhWEcDmcuu+wyzj///HJdv3TpUlq2bMnXX3/Nu+++S15eHuAWVD66xnF5SFAlhBBC1FSypUK1evDBBxk/fjyLFy+OKEtz1VVXsXz58qj7k6BKCCGEEL9K69evP+bO6XXr1uXAgQNR9ydBlRBCCFFDyeO/6lWrVi327NlT6vjatWtp0KBB1P1JUFVVHNstqiyEEOL0p2rIX4/y+K9a9e/fnwceeIDMzEyUUjiOw1dffcXo0aO59dZbo+6vhvyuEUIIIUQpElRVqyeeeIIzzzyTBg0akJeXR/Pmzbnyyitp3749jzzySNT9ycZKQgghhPjV0Vrz008/8dJLL/HXv/6VNWvW4DgOrVq1omnTphXqU4IqIYQQooaSHdWrj9aapk2bsnHjRpo2bcpZZ51V6T7l8Z8QQghRU8njv2pjGAZNmzatUJZfmX1WWU9CCCGEEKeRyZMnc//997Nhw4Yq6U8e/1Uhqf8nhBC/EIY61SMAQGmN0hWfbqrMtb8Gt9xyCwUFBfzmN7/B6/USGxsbcf7gwYNR9ScRgBBCCFFTSUHlajV16tQq7U+CKiGEEEL8Kg0cOLDMc/v374+6P1lTJYQQQtRQsqP6yaW15pNPPqFPnz6cccYZUV8vQZUQQghRU0n230nxww8/8Mgjj3DmmWdy8803ExcXx/z586PuRx7/CSGEEOJXp6ioiLfffpu///3vrFixgi5durBnzx7WrVtHixYtKtSnBFVVybHBMWtM1ogQQohKUApOcfacbP5ZPYYMGcL8+fM577zzuOWWW3jnnXdITU3F4/FgGBV/iCdBlRBCCFFTSfZftXjxxRd54IEHePDBB0lMTKyyfmVNlRBCCFFDyUL16jF37lxWrlxJ/fr1uemmm/joo48IhUKV7leCKiGEEEL8qvTv35/FixezYcMGzj//fIYOHUr9+vVxHIfvvvuuwv1KUCWEEELUVJL9V60aN27MY489xo8//sirr77K9ddfzy233MIZZ5zB8OHDo+5P1lQJIYQQNZg8wqt+Sim6d+9O9+7dOXjwIHPnzuWVV16Juh+Zqapi2rZP9RCEEEJUAWWap3oI4hRISUlhxIgR/Oc//4n6WpmpEkIIIWoqrSu3rYMUVD6hXbt28cEHH7Bjxw4CgUD4uFKKZ555Jqq+JKgSQgghaijZp6p6/etf/6J37940adKEzZs306JFC3788Ue01lx88cVR9yeP/4QQQgjxqzR27FhGjRrFhg0biImJ4Z133mHnzp106NCBG2+8Mer+TmlQNXHiRC699FISExOpV68e1113HZs3b45oo7Vm3LhxZGRkEBsbS8eOHdm4cWNEG7/fz7Bhw6hTpw7x8fH07t2bXbt2ncxbEUIIIaqeZP9Vq02bNjFw4EAALMuisLCQhIQEHn/8cSZNmhR1f6c0qFq6dClDhw5lxYoVLF68mFAoRNeuXcnPzw+3mTx5Ms8++ywzZsxg1apVpKen06VLF3Jzc8NtRowYwYIFC5g/fz5ffvkleXl59OrVC1sWjQshhDiNKafyL1G2+Ph4/H4/ABkZGWzdujV87ueff466v1O6pmrhwoUR71955RXq1avH6tWrufLKK9FaM3XqVB5++GH69OkDwJw5c0hLS+P1119n8ODBZGdnM2vWLF599VU6d+4MwLx582jYsCFLliyhW7duJ/empP6fEEL8MiijRtT/E9Wnbdu2fPXVVzRv3pyePXsyatQo1q9fz7vvvkvbtm2j7q9GranKzs4G3HRGgG3btpGZmUnXrl3DbXw+Hx06dGDZsmUArF69mmAwGNEmIyODFi1ahNscze/3k5OTE/ESQgghahx5/Fetnn32Wdq0aQPAuHHj6NKlC//4xz9o1KgRs2bNirq/GpP9p7Xmvvvu47e//S0tWrQAIDMzE4C0tLSItmlpaWzfvj3cxuv1Urt27VJtSq4/2sSJE3nssceq+haEEEKIKiXZf9XrrLPOCv86Li6Ov/3tb5Xqr8bMVP3pT3/i22+/5Y033ih1TqnIR2la61LHjna8NmPHjiU7Ozv82rlzZ8UHLoQQQlSXkn2qKvMSZVq1ahVff/11qeNff/0133zzTdT91YigatiwYXzwwQd8/vnnnHHGGeHj6enpAKVmnPbt2xeevUpPTycQCJCVlVVmm6P5fD6SkpIiXkIIIYT4dRk6dOgxJ1Z2797N0KFDo+7vlAZVWmv+9Kc/8e677/LZZ5/RpEmTiPNNmjQhPT2dxYsXh48FAgGWLl1K+/btAWjdujUejyeizZ49e9iwYUO4jRBCCHE6Knn8V5mXKNt33313zE0+W7VqxXfffRd1f6d0TdXQoUN5/fXXef/990lMTAzPSCUnJxMbG4tSihEjRjBhwgSaNm1K06ZNmTBhAnFxcfTv3z/c9o477mDUqFGkpqaSkpLC6NGjadmyZTgbUAghhDgtVXaxuQRVx+Xz+di7d2/E2ipwJ2csK/oQ6ZQGVTNnzgSgY8eOEcdfeeUVBg0aBMCYMWMoLCxkyJAhZGVl0aZNGxYtWkRiYmK4/ZQpU7Asi759+1JYWEinTp2YPXs25ikqhqltG2XUmBwAIYQQFWEolGmiQ6FTPRJRTbp06cLYsWN5//33SU5OBuDQoUM89NBDdOnSJer+lNayii0nJ4fk5GQ68jss5al8h4aJ8khQJYQQpz3bLhVUhXSQL3if7OzsaluTW/L3Utuef8XyxFS4n1CwiBUf/7lax3o62717N1deeSUHDhygVatWAKxbt460tDQWL15Mw4YNo+pP/uYXQgghaqrKZvDJvMlxNWjQgG+//ZbXXnuN//znP8TGxnLbbbfRr18/PJ7oJ1kkqBJCCCHEr1Z8fDx33XVXlfQlQZUQQghRQ8nmn9Vv69atTJ06lU2bNqGUolmzZtx7772cffbZUfdVI/apEkIIIcQxSJmaavXPf/6T5s2bs3LlSi688EJatGjB119/zQUXXBCxVVN5yUxVdXBs5KsVQohfACmq/Iv24IMPMnLkSJ588slSxx944IGoMwBlpkoIIYSooWTzz+q1adMm7rjjjlLHb7/99gpt/ilBlRBCCFFTObryL1GmunXrsm7dulLH161bR7169aLuT55RCSGEEDWV7Khere68807uuusufvjhB9q3b49Sii+//JJJkyYxatSoqPuToEoIIYQQv0p//vOfSUxM5JlnnmHs2LEAZGRkMG7cOIYPHx51fxJUCSGEEDWUopJbKlTZSH55QqEQr732Gv369WPkyJHk5uYCRJTBi5asqRJCCCHKUlz/75Qp2VG9Mi9xTJZlcc899+D3+wE3mKpMQAUSVAkhhBDiV6pNmzasXbu2yvqTx39CCCFEDSU7qlevIUOGMGrUKHbt2kXr1q2Jj4+POH/hhRdG1Z/MVAkhhBA11UneUf3f//431157LRkZGSileO+99yKHozXjxo0jIyOD2NhYOnbsyMaNGyPa+P1+hg0bRp06dYiPj6d3797s2rUrok1WVhYDBgwgOTmZ5ORkBgwYwKFDh6IbbBW46aab2LZtG8OHD+fyyy/noosuCr9atWoVdX8SVAkhhBACgPz8fH7zm98wY8aMY56fPHkyzz77LDNmzGDVqlWkp6fTpUuX8CJvgBEjRrBgwQLmz5/Pl19+SV5eHr169cK27XCb/v37s27dOhYuXMjChQtZt24dAwYMqPb7O9q2bdvKfP3www9R9yeP/4QQQogaSmmNqsRi82iv7dGjBz169DjmOa01U6dO5eGHH6ZPnz4AzJkzh7S0NF5//XUGDx5MdnY2s2bN4tVXX6Vz584AzJs3j4YNG7JkyRK6devGpk2bWLhwIStWrKBNmzYAvPTSS7Rr147Nmzdz3nnnVfh+o5WQkEBqaioAO3fu5KWXXqKwsJDevXtzxRVXRN2fzFRVF9nFttoppVBKEoaFENWspP7fqeBUwauKbNu2jczMTLp27Ro+5vP56NChA8uWLQNg9erVBIPBiDYZGRm0aNEi3Gb58uUkJyeHAyqAtm3bkpycHG5T3davX0/jxo2pV68e559/PuvWrePSSy9lypQpvPjii1x11VWlHn2WhwRVQgghxC9cTk5OxKtkG4FoZGZmApCWlhZxPC0tLXwuMzMTr9dL7dq1j9vmWCVg6tWrF25T3caMGUPLli1ZunQpHTt2pFevXlxzzTVkZ2eTlZXF4MGDSxVZLg8JqoQQQogaquTxX2VeAA0bNgwvCk9OTmbixIkVH9NRs3Za6xM+NTi6zbHal6efqrJq1SqeeOIJfvvb3/L000/z008/MWTIEAzDwDAMhg0bxn//+9+o+5U1VUIIIURNVUW1/3bu3ElSUlL4sM/ni7qr9PR0wJ1pql+/fvj4vn37wrNX6enpBAIBsrKyImar9u3bR/v27cNt9u7dW6r//fv3l5oFqy4HDx4M309CQgLx8fGkpKSEz9euXTti8X15yUyVEEIIUVNV0Y7qSUlJEa+KBFVNmjQhPT2dxYsXh48FAgGWLl0aDphat26Nx+OJaLNnzx42bNgQbtOuXTuys7NZuXJluM3XX39NdnZ2uM3JcPSsWFXMkslMlRBCCCEAyMvL4/vvvw+/37ZtG+vWrSMlJYUzzzyTESNGMGHCBJo2bUrTpk2ZMGECcXFx9O/fH4Dk5GTuuOMORo0aRWpqKikpKYwePZqWLVuGswGbNWtG9+7dufPOO3nhhRcAuOuuu+jVq9dJzfwbNGhQOLgsKiri7rvvDm/+WZE1ZyBBVbXRto0y5OutDkf+a0JLXSshRHUrrv+nQ6GT/tEne0f1b775hquuuir8/r777gNg4MCBzJ49mzFjxlBYWMiQIUPIysqiTZs2LFq0KKJm3pQpU7Asi759+1JYWEinTp2YPXs25hE1FF977TWGDx8ezhLs3bt3mXtjVYeBAwdGvL/llltKtbn11luj7ldp+VuJnJwckpOT6cjvsJSnajo1TJRHgqrqIEGVEOKks+1wUBXSQb7gfbKzsyPWKVWlkr+XOrR7BMuKqXA/oVARS5ePr9axisNkTZUQQgghxP9v796DojrPP4B/D5ddEGHDRdlsAIMzRo2rJllTK9Go0aIWL6nTqgkqGe3FWozUJl5qZ6SZBpxMxzoZqx0dkziaRJuJuTR1GsE7kYoiNKCJ0QZFEUo0ZIGI7MI+vz/4cXRh8cIuZy98PzPnD855zznvc8Tdh/d9z/t6AJtSiIiIfJTiaNvcOZ+0w6SKiIjIV932Bl+3zyfNsPuPiIiIyAPYUtVTHK2AIxgI4tp0nsRB6kTkFe3r/2n9ueOhyT9JG0yqiIiIfNTtS81093zSDrv/iIiIiDyALVVERES+igPV/QqTKiIiIl8lANyZFoE5laaYVBEREfkojqnyLxxTRUREROQBbKnqQVxU2XM4lQIReZW3FlUWuDmmymM1oXvg1Zaqo0ePYsaMGTCZTFAUBR9++KHTcRFBdnY2TCYTwsPDMWHCBJw5c8apTHNzM5YtW4a4uDhERERg5syZuHLlioZREBER9ZD2gerubKQZryZV33//PUaOHIlNmza5PP7aa69hw4YN2LRpE06ePAmj0Ygf/ehHaGhoUMtkZWXhgw8+wO7du1FQUIDGxkZMnz4dra2tWoVBRERE5N3uv2nTpmHatGkuj4kINm7ciLVr12L27NkAgB07diA+Ph7vvPMOfvWrX8FqtWL79u3YuXMnJk+eDADYtWsXEhMTkZ+fjylTpmgWCxERkcc5ALizMAcXVNaUzw5Ur6ioQE1NDVJTU9V9er0e48ePx/HjxwEAxcXFsNvtTmVMJhPMZrNaxpXm5mbU19c7bURERL6m/e0/dzbSjs8mVTU1NQCA+Ph4p/3x8fHqsZqaGuh0OkRHR3dZxpXc3FwYDAZ1S0xM9HDtiYiIqLfx2aSq3e1vfQFt3YId93V0tzJr1qyB1WpVt8uXL3ukrp04WgEH/0pwh6Iobf+WQW2/qnzzj4i8RvHCVyYHqvsVn02qjEYjAHRqcaqtrVVbr4xGI2w2G+rq6ros44per0dUVJTTRkRE5HOYVPkVn02qkpOTYTQakZeXp+6z2Ww4cuQIUlJSAAAWiwWhoaFOZaqrq1FeXq6WISIiItKCV9/+a2xsxIULF9SfKyoqUFpaipiYGCQlJSErKws5OTkYNGgQBg0ahJycHPTp0wfPP/88AMBgMGDx4sX43e9+h9jYWMTExOCll17C8OHD1bcBiYiI/BYXVPYrXk2qTp06hYkTJ6o/r1ixAgCQkZGBt956CytXrkRTUxOWLl2Kuro6jB49Gvv370dkZKR6zl/+8heEhIRgzpw5aGpqwqRJk/DWW28hODhY83iIiIg8ilMq+BVFOPIX9fX1MBgMmIBZCFFCPXptJVQHBLnzP6J3U184CAoCHA4OVCci73EIxG5Di9hxGB/BarX22Jjc9u+lyY+sQEiwvtvXaWltRv5XG3q0rnSLz46pChTCmd27RVHa1tlqf+uPCRUReR3/QKa74Gq/REREvopjqvwKkyoiIiJf5RBAcSMx4lyJmmL3HxEREZEHsKWKiIjIV7H7z68wqSIiIvJZ7s6KzqRKS0yqepqjFXAE862Re3T7On9844+IfI6iME+hLjGpIiIi8lXs/vMrTKqIiIh8lUPgVtMY3/7TFN/+IyIiIvIAtlQRERH5KnG0be6cT5phUkVEROSrOKbKrzCp0oC0tkIJ4qO+E6e3/gC++UdEPkkJDga0bPzhmCq/wjFVRERERB7A5hMiIiJfxe4/v8KkioiIyFcJ3EyqPFYTugfs/iMiIiLyALZUERER+Sp2//kVJlVa4Pp/LinK/z8PrvVHRP5CCdJ2/T+HA269bujgPFVaYvcfERERkQewpYqIiMhXsfvPrzCpIiIi8lVMqvwKu/+IiIiIPIAtVURERL6Ky9T4FSZVREREPkrEAZHuv8Hnzrl0/5hUaYSLKrfpNI0CoL7yy+kUiMjnBSltiyq3aHQ/Efdam/i5qimOqSIiIiLyADadEBER+Spxc0wVW6o0xaSKiIjIVzkcgOLGuCiOqdIUu/+IiIiIPIAtVURERL6K3X9+hUmVVhyt6M2P2+mtP4eDiycT0X1p/wzR6nNDUZSu76Xh23/icEDc6P7jlAraYvcfERERkQf03qYTIiIiX8fuP7/CpIqIiMhXOQRQmFT5i4Dp/tu8eTOSk5MRFhYGi8WCY8eOebtKRERE1IsERFK1Z88eZGVlYe3atSgpKcG4ceMwbdo0VFZWertqRERE3SfSNtdUtze2VGkpIJKqDRs2YPHixfj5z3+OoUOHYuPGjUhMTMSWLVu8XbVeTVEUdWsnra0QEb75RwGp4+/87b/7Hr9PcHDbdts9lOBgKCHeHdXRVeyunkV7/e/0nHrqGd6Nr3xGiUPc3kg7fp9U2Ww2FBcXIzU11Wl/amoqjh8/7qVaEREReYBbrVSObs+oziE13eP3SdW1a9fQ2tqK+Ph4p/3x8fGoqalxeU5zczPq6+udNiIiIuKQGnf4fVLVrmMTsYh02Wycm5sLg8GgbomJiVpUkYiI6L54o/uPQ2q6z++Tqri4OAQHB3dqlaqtre3UetVuzZo1sFqt6nb58mUtqkpERHR/NO7+45Aa9/j9PFU6nQ4WiwV5eXn4yU9+ou7Py8vDrFmzXJ6j1+uh1+vVn9sHJLbA7tYca3ejiN/nsPfFVTuhj4z9JOoRt//Oi7T93BO/8woAtH+eiEO9hyKtABSItHr+pveoPeaOsbt6Foq0ql/6XT2n2693p3JaahE7AG0Gs7v7vdSCtrp2HObS8XuwXXeG1NAtfp9UAcCKFSuwYMECjBo1CmPGjMHWrVtRWVmJJUuW3NP5169fBwAUYF9PVhNo7tnLExGRdhoaGmAwGHrk2jqdDkajEQU17n8v9e3bt9Mwl3Xr1iE7O7vLc+5nSA3dEhBJ1dy5c3H9+nW88sorqK6uhtlsxr59+zBgwIB7Oj8mJgYAUFlZ2WP/QXxRfX09EhMTcfnyZURFRXm7Opph3Iy7N2DcPRe3iKChoQEmk6lHrg8AYWFhqKiogM1mc/tarhIiV61UQPeG1NAtAZFUAcDSpUuxdOnSbp0bFNTWjG4wGHrVh0+7qKgoxt2LMO7ehXH3DC3+AA8LC0NYWFiP3+d23RlSQ7cETFJFRERE7nN3SE1vxqSKiIiIVO4OqenNmFShrW953bp1XfYxByrGzbh7A8bNuOn+uTOkpjdTxFcWOCIiIiLyY71r4iQiIiKiHsKkioiIiMgDmFQREREReQCTKiIiIiIPYFIFYPPmzUhOTkZYWBgsFguOHTvm7Srds9zcXDz55JOIjIxE//798eyzz+LcuXNOZUQE2dnZMJlMCA8Px4QJE3DmzBmnMs3NzVi2bBni4uIQERGBmTNn4sqVK05l6urqsGDBAhgMBhgMBixYsADfffddT4d4V7m5uVAUBVlZWeq+QI65qqoK8+fPR2xsLPr06YPHHnsMxcXF6vFAi72lpQV/+MMfkJycjPDwcAwcOBCvvPIKHI5bC8UGSsxHjx7FjBkzYDKZoCgKPvzwQ6fjWsZZWVmJGTNmICIiAnFxcXjxxRc9Mru3K3eK2263Y9WqVRg+fDgiIiJgMpmwcOFCXL161e/jpgAkvdzu3bslNDRUtm3bJmfPnpXly5dLRESEXLp0ydtVuydTpkyRN998U8rLy6W0tFTS0tIkKSlJGhsb1TLr16+XyMhIef/996WsrEzmzp0rDz74oNTX16tllixZIg899JDk5eXJ6dOnZeLEiTJy5EhpaWlRy0ydOlXMZrMcP35cjh8/LmazWaZPn65pvB0VFRXJww8/LCNGjJDly5er+wM15m+//VYGDBggL7zwgpw4cUIqKiokPz9fLly4oJYJtNj/9Kc/SWxsrHzyySdSUVEh7733nvTt21c2btyolgmUmPft2ydr166V999/XwDIBx984HRcqzhbWlrEbDbLxIkT5fTp05KXlycmk0kyMzM1j/u7776TyZMny549e+TLL7+UwsJCGT16tFgsFqdr+GPcFHh6fVL1gx/8QJYsWeK0b8iQIbJ69Wov1cg9tbW1AkCOHDkiIiIOh0OMRqOsX79eLXPz5k0xGAzyt7/9TUTaPrRCQ0Nl9+7dapmqqioJCgqSf/3rXyIicvbsWQEg//73v9UyhYWFAkC+/PJLLULrpKGhQQYNGiR5eXkyfvx4NakK5JhXrVolY8eO7fJ4IMaelpYmixYtcto3e/ZsmT9/vogEZswi0im50DLOffv2SVBQkFRVVall3n33XdHr9WK1Wnsk3nauksmOioqKBID6x28gxE2BoVd3/9lsNhQXFyM1NdVpf2pqKo4fP+6lWrnHarUCuLVIdEVFBWpqapxi1Ov1GD9+vBpjcXEx7Ha7UxmTyQSz2ayWKSwshMFgwOjRo9UyP/zhD2EwGLz2rH7zm98gLS0NkydPdtofyDF//PHHGDVqFH72s5+hf//+ePzxx7Ft2zb1eCDGPnbsWBw4cABfffUVAOA///kPCgoK8OMf/xhAYMbsipZxFhYWwmw2Oy0YPGXKFDQ3Nzt1NXuL1WqFoih44IEHAPSeuMn39eoZ1a9du4bW1tZOK2/Hx8d3WqHbH4gIVqxYgbFjx8JsNgOAGoerGC9duqSW0el0iI6O7lSm/fyamhr079+/0z379+/vlWe1e/dunD59GidPnux0LFBjBoCvv/4aW7ZswYoVK/D73/8eRUVFePHFF6HX67Fw4cKAjH3VqlWwWq0YMmQIgoOD0draildffRXPPfecWlcgsGJ2Rcs4a2pqOt0nOjoaOp3O68/i5s2bWL16NZ5//nl1weTeEDf5h16dVLVTFMXpZxHptM8fZGZm4vPPP0dBQUGnY92JsWMZV+W98awuX76M5cuXY//+/XdcwT2QYm7ncDgwatQo5OTkAAAef/xxnDlzBlu2bMHChQvVcoEU+549e7Br1y688847GDZsGEpLS5GVlQWTyYSMjAy1XCDFfCdaxemLz8Jut2PevHlwOBzYvHnzXcsHStzkP3p1919cXByCg4M7/QVSW1vb6a8VX7ds2TJ8/PHHOHToEBISEtT9RqMRAO4Yo9FohM1mQ11d3R3L/O9//+t032+++UbzZ1VcXIza2lpYLBaEhIQgJCQER44cweuvv46QkBC1PoEUc7sHH3wQjz76qNO+oUOHorKyEkBg/nu//PLLWL16NebNm4fhw4djwYIF+O1vf4vc3Fy1rkBgxeyKlnEajcZO96mrq4Pdbvfas7Db7ZgzZw4qKiqQl5entlIBgR03+ZdenVTpdDpYLBbk5eU57c/Ly0NKSoqXanV/RASZmZnYu3cvDh48iOTkZKfjycnJMBqNTjHabDYcOXJEjdFisSA0NNSpTHV1NcrLy9UyY8aMgdVqRVFRkVrmxIkTsFqtmj+rSZMmoaysDKWlpeo2atQopKeno7S0FAMHDgy4mNs99dRTnabM+Oqrr9TV4wPx3/vGjRsICnL+qAoODlanVAjEmF3RMs4xY8agvLwc1dXVapn9+/dDr9fDYrH0aJyutCdU58+fR35+PmJjY52OB2rc5Ie0HBXvi9qnVNi+fbucPXtWsrKyJCIiQi5evOjtqt2TX//612IwGOTw4cNSXV2tbjdu3FDLrF+/XgwGg+zdu1fKysrkueeec/kadkJCguTn58vp06flmWeecfk68ogRI6SwsFAKCwtl+PDhXp9Sod3tb/+JBG7MRUVFEhISIq+++qqcP39e3n77benTp4/s2rVLLRNosWdkZMhDDz2kTqmwd+9eiYuLk5UrV6plAiXmhoYGKSkpkZKSEgEgGzZskJKSEvUtN63ibJ9aYNKkSXL69GnJz8+XhISEHpta4E5x2+12mTlzpiQkJEhpaanT51xzc7Nfx02Bp9cnVSIif/3rX2XAgAGi0+nkiSeeUKcj8AcAXG5vvvmmWsbhcMi6devEaDSKXq+Xp59+WsrKypyu09TUJJmZmRITEyPh4eEyffp0qaysdCpz/fp1SU9Pl8jISImMjJT09HSpq6vTIMq765hUBXLM//jHP8RsNoter5chQ4bI1q1bnY4HWuz19fWyfPlySUpKkrCwMBk4cKCsXbvW6Qs1UGI+dOiQy//PGRkZIqJtnJcuXZK0tDQJDw+XmJgYyczMlJs3b2oed0VFRZefc4cOHfLruCnwKCIi2rWLEREREQWmXj2mioiIiMhTmFQREREReQCTKiIiIiIPYFJFRERE5AFMqoiIiIg8gEkVERERkQcwqSIiIiLyACZVRF528eJFKIoCRVHw2GOPeeRapaWlHqmbv5swYYL6bPlMiKinMaki8hH5+fk4cOCAW9dITExEdXU1zGazh2qlrRdeeAHPPvusx663d+9ep7XeiIh6EpMqIh8RGxvbaaHY+xUcHAyj0YiQkJBunW+z2dy6v69ojyMmJgb9+vXzcm2IqLdgUkXkQd988w2MRiNycnLUfSdOnIBOp8P+/fvv61rtrTY5OTmIj4/HAw88gD/+8Y9oaWnByy+/jJiYGCQkJOCNN95Qz3HV/XfmzBmkpaUhKioKkZGRGDduHP773/863SM3NxcmkwmPPPIIAKCsrAzPPPMMwsPDERsbi1/+8pdobGx0q24AUFVVhblz5yI6OhqxsbGYNWsWLl68CADIzs7Gjh078NFHH6lddocPH77reXeKg4hIS0yqiDyoX79+eOONN5CdnY1Tp06hsbER8+fPx9KlS5Gamnrf1zt48CCuXr2Ko0ePYsOGDcjOzsb06dMRHR2NEydOYMmSJViyZAkuX77s8vyqqio8/fTTCAsLw8GDB1FcXIxFixahpaVFLXPgwAF88cUXyMvLwyeffIIbN25g6tSpiI6OxsmTJ/Hee+8hPz8fmZmZbtXtxo0bmDhxIvr27YujR4+ioKAAffv2xdSpU2Gz2fDSSy9hzpw5mDp1Kqqrq1FdXY2UlJS7ntdVHEREmvP2is5EgWjp0qXyyCOPSHp6upjNZmlqauqybEVFhQCQkpISp/0ZGRkyYMAAaW1tVfcNHjxYxo0bp/7c0tIiERER8u6777q81po1ayQ5OVlsNpvLe2dkZEh8fLw0Nzer+7Zu3SrR0dHS2Nio7vvnP/8pQUFBUlNT0+26bd++XQYPHiwOh0Mt09zcLOHh4fLpp5+q1501a5ZTHe/1vI5xtOvq+RIReVr3Bl4Q0R39+c9/htlsxt///necOnUKYWFh3brOsGHDEBR0q0E5Pj7eaRB6cHAwYmNjUVtb6/L80tJSjBs3DqGhoV3eY/jw4dDpdOrPX3zxBUaOHImIiAh131NPPQWHw4Fz584hPj6+W3UrLi7GhQsXEBkZ6XT/mzdvqt2RrtzreR3jICLSGpMqoh7w9ddf4+rVq3A4HLh06RJGjBjRret0TIYURXG5z+FwuDw/PDz8rve4PXkCABGBoiguy96+/37r5nA4YLFY8Pbbb3e67p0Gk9/reR3jICLSGpMqIg+z2WxIT0/H3LlzMWTIECxevBhlZWVqC4+WRowYgR07dsBut9+xtep2jz76KHbs2IHvv/9eTVQ+++wzBAUFuTUA/IknnsCePXvQv39/REVFuSyj0+nQ2tp63+cREfkCDlQn8rC1a9fCarXi9ddfx8qVKzF06FAsXrzYK3XJzMxEfX095s2bh1OnTuH8+fPYuXMnzp071+U56enpCAsLQ0ZGBsrLy3Ho0CEsW7YMCxYscCsxTE9PR1xcHGbNmoVjx46hoqICR44cwfLly3HlyhUAwMMPP4zPP/8c586dw7Vr12C32+/pPCIiX8CkisiDDh8+jI0bN2Lnzp2IiopCUFAQdu7ciYKCAmzZskXz+sTGxuLgwYNobGzE+PHjYbFYsG3btju2WvXp0weffvopvv32Wzz55JP46U9/ikmTJmHTpk1u1aVPnz44evQokpKSMHv2bAwdOhSLFi1CU1OT2gL1i1/8AoMHD8aoUaPQr18/fPbZZ/d0HhGRL1BERLxdCaLe7OLFi0hOTkZJSYnby9RQZ3y+RKQVtlQR+YiUlBSkpKR4uxoBZdq0aRg2bJi3q0FEvQRbqoi8rKWlRZ0dXK/XIzEx0bsVCiBVVVVoamoCACQlJXHKBSLqUUyqiIiIiDyA3X9EREREHsCkioiIiMgDmFQREREReQCTKiIiIiIPYFJFRERE5AFMqoiIiIg8gEkVERERkQcwqSIiIiLyACZVRERERB7wf9G4i9SdiKyLAAAAAElFTkSuQmCC", "text/plain": [ "
    " ] @@ -1196,28 +1295,28 @@ } ], "source": [ - "multiscale['scale2'].ds[name].isel(y=100).plot.imshow()" + "multiscale['scale3'].ds[name].isel(y=50).plot.imshow()" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 22, "id": "c0382d35", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 18, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHHCAYAAACFl+2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWeUlEQVR4nOydeXgURfrHv1U9M0k4wh0OOYyiIgIe4GJEEQUBxRt3F0VBYT3BA3ZF+YmgeCCuB+AB66qAK+iqq67igSjgBV6siOKNKCoCKoSQa2a6q35/VFd3dc8kZJIQCL6f5+lnMt3V1dU9IdR86/u+L5NSShAEQRAEQRC7FL67B0AQBEEQBPF7gCZdBEEQBEEQdQBNugiCIAiCIOoAmnQRBEEQBEHUATTpIgiCIAiCqANo0kUQBEEQBFEH0KSLIAiCIAiiDqBJF0EQBEEQRB1Aky6CIAiCIIg6gCZdBEGksO+++4IxBsYYxo4dW+t9X3DBBbXa5++JGTNmeJ8NYwy//vrr7h4SQRBVhCZdBFFLrFu3Dueeey7y8vKQk5ODAw44ANdff31KOyEEZs+ejcMOOww5OTlo0aIFTjjhBHz88ceBdrfeeitOO+00tG7dGowx3HjjjRmP6X//+x9OO+00NG/eHA0aNEC3bt0wa9asKp177LHH4l//+hdGjhyZ8XV/z5SWluLGG2/E8uXLd0n/gwcPxr/+9S+ceeaZu6R/giB2HZHdPQCC2BtYvXo1+vXrh3322Qd//etf0aJFC2zYsAE//PBDSttRo0ZhwYIFGDFiBMaOHYuSkhJ89NFH2LJlS6DdpEmT0KZNGxx++OFYvHhxxmN69dVXceqpp+Lwww/HDTfcgEaNGmHdunX48ccfq3T+fvvth/POOy/j6+6ML7/8Epzvvd/3SktLcdNNNwEA+vXrV+v9d+nSBV26dME333yDZ599ttb7Jwhi10GTLoKoIUIInH/++ejSpQuWLVuGnJycCts++eSTmD9/Pp555pmdKhXr16/Hvvvui19//RWtWrXKaExFRUUYMWIEhgwZgqeffnqPmuRkZWXVSj/l5eWIxWJ71L3tSkpKStCwYcPdPQyCIGrA7+OvFbFX8t133wW8LeGtrnj11Vfx6aefYsqUKcjJyUFpaSkcx0nb9u6778Yf/vAHnHnmmRBCoKSkpMJ+991332qPaeHChdi8eTNuvfVWcM5RUlICIUS1+9MsX74cjDE8+eSTuOmmm7DPPvugcePGOPvss7F9+3bE43FcffXVyMvLQ6NGjXDhhRciHo8H+kjn6SosLMS4ceOw7777IisrC+3bt8eIESM8v5K+7hNPPIFJkyZhn332QYMGDVBUVAQAeOqpp9CzZ0/k5OSgZcuWOO+88/DTTz8FrnHBBRegUaNG2LBhA0455RQ0atQI++yzD+6//34AwCeffIITTjgBDRs2RKdOnbBw4cKU+y8sLMTVV1+NDh06ICsrC507d8b06dO9Z/vdd995E+SbbrrJ+100l4a/+OILnH322WjevDmys7PRq1cvPP/884HrzJs3D4wxvPHGG7j88suRl5eH9u3bZ/hpEQSxp0FKF1FvadWqFf71r38F9iWTSYwbNw6xWKzSc5PJJLZv316l6zRv3rxSNeW1114DoBScXr16YdWqVYjFYjjzzDPxwAMPoHnz5gCU+vT+++/j8ssvx//93//h3nvvRXFxMfLz83H77bfjT3/6U5XGUxVee+015Obm4qeffsIZZ5yBr776Cg0bNsT555+Pe+65B9nZ2TXqf9q0acjJycF1112Hb775Bvfeey+i0Sg459i2bRtuvPFGvPvuu5g3bx7y8/MxefLkCvsqLi7Gsccei88//xyjRo3CEUccgV9//RXPP/88fvzxR7Rs2dJre/PNNyMWi+Fvf/sb4vE4YrEY5s2bhwsvvBBHHnkkpk2bhs2bN2PmzJl455138NFHH6Fp06be+Y7j4KSTTkLfvn1xxx13YMGCBRg7diwaNmyI66+/HsOHD8dZZ52FOXPmYMSIESgoKEB+fj4AtWx43HHH4aeffsIll1yCjh07YsWKFZg4cSJ+/vlnzJgxA61atcLs2bNx2WWX4cwzz8RZZ50FAOjRowcAYO3atejTpw/22WcfXHfddWjYsCGefPJJnHHGGfjPf/6Ton5efvnlaNWqFSZPnlzpBJ0giHqCJIi9iMsvv1xaliWXLl1aabtly5ZJAFXa1q9fX2lfp512mgQgW7RoIYcPHy6ffvppecMNN8hIJCKPPvpoKYSQUkr5v//9z2vXunVr+cADD8gFCxbIP/zhD5IxJl9++eW0/f/yyy8SgJwyZUqVn0OPHj1kgwYNZIMGDeQVV1wh//Of/8grrrhCApDDhg3b6fmdOnWSI0eOTNmvn1u3bt1kIpHw9p9zzjmSMSZPOumkQPuCggLZqVOnSvuePHmyBCCfeeaZlOvpZ6evu99++8nS0lLveCKRkHl5ebJbt26yrKzM279o0SIJQE6ePNnbN3LkSAlA3nbbbd6+bdu2yZycHMkYk0888YS3/4svvkh55jfffLNs2LCh/OqrrwJjvO6666RlWXLDhg1Syso/r/79+8vu3bvL8vLywD0effTR8oADDvD2zZ07VwKQxxxzjLRtO6UfKaWcMmWKBCB/+eWXtMcJgtjzIKWL2Gt49NFH8cADD+Cuu+7C8ccfX2nbQw89FEuWLKlSv23atKn0eHFxMQDgyCOPxGOPPQYAGDp0KBo0aICJEyfi9ddfx4ABA7x2v/32G95991307t0bAHDaaachPz8ft9xyCwYPHlylMe2M4uJilJaW4tJLL/WiFc866ywkEgn84x//wNSpU3HAAQdUu/8RI0YgGo1673v37o3HH38co0aNCrTr3bs3Zs2aBdu2EYmk/3Pzn//8B4ceemhaj1t4mXjkyJEBz9yHH36ILVu24MYbbwyod0OGDEGXLl3w4osveqZ2zV/+8hfv56ZNm+Kggw7CN998E1AaDzroIDRt2hTffvutt++pp57Csccei2bNmgXSNAwYMAC333473nzzTQwfPjztPQLA1q1bsXTpUkydOhU7duzAjh07vGODBg3ClClT8NNPP2Gfffbx9l900UWwLKvCPgmCqF/QpIvYK1i9ejUuvfRSnHPOORg/fvxO2zdr1gwDBgyolWvrScA555wT2H/uuedi4sSJWLFiBQYMGOC1y8/P9yZcANCoUSOceuqpeOyxxyqdnNTWmP7xj39g5cqVNZp0dezYMfC+SZMmAIAOHTqk7BdCYPv27WjRokXavtatW4ehQ4dW6bp6qU/z/fffA1CTpDBdunTB22+/HdiXnZ2dEpTQpEkTtG/fPmWC16RJE2zbts17//XXX2PNmjUVBjWEo0/DfPPNN5BS4oYbbsANN9xQYR/mpCt8vwRB1G9o0kXUe7Zt24ahQ4fiwAMPxEMPPVSlcxKJBLZu3Vqltq1atapUbWjXrh0AoHXr1oH9eXl53vgqa6fbJpNJlJSUeBOYmtCuXTusXbt2p2OqLhU9j4r2SylrdD1NZZGhVaEm4xZC4MQTT8SECRPStj3wwAMrvbY22//tb3/DoEGD0rbp3Llz4H1N75cgiD0LmnQR9RohBIYPH47CwkK89tpraNCgQZXOW7FixU6XIDU6dUNF9OzZE//85z9TouU2btwIAJ4y0q5dO7Rp0yalnW6bnZ2Nxo0bV2lMO6Nnz55YsmQJfvrpp4AKFB7TnsD++++PTz/9tFrndurUCYDK/XXCCScEjn355Zfe8dpg//33R3Fx8U4V0ooiZ/fbbz8AQDQarTWVlSCI+gWljCDqNTfddBMWL16Mxx9/PKOlGO3pqsq2M0/X6aefjqysLMydOzeQlkGrbieeeKK3789//jN++OGHgJ/s119/xX//+1+ccMIJ1co59euvv+KLL75AaWmpt0/7kx5++OFA24ceegiRSGSXJO2sLkOHDsXHH3+cNtHnzhSyXr16IS8vD3PmzAmkpnj55Zfx+eefY8iQIbU2zj/96U9YuXJl2kS1hYWFsG0bALyJf2FhYaBNXl4e+vXrh3/84x/4+eefU/r45Zdfam2sBEHsmZDSRdRbPvnkE9x8883o27cvtmzZ4pnYNZVlU69NT1ebNm1w/fXXY/LkyRg8eDDOOOMMfPzxx/jnP/+Jc845B0ceeaTXduLEiXjyyScxdOhQjB8/Hk2aNMGcOXOQTCZx2223Bfr917/+he+//96bTL355pu45ZZbAADnn3++p+Lcd999uOmmm7Bs2TJvMnX44Ydj1KhReOSRR2DbNo477jgsX74cTz31FCZOnOgtde4JXHPNNXj66afxxz/+EaNGjULPnj2xdetWPP/885gzZw4OPfTQCs+NRqOYPn06LrzwQhx33HE455xzvJQR++67L8aNG1er43z++edxyimn4IILLkDPnj1RUlKCTz75BE8//TS+++47tGzZEjk5OejatSv+/e9/48ADD0Tz5s3RrVs3dOvWDffffz+OOeYYdO/eHRdddBH2228/bN68GStXrsSPP/6YUgqKIIi9jN0bPEkQ1WdnaR/qEiGEvPfee+WBBx4oo9Go7NChg5w0aVIgrYJm3bp18swzz5S5ubkyJydHnnDCCfL9999PaXfcccdVeG/Lli3z2unUAeY+KVU6hRtvvFF26tRJRqNR2blzZ3nPPfdU6X52ljLiqaeeCuzXKQ4++OCDwP50aQ3S9f3bb7/JsWPHyn322UfGYjHZvn17OXLkSPnrr79Wel3Nv//9b3n44YfLrKws2bx5czl8+HD5448/BtqMHDlSNmzYMOXc4447Th5yyCFpn8GQIUMC+3bs2CEnTpwoO3fuLGOxmGzZsqU8+uij5Z133hn4rFesWCF79uwpY7FYSvqIdevWyREjRsg2bdrIaDQq99lnH3nKKafIp59+eqfP04RSRhBE/YNJWUsOV4Ig9hr23XdfFBQU4N5770VOTg6Vn9mDKC8vR3FxMe644w78/e9/xy+//BJIIEsQxJ4LeboIgkjLE088gVatWuHaa6/d3UMhDObMmYNWrVrh73//++4eCkEQGUKeLoIgUliwYAHKysoApObeInYvQ4cORbdu3bz3tZFihCCIuoGWFwmCIAiCIOoAWl4kCIIgCIKoA2jSRRAEQRAEUQfQpIsgCIIgCKIOICN9FRBCYOPGjWjcuHGFJT4IgiAIAlCVFHbs2IF27dpVq8pEVSkvL0cikahxP7FYDNnZ2bUwImJn0KSrCmzcuJEiuAiCIIiM+OGHH9C+fftd0nd5eTnyOzXCpi1Ojftq06YN1q9fTxOvOoAmXVVAFyE+BicjwmIA42CcAYwDnIExALvw28xuIZ2iJ2VgP7MsIBIBIhEwzoGIBRmLqmcRsQDGIC0GGbUAziAB9WpxSM4ADkjOIBmDiDIADFK9uNczrs0BO4dDRJi7ASIKSLcPhM5jQoIJ9bPUHw1zj8k0/TO3L8bcPlU7JgEIgDsSzDHauu3Vz+69MEBE3P3uez0maTxOJkKbY7RhgLQAJxa8n0g5wGx3HO55kgPCYpCWuq6Iuf07ALfd9rZ0+2QQHBBZgLDUNfR9yqgEuN4vIWMS0pJAVIBFBLglwZiEcBiEbQEJDh7ngPCfBSwJGQkFQjPVL7gEuATjqh/9DBmD92GYv21SMkihXiEZpGCAw4AkA09wWHGGyA6m7lE/O/1ZGP8MmVCfnfmcWehzl/pzCn1egeOWOp/HgVixRO53cUS3lYEXlUCWxgE7AZm01b8Pov7g1kmVEoCQkI4DSLd2ag0/SxtJvI2Xaq2AfToSiQQ2bXHw/ap9kdu4+v//FO0Q6NTzOyQSCZp01QE06aoCekkxgigiLKomXcyddDHm/7w3kW7SlbKLgyECIALGOMAiAItCcnfWwTkk45BMTbq8SZjF3f+omTfpkt7P8CdQ0r+u5AwyxsAiegN4xPhPU09+9MRKT7oQmhzBPSaBtJMuzrz/aFVb/z9vbktvwhaYdBnnMMuYYAUmZsaljIkAJAKTOTA1+UHUeN4SsKTqmzlq4gWpjnNjzHD8/piQ6lHE3OPqY4LMcp+bBUgu/QkHdz9yDjhRCRkVQESCZTngUQHLEhAOh2NzyAQHi1repIsxNVljEXNGa3yOTE24wOBOvADG3AmYnnTpyakEhGNBOAxMqAkXsxlgMTCu/q1xxmAl1O8Ac1QXaZ+zE3rOIjg88zM0zw1/xtJ97pYArKhE1AIiTIBzG9K9LwmW5t8HsUfj/oGQ7jcxyTjUL7XaWyP0d4s6sKM0aszQqHH1ryPoF7dOoUkXQRAEQdRTHCng1GCO6Gh1j6gTaNJF1AwpACkgJQNzHEBYQZGKMUBKpdanXbKEoegEly/9pTlXydFKlrn8KH1RjEFCgvlKFlwVpKKxmwM19zFf6ZLcVUyYu/IQUsi85UgruLRVGSzdNd3XdEuSnpLjLnkK9x6D6p2rbjm++gO4y5TcV2ykq3IJSwYVHv0cPWVPPU0A4EzCsgQYU3uEYErZcq8t3eVDJcdJVyIyn5NaLmTcV+j0x865/zD0cqJwGKTjLik6DBBK9YLwP0/J3XHqz1D/LgSWmA2Vy1CvzN8NGL8fgaVH/TkYSph3jgCYlICQ6oEJWlYkdh8CEqIGylxNziUyZy9bEyMIgiAIgtgzIaWLSE9YdUqHEIDFAceVpxnzf+bMNehoxzdLneILAJZSDaSA8u1Iw5fjyiFMKgXLH5ureEhf+fDULqlULq1wAGabNN/owmpXOhWKq/2SM8D1SnkXNZW3sC9Iqys8ZPcxjqVVvbTXyPCriYgahtDDYcwfq/uqzfPau6SDAaTZL9PKVNAPF1Acjfbak8VdE7wQDIKHbkjC7dj48CTUZ25eWzBluBcSjAOCK9nJFUOVyiVdlcvmSuWSAHNclUuwwPikYaPS/j3z8wyrXDCGFgimMH/fjL6l8Yzcx+ApiupeSSEgdj8CAjVZIKzZ2USm0KSLIAiCIOopjpRwavAFoCbnEplDy4sEQRAEQRB1ACldRM0QEuACkAzSESptgJRgjmvPZAxw1NKUFAIMHJJJMO7a3iW8pUNvaTG83Mf0UpFqoEzMDIy7S4wwDNLSfzXXHQPm/tCyXOBaug9TcfeWqWTgPNXGWJ/SS5HhNuZSJPwxMtOYH17JNdIZSA5Ix10u1PccWD6V0KkiuJsuwu8kTb9GKgTJpRcA4HngLQkZzq0A3+ie8qyYa7q3Q2kTQsuB0MuITKUGYdy7Ad8PL/QA9fNj7vP3zfl6eZel+awCn7H5u6DHYDwD79bMz6aCfdAGekf9bsMRtMRI7BGQkb5+QZMugiAIgqinCEg4NOmqN9Cki6gRUrpJSLV047j5FZgEExKSCdco76pcEGCSuQoVcw30huFbSrU/5UL+JdKmZjCN6Yb6kdGfk7CyYV7X6Nc0aKvkotLN5s4gjKSmgVQM5hjTpTJINxZtegf8BKyum14Zu2XaPsMGe++WAuZ4X/HShn2vuU6T4PYhJYPjcBUXIVUKB638aMmIuT/LlMgA3VdIdeMqOEI4SrFMm5/RU9OYYWLXpno/YCBwf8alWFg1DT2DQHJUPc6wmd5VULmblJY7Su2CEO4mIUntIgiiitCkiyAIgiDqKbS8WL8gIz1RMZV9g9fHhFDf9KXhcREhz4uUririvgoZUCA8xcYrzyM9dcn35sgU71Og5ItuG1J8AlVp0vibzBQNqhwR/M1VgdTFDHVFuMpHErASgBXXm/TrAZrXlqHzbMN/5ZheLHjPRbLgFkhk6qk0LFB3Ml3tQIT7SDOmYFoFUzoCpMMhHAbH5nBsC9JxS/NohUv34zCwBAOPc29jSa72a18WgAr/vrsfoFeP0S2vA+3VcxO2erUqQwqXDHyOvoKV8kzMdpaq36nreDpR4737OxDw4XmJY4XydZHCRewB6OjFmmyZMHv2bPTo0QO5ubnIzc1FQUEBXn75Ze94v379wNzyeHq79NJLA31s2LABQ4YMQYMGDZCXl4drrrkGtm0H2ixfvhxHHHEEsrKy0LlzZ8ybN6/az2hPgpQugiAIgiCqRPv27XH77bfjgAMOgJQS8+fPx+mnn46PPvoIhxxyCADgoosuwtSpU71zGjRo4P3sOA6GDBmCNm3aYMWKFfj5558xYsQIRKNR3HbbbQCA9evXY8iQIbj00kuxYMECvP766/jLX/6Ctm3bYtCgQXV7w7UMTbqI6mMmUBUSgAPJLdfCw5QiwJjyfYUTnJp9wI1IlMxNnOmXoAHge7zSRJ+pPiofppkgNKXQtdcf89Qtr+C1uiV1nnktz99llBsSbnkcLl2lzC1dZIXGKU0lzFD8XN8TE94jcdUff7ySqcfqedq8kD/mliuSXpJR5oZ1hhWglI9AJzV1LwfmFVPyhiZgqchFwC/PIw1/leG98joyoxUF3HJQ7nOFVL6wULFrBriRrVJFMTLplX/iASVTm+aCn2EYFSHpjkEaz8GICgUMX5dpOzMVUq2seaWWlHrrKbwEsRsRQA2To2bGqaeeGnh/6623Yvbs2Xj33Xe9SVeDBg3Qpk2btOe/+uqr+Oyzz/Daa6+hdevWOOyww3DzzTfj2muvxY033ohYLIY5c+YgPz8fd911FwDg4IMPxttvv4177rmn3k+6aHmRIAiCIOopjhu9WJMNAIqKigJbPB7f+bUdB0888QRKSkpQUFDg7V+wYAFatmyJbt26YeLEiSgtLfWOrVy5Et27d0fr1q29fYMGDUJRURHWrl3rtRkwYEDgWoMGDcLKlStr9Kz2BEjpIiqniuWAJOeuP8gofs2Y8uYIV6ZwFS+4vq1ABCNTKgK4r3YBpq+J+fmldOHrNATyMwFe1GAgMM1QjvwT3c0s/SLT9xk4x1O9AO5KVNICREQpXgIs4KfyoyClrxCFAvvCUZQV5ZzylBr3+p6KY6hfOupRRyQKSxpqnvRVnoAHTUeXus/IBqS+mHCVLu0Fc6MWdfFpnfdLWnALYPvPSF1DyXXSLX4tOVO/HlqJM5+Bvhcu3RJMhtgZuD48VS/wa8G8Q4YPDoHySl5fFXni4NnNDA+cJD8XscfgSLXV5HwA6NChQ2D/lClTcOONN6Y955NPPkFBQQHKy8vRqFEjPPvss+jatSsA4Nxzz0WnTp3Qrl07rFmzBtdeey2+/PJLPPPMMwCATZs2BSZcALz3mzZtqrRNUVERysrKkJOTU/0b3s3QpIsgCIIgfuf88MMPyM3N9d5nZWVV2Paggw7C6tWrsX37djz99NMYOXIk3njjDXTt2hUXX3yx16579+5o27Yt+vfvj3Xr1mH//fffpfdQH6BJF1E9vCrFLlrtkkFlSxW81j/D2O/2ATfPl1awPGlCKw9+dF7A/FMRWpGQflOd5JxVFt3H/Q2Gx8fr0x2zWTxZ6nxkrk+LS4DbrsLl5uySDMrXZfSVdticBZUW7c2CDEpAhmqWglZrvALdfvuAymPeq2HD8nNiqc4lg2v4YP41vTxZLJA3KzA2DlXY2vLlRq+d0M/M9Yw5zM10r+Uk+PfrecOCEpapPOnPJOB3Cylm0vg55Vl5H4D7DEzFy3zOptLoRe7qV/J1EbuP2vJ06WjEqhCLxdC5c2cAQM+ePfHBBx9g5syZ+Mc//pHStnfv3gCAb775Bvvvvz/atGmD999/P9Bm8+bNAOD5wNq0aePtM9vk5ubWa5ULIE8XQRAEQdRbBBicGmyi0m+xVRyDEBV6wFavXg0AaNu2LQCgoKAAn3zyCbZs2eK1WbJkCXJzc70lyoKCArz++uuBfpYsWRLwjdVXSOkiCIIgCKJKTJw4ESeddBI6duyIHTt2YOHChVi+fDkWL16MdevWYeHChTj55JPRokULrFmzBuPGjUPfvn3Ro0cPAMDAgQPRtWtXnH/++bjjjjuwadMmTJo0CWPGjPGWNC+99FLcd999mDBhAkaNGoWlS5fiySefxIsvvrg7b71WoEkXsXMqM9OHjzmO2g2AMddMLwTAmEoF4C7PMMkAR0Ba2i3tLy16KR7My5iabEWmUekvPeklQcmYv3yp2xmrV8ZqpuoitOzEQstLXnFlGWyjlhilqv3NAW65+WEtNxesxVKM4vraMvxo9XXMJVUYS2jMf06Be4Z/n1LfZ2gJzV8682+AGYlHlXFddS45c5+RDJrhBXOTujJvic97JO6SK9xn7icjlW7aCHfpUhe7FmoNT8ItB+Qt30o1jtAH5CdK9Y3t3rIgR7BMVEXLsGkwAy+804yl2ZTlSILYQxDSX+mu7vmZsGXLFowYMQI///wzmjRpgh49emDx4sU48cQT8cMPP+C1117DjBkzUFJSgg4dOmDo0KGYNGmSd75lWVi0aBEuu+wyFBQUoGHDhhg5cmQgr1d+fj5efPFFjBs3DjNnzkT79u3x0EMP1ft0EQBNugiCIAii3qKXCWtyfiY8/PDDFR7r0KED3njjjZ320alTJ7z00kuVtunXrx8++uijjMZWH6BJF1F9tHKh1S5X0QpUphZCFb7mrqmeWZ6hnrnZMyVzTdZW6iVSwvg9U7tSRsLqlacCARUkY0VQpdLtdRJUL/UBAmkR0pbMgdEWwbaAhAUGx1aCj4Cr3FTl/kRoHOlId2uuiT1wyFSFjPgGzzDvmuPN4AOdTNRrG75ummt7JnOt0Dl+AIRftDvNV2pdPFtfi6vkqIzBSyViPpeAwmUkZmXuvWq1KyUNBxBQrCpSrTz1M43aWtG9g3NP4SUIgqgMmnQRBEEQRD2lrpUuombQpIuoGjtLkmoelwKQDNIRvo/HTSXBuFvgJ9BevWjlJaxQSa+dm2rA9BfBUC1CqpPuN6xqeL4sfQ6DSswq/CSfajxaUZEB/5SZoFRwpbgxN6Erk9LwfUlwh8HR6gvcJJ8V4KtQCKpGgWdh7Ap7ltz3XmJXqcbFHaYSnFqqT+aWOPLKDRmPzOvH3LmzcSDYnukSP45Kgsp0YwZV5kf66pb3mYWeq3cRyQDHVLdYQHVE6LM0FaqwV09fK1AMG6FzTCXT7dssoK520H9SxJ6DkAyiBobDmpxLZA6ljCAIgiAIgqgDSOkiahWplR7T1xUqmxIofi0kYDFfdgmpLyntoVUc1VD7mMxSO2Dw/Vimf2tnUTqmMhb+8hdWuYx26ouiuriwGHigke9F8hQ141o6sWdFpB2zvk99TAY3Zv4sADiuCmcrpUgK6UUWqqLQbvRg6P50AlvvsUrlvWMOA0+6ipNjKIcS/tc43VYrWfqZMpaiFsKCipB0zXhSX9AtOcS8DX7xaeOzZdJVEI1Iw4CCl07lMpKoynTPzfg9DPvHUoxulByV2I3Q8mL9giZdBEEQBFFPccDh1GDRikJA6haadBG1h6kAaF+XW+Tai2AMtJGu8qHkHllBBKMmJZoupGBI3ZdWOrQXR1/O8H4F+kj3c+C+YCggoQ7TKFGBYtlCuuqSW50nXeSfgCrqLH0VSL+GfVdm7iiGStQ77/qqPXMAbqpSeiyuEMmgPFgA3NI6zLtfaTHfqyUAbjPwJLw8XbpPU3WUXH8OzFeXQuMHk5ARfb9MqV3CeK6SpeQCCzwH7z5YYH9AxTKUL1PlMqNCvbNDz16rXZ6vz9Gvxi9iTRIkEUQtIGvo6ZLk6apTyNNFEARBEARRB5DSRdSMigpfa1+XkCo1Oze8XUKAgUNarsIhZIUKl1a3AhGHIbVLKStKUZHQXiOV6ymsdqXLteR90TN9UBKeh8iPnJMhZUkGVRYZOKSSqjvwJBNpFr4Oj0d7hbTCZPzLNJUzs++wtykQCRg+J3RNaanC3ODSz5WlVZ2AR8z9fN3s9H7Ba3/TRaeZHqv2uGlFy1S/TF+VpW9cP29fFfOUNUdd03tsZsFufa0K1Eb/uu4+9/mnFBbXr6Hn6o8L4LYqZs4T6vdXlRsgLxex+yFPV/2CJl0EQRAEUU9xJIdTYRblqpxfi4MhdgotLxIEQRAEQdQBpHQRVWdnCVJT2gtAOP6SosPUcpxluUuPag2MQRnu9VIOALWs5C4ReWtlUhdgRnAJyG0iuWovBVSKBNf4zB2kXYLyTjVM69zxPdvccZcpjRI5KUuIxhKj5ME1PSbVkpQanDLK62UxPWYvmSngZthQRcGlzXzvOPP785b19LKnsbQoIixw7UACUgsQFiAiEiICiKiEjKg1QZZE8HPVS43uR+gnjfCXEXf2LIHQ8h9XS8kC7hKtBfUZ6+gCnVLDMMF7y5vMfcZcPR/G9QPT15RpzcCBpUVjWdO8gbSlnYx7YQKw4hJWORApl4iUO2DxJGDbqmB7Sp0kgqhbBBhEDfQTUdkfR6LWoUkXQRAEQdRTyNNVv9ity4tvvvkmTj31VLRr1w6MMTz33HOB41JKTJ48GW3btkVOTg4GDBiAr7/+OtBm69atGD58OHJzc9G0aVOMHj0axcXFgTZr1qzBsccei+zsbHTo0AF33HHHrr613xdh9Uu4CoDQRnpHGY+FcAtgC5Ww032FVrmE+lmnmFDG7dC3MCm9Ui1hVQUcrooDSO+VpaQI0EWgA5t3faPvtPdqvJoG/kDSTaXIMUeCJ6VSShJq40nppW4wVZa0ZYbCl9YKV2CTnjQnuVK09L1XtMmohIxKwJLKSG8+m4Cx3x2PmxCVOSw1MME9R4Y3rTrqMWnju0RQqUu6iVaTbhqKJAt8Jt59mX1ZCD7zlHJSwU3vS0dYIDNLAzEBMBuwyoFomUCk1IFVZgNJG9K2XSWXzPQEQVSd3TrpKikpwaGHHor7778/7fE77rgDs2bNwpw5c/Dee++hYcOGGDRoEMrLy702w4cPx9q1a7FkyRIsWrQIb775Ji6++GLveFFREQYOHIhOnTph1apV+Pvf/44bb7wRDz744C6/P4IgCILYlWgjfU02ou7YrcuLJ510Ek466aS0x6SUmDFjBiZNmoTTTz8dAPDoo4+idevWeO655zBs2DB8/vnneOWVV/DBBx+gV69eAIB7770XJ598Mu688060a9cOCxYsQCKRwCOPPIJYLIZDDjkEq1evxt133x2YnBFVpKqFr4VQ3i0p3MLXjlKAmFsIG4AEh3L5cDAuIC33H79A2q8DAT+XeUlXbVKeJXefpcL8BfNVIbjnsnTiBE8jMBkeqgptD0aqBP3eV+4AZis1idsMIgowC3BiALQvSac1MBJ4muqZDClP5ph0SSEGP7FqyjDdPkXEVYi0yhVxlS4JSMdNCWGkjzAVN/P+fK+Y62NjhkXK9YJ5ypcF149lnmskgHUAaUn/vpkqHi4ML1ZAtQrdl5ck1ntuxrVZaExuH2nzQOp+TN+eOz5uS+XlKhWIlNjgpQkgmVR+LkdLjOSJIXYfytNV/SXCmpxLZM4eO8Vdv349Nm3ahAEDBnj7mjRpgt69e2PlypUAgJUrV6Jp06behAsABgwYAM453nvvPa9N3759EYvFvDaDBg3Cl19+iW3bttXR3RAEQRAE8XtnjzXSb9q0CQDQunXrwP7WrVt7xzZt2oS8vLzA8UgkgubNmwfa5Ofnp/ShjzVr1izl2vF4HPF43HtfVFRUw7vZy0indoWTpAJ+8WvpFr4Wwk2uqRQCT+1yJRqJCtQIM2moW9bG9DGBB31MTKpLwlVBeIKpMjemSmR6wdwhasVEK1vclp5KxkNRjFpx8/rV782IQo1Q7ZgDcDBIR0UMSc58acpQbtJ98TT79NWdsCHJH4f3DA0/lIgCIktCZjlgMQFuqUhJ4bjRlYKBacXHS5LKvOFVNB5/Z2qjFJVL+9jc9kzqouUSzFUbA0W0BXOjSPXmFu42I1K10mX5vw+Ar5YFno+o+BnrIFnTz8UTQLTU9XOVJMHKEpDJpPIpCkEqF7HbETWsvUjRi3XLHqt07U6mTZuGJk2aeFuHDh1295AIgiAIIgXydNUv9tin3aZNGwDA5s2bA/s3b97sHWvTpg22bNkSOG7bNrZu3Rpok64P8xphJk6ciO3bt3vbDz/8UPMb+j3gRZG535x0FKOUyv/ilU+R/ma2DyODygO3ZcDL5Ck4EdezFAFETMKJSYiYvw9G7ic/15UbISlC13AkmK2iDJmtcnV5Kpf2dgV8VaHNVF8sQFpMbWaEnaeIhcsKmZ4pI/oufD2tZGmVTys8+hJGhKU0VcAsCZnjINLARk7DOBo0LEd2TgIsy4GMCLc0kExRGln4+g7Sl1cK/zoIBu6ojQlf5UrX3rtvHSlpuxGNNsDjDFa5u8UBKwFf7XLvV0b8Tbg5yQLeLhj9hyJHU0oBCeUHtJISkbhEpNRBpCQJXp4AK08AjkP5uYg9BgFe442oO/bYp52fn482bdrg9ddf9/YVFRXhvffeQ0FBAQCgoKAAhYWFWLVqlddm6dKlEEKgd+/eXps333wTyWTSa7NkyRIcdNBBaZcWASArKwu5ubmBjSAIgiAIoibsVk9XcXExvvnmG+/9+vXrsXr1ajRv3hwdO3bE1VdfjVtuuQUHHHAA8vPzccMNN6Bdu3Y444wzAAAHH3wwBg8ejIsuughz5sxBMpnE2LFjMWzYMLRr1w4AcO655+Kmm27C6NGjce211+LTTz/FzJkzcc899+yOW957yCQ7vVDygRQMjHMwRyjlR0gwLiHTySSuX0qCqVxUQCBiTkfHyQjzlC5P2QIAR6qoHKlUDzd4EoBSmPzIPPf6hsrhFX7WiohGRxHqtzL43nsueoyW9kgZ19M+N8Z8gS+ktqg2TPnM3MfM7NQxBTLbh9+7z8h7NlkSTrZEVuM4GjeIo1FWHJxJxO0IkokIkg6HdCSkw/xITlcRlDAiDs0xp/v4dTv3WQWUJiNa0/R7mWg/GQCvmDZP+j4v5a8Lfi7azyXMgtZpPh/92ZpiWyD6EsY1khI84WajL7PBypJgZXEgmfRVW1K7iD0ARzI4acNyq34+UXfs1knXhx9+iOOPP957P378eADAyJEjMW/ePEyYMAElJSW4+OKLUVhYiGOOOQavvPIKsrOzvXMWLFiAsWPHon///uCcY+jQoZg1a5Z3vEmTJnj11VcxZswY9OzZEy1btsTkyZMpXQRBEARR73FqaKR3yEhfp+zWSVe/fv0q9UYwxjB16lRMnTq1wjbNmzfHwoULK71Ojx498NZbb1V7nARBEARBEDVlj00ZQdRzzCSp0o3T1yWBhOUXvzYN9Sl9IFhQ2iv/wowCzvBLw5gmcA6AS0jLXS5zi1GnpqNAcH3JSLuQFjPpZrolNuamQNAmeQZ3ec7MNRG6PuAlNmX6cej0Btz/2UulIL1L+ctlzN+8Mjx6eTEm4cQAkS3QtFEZ8hoWIzeqqjoUJ7OwtbgB7IQFyXgg4EAnQdVG+oDhvIJnl3JfMFI0MEBY0l9i1I8svLwqjJ/TLOF6QQTGfaddIansC7x+Rvo29JKm4y7l2oCVUIlReZkNFk/45X+o9A+xByEkh6hBBKKgZfI6hSZdBEEQBFFPoeXF+gVNuojqU1UzvdCShQPJGZjjZiIVDHDc0kBuoWtP5XHgGrp987xfJsdVu8xi00YZGLMcTeAclma4IWVHhszy3q2yUFvdLqT2eCZuuIoXpKtYKbVLpnlensqlH6k2y+tEpYCfjkIaxnwGr3RO6vNRm4jBU7lYjo3mOaVom7MdTaNlEJJhK2+ISKS5G9DgP3svEalrZk9bOkmrbObf+5Bypx9x4JFKw8RupMgw+w3gqn2SV3C8ol/BdPEZpplfj8W9P52EldsSVlIpXTwhwONJsERSqVy27Z5H/1ERBJE5NOkiCIIgiHqKQM0iEGmxvG6hSRdRu5jlgFwlTKlYAhBceboiEeV50qkjJAccqcoBuUgOpYRZfteeSsR8xSJQ+NhIN+C9Gv4mrXZJ5pcF8nxj0k8bEfZHgbmeLCMNQoVqVyhVgrSUEqU8XqYkptUjdTLT13L747Yak6fuhFQuXx3zx669XJ73zVJ+LhGTkDGBaJaN1jk70C5rO1pGd0BIjihzkB21UWr596d8TcxP06CVR+8zdvvX96s/L9ODFfZjuc+T6xwN3rMN5ZVgrtoZ9qeZHjfjGZpqZgDT51XR/0eGyqV/d7gtwZMqVUSkXJX/YeUJIJFUKpeoxINIELuBmiY4peSodQs9bYIgCIIgiDqAlC6ibhAS4DqKUQAO81UxR4AJ4Rap5r7xSitUrtoEmK9atXLfCgCuQgP4XigI39/kKVhhQn4is6ROSkJQpL73fk6jrPgeMZUMVUUCqlJD3j1YvqKjIzOlVsG0MpRGQWLeGFQ7ppODcv/a0gJkTIJlCeRkJ7Fvzm84OOcntIlsR1JaaGyV4YPsTthRmg3HjSzUham1zwn6Vd+Pvj/ttYL/XnvywGAUzTa8aSmKGQuqkZ5UmOYz0QofN5RGPaZ0pDnOzM8wTWQkc3T5H7fIdalSuXSRayr/Q+xp1LR+ItVerFto0kUQBEEQ9RQBpqpv1OB8ou6gSRdRM9JFMJq+LkAVvuYcDAwQElIIMM6VwsWYEhuciPJ0Manya4EpX1ZVvoR5EXeqQLJWL7R6otUN6damMX1Rar9qJ728X0p9YVwqMccNtgwUtNb37t6vrEB1CRe0hpTgtgx4lHTOMaVySQjGjGhBFfEYGHNYeRPK2wWbQejHr9UuLiEjEpGYg8bZcXTO3oxDYpvQ2hJISolslkSL7BL8GmuIeCwKWe7LSGaxbU+1MpWu0L2JSOiYVruM4tLMNu6Buc+bA3B9aIyjYsuUvnZFyqNry/Pyo7ntTVUsJTJVR2Bqq5mjCmpb5ar8Dy9LQsYTgG375X8IYg+ClK76BT1tgiAIgiCIOoCULqLmVKZ2mce0r0tnpncz1jPGlF+GQ+XtggBzc3AxAS+Pl3ctQw5nUvmNpJuxPVKmPFOSMciIob4YkX/6PEB7qZiX3V5ElacKADiYKgLNofxiEp4ME1DJzHs0H4OhSulzzbxb+tXzKOnAODeSzhx3wBsV8jt50ZJmJJ57TFoALIlozEajWBytrCK0sgRaWg2RlA52yDI0j5WiYVYCxdFs2FHpRz+6KpF+xubteYGX5lAsV1nT44YfVamz2nPbV77SRRh6kaFhjGhG01MX8NfpfG1aDQu/pkOPyy2kbSUAKy4QKbPBy22w8gSkcNTvLBW5JvZAap4clbSXuoQmXQRBEARRTxGSQdQkT1cNziUyh6a4BEEQBEEQdQApXUTtsLOSQKaZXgpI6ZrDhbu+IySYI6EqgVlgtgAiXK0OcZVYlJlLi+5pzIaXxJMnJGI7JLijCis7MQYnCxAxFlrSMtaotDnbKy2kluSYCBmxjVWltMtfKc8j2E6nvfB2WcYSpXHtQNqJkGndTP6aMgYzAazeLAkZlWAxB1lRGw0iCQBAuZQoFQnEpY1SEQGHRIQLcEsAlgyOA+41Bbyi3VIb/d0lTW/ZzwbAmVeIG9pAr830ZtHsNKk5PNO+LnAe+nVKW8ZJn+slvg32nS5dhGnE90r/JJV5PloqEClxYJXaYGVuUlRKFUHswYgaLi9SctS6hSZdBEEQBFFPEZJD1CACsSbnEplDT5vYdaSTJXQZFdOYLN2fhXDN4MJPIuoZy4MpE1RpGgkrIZVCUSyRVSSRvdVBVqGD7EIHWTsEoqWuAmNG+ptJOd10D7poNsLKSCUCR0BFEdIvKRM2s+u0EK6xXylwDLa7iQhzU0ak2Zgq7B14rDpxqaHyeSoed9MwRAARBWRUwIoKRCz1AL5LtsLqeB7eLG+MpWVt8E5ZZ2wsy0VJIgbh8KA6ZahUzH3+KQlhXfXNVIx4EuAJY3z6c2PB5yDdZK76mXtKnlFkuyJTfaDAt+X3p+9bbSpdhrQQCA7wAhSEq3DFlcoVKQOiJQKRUhu8NAEWT0Amk36qCFK7CAKzZ89Gjx49kJubi9zcXBQUFODll1/2jpeXl2PMmDFo0aIFGjVqhKFDh2Lz5s2BPjZs2IAhQ4agQYMGyMvLwzXXXANbF5N3Wb58OY444ghkZWWhc+fOmDdvXl3c3i6HJl0EQRAEUU9xwGq8ZUL79u1x++23Y9WqVfjwww9xwgkn4PTTT8fatWsBAOPGjcMLL7yAp556Cm+88QY2btyIs846yx+v42DIkCFIJBJYsWIF5s+fj3nz5mHy5Mlem/Xr12PIkCE4/vjjsXr1alx99dX4y1/+gsWLF9fOQ9uNMElmhZ1SVFSEJk2aoB9OR4THAMbBOAMYdz0sDOA0fwVQua8LADgHi0QAS79aAOeQWVH1c8SCtBhkLKJ8ThEOGeUQEY5kIwsiyuBEmXqNuV0mgUi5RLREIGtrXKUpiHEkG0SQbMQRb8ohLK2OqbQAOhWDUpIAO8dNF+Em6/RVGwkr4b4mkaJ2hJUYz7ulrWeBYtuhtBKhNBae8sYBEVMJUz0VSCs/jvFqjF9EALuh8rA5WYCTI+FkS4hWCeQ0jKNpwzK0yClFxwbbAABxEUGJHUOxnYWfinJRUpaFRGkMstRCbKsFq5wpFSihlEKe9D1wkjMvFUfAO2UqSe79ec8o7KcyvGue0uj1b/SZ8rzglyUy+vKULtfLFkgv4W7cYb5vzH2ekTKlykXKJaKlEg1/iiOyIw5WXAZWUgaZSECWx93r05/KvQo30a10lXfpuLln1M4adW3LJJbjv9i+fTtyc3NrOtK06P+XbnpvALIbVd8pVF5sY0rv12o01ubNm+Pvf/87zj77bLRq1QoLFy7E2WefDQD44osvcPDBB2PlypU46qij8PLLL+OUU07Bxo0b0bp1awDAnDlzcO211+KXX35BLBbDtddeixdffBGffvqpd41hw4ahsLAQr7zySrXvdU+AZgoEQRAEQWSM4zh44oknUFJSgoKCAqxatQrJZBIDBgzw2nTp0gUdO3bEypUrAQArV65E9+7dvQkXAAwaNAhFRUWeWrZy5cpAH7qN7qM+Q0Z6ou6RKjRQSgkmVI0dJiQk19lBqyZ3a8XHSkhEyt0CxSUJQEpIO+omSGVIuHlYg34t1yOmi0W7Koo0lJF0EYgq+jLNt+CwghP+2b2WNJVABkgwMNMoZWQfdWtPp17DTA6q+zT9TVHAyZJwGjlo3qwYzRuUoUmsDA0iCWyJN0JxMgtldhRJx4IjGYTg6vlwGfgaFvSlMU9ZS4d+dmYe0nBR6cCzDJzsnp/yvIJtTcUsoKgFojalr5bpdq665dUOD0VBMiHBXTWPx22weBIsnoS0HZXEFyCVi9hjcYCMlwjD5wNKOTPJyspCVlZW2nM++eQTFBQUoLy8HI0aNcKzzz6Lrl27YvXq1YjFYmjatGmgfevWrbFp0yYAwKZNmwITLn1cH6usTVFREcrKypCTk1OdW90jIKWLIAiCIOopOnqxJhsAdOjQAU2aNPG2adOmVXjNgw46CKtXr8Z7772Hyy67DCNHjsRnn31WV7dcryGli6hbhAAs7pUCUnm4uB/FKGUo0rDib3CqfIuOYBSwymyw8qR3Ho9ZYLb0ouACWoU09oV8PrrvsN/KL46sxqTO971O+rpeZJ35qq8D1af0+ghdw1V4mHADEsO+pvDPbr96v2SAiEk4DQSiTeLo0epndMzZiiZWGZLSwlclrWELDs4kIjGB7EgSCcfC1vKG+IU3RKnNIbnle62YoTgZn4VWprxnWFE+LCPiNHDMeDaBPnRb5r+aBbPTRZMGVK+Ug+Y1VSF1xv3PXatsOhJWK12wbUCX/yGVi9iDqa2C1z/88EPA01WRygUAsVgMnTt3BgD07NkTH3zwAWbOnIk///nPSCQSKCwsDKhdmzdvRps2bQAAbdq0wfvvvx/oT0c3mm3CEY+bN29Gbm5uvVa5AFK6CIIgCOJ3j04BobfKJl1hhBCIx+Po2bMnotEoXn/9de/Yl19+iQ0bNqCgoAAAUFBQgE8++QRbtmzx2ixZsgS5ubno2rWr18bsQ7fRfdRnSOkiapedZaYH/MLXkvnFr2UEOn8X49LNAO76p4QRdeYqFzovlipQLBEpd1SB4kRSXT9igTlCtXOgMsBzpKgvTI/Zy5Dvq1imf0jl85Ip9azBWNCrZHqJWMUqjM7ubiox6o5dNca9vte1OWaR0p3nb/M64kAkItA2azs6xn5DU6sUJSKGLdHG4Ewiyh00j5agZXQHSp0sfF2ah6TgiJfHAB71x63VKK3CSXd8OshLH2P+e/8ezQcV9HSZKiP0pZxgxKJMo3IFCo2bSpnRRhqfXdhX5g/AfXWfG7cBnhBgCRtI2p6fi4K7iT0dCQZRA0+XzPDciRMn4qSTTkLHjh2xY8cOLFy4EMuXL8fixYvRpEkTjB49GuPHj0fz5s2Rm5uLK664AgUFBTjqqKMAAAMHDkTXrl1x/vnn44477sCmTZswadIkjBkzxpvoXXrppbjvvvswYcIEjBo1CkuXLsWTTz6JF198sdr3uadAky6CIAiCqKfU1vJiVdmyZQtGjBiBn3/+GU2aNEGPHj2wePFinHjiiQCAe+65B5xzDB06FPF4HIMGDcIDDzzgnW9ZFhYtWoTLLrsMBQUFaNiwIUaOHImpU6d6bfLz8/Hiiy9i3LhxmDlzJtq3b4+HHnoIgwYNqvZ97inQpIsgCIIgiCrx8MMPV3o8Ozsb999/P+6///4K23Tq1AkvvfRSpf3069cPH330UbXGWBtYllWldo6OcK4iNOkiap+dLDGqVBHQ64Re8WvmCGXWlqocDeN6qUiq40KCCeYtpXEHsOICkTIHvMwGjycB21FGfdsBcyS4LcEdCekwb9mJmUtG5tKTTLMPwWWxwHn6x/CaY8j0rlM66OPm0qKJXnJjkJCSBZbTzKVFpp+fvpxbdJrZarlVlDOIEo7y7Cx8saM1ip0s5EbKERcRfF/aHEIyNIuVwYoJNOblsCCRYyUR5QKMSc/ULs2lxcA41fiYgEqIatw7M+8/dH/ecqFua6aK0OcYSVI9k7suc2R+JhzBAIWQ3z3FzC9YYKlRJ5tV6Ub8lCOsPAEklZHeK/9DEHswQjKIcHX4DM8nUpFSolOnThg5ciQOP/zwWuuXJl0EQRAEUU9xwOHUICauJufuzbz//vt4+OGHMXPmTOTn52PUqFEYPnw4mjVrVqN+adJF7BoqU7uEgOQcTJpmepUkVaeNUGpKqsSkVR4uXZWiTKWK4OVJpVLYNiAtIOKAJR1wW4DbgOQSwqrCNzrPXB9UWJg0im+jAvUL8JNxIkXoSZvuwDsn5T6hUme4x8yi014KDC2guQEA3JEQtlu+p4xBFkbx6U/t8FVWHiwu4AiORDwCKyLQpGEZduRmobxhFNk8iTInClvwlDEE1KGwQghfZTMTlUKG7slUvkKmeF3yR5cQ0v15glnYCK8N9EbJIa3IpfUDG2ohhP9cdRBGpAyIlkpEdziwShNAIglp2yq4g1Qugvjd0qtXL/Tq1Qv33HMPnn76acydOxfXXnstTj31VIwePdrzsGUKTXEJgiAIop6ilxdrshEVk52djfPOOw+vv/46Pv30U2zZsgWDBw/G1q1bq9UfKV3ErmNn6SOEBOAEFC5/P/xzGfMTc0rl52KASohaasMqTYKVaZXCUaqUbQEJGzwegZUQkK5BTHKWVjkxNzMhaKraA2+c6YpdM7AUj5dOiFqR0hUglHKhslPM0jmSA8JikLpItgR4gsH+NRu2Vt8cBuYAdpbEltwoHMEhJEP7BoVICgsRLsAtgYDgJfUzMHxoIc+W5+NyXyV336b5SpeS9kKrgvrcsGoVVrBCbXShbbglgFL+/9CqmeHxYm7BbJ4EImUSkVKBSGkSvCwJmXD9XN79UsoIYs9GgEPUQD+pybm/F3788UfMmzcP8+bNQ2lpKa655ppqFwenSRdBEARBEIRBIpHAs88+i4cffhhvvfUWTjrpJMyYMQMnnXRSlSMb00GTLmLXUpHapX1dAsrPJQQguCp8bf4+hyPnXG8TE1IVuC5TKhdLJCGTSUC4pYVsR0UwJh1VyNhyVS7IlCLWkjOICCAivlIUiMKDqXiFVC5DMUsp2gwEVLLgAf/6VUF5mNwIPCY9AUZyNWYRAUTM3aLK1gYJWGVuJKg7VmkBcABpc5QnIyhOZiEh1J8BiwtEIg7i7rOSIUUrGNGZJgKTM6VuGaqV+RwCKpennrGgIsaC56Z450y/nKmwSfUwVXJZoy9zAMYO5gDMBiJxAUsn1i1PQJpRi6RyEfUARzI4NVgirMm5ezNt27ZF48aNMXLkSDzwwAPIy8sDAJSUlATaZap40aSLIAiCIOoplDJi17Bt2zZs27YNN998M2655ZaU41JKMMYoTxdRjxACsCxACkgh3DI8Rm4ksxg04Co2ah+3Jaxy2y/9E3cjFx3DIyYEmCO9AtraI6U9W57KZSmVS8SUEqQjECEYmCM9D5H2bEFKr/yMqaakeI3SqV66LeCrY9zsgxk/6xONfgHA8ksPSQ5f6YoCwvL7Y65lDsxtE5MQTZKIZDnIyk6iUXYcAFCYyEGpHUPSsSClUp4kD92cSUUCULr9oTBOXcLJVM/MSM2wuKTvO1DsWiobl/l8zILj6r1MVcuM98wBrKSEVa5+j1g8CSRtQFLEIlG/kJJD1CAjvazBuXszy5Yt2yX90qSLIAiCIAjC4Ljjjtsl/dKki9j1VBLF6GWndxyAc4AxMK6UL12EWnrZ6KVboFjCSgqlTsRDuZX09cwcS0Zup7CXSitFMuKqQWn8kSm+IvdeZFjacVWWgNplnO8VZw6pY+pVNw7ur3AMeuzcVbcs5t0fk6qAs3p+gIhKODlK5dqvwy9oEitDzHJgC46EiODn0lwkHAvF5Vmwk1UwiKb5KCVjSn5yowm9Zx32hYXvR6gC2loRSxexGVDuzEhSt1/t72LCiJwES+sH09GvPAlYcSBSZoOXJb1M9OTnIuobDhicGhS8rsm5ezNFRUVVakeeLoIgCIL4nSBkzXxZgr5fpKVp06ZgOytnR54ugiAIgiCImkGeLmLvxCsJJFViU84BxwGz3bJAjKlvG0yCJ93C17YETzpg5UmwuF5aFP5XtvAKmTbCuwlEA4Z2Dr+kDIJpDZiQYI7xvoJlRq+vypYE3eUz02AfTKkgAyb6YMdpUlSEzg8Y9wVUgWdHJyFlgJDgEYG2DYrQOqsIDji2JhqguCwLW0sawHY4kkkLdtJKCRBIO6TQciiYuzTLjWdqFq8OjJN5ARFqiVA9GGkuH4YCEaRbWDtgqA89I8BdYmRpVrP1sqIN8ARgxVWha6vUVol1k7b6PaKlRaKeIWpopK/JuXszu8rTRU+bIAiCIOopAqzGG5GKEALTp09Hnz59cOSRR+K6665DWVlZjfslpYuoG3ZSAFub4KXN1J+ARNL7U8ABz0wPKcGTAixhg8WV+VmnitBr7BomjKLZhjKTIli5KoiZaFOXitEpDszEqCm4fWsTuGfwrshI7jYy1SuVjsIwlac8PzeZqJl+QYQSi7r3oZOPckepOsIGJONIxGL4sbgpyp0IOJMoTmZhezwb8UQEjm1BCAYI4/qVjJ/pHRIpCp1WFb0kt4ZyJrmhRoWN8carNM4z00Z46TxC6HM9lYsZ13D74rZrni+XiJRJREscsLKkn1jXttM8eIIgfo/ceuutuPHGGzFgwADk5ORg5syZ2LJlCx555JEa9UtKF0EQBEHUU3RG+ppsRCqPPvooHnjgASxevBjPPfccXnjhBSxYsABC1CyXHyldRN1RWeoIxxe5pZCut0sAdgTMjkBGuFs2SIAlHZXIMp5QCkXSLVCsk626ipjfuXttQ+YKeINcr48AfD+YLlUjggoMkOrdMq+l/FDMT8AK+IpRWO0y0OoYmFuuKIO/g7rEDrd9dYkZBZ0lB7jNwKSFH5o0w2+NGiAWUaqOTogaHoz2uYVL+aQdu5uIlDMGEfJhefet1S1HPVrOGKQwvGxprhVIfgpf5fKelUkFPjRTUVNpIiQiZUCsRCBS4oCVx/3EuuHfG4KoB5Cna9ewYcMGnHzyyd77AQMGgDGGjRs3on379tXul542QRAEQRCEgW3byM7ODuyLRqNIJpM16peULqJuqawANpR/CtwtWh2xwJI2ELHAOIfkTB13VDHrFJULrvcrzWUDalXAH6VUFuZIMO77vrzjIZXL6wsVqEDePcJXrNJE41UGkxKpoZDw/F5mpKMuocMcCeYYSp5w/V2OOs6TAI8DoiSKUgYkYxY4l2BMgnO3E3A4XKoSQNwv/u19ETZVQuO9l3zWUAaledwUHd2+BHO9XdJQuXjoWhX4twJerZSHh0B/AJSiBj9yMVImECkViJSopKje71GG+XYIYk9AoIa1F8lInxYpJS644AJkZWV5+8rLy3HppZeiYcOG3r5nnnkmo35p0kUQBEEQ9RRZwwjE9F9TiZEjR6bsO++882rcL026iD0HV+2C5GBIQNocsDjAOJjFfc+XIwDhpKhcKUjXo2MoNNKMRtRtBPOVId3W0aqNW6YoXHwbqd6ilLxcXpgi/GhG91iKSib90wIqkfn30PM2MV99014pXSOcQylG7qVtqRQrJwewG0ggohoKh7vRnhKMwVO7JAAnIiEsgFuuR8zMt1WBr0vj+a6EUpbMCEUm/chK3Zbpc8woSf3YzGjFilRF49loD1m42Li+Lk9IL3IxUmKDlflRi5K8XEQ9RcgaKl1kpE/L3Llzd0m/5OkiCIIgCIKoAt9//z0+++yzakcxktJF1D2V5ewCfMULQvmUOINMAmBcGXQAVSjZLHCdcgmVvR46s7xwlSsmU5QS7RFSecDUPq+98JUSZv4bq8BvpPsD3PMc6b93oxoD/q40UY3MvSetaHntTEJqmdeG+UW7dQFvGQGcbMDJkWAR98kK7oZrAtxy3OT/EpxJOJaEtKQqBM6NMYe8bYFxGEqTvg+eNLxlhsIVhulISe7+LA1fGPN/TpuNXqt/YZXLUNyYrSM5gWiZRLTEBi9NqshFHbVImeiJegpFL+4aHnnkERQWFmL8+PHevosvvhgPP/wwAOCggw7C4sWL0aFDh4z6padNEARBEPUUvbxYk41I5cEHH0SzZs2896+88grmzp2LRx99FB988AGaNm2Km266KeN+SekiCIIgCIIw+Prrr9GrVy/v/X//+1+cfvrpGD58OADgtttuw4UXXphxvzTpInYPVVhiBNzVJAcA5/DWw/RaekXLQVJ4iS6ZEG46BamKQBtLeyr5p37jLoHppUCRfkmM6WtKNyUEgsbtlEwPZqFspuKEvFQSYYM9kH7Z0HsQwXaBItNMLeNx3Vb3wVUbEXWXCwWDTLon6McZY+CWBOfCO0dGJKSlTPjSUs/JLP0TSOkQXtYzl1eFNtW7AQmhJVppuR+j+0y8pcWdmedD1wwkUjU/Q8cv/xMtk4iUOLBKkuDlCVUs3S0fRRD1lZrWT6SUEekpKytDbm6u937FihUYPXq0936//fbDpk2bMu6XlhcJgiAIop5Cy4u7hk6dOmHVqlUAgF9//RVr165Fnz59vOObNm1CkyZNMu6XlC5i95FO7apIddiZupXSt1BlhBxhqFZKPgmXl1HtDaO81OkjzHwQagvntJGm0sJYwETv/RBOsyAlPN0oXRoJU4HzupHu9fz9AfM4lGFcG8f1MREL9Z10HesCKkgBgHQYnJiAjAKMS4BLQCtcOm0E81M8mElmpZFOQpcN8q6tHgmURsnAHAlulFVKUanCz5Qbr2EqUBY9FQ5wgyhcpSsh3YSoNni5mxQ1kXDTj5CJniCIICNHjsSYMWOwdu1aLF26FF26dEHPnj294ytWrEC3bt0y7nePVrocx8ENN9yA/Px85OTkYP/998fNN98cWA6QUmLy5Mlo27YtcnJyMGDAAHz99deBfrZu3Yrhw4cjNzcXTZs2xejRo1FcXFzXt0MQBEEQtQopXbuGCRMm4KKLLsIzzzyD7OxsPPXUU4Hj77zzDs4555yM+92jla7p06dj9uzZmD9/Pg455BB8+OGHuPDCC9GkSRNceeWVAIA77rgDs2bNwvz585Gfn48bbrgBgwYNwmeffebVTRo+fDh+/vlnLFmyBMlkEhdeeCEuvvhiLFy4cHfeHgGkql2MpVcdqqpECOH35yZONVNB6PI8porFJMB1BRh3N3ekkepAq0xITd0QGiOrpEGgiHPgwM5vK6x8pb+AqzRZSh2Srp9LK1VMACzBAcHAbaiksFJZ5tw8q+ARAbilgNQGryB1cEBITXcR9rZF1KOTlqscOir/g5lCoqLnUZHPraKi4ynpJJjhKXOU+meVO7DKbbDyJJBIuukiSOUi6jeUHHXXwDnH1KlTMXXq1LTHw5Owxx9/HKeddlqgRFDafmtthLuAFStW4PTTT8eQIUOw77774uyzz8bAgQPx/vvvA1Aq14wZMzBp0iScfvrp6NGjBx599FFs3LgRzz33HADg888/xyuvvIKHHnoIvXv3xjHHHIN7770XTzzxBDZu3Lgb744gCIIgiL2BSy65BJs3b95puz160nX00Ufj9ddfx1dffQUA+Pjjj/H222/jpJNOAgCsX78emzZtwoABA7xzmjRpgt69e2PlypUAgJUrV6Jp06aB0M8BAwaAc4733nsv7XXj8TiKiooCG7ELCSsNVVF1qtKnq2KoyEUZLHYN/2cmpBvlJsEdqSLtdBmgwHlprhP2cIXuJW1JGqnamSVyvDI5aRSb4PmhCEK3jeQMIqaSoNo5anNyABF1PVFSKU084W5JppKX2gBLMsBRm5R+hKfkFShRxn1XptJpf5eIqHGIGODEGESMqXFFtCLHgtGIgU4QePYyrIJVeHF9zwBPSkTiEla5A1ZugyWSkLatCqcTRD2Hlhf3DKoaBb1HLy9ed911KCoqQpcuXWBZFhzHwa233urlydDhmq1btw6c17p1a+/Ypk2bkJeXFzgeiUTQvHnzCsM9p02bVq2kZwRBEARRlyhrQPUnTrS4Xrfs0UrXk08+iQULFmDhwoX43//+h/nz5+POO+/E/Pnzd+l1J06ciO3bt3vbDz/8sEuvR6ShBmqXKoLt5ulyhF8GyFOvgj/DKAEUKP/jqlyBdqbiZQzRjzxkfhSfGdGolSPu7/duNZ3CFeqf6bJGUo9LBs/hgJPlqlwNJOyGEk62ys0FGPdkKz8Xs1VUn9oYWJIDNod0mC/WMdWv6amqMCeZDD3XCvKKgfvqlrBYisoVKKFkRJOm7St0/TDcUeV/rDgQKZewytzSP/GEX/6H/FxEPYeUrvrFHq10XXPNNbjuuuswbNgwAED37t3x/fffY9q0aRg5ciTatGkDANi8eTPatm3rnbd582YcdthhAIA2bdpgy5YtgX5t28bWrVu988NkZWUhKytrF9wRQRAEQRC/V/Zopau0tBScB4doWZZX3Ts/Px9t2rTB66+/7h0vKirCe++9h4KCAgBAQUEBCgsLvSRnALB06VIIIdC7d+86uAuiSqRTHGri7ZLCVbyEUrts4Xm2vCLWIS9VWM3yVS4Z2Mw8VV6B7AoEE+n6rczNVMNUozQnprt108NlKmimdyomIWLuaxSQXJ3kqVCOVrkYmLvxJMATTHm7kiq6MXwP6caU8vzSKYmmUqgz/Bs5ukwFsFJMhVFfV6ReN+CRswGekIiUqxxdvCypstDbDkCZ6Im9BFK66hd7tNJ16qmn4tZbb0XHjh1xyCGH4KOPPsLdd9+NUaNGAQAYY7j66qtxyy234IADDvBSRrRr1w5nnHEGAODggw/G4MGDcdFFF2HOnDlIJpMYO3Yshg0bhnbt2u3GuyMIgiCImkEpI/YMOnXqhGg0utN2e/Sk695778UNN9yAyy+/HFu2bEG7du1wySWXYPLkyV6bCRMmoKSkBBdffDEKCwtxzDHH4JVXXvFydAHAggULMHbsWPTv3x+ccwwdOhSzZs3aHbdEEARBEMQezq+//oqWLVtWuf2nn35apXZMksa+U4qKitCkSRP0w+mI8BjAOBhnAOMAZ2CMuQWZiRqTbkkxk19R97NgFgciEbDsbDhtmsFuFIPdwIKTzeFETYd6Bd0IuKkmVCqJcBoHL9WB0YdXAse4j4y+RBqGcmFVcqLbTkRU4lERUekiEk0BJ1uq4tZc3YNVztx6PO7mpo7wlhqlm8ohS8LJkpBZEjIqAJuBl3NEyhisUobYDpV6IbCUBwSCBETEKJDN4Zn4vSVId4lRn+sli9X3zf3zzGcZWHpMk1IiEFBgLNnGdgDRYomsIoGsbUlkfb8VKC2DjCdUyghKjPr7xrWp6MAb6TiAzLDcWAXYMonl+C+2b98eKJpcm+j/l455fgwiDavvQbZL4nj7tPt36VjrI5ZloV+/fhg9ejSGDh1aaz5vmikQBEEQRD1FSlbjLROmTZuGI488Eo0bN0ZeXh7OOOMMfPnll4E2/fr1A2MssF166aWBNhs2bMCQIUPQoEED5OXl4ZprroFt24E2y5cvxxFHHIGsrCx07twZ8+bNq9Yzqg5SSsRiMVx44YVo27YtrrjiCqxevbrG/dKki9jzycRQr5Oi6nQAjgOWdMCTwk16KoMpH0xTtmnE1k3cb7xeElWdtsFJNdinpJsQbrJVRxv4jSSt5u2FTP3BtBAypfC2l7ZBq0Ju8lEnJuHEJERMQkakpzj5aRqM65lpMAxzPWymygO5JYLMZ5GuFJG+l7T35BrquauqQaeSSJdyIqXj0Gs60iWRdcfMbcAql4iWSkRKHFglqvSPlxRVF1AnCCIj3njjDYwZMwbvvvuuV1pv4MCBKCkpCbS76KKL8PPPP3vbHXfc4R1zHAdDhgxBIpHAihUrMH/+fMybNy9gHVq/fj2GDBmC448/HqtXr8bVV1+Nv/zlL1i8eHGd3ev8+fPx008/4frrr8fSpUvRs2dP9OzZE7Nnz6520nSadBEEQRBEPUWA1XjLhFdeeQUXXHABDjnkEBx66KGYN28eNmzYEMgQAAANGjRAmzZtvM1cunz11Vfx2Wef4bHHHsNhhx2Gk046CTfffDPuv/9+JBIJAMCcOXOQn5+Pu+66CwcffDDGjh2Ls88+G/fcc0/NH1oGtGzZEn/961+xdu1avP322zjssMNw7bXXom3bthgxYkTG/dGki9izqMhLkWH6CM+nIYRSuhKu2pU0EmIaKk1AsUqT/NTvGL4CZapjQGCf531y/I0bBbTTpZgIp2AIq25+Q9fTZQEiyvzSP40FRCMHsoEDmeNAxERKagrTV6ULfaux+T4vpFH8zGt7aSoqSJrqPQ8RvI/wz4G0HNIfV+DaWhkLKXZawfP2GZ8Vt1VC1FixRLTYQXRHElZJAjKpilx7NlbycxF7AbWVMiJc+i4ej1fp+tu3bwcANG/ePLB/wYIFaNmyJbp164aJEyeitLTUO7Zy5Up07949UE1m0KBBKCoqwtq1a702Zok/3UaX+NvVsDT/5xQUFODhhx/Gzz//jFmzZmHdunUZ90uTLoIgCIL4ndOhQwc0adLE26ZNm7bTc4QQuPrqq9GnTx9069bN23/uuefisccew7JlyzBx4kT861//wnnnnecd37RpU9ryffpYZW2KiopQVlZW7fusKpXFGDZs2BCjR4/GO++8k3G/e3TKCOJ3ipQZK1tpcRzA4UDSBktGwBMWeJSDO4AwZBydYBNQl5VcKuVEKh8TC0s+Wn0x/ElAGs+ToYCpt0w1l4B032Uc3WhE+ImYoXI1lEBuEtGYA8YlHNuCAwDc8hUuGJGLrgrn+dlsgFkAtxikHZKx3Osyw0/m3arpMYOvZsnQswFzH1c4yWmFaqLbjxEdGS77k07B80v/SERLBKI7bFglCbCyOGQiCekIilok9iqqY4YPnw8AP/zwQ2AJsCrRemPGjMGnn36Kt99+O7D/4osv9n7u3r072rZti/79+2PdunXYf//9qz3WumTu3Llo0qRJrfdLShdBEARB1FNqa3kxNzc3sO1s0jV27FgsWrQIy5YtQ/v27Sttq6u/fPPNNwBUeb7NmzcH2uj3ujxfRW1yc3ORk5NTxadTfUaOHLlLygGS0kXUHxirmkKhIxgtC3AEWNIGEjZ41FW6ksoEJLmvqPCk8mlJrnJNCYu5qkw685X/qhUYyViFkXamAuYJSFVV8nTJH25cy9J+LsCJqtxcTo5AdsMEcrKUCbU8EUWZkwURkeCe8crtMhyt6ajhcJtBWhLMVu29gtOG2sTMnF8I5dnybhKeihVWwWTouH+Pqe3NZ2a+wmwSVstc1ZInAKvMUUWuyxJAIklRi8ReSW0pXVVvL3HFFVfg2WefxfLly5Gfn7/Tc3SqBV0juaCgALfeeiu2bNmCvLw8AMCSJUuQm5uLrl27em1eeumlQD9LlizxSvzVNYWFhXjqqaewYcMGdOrUCX/84x+rpYSR0kUQBEEQRJUYM2YMHnvsMSxcuBCNGzfGpk2bsGnTJs9ntW7dOtx8881YtWoVvvvuOzz//PMYMWIE+vbtix49egAABg4ciK5du+L888/Hxx9/jMWLF2PSpEkYM2aMpy5deuml+PbbbzFhwgR88cUXeOCBB/Dkk09i3LhxdXKfZ511Fp5++mkAwNq1a3HAAQfg+uuvx5IlSzBp0iR06dIFn3/+ecb90qSL2DOpBc+NlBKQArAd5etK2OAJB8yWfvFrR4In1Xvmbjzp59VKieLzVBdTvWIB5Scc2ee3y2DsnvLDfGUp1KeXxd0CZEygWaNStGpYglYNS9C0YRmyGyQgsoVSwrJU/i7h5u8SOoeX603TvjZuAzzJwJPM9X0xFc1o3Gvg/ipQp9JFZ5rtzSjEitStwP6qCoOOUi2thESkzFFFrhNJyGSSohaJvRJZw6XFTJWu2bNnY/v27ejXrx/atm3rbf/+978BALFYDK+99hoGDhyILl264K9//SuGDh2KF154wevDsiwsWrQIlmWhoKAA5513HkaMGIGpU6d6bfLz8/Hiiy9iyZIlOPTQQ3HXXXfhoYcewqBBg2rnwe2E5cuXe8EB11xzDQYOHIgff/wR7777Ln744QcMGTIEV199dcb90vIiQRAEQdRTJGr2PSLTU3dWObBDhw544403dtpPp06dUpYPw/Tr1w8fffRRRuOrLcrLy70C1qtXr8aLL76IWCwGAIhGo5gwYQL+8Ic/ZNwvKV0EQRAEQRAGPXr0wNKlSwEoU//3338fOP79999Xy9BPShex9yKEcojbNljSApIRL0mqAPeN4gLgSbf4LZOQEQ6mv45oM32aNAdmGgOZbhksTWkcybShXKXFMJfhwolG9dJiIDUC3Iwa0u9PWhIsS6BVTglaZReDM4FfyhvBERxlOVmQloQUDMxh4DZTMQYOUvt2lxP1sqqX2DVkqK/KUp9OuRFoWlHCVX3MezbB/cxdJWbprq2vo1NFJIBIORAtk+ClSSCeUBsVuCb2UgSYTkZT7fOJVG644QaMGDEC0WgUV155JcaNG4fffvsNBx98ML788ktMmTIF559/fsb90qSLIAiCIOopdR29+HthyJAhePDBB3H11Vdj48aNkFLioosuAqBymF166aVVSiAbhiZdxJ6LViWqkyjVTbAqpfSVrkQSjHNYySiYBETETY3gGuoBAJwBQqrEoa6KovoLds/c9KbuG+81Ja1BSN1h0k29AFftMu5PK1dhtPpjFos2xyY5wCyBRtE4ciNlcMARsxwwTwpj/jjC5XgMFUunhPASxZqJTNPgjUsPxTDJBxQx4xlW1F9KOSHzOerPgofaGH1yR6lcVplf5JqXxsHK3fI/SbviGyEIgkjD0KFDccYZZ2DVqlVYv349hBBo27YtevbsicaNG1erT5p0EQRBEEQ9RUgGVgO1SpDSVSmWZeEPf/hDtUzz6aBJF7HnUxMfjhCAIyC12sU5eDzmFldmqsyPkL6nK8KU34v7JXrC6ox+y4Sr6gQSgWrJxiwzJIMngvlqFwu1hZuigbkXdr1dAdHIUKx0olPhcJTaURTyBoiLCH4pa4TtJTlgpZZKdqqLXNvuJvwNDN5xqROmGr41Xf7H/NPsFedGqtpVqcpl9m2qdunSSCD13PA49OfAE4BVLhEtk4iWOIgW22DxUJFr8nMReyE1/dWmfxaVs3TpUjzzzDP47rvvwBhDfn4+zj77bPTt27da/VH0IkEQBEEQezW5ubn49ttvMzrn0ksvxYABA/D444/jt99+wy+//IIFCxbg+OOPxxVXXFGtcZDSRey96MLZUqgSMK6ni8UdMFe+Ya7SxRzX3CQZOABpA4wbmoow1CitgjHAD7lTapLkql2gqLP5Clf5EkYZIlP5kTKkdrn+Me4rXinRfY4qUv1rWSOUJLNQZkfxW3EDlG3PRqSY+2NhSt1LiSDU1rJwVCRDoMi1fu/fiNFFOGoz5GODMQbTtxVIsMr966alAk8Yd5TKFSmDKnJdbMMqjgPlcVX+R0gq/0PstZCRvmrsLL9YmGeffRZz587FI488gpEjR6r/MwAIITBv3jxcdtllOPHEE3Haaadl1C9NugiCIAiinkKTrl3D3LlzMX78eFxwwQWB/ZxzjBo1Cl9++SUefvjhXTPpWrNmTUadAkDXrl0RidCcjtgDEFL5uiwBZjtgSQecAzJqKfXIEUrpYkxFLzIGzqXvddC5uuDmzpKumUn/LBlgSfdt6h8wpVClfsvSfqq0f/N0jivzNC798kPh8xyGHeVZKGYxlMVjKN+RBV4UQaRMNZKW9KMTZUh90tfxIhoNNUykV5e8fGOmh0vn+kpzO+Z55s9mpGO6ckCV4RXutt3cXKUC0WIHVokqci1tG3AcSMepeqcEUc8gI33VOO+885Cbm1vl9v/73/8wadKkCo+fddZZGDp0aMbjqNKs6LDDDgPT4fdVgHOOr776Cvvtt1/GAyIIgiAIgqhN7rnnHmRnZ1e5/a+//or27dtXeLx9+/b47bffMh5HlaWo9957D61atdppOymlVySSIHY7UkJKCaZ9XbYNlrRVCImAyjwvAOY4SrmKqNgSFmGhsDwF0yoXV19CmFANlOqjFC8vm7x5jjeeYD8SxnUAgLGKFZ/wdx5DYYJkKC2PQQqGZFkUbEcEkRIGnoQqiM2VKsfc6ESdaV7n5NJ9cwZInRcL8NtrxcvM9QVD7ZIAE0qJM+/XVOaC4Y+ptxfI+7WTL9+eYme7WejLJKIlAlapDV6aUJGLOmoRoBAtYq+FohcrRgiBW2+9FXPmzMHmzZs9MeiGG27Avvvui9GjR1d4biKR8GovpiMSiSCRSGQ8pipNuo477jh07twZTZs2rVKnffv2rVZNIoIgCIIgqo6adNXE01WLg9nDuOWWWzB//nzccccdXjZ5AOjWrRtmzJhR6aQLUKWAGjRokPZYaWlptcZUpUnXsmXLMup0Z5XDCaJO0TUYHQHJHKV0AWARmdpG/wVyJJgFP+u8JpQJXUK6+b6gMsDDTSTFjSRWgJ/5XYb64uocs46jzlmV0j4dOuIwyZAojgE2Ay+1EClhsMrUuEQEEFGpogNtQ2QyowF1HiwJpfwZSle4TdgPxoxIy4ABjIVeEfJtVeLhqig7vz6mVTqeBKy4RLRUIFJiwypNgJXFgXgC0hFUb5Egfsc8+uijePDBB9G/f39ceuml3v5DDz0UX3zxRaXn9u3bF19++eVO22RKRk73ZDKJLl26YNGiRTj44IMzvhhBEARBELUHRS9WzE8//YTOnTun7BdCIJlMVnru8uXLd8mYMkqOGo1GUV5evksGQhAEQRBEZsha2PZWunbtirfeeitl/9NPP43DDz+8Rn1//vnn+Nvf/pbxeRnndBgzZgymT5+Ohx56iFJCELuXNCV3KsIz0ws3SaqUKpWA2QfnarWLc98UbqZp0H0xdwlRSJUoFSqhqYQyyEswfzkRCKScCJTB0e28bKQ7N5D7y5rGewfgCQbpRMDLGSJlDFY5wG3AzlFLiyKmljt5Ap5Zn4X69QzzuryR3l8FUpYDmWve1z+H7quypUNp/Gyeay5zMqHujyclrDgQKXVglalUEUgkVboISohKEL9rJk+ejJEjR+Knn36CEALPPPMMvvzySzz66KNYtGhRxv2VlJTgiSeewMMPP4x3330XXbt2xZ133plRHxnPmj744AO8/vrrePXVV9G9e3c0bNgwcPyZZ57JtEuCIAiCIKoBLS9WzOmnn44XXngBU6dORcOGDTF58mQcccQReOGFF3DiiSdWuZ933nkHDz/8MJ588kmUlZVh3LhxeOSRR9ClS5eMx5TxpKtp06bVSghGELWKqT6ZBviKEMIXmWxbpU+IWME+tKplC1f5kYBQahfgpz/w1CwA0lW7dMJULxGqDLZXHaQOS5f38Xf4qpc3NCOVAtxrq/HAT0pqM1hlQKSUIVICRMpVB07MUJvSldnRCpebOsMrTST8a+u0Ed4pLPj4A6V8dLoMM/EpjGvuLB2GNA6z9O3Nwt1WXN2rVWaDlyW9VBGwbf95EsTeTE3XCPfyfyLHHnsslixZkvF5W7Zswbx58/DII49g+/btOOecc7B8+XIUFBRg1KhR1ZpwAdWYdM2dO7daFyIIgiAIopapodK1c0/D75NOnTrh7LPPxsyZM3HiiSeC84ws8BVSLVOWbdtYvnw51q1bh3PPPReNGzfGxo0bkZubi0aNGtXKwAgiIypTu3ThazcthEwmAUf4CVEBgHMgYgGcgUUspU5JtvMknVKpXQCU4iV8xYdBKWdewtCAOmSYqtJ4nsz+vesAQferqQRJwIozREqBaLFEtEydYGczyAiDzQBpGekWPP+WNL4pM5U01XaVL/d6XoJUcyzhsWuFixvvzTQY3n0Hj+lyQmnTUejjPNiOCT9VRKRcIlIqYJUmVaqIRFKpXKKC3wWCIPZqmjVr5hWn3hlbt26t8FinTp3w9ttvo2PHjujUqVO1la0wGU+6vv/+ewwePBgbNmxAPB7HiSeeiMaNG2P69OmIx+OYM2dOrQyMIAiCIIjKoYz0QWbMmFEr/XzxxReel+vII4/EgQceiPPOOw8AqjypS0fGk66rrroKvXr1wscff4wWLVp4+88888xAxleCqHMqi2Z01S7pOG6EogNpc6/ANYtE1KulygZBSMBK7UYrTEyGohp55f8IzfI46TxPKbdSxT+EpkeL2So6MeqWxGEOYOcwd2wMTkyCOakX1AqSZG4OGR56hIYCFShplE7l2pnSZShcMo2aFrh36Y7FKKKtk6JaCaXmRUsFoiU2WKlSuZSK6ajPcG/734Qg0kBG+iAjR46stb769OmDPn36YNasWXj88ccxd+5cOI6Dyy+/HOeeey7OOOOMKpVHNMl40vXWW29hxYoViMVigf377rsvfvrpp0y7IwiCIAiC2CU4joNnn30Wn3/+OQCVu+v000/PKOVVo0aNcNFFF+Giiy7C559/jocffhiTJk3C5ZdfvtMkq2EynnQJIeA4Tsr+H3/8EY0bN860O4KoHtqnlY5wNGDoHOk4gOSqbI8DVbyacTBLBrV6aSTVCly7gt2G8pP+eDCSsNISOPCPm9GBkqeqZKbXitvSzV0lwZMC0RIOEQWEpQ1S5oVUfyonmave6chJfY+mzypdNkUzWjF8/2GvmqGABSIeBQAeuo5u717f9HMxW0UsRsokosUOIsXKzyXjCcC2/fI/BPF7ICUkuRrn76WsXbsWp512GjZt2oSDDjoIADB9+nS0atUKL7zwArp165ZxnwcffDDuvPNO3H777Xj++eczPj/jSdfAgQMxY8YMPPjggwDU2mZxcTGmTJmCk08+OeMBEARBEARRPcjTVTF/+ctfcMghh+DDDz9Es2bNAADbtm3DBRdcgIsvvhgrVqyocl9r164NCE6WZeGss87KeEwZT7ruuusuDBo0CF27dkV5eTnOPfdcfP3112jZsiUef/zxjAdAELuUsM/LiGSUgJt9Hso4pIsjC2lEC6pcXUqJMTxZphoErdwwQ+HxVa0w0og89nN5Gd1JqdQ343ytckkOCMtQizSu14k5AHcAnhTgCYFIXMCOW7CyABGFn4cLvvCV8kVXGmpb+HEaUYwSrheL+7nDvOT6LHif3n1w4xj3+9FFtiXz95vX9FQuR6l5VlwiUiZgldlgZUkgmQyqXHvz/yQEQVSJ1atXByZcgIpuvPXWW3HkkUdWeu5bb72F8ePH44MPPgAAHHXUUSgtLVV+USjBafHixRgwYEBGY8p40tW+fXt8/PHH+Pe//42PP/4YxcXFGD16NIYPH46cnJxMuyMIgiAIorpQctQKOfDAA7F582Yccsghgf1btmxJWwjb5IEHHsD5558f2Lds2TJ06tQJUkrMmjULs2fP3vWTrjfffBNHH300hg8fjuHDh3v7bdvGm2++ib59+2baJUEQBEEQ1YCiFytm2rRpuPLKK3HjjTfiqKOOAgC8++67mDp1KqZPn46ioiKvbW5ubuDcDz/8ENdff31gX/v27dGpUycAwPnnn48hQ4ZkPKaMJ13HH388fv75Z+Tl5QX2b9++Hccff3xakz1B7HbM5KmmCV8ISF3oWpsjvM1IBGr4stMVwTZJu7RomsPDx/SukIE+eNB4TbccCHjFqpkj3U2AJyW4LcFsBm6rJcawET6lzI57+3rpMVz2x7ymt8TI3CCFdEuKxtjNpUUv1QVXHQlLrSymfPF2lxZ1glQmVMoIq9wBL7NV6R83VQQZ6AmC0JxyyikAgD/96U9ebi29PHjqqad67xljKXOXH3/8EU2aNPHez58/H23atPHeN2/eHL/99lvGY8p40qUHGOa3335LKX5NEARBEMQuZi9eIqwJy5Ytq/a5jRs3xrp169ChQwcASDHNr1+/PkUdqwpVnnTpCzLGcMEFFyArK8s75jgO1qxZg6OPPjrjARBEtaksbUQ6dlYqyPxZSjeFgq+yeH2EMROjVqJkqb6NH41SQBkp/NJXfJSypSSgQHkfV6nTBnvuqMSozDITnRrjqGCcLPQ+TCAAQLhqV1X/A9CdS1/FSjmuYxYYwPWYHMAqF7DKbfB4EiyRhNQJUQEy0RO/K2h5sWKOO+64ap/bu3dvPProo+jXr1/a4/PmzUPv3r0z7rfKky4ts0kp0bhx44BpPhaL4aijjqKM9ARBEARRl5CRvlLKy8uxZs0abNmyBSJkPzjttNMqPG/8+PEYMGAAWrRogWuuucazVG3ZsgXTp0/HY489hldffTXj8VR50jV37lwAKvP83/72N1pKJPYMqqt2hc8TqvwPc3TaCHjKDSDB4Ba/dlNIMCNNAoQE4/o4Kla5zGEbCUUrui8GVrHHCzDSVkiVikFvlkovwTjzS/OYyVhDCU+9kkYV+MWA9CqU6dUKHHL7lUIdM9UyXXRbK4heKgid8kLo5wMvkSr8jwHckbCSEpFyB7wsCVaeAOIJ9VlRqgiCIAxeeeUVjBgxAr/++mvKsXQ+LpPjjz8e9957L8aNG4e7774bubm5YIxh+/btiEQimDFjBk444YSMx5Sxp2vKlCmwbRuvvfYa1q1bh3PPPReNGzfGxo0bkZubi0aNGmU8CIIgCIIgqkO6b0uZnr93csUVV+CPf/wjJk+ejNatW2d8/uWXX45TTz0VTz/9NL7++msAwAEHHICzzz7b83plSsaTru+//x6DBw/Ghg0bEI/HceKJJ6Jx48aYPn064vE45syZU62BEES1yVTtCqMlZ+F6uRwB5jh+8k5LyS2e2uXi+aYYg9a9pOHvktxXbsIwKd0eK0hOCsBroTNOh9u5iUS1uiUiemNwYmrwyQYcdg6DncPgZPneqHBEoh5P8PqpY07d6Y8/4A1Ll2CVGR4wHY1oqFzcga8UcvdcVwnjNsCTgFUORMokrJIkWFlCFbm2bVXaiSB+j9DyYoVs3rwZ48ePr9aES9OhQweMGzeu1sbEd94kyFVXXYVevXph27ZtAV/XmWeeiddff73WBkYQBEEQBFFdzj77bCxfvrzW+rv99ttRWFhYoz4yVrreeustrFixArFYLLB/3333xU8//VSjwRBEnZA2Wk8AwgEcVWeHOVJJQhyApwJpn5Xr64LyQjH3vUxj6NJ5q1IULwkwX8sKHqpMtNMKkvZECb9v0xMFptSuZAOOZCMGuyHgZLkRjBKQjtGfd44rcUHl2/IsYOZ4XAnM9Fx5Cpcu8RNQ0EJfpKXfR7r7DnjH3DbcBnhCKVxRt8g1L02o/FxukWvVfi/+yk4QFUFKV4Xcd999+OMf/4i33noL3bt3RzQaDRy/8sorM+rvtttuw5/+9Cc0bdq02mPKeNIlhEhrPvvxxx/RuHHjag+EIAiCIIgMCX/Tqc75eymPP/44Xn31VWRnZ2P58uWBHKOMsYwnXbIWvthlvLw4cOBAzJgxw3vPGENxcTGmTJmCk08+ucYDIohqUdN/DEKqCEZHAI4AbDe7uRBednf1jVK60XkqwjGtzwlGtKCpCOkoQq9R6vm+gsQgOfOLW/NgdCGTrg/KBniCwYozRMoBKw7wpAQTqlPf56V8Xxo/V5f0fVVaNZOhn418Xt7fd51dPlDkO/wQjLEaucHMgtuBiEu96Wz1bp4xnoQqcF0uES1xEC22wcriKmpRF7kmlYsg6oRp06bhyCOPROPGjZGXl4czzjgDX375ZaBNeXk5xowZgxYtWqBRo0YYOnQoNm/eHGizYcMGDBkyBA0aNEBeXh6uueYa2Fq1dlm+fDmOOOIIZGVloXPnzpg3b15GY73++utx0003Yfv27fjuu++wfv16b/v222+rdf81JeNJ11133YV33nkHXbt2RXl5Oc4991xvaXH69Om7YowEQRAEQaQhpXpZNbZMeOONNzBmzBi8++67WLJkCZLJJAYOHIiSkhKvzbhx4/DCCy/gqaeewhtvvIGNGzcGMro7joMhQ4YgkUhgxYoVmD9/PubNm4fJkyd7bdavX48hQ4bg+OOPx+rVq3H11VfjL3/5CxYvXlzlsSYSCfz5z38G5xlPddLy2WefebUXqwuT1dDLbNvGE088gTVr1qC4uBhHHHEEhg8fHjDW700UFRWhSZMm6IfTEeExgHGVA4lxgDMlWdbSh0rUgBpEMDLLAiwLiETAsmKQDXMgsyKQUQvgXKkylmt0chUfMDcPFmOuMgWIGFc/Wwialir6V2aqRQgpXTpPFQOExYKKmQUkG6qIRBFVbbK2AbHtEllFDiJlApIBO9pHEW/GkGwMiJh0VTFXEUsA3JbgdvDa+lqeesVM/5h0ay1qpcoYOzdejbF7j8CMtmQI+N0CSptu6xIpB6xyiWiJurdYYRLRjduAsnLIeALStlXdRYLIBDdqWUqtcjvK26l21qhrWyaxHP/F9u3bq1Uqpiro/5fa33sTeE52tfsRZeX48Yop1R7rL7/8gry8PLzxxhvo27cvtm/fjlatWmHhwoU4++yzAQBffPEFDj74YKxcuRJHHXUUXn75ZZxyyinYuHGjF1k4Z84cXHvttfjll18Qi8Vw7bXX4sUXX8Snn37qXWvYsGEoLCzEK6+8UqWxjRs3Dq1atcL//d//ZXxfYRKJRNoEqx07dsyon4w9XQAQiURw3nnnVedUgth11CB1hJQSTAr1R9f9T5zZXE2wIgDjPNVQbyYHZQiUA2IiNOkwEpMGL4zUCRcLTUzMV2PzlgHd+QZPqsShPKkKXsNiflkgJ7hkGE6Qqoeocq269xkaM9NLq+kIm+fDky2Exm8sv0qjj0CaDZ0uIuEuLZYKREoc8NIkUB6nItcEUYsUFRUF3mdlZQXK/VXE9u3bAagC0ACwatUqJJNJDBgwwGvTpUsXdOzY0Zt0rVy5Et27dw+kchg0aBAuu+wyrF27FocffjhWrlwZ6EO3ufrqq6t8T47j4I477sDixYvRo0ePFCP93XffvdM+vv76a4waNQorVqwI7K+oUPbOqNaka+PGjXj77bfTzvoyNabtjJ9++gnXXnstXn75ZZSWlqJz586YO3cuevXqBUDd+JQpU/DPf/4ThYWF6NOnD2bPno0DDjjA62Pr1q244oor8MILL4BzjqFDh2LmzJmUyJUgCIKo39SSkT6c7HPKlCm48cYbKz1VCIGrr74affr0Qbdu3QAAmzZtQiwWS4nwa926NTZt2uS1CefO0u931qaoqAhlZWVVWln75JNPcPjhhwNAQDEDEDDVV8YFF1yASCSCRYsWoW3btlU+ryIynnTNmzcPl1xyCWKxGFq0aFHjaIDK2LZtG/r06YPjjz8eL7/8Mlq1aoWvv/4azZo189rccccdmDVrFubPn4/8/HzccMMNGDRoED777DNkZyvJdfjw4fj555+99ecLL7wQF198MRYuXFhrYyX2AoQEHAHJBJjtQHLu/X7LCNxlZXhqV0p6CJayyzimDjCt61S2euEtXyKw/BhWiNIlojbHUFGZHrMtC7cPneMpW6ZCVpGKB3jjDPwcVgRDbZmRCNVU4HSwgJUAIuUSkTIBqzQJXp6AtB3ALHJNEL9TzOCU6p4PAD/88ENgebEqKteYMWPw6aef4u23367+AHYhy5Ytq3Efq1evxqpVq9ClS5daGFE1Jl033HADJk+ejIkTJ9aaOa0ipk+fjg4dOnh1HwEgPz/f+1lKiRkzZmDSpEk4/fTTAQCPPvooWrdujeeeew7Dhg3D559/jldeeQUffPCBp47de++9OPnkk3HnnXeiXbt2u/QeCIIgCGKXUUt5unJzczPydI0dOxaLFi3Cm2++ifbt23v727Rpg0QigcLCwoDatXnzZrRp08Zr8/777wf609GNZptwxOPmzZuRm5tbp/7xrl27pq3dWF0ynjWVlpZi2LBhu3zCBQDPP/88evXqhT/+8Y/Iy8vD4Ycfjn/+85/e8fXr12PTpk2Bdd8mTZqgd+/eWLlyJQBg5cqVaNq0qTfhAoABAwaAc4733ntvl98DUcdUV/kQQqkmXpJUpXbBdgDH9UiluxxjXioF/T7owWKB8jje+5BaFUzDoNu6J5kql1fQWr0KI9WCiDDvVUQ5pMW8VBEy4hfFDqawYMH9WlkLoQ30nidsZ4RVrrQPz/CVpTvmpsTwVS4bvNwtcq1TRVCRa4KoU6SUGDt2LJ599lksXbo0IIQAQM+ePRGNRgMVar788kts2LABBQUFAICCggJ88skn2LJli9dmyZIlyM3NRdeuXb024So3S5Ys8fqoKh9++CEmTJiAYcOG4ayzzgpsVWH69OmYMGECli9fjt9++w1FRUWBLVMynjmNHj0aTz31VMYXqg7ffvut589avHgxLrvsMlx55ZWYP38+AH/tN926r7kunJeXFzgeiUTQvHlzr02YeDxe4wdLEARBELscM7qmulsGjBkzBo899hgWLlyIxo0bY9OmTdi0aRPKysoAKOFj9OjRGD9+PJYtW4ZVq1bhwgsvREFBAY466igAKt9n165dcf755+Pjjz/G4sWLMWnSJIwZM8Zb1rz00kvx7bffYsKECfjiiy/wwAMP4Mknn8yoDuITTzyBo48+Gp9//jmeffZZJJNJrF27FkuXLkWTJk2q1MeAAQPw7rvvon///sjLy0OzZs3QrFkzNG3aNGB1qioZLy9OmzYNp5xyCl555ZW0afWrEg1QVYQQ6NWrF2677TYAwOGHH45PP/0Uc+bMwciRI2vtOmGmTZuGm266aZf1T+xiqhvFKIQ6j0kVwcgZYHEwISClWz5HqKhATaBQtFa5LAQKX6cdoqmOcfg+LiCogGklyoKnUAmLBROJuklPlfLFIC0GyaWfxiLQVu2HGT0YUNRY6lcx7a8yk6WaOV0lAmpZunQRup1X/sdIO6GeI/wOjYhLK6FUrkipEyhyTVGLBOFSx2WAZs+eDQDo169fYP/cuXNxwQUXAADuueceL2gtHo9j0KBBeOCBB7y2lmVh0aJFuOyyy1BQUICGDRti5MiRmDp1qtcmPz8fL774IsaNG4eZM2eiffv2eOihhzBo0KAqj/W2227DPffcgzFjxqBx48aYOXMm8vPzcckll6Bt27ZV6qM2fGEm1Zp0LV68GAcddBAApBjpa5O2bdt6UqPm4IMPxn/+8x8A/trv5s2bAw9w8+bNOOyww7w2poQJqDxjW7du9c4PM3HiRIwfP957X1RUlBLZQRAEQRC/N6oSvJKdnY37778f999/f4VtOnXqhJdeeqnSfvr164ePPvoo4zFq1q1bhyFDhgAAYrEYSkpKwBjDuHHjcMIJJ1RJXDnuuOOqff10ZDzpuuuuu/DII494M9pdSZ8+fVLKC3z11VdeRtj8/Hy0adMGr7/+ujfJKioqwnvvvYfLLrsMgFoXLiwsxKpVq9CzZ08AwNKlSyGEQO/evdNet6r5SYg9mEzULqOtlBLMcSCFAHP8KEa4ebrAmK9uyTQRjNonZfqZjHI4QNC/Bcb8pKIsTT9G+SCtoKX4ubh5jn+uVsrCZYjMHGAqYalxYcNPxgzlKXwPAUylLKR4mfevz9dPzXt6afpkwk3cmgAiJUrl4uUJsPIEZCLp/+EnPxfxe6eOla76RLNmzbBjxw4AwD777INPP/0U3bt3R2FhIUpLSys8b82aNejWrRs451izZk2l1+jRo0dGY8p40pWVlYU+ffpkelq1GDduHI4++mivsvf777+PBx98EA8++CAApaxdffXVuOWWW3DAAQd4KSPatWuHM844A4BSxgYPHoyLLroIc+bMQTKZxNixYzFs2DCKXCQIgiDqNzTpqpC+fftiyZIl6N69O/74xz/iqquuwtKlS7FkyRL079+/wvMOO+wwzw9+2GGHgTGWVuGrk+SoV111Fe69917MmjUr01Mz5sgjj8Szzz6LiRMnYurUqcjPz8eMGTMwfPhwr82ECRNQUlKCiy++GIWFhTjmmGPwyiuveDm6AGDBggUYO3Ys+vfv760z18X4id1MddQuIVR+LsdxPVqur4szSMfyFJqKfV3wXk2vlFZ4Krx8Sv4qvwyQXww6VeWC69NSshELRkJqH5hWnbj02xhRjGH1KkXlqmi8ocjLgLpl+rXMfmTVVC7muIWuExKRMpWFnpXFIRMqcpGiFgmC2Bn33XcfysvLAaji19FoFCtWrMDQoUMxadKkCs9bv349WrVq5f1cm2Rce/HMM8/E0qVL0aJFCxxyyCEpRvpnnnmmVge4J0C1F+sxVZl06X8Cui3nYFkxsEgEiEYhs6JANAKRHQMst86ipVIy6PfCYpARDifbr8NoTqRSUiOElhfDky5hTLBUGojUSZeTDcgIICJq0pW9lSG2XSK2QyBSLiEtYMc+EcSbAnZjCRF1ay+WM/CESjrKbICHvqilW1rktgzURvRSUbj36gcQ6CXLCkzygXtP/3HwpKoLGSlT9RYbbyiHtb0cvLgUsqwcSCTV5IsmXURN2EtqL3b4+y01rr34wzWTdulYCZ+Mla6mTZtWOb8FQRAEQRC7jtrKSL838r///Q/RaBTdu3cHAPz3v//F3Llz0bVrV9x4442IxWJV7uuzzz7Dhg0bkEgkAvtPO+20jMaU8aTLzA5PEHs8VVliZCz4zVYIvxwQs9XSImPKYA/LFWgEwLif6NS8pKFi6TFIVtEym6oOzRA02PvGef1z0FQP91VY0lsi9E3sKmVElTCXQUP3kPLHON2SIwsdN1zyaZ+6aciv4GNhtlu8O64So/LSJFh5HIgnvGLkBEEQO+OSSy7Bddddh+7du+Pbb7/Fn//8Z5x11ll46qmnUFpaihkzZuy0j2+//RZnnnkmPvnkk4C3S2dryNTTVe01sV9++QVvv/023n77bfzyyy/V7YYgCIIgiOoia2HbS/nqq6+8zAZPPfUUjjvuOCxcuBDz5s3zUk/tjKuuugr5+fnYsmULGjRogLVr1+LNN99Er169sHz58ozHlPGkq6SkBKNGjULbtm3Rt29f9O3bF+3atcPo0aMrDcEkiD0eU+1yHFVqxi0FxJI2mC3AHMd9FUrNERJMSiMdhC/fpHi6qoqRziElxYOncPlG+kD5IFO5kgBzJLij1CNms2CCU7dN+NopBbDDahbg+7uE4dmS/n6vXFBoY2YbR51vbsx2zfPlQLRMIFrigJfGweLJYJFr8nMRBLETpJQQrnfvtddew8knnwwA6NChQ5XrKa5cuRJTp05Fy5YtwTkH5xzHHHMMpk2bhiuvvDLjMWU86Ro/fjzeeOMNvPDCCygsLERhYSH++9//4o033sBf//rXjAdAEARBEET1YPB9XdXadvcN7EJ69eqFW265Bf/617/wxhtveIlS169fn1I+sCIcx0Hjxo0BAC1btsTGjRsBqOSu4TyiVSFjT9d//vMfPP3004ESACeffDJycnLwpz/9ySsRQBB7DNXwdUkpwdzi19J2I1STNhgikBEAzAJzBCTjgGCukqNlIKS/nqEwpaaI8F89n5hZlNosbO0lRZV+hKChLnkle4z9zGFgkZ3krXDH6KlbMr23i0l4ZXw4JKRbPUlablJYifRf54xxeX/pjXZe6Z9yIFoqES0WiOxIgsUTXqoIr8g1QRDETtAppp577jlcf/316Ny5MwDg6aefxtFHH12lPrp164aPP/4Y+fn56N27N+644w7EYjE8+OCD2G+//TIeU8aTrtLS0rQzxLy8PFpeJAiCIIi6pBpFq1PO30vp0aMHPvnkk5T9f//732FZlvf+8ccfx2mnnYaGDRumtJ00aRJKSkoAAFOnTsUpp5yCY489Fi1atMATTzyR8ZgynnQVFBRgypQpePTRR70EpGVlZbjppptQUFCQ8QAIok6oqtql0cWv4SdJZU4UkguVx4vLnSc79TKpwle5DDFM6h8CY4Dn6RJuQlQRAUTUiGY0/VzwlSyedHNc2RLMUesGnkrFXFVMJ1R1/06zNEqWNMbhZzH1ugkqVu5jVaWIpFdSKG1wYpp8XWY0o0qIKpXKVeIgUpyEVRIHyuN+1CIlRSWIIDU1w/8O/zmZydMBFeXYu3fvtMqVWWC7c+fO+OKLL7B161Y0a9asWvWmM/Z0zZgxA++88w7at2+P/v37o3///ujQoQNWrFiBmTNnZjwAgiAIgiCI3UVlOeJHjRrl1W/UNG/eHKWlpRg1alTG18p40tW9e3d8/fXXmDZtGg477DAcdthhuP322/H111/jkEMOyXgABLGnojNVwxG+l0iqaMUK1ZZQtvWAci+hIh2Fu2nFKKw0eXm6lMqlss7DU7xEVGWX9wpLGyqRlZDgCQmeEGC2BHPcKEHJPPlJcunl+qrMRRsszG3eA1LDzUMRjDxdZKLwzbvhItrMjbDkCSBaKrwi16wsAWnbQNJWGcMJgghCKSN2KfPnz0dZWVnK/rKyMjz66KMZ95fR8mIymUSXLl2waNEiXHTRRRlfjCAIgiCI2oMy0u8aioqKIKWElBI7duwILEk6joOXXnoJeXl5Gfeb0aQrGo16xSMJol5RjbV3DynUptUuIQDJVBb4dH+w3GvtLKs7E8oDpZUfUxULZJ63lNqlajCqmoq6viGE78vitvJz8aQAtyXguMpXUvm9ZMQdk2ABf1lgXGmy6+t7MHN7mXa1wK0bxb+ZSO0v2Nh8FoCVlIjEJSKlDiIlSZWfq1wpXZ78T34ugiDqgKZNm4IxFbl+4IEHphxnjOGmm27KuN+MjfRjxozB9OnT8dBDDyESyfh0giAIgiBqCzLS7xKWLVsGKSVOOOEE/Oc//0Hz5s29Y7FYDJ06dUK7du0y7jfjWdMHH3yA119/Ha+++iq6d++eEmL5zDPPZDwIgiAIgiCqAU26akynTp0QjUYD+4477jgAKpFqx44dqxWpmI6MJ11NmzbF0KFDa+XiBFEnhP+x8GqUHJUSEALMdiA5B+M87ZKXTsWgS/eows7BxTidbkFyd7cMrS2al9XpHfTSYkSlkoBrhmcOIMHclA3alC7BbLXuqNJISHCbQdgM4FIZ2ysy0abN9ZCmXQaEE8Hq+9ImfZ1sVZUAAqxSG7w04SVFpYSoBEHUlK+//hobNmxAp06dvCSpmk8//bTC8z7//HP88MMPOOaYYwAA999/P/75z3+ia9euuP/++9GsWbOMxpHxpGvu3LmZnkIQBEEQxC6AjPSpTJs2DX/4wx/Qv39/bNu2DX/84x+xdOlSAMqLNXDgQDz++ONo2rTpTvu65pprMH36dADAJ598gvHjx+Ovf/0rli1bhvHjx2c8J8r4K//69evx9ddfp+z/+uuv8d1332XaHUHULZx75khvs7jawvu1QiZ06gi/+DVsB3CkKnwNZSD3FDWzrA8PpVwAAqkVmGkMN83s4QLXEemmjJAQMQmRJSGjSvnyTPduH8w16TNHuMZ6nTTVMNGHYcEtMObw+GGoV2Zbs4RRuB8jqauXBiMKI8GrhJWUsOICVlkSiCfUZtu+ykUmeoJIxZPXa7DtZTzwwAOeB2vChAnYunUrVq1ahdLSUvzvf/9DYWEh/va3v1Wpr/Xr16Nr164AVBnEU089Fbfddhvuv/9+vPzyyxmPLeNJ1wUXXIAVK1ak7H/vvfdwwQUXZDwAgiAIgiCqCeXpSuGXX37xJl2vvfYaZsyYgcMPPxzZ2dk49NBDcd999+Gll16qUl+xWMwrcfjaa69h4MCBAFSC1KKioozHlvGk66OPPkKfPn1S9h911FFYvXp1xgMgiN0GZ17ZmsB7nuabnxQqSadte2oXcxwv0Wmg4LU+hbH0CUargC5yLSKAiLlbtqtwZQnImICMSLVxdV2vuLVQni6eFLDiElZCKV3MdhOlGolK1ThDXjQzcaqZxoKF9oWOmSqXZAgpYO6rWbRbny/U+KwEECkTYGUJlSoimVTqIkEQRAZ06tTJ82kxxlIyLViW5dVT3BnHHHMMxo8fj5tvvhnvv/8+hgwZAgD46quv0L59+4zHlvGkizGWkhIfALZv3w6H/kASBEEQRJ2hPV012fY2LrroIlxzzTX45ptvMHbsWPztb3/DunXrAKjlwnHjxnmK1c647777EIlE8PTTT2P27NnYZ599AAAvv/wyBg8enPHYMjbS9+3bF9OmTcPjjz/uVel2HAfTpk3z3P0EUe9gxvcPKXy1S5ieKwnpCDAk1SlxGwDA3YLYkjNwR0UVcjAjujGzoehoRe17crIknBwBGZWAJYGIUAW3HQ4JDmkxSEsGrBkqIlCrXRxWHBBR5pcNMssPhUsXGY+CwVetGKtA7UqjfJnHAmpfqJ0qX+SrXFapraIWk0m//BJAfi6CqAhKGZHC3/72N2zYsAFdu3bF/vvvj++++w4HHnggIpEIbNvGEUccgccff7xKfXXs2BGLFi1K2X/PPfcE3t9+++249NJLd2rOz3jSNX36dPTt2xcHHXQQjj32WADAW2+9haKiIi86gCAIgiAIYncxa9YsXHbZZVi0aBG+/fZbCCHQtm1b9OnTBwMGDKi1vFua2267DX/6059qf9LVtWtXrFmzBvfddx8+/vhj5OTkYMSIERg7dmwgYytB7DGYkYVCqDxbjCkVK51/i3GldgHquI5ehON2J5SIk/T/+WhxyIlzQBq+JbfMT0rZHQQVJXVd3xclIoATBUSW7+NCVIBHBBgHGJMQXEJIQDoMIs6UKhZjcGIcPMq9HF1WQsIqd4tnW+6lTE+XFVK6dBBmeMxGVGUgMhMIqF3pvFz+TQfLA/EkYMUlIuUCVpnjRy7atvJzuUXGCYKogJouEe7F/7wOPvhgHHzwwXVyLVnFv1PVquPTrl073HbbbdU5lSAIgiCI2oKWF6vMhRdeiFtvvbVa5XtqiypNutasWYNu3bqBc441a9ZU2rZHjx61MjCCqFVMtQvqW0lA7ZIi6Osy0WoXoNQXxiFhgyWSYG4BbOZIwI4gyhlEjCu1KaLUJ511nYW+CTHhK0/euNx8ViKqIhYdN2qRZTvgEQHOBbiOVmQcUjJIm0FG3etmAU42B7cjkJZQWevdHFgiDogY8zLhBxQpfeuu5yvlD7FWrXQWfTPS0VDoTP9WipfLu0k/0jJSJhEtlYiWCERKbfCyJKTtAI5T5W+OBEEQJhXNUxYsWIDTTz8d++23H4DdM1+p0qTrsMMOw6ZNm5CXl4fDDjsMjLG0fxAZYxTBSBAEQRB1BSldKVQ2Txk6dKj3pXt3zFeqNOlav349WrVq5f1MEARBEMTuh8oApdKjRw+0b98ed955J3JycgCo1Y0DDjgAL7/8Mg444IDdNrYqTbo6deqU9meCqFfoJUYhALdgdYVLjKaZHgguMXIBOICMJ8AcC8xW5YF4wgKTEiJmgccsiJgFJ4erRKfcT9OglxklmGeClTCW43T5H538NCJgRQQsSy0tcq7GJYThfDcSnYoog5PNIaJcmeS5ex3HTY6KoInfLD6t7t0dkwDA3Z+5zjXhLovqQtycpSxRpjXS67QTbnFr7gA8AUSLJbKKHESLkrCK42BlcUjbpiLXBEFUm/fffx8TJkzA0KFD8dhjj+Hwww/3jrVr126XzGOOPfZYb4JXGdUy0m/cuBFvv/02tmzZAhH6w3jllVdWp0uCIAiCIIgaE4vFMGPGDLz88ss47bTTcPnll+Paa6+t1WvYto2NGzeiY8eOAFDlskIZT7rmzZuHSy65BLFYDC1atAjkumCM0aSL2LOpSO3yjleidmmEVGqXbUMKB+AWmG2DWRaYI8CyouCxCERWBEAMIspcpcjtVupko8qRzix1Kb+Mj6sEJRl4HJDcghOREBEBHpFgTG2OzSETHCzOYZUzRMokInEJnpSeUV4rUeYSRKBED5BigNfj06Z66b5yh/njNvrW5YPC/WnjvZlagjnu/bmpImI7BKJFNiI74uDF5UB53E8VoT8vgiAqhjxdFXLSSSfhww8/xIUXXlit4tSVsXbtWhxxxBEZ+8IynnTdcMMNmDx5MiZOnAjOM64iRBAEQRBELUGerspp3bo1XnrpJcyaNQstWrRAbm7ubh1PxpOu0tJSDBs2jCZcRP3HVLsEqp4oFfCTpUqm0hvYHOAMTAiwpA1kRWHZMcgIBxOWKtXDjGswuCkslJTEHAmuJSkwRIpdNaiMQRQz2CVRtyyQhIgqrxcEwOMckVKG6A6G2A6BWJGDSJkDllRjdrJVhWkRUb4uM81DRUhjiFI/AgsQesjMb5BWMdMnmyqX3u96y6y4ShUR25FEZEccrKQccMv/+OWT9vL/DQiCqDOuvPLKjFbijjjiiEqPl5WVVWscGU+6Ro8ejaeeegrXXXddtS5IEARBEEQtQt9PAjz//PNVanfaaadVeOyzzz7DsGHDkJ+fn/b4zz//jK+++irjsWU86Zo2bRpOOeUUvPLKK+jevTui0Wjg+N13353xIAiiTgmVBYJWbStKlFqR2qXPAaBVL5lMgknpFopm4An170NG3ShGXQKHuYlRJVPRjFL1y20GJiRiOwBRZiRLjfllflTSVAlwgCcYImVAdIdETEcBliTBkspnwJpkQ0Y4IKVbGBtKgdKimrt5qpZxa97PbjJUcP9vu+f7qugRp0mQyrTKlZCw4ioxqlWcACspBytPQMbjqvwPRS0SRNUhT1cKZ5xxxk7b7CxPV7du3dC7d29cdtllaY+vXr0a//znPzMeW7UmXYsXL8ZBBx0EAClGeoIgCIIgiN1FOKtCdejTpw++/PLLCo83btwYffv2zbjfjI1Zd911Fx555BF8/vnnWL58OZYtW+ZtS5cuzXgABLFbMP1CQvg+IlHB1740JYKklMHNEYAjIG0bsG2wpA2WdMCTAiwpwGwJ7ggwIYPmV+OVCQluqyjEaKlErFgia7tEzq8COb8I5GyRyP5FIucXhuxfGbK2AlnbJLIKJaI7bESKE+ClcbB4AixpK7XJcgthZ6myQk4URkFueH4rPSami1LLNFvKczEfiH9Pac25UvnUeAKIlAlESxzw0oSrcqki19KhqEWCyITAv9tqbpny5ptv4tRTT0W7du3AGMNzzz0XOH7BBReAMRbYBg8eHGizdetWDB8+HLm5uWjatClGjx6N4uLiQJs1a9bg2GOPRXZ2Njp06IA77rgj88FWk5kzZ2LGjBkVHt9///2xbNmyjPvNeNKVlZWFPn36ZHwhgiAIgiBqmXRfjjLdMqSkpASHHnoo7r///grbDB48GD///LO3Pf7444Hjw4cPx9q1a7FkyRIsWrQIb775Ji6++GLveFFREQYOHIhOnTph1apV+Pvf/44bb7wRDz74YOYDBpCbm4tvv/22WufWJhkvL1511VW49957MWvWrF0xHoKoOyotgr3zAthpa3tJobxdQoDZjvJWMeZdRqpEV2BCKp+TjmY0fFUq67tUQxAq7xZzAyVlhClfV5RBWCqfl5WQsMoErNIEWMJWea4AwOKwG0aQaGQh2Ygh2YjByVaHmACY7Y5ZVP3bbrp26TLQB4th+9+oeVIiUi6Vn6vUBiuLA8mk6+WSys9FKhdB7NGcdNJJOOmkkyptk5WVhTZt2qQ99vnnn+OVV17BBx98gF69egEA7r33Xpx88sm488470a5dOyxYsACJRAKPPPIIYrEYDjnkEKxevRp33313YHJWVdLVYawK77//PlauXIlNmzYBANq0aYOCggL84Q9/qFZ/GU+63n//fSxduhSLFi3CIYcckmKkf+aZZ6o1EIIgCIIgMmNPzdO1fPly5OXloVmzZjjhhBNwyy23oEWLFgCAlStXomnTpt6ECwAGDBgAzjnee+89nHnmmVi5ciX69u2LWCzmtRk0aBCmT5+Obdu2oVmzZrtm4C5btmzB0KFD8c4776Bjx45o3bo1AGDz5s0YN24c+vTpg//85z/Iy8vLqN+MJ11NmzbFWWedlelpBEEQBEHUNrUUvVhUVBTYnZWVhaysrGp1OXjwYJx11lnIz8/HunXr8H//93846aSTsHLlSliWhU2bNqVMViKRCJo3b+4pSps2bUpJ16AnPps2bcp40nXeeedllBj18ssvh+M4+Pzzz73AQc2XX36JUaNGYcyYMXjqqacyGkfGk665c+dmegpB7LlUVhaoCqkjUpYYhfu103FUKgpbvTLL7dNSFaSlxVTaBSnBHLX+JgPliKASpiYkIuWOSgMhAWkxiAiHjHDVh5DKoJ9UpnQk3TVDy4LIiSLZ2EIilyHRmMFuAIiYmwjWZurWKgry8dY6EUx+6pYr0ukiAkuLOhEqDy4zevcjACsORMskoiU2rJKklxAVjlNt+Z8giJrToUOHwPspU6bgxhtvrFZfw4YN837u3r07evTogf333x/Lly9H//79azLMajN79uyM2i9evBhvvvlmyoQLAA466CDMmjUL/fr1y3gclFaeIAiCIOortWSk/+GHH7B9+3ZvmzhxYq0Ncb/99kPLli3xzTffAFC+qC1btgTa2LaNrVu3ej6wNm3aYPPmzYE2+n1FXrF0vP766zjllFOw//77Y//998cpp5yC1157bafnZWVlpah/Jjt27KiWElilSdcRRxyBbdu2VbnTY445Bj/99FPGgyGI3YKXLkK4bytRXNKY61Py00llBpdCAEKAOQ6Y7aaKcNQxlRBV+zFkyhIBD6lc1vYy8G3FsH7dgeiWHYj9XISsn3cgtrkY0V+LYW0tASuLqzQVQgIRCyIWQbIBR7Ihg5MDONnSN7ib4xdQipe5heMD3BQTIgIIN+WEtBAw0AcKXIfLDbnpIqJlEpESdU+8NB5UuSgpKkFkTG2ljMjNzQ1s1V1aTMePP/6I3377DW3btgUAFBQUoLCwEKtWrfLaLF26FEII9O7d22vz5ptvIplMem2WLFmCgw46qMpLiw888AAGDx6Mxo0b46qrrsJVV12F3NxcnHzyyZVGXgLAn//8Z4wcORLPPvtsYPJVVFSEZ599FhdeeCHOOeecKj8DTZWWF1evXo2PP/4YzZs3r1Knq1evRjwez3gwBEEQBEFkQC15ujKhuLjYU60AYP369Vi9ejWaN2+O5s2b46abbsLQoUPRpk0brFu3DhMmTEDnzp0xaNAgAMDBBx+MwYMH46KLLsKcOXOQTCYxduxYDBs2DO3atQMAnHvuubjpppswevRoXHvttfj0008xc+ZM3HPPPVUe52233YZ77rkHY8eO9fZdeeWV6NOnD2677TaMGTOmwnPvvvtuCCEwbNgw2LbtGfoTiQQikQhGjx6NO++8M6PnBmTg6erfv3+VPReUmZ6ot+iyQBWVBAJ8b1e4JJDXh/v1UUgw24HkHMwWyjsWtZQ3SwCMS9ciZlR1cP+A8rivcvHSJFhJmUoeavwbDP87k1KCcQ5kufs5gxNVypSI+ioXEwjW8QlFP5lFq8OlfpQPzTjHPM6DpX+0L4w5blLUOBAtFogW2+qe4glIR6iEqFrlIl8XQezxfPjhhzj++OO99+PHjwcAjBw5ErNnz8aaNWswf/58FBYWol27dhg4cCBuvvnmgHq2YMECjB07Fv379wfnHEOHDg2komrSpAleffVVjBkzBj179kTLli0xefLkjNJFFBYWpiRlBYCBAwfi2muvrfTcrKwszJ49G9OnT8eqVasCKSN69uyZkSnfpEqTrvXr12fccfv27TM+hyAIgiCIDNgNSle/fv0qFWEWL1680z6aN2+OhQsXVtqmR48eeOuttzIen+a0007Ds88+i2uuuSaw/7///S9OOeWUKvWRm5sbmGDWlCpNujp16lRrFySIPR4hAMvKSO2qMFGqVnGEUDKTfpWAKnbtduepT0oZipQ7sMpcRag8DllervqSwlPXJKCub4xJRiJgkVCCUe254u41GPPVKPe4WYoIYaFaK1aG8TZFGQtcw/eNMeEmcI0D0VIdtZgALy0H4gkV5UkqF0FUmz01T9fuwlTLunbtiltvvRXLly9HQUEBAODdd9/FO++8g7/+9a+V9rNy5Ur89ttvgcnZo48+iilTpqCkpARnnHEG7r333oy9bxmnjCAIgiAIgtgTCXu+mjVrhs8++wyfffaZt69p06Z45JFHMGnSpAr7mTp1Kvr16+dNuj755BOMHj0aF1xwwf+3d+fhURXpGsDfc3pJQshCAukmGhZHZA2LIBAUdCSXiLgguCFCBK4LJsqiiFwVUEZgGBV1RBy9CsqAKHMRHXSAsIkii0SCYZkMIhjULApkT3o7df843YfupBPSWTrp5P09Tz/Q51RXV+VJOpWvqr5Cz5498Ze//AWxsbE+p9XgoIsIuMSRQNVEuyrxWGPlPA5I3b2oQMiKtq5Lcq0DczjP/lGgHv1jV3cySg44o1xWSBUW9UBo98Og3Xf5Odze36DXdk66HlLlyJTkDGa5cm655duSnNW6L/dSb3r+Ney6r5VzO/ZHyNDWdkmKM9JlAfRlAoZSBfpiK6Qyi5afi7m5iOqpCaYXm7O6LIfyJiMjA4sWLdKer1+/HkOGDME777wDQM1rVpdcZhx0ERERBShOLzaOCxcuaBnwAeDLL7/0OG/ymmuuwdmzZ32ul4MuIhf3aJeiqLsO3aNdldVmF6PDAdhlNRO9oqiZ4O0KoJedOxxxMfIlqVnodVYFcrkNUoUNksWm5rJyHQZdE+VihAsOV14wQLYDkkOC5BCeOwvd1mB5RLkA7a9fb/uQheRc5lX5gGvdxUgXAEi2i2u5jCUCxiIH5OIKSOUWCKvrkGuu5yKixjF16tQa77/33nvV3jOZTDh9+jTi4uJgtVrx3Xff4fnnn9fuFxcXVzl7ujZ8zkifnJyMPXv2+PxGRERE1MB8yTxf3aOFunDhgscjPz8fO3fuxMaNG1FQUFDja2+++WY8/fTT+OqrrzBv3jy0adMGw4cP1+5///33+MMf/uBzm3yOdBUWFiIxMRGdO3fGlClTkJycjMsuu8znNyYiIqJ64pquan3yySdVrimKgunTp19ywLRo0SKMGzcO119/Pdq2bYv3339fS5AKqFGyUaNG+dwmnyNdmzZtwi+//ILp06fjo48+QpcuXTB69Gj84x//8EjXTxSQKk1zaQu9vU0fuqs8/aioGVBdx9tIdgdgd0BSFMAhIDmEc/pR/b+kCMh2AdkmIFsVSFY7JKsNsNmqJEX1aKvbdfW9hJaGQbI5oLMKyFZnclIHtBXyanoH4TF/KFXz4e2aRhTu04g1PWR1GlO2AbpyAUOpOrVoKHKlv7AANuvFjQGcWiQiP5FlGbNnz75kZvv27dtjz549WpTsjjvu8Li/YcMGLFiwwPf39/kVADp06IDZs2fjyJEjOHDgAK688kpMmjQJsbGxmDVrFk6ePFmXaomIiMgHUgM8WptTp07BbrfXqmxERAR0Ol2V61FRUR6Rr9qq10L6nJwcpKWlIS0tDTqdDjfffDMyMzPRq1cvLFu2DLNmzapP9VUsXboU8+bNw4wZM/Dqq68CACoqKvDEE09g/fr1sFgsSEpKwptvvumx6yA7OxvTp0/Hrl270LZtWyQnJ2PJkiXQ67mPgLxwLah3HgmkpY+oKUkq4H1BvcOh1iVJagJVSYJk0KlVOdTXyw71OCBJCEg2BbLVAcliA2zONBHuCUQr83LYtnCokTVXpEtnFZBtEiS7BMngjG65H0zt/OSVAK+L7CsfBQTJLTjlioDpAEUvtESqsgPQVwCGMsBQqsBQbIOu2BnlstsvbgxglIuofji9WC3X8UQuQgjk5OTg888/R3Jycq3rOXToED7++GNkZ2fDarV63Nu4caNPbfJ51GGz2fDZZ59h1apV2LZtG/r27YuZM2fivvvu084i+uSTTzB16tQGHXR9++23+Nvf/oa+fft6XJ81axY+//xzbNiwAREREUhNTcW4ceOwd+9eAIDD4cCYMWNgNpvxzTffICcnB5MnT4bBYMDixYsbrH1ERET+xpQR1Tt8+LDHc1mW0aFDB7z88suX3Nnosn79ekyePBlJSUnYtm0bRo0ahf/85z/Iy8urMuVYGz4Pujp27AhFUTBhwgQcPHgQ/fv3r1Lmj3/8IyIjI31uTHVKSkowceJEvPPOO/jTn/6kXS8sLMS7776LdevW4cYbbwQArFq1Cj179sT+/fsxdOhQbNu2DcePH8f27dthMpnQv39/LFq0CHPnzsXChQvrFB6kVsQ92oVaRLs8XqumbhCSAklyaNEu2C+WlVyZSgFACMg25WKUy26/GBXyxtvB8s61ZHBFuiwCOouaukExAIoRnsf+uJKkOk8nglvCU48ol/tB1rj4r9CiZgJC5/wFoLiv51JgKFYP7pZcUS6HA8LhltWViKgRfP755xBCIDQ0FABw5swZbNq0CZ07d671TNfixYuxfPlypKSkICwsDK+99hq6du2Khx9+GB07dvS5TT6v6Vq+fDl+/fVXrFixwuuAC1BT7DdUVlgASElJwZgxY5CYmOhxPT09HTabzeN6jx490KlTJ+zbtw+Aen5SfHy8x3RjUlISioqKcOzYMa/vZ7FYUFRU5PEgIiJqdpgyolpjx47FmjVrAAAFBQUYOnQoXn75ZYwdOxYrV66sVR2nTp3CmDFjAABGoxGlpaWQJAmzZs3C22+/7XObfB50TZo0CcHBwT6/UV2tX78e3333HZYsWVLlXm5uLoxGY5WomslkQm5urlbGfcDluu+6582SJUsQERGhPeLi4hqgJxRQ3NcaudZTuSJO3qJa1dajAIoDwu5Qozw29SHZ1EgU7OoaLtnqgFxuh+RMigqbTV3L5doBWRvuiUYdDsBmh77cAUOZAn2pgL4U0JdJ0FVIkK0SJIekHkEEeB5YXWmtl0eUy20Ho6IHhF5A0QsoBlxMiuqQINsAY6mAocQBQ7EVcmkFpAr1gGse/UPUwDjg8uq7777Tcmv94x//gMlkwk8//YQPPvjA42DsmrRr1w7FxcUAgMsuuwxHjx4FoA7iysrKfG5TnXYv+svZs2cxY8YMrF271q8DvXnz5qGwsFB71CXVPxERETWdsrIyhIWFAQC2bduGcePGQZZlDB06FD/99FOt6hgxYgTS0tIAAHfddRdmzJiBBx98EBMmTMDIkSN9blOz3r6Xnp6O/Px8XH311do1h8OBPXv24I033sDWrVthtVpRUFDgEe3Ky8uD2WwGAJjNZhw8eNCj3ry8PO2eN0FBQQgKCmrg3lDA8XYskIKaD8D2toNREQAcEIoEyW6HZNerh04DaqTJuYtPcgg1Cma1OXctKpfOD1alyQKSQ42sSTY7dGV2GPSS8wBqGUInQTGokSr1BeoxQa5DrbVcXF7WdGnPZUDRCTUiprv4GklR65BtgK4CMBarubnkUot69I/FmZuLR/8QNRgupK/elVdeiU2bNuGOO+7A1q1btc19+fn52sa/S3njjTdQUVEBAHjmmWdgMBjwzTffYPz48Xj22Wd9blOzHnSNHDkSmZmZHtemTJmCHj16YO7cuYiLi4PBYMCOHTswfvx4AEBWVhays7ORkJAAAEhISMCLL76I/Px8xMTEAADS0tIQHh6OXr16+bdDREREDYkpI6o1f/583HfffZg1axZGjhypjQu2bduGAQMG1KqOqKgo7f+yLOPpp5+uV5ua9aArLCwMffr08bgWGhqK6Oho7fq0adMwe/ZsREVFITw8HI899hgSEhIwdOhQAMCoUaPQq1cvTJo0CcuWLUNubi6effZZpKSkMJpFPhNCXIx2uasuX5ciAFkBFFldzwRAcji0DYSSTgCK5IxqKZCca760XX7OjPY+UQSgOACLFbpii7bTUBKAYpThCHJGuyTnX8kOV2MA6NTmeNut6MrHJXTqGi51bZe4uJbLIkG2S+oh16UChiI7dMUWSGUVEFYrD7gmIr+68847cd111yEnJwf9+vXTro8cOdKndA+nTp3CqlWrcOrUKbz22muIiYnBv/71L3Tq1Am9e/f2qU3Nek1XbSxfvhy33HILxo8fjxEjRsBsNnskK9PpdNi8eTN0Oh0SEhJw//33Y/LkyXjhhReasNVERET155perM+jJTObzRgwYABk+eJwZ/DgwejRo0etXv/ll18iPj4eBw4cwMaNG1FSUgIAOHLkSJ2OAWrWkS5vdu/e7fE8ODgYK1aswIoVK6p9TefOnfHFF180csuIiIj8jNOLjerpp5/Gn/70J8yePVtblA8AN954I9544w2f6wu4QReRX1VaTK8lSlWgThsC3hfUu3NNMbrygdrV/0iAlj5Bch33Y3eoSVF9SRXh8V7OBf8Oh3rkUIUFOp0EIUsQOgm6tjKEJCApkpYMVXLN+LmmCV2JUt2nFl1pJPQCig5QgoQ2teiqTyqTIFsAfZmAsURAV2KFXFYBVFgAqzMFhutrSkQUADIzM7Fu3boq12NiYvD777/7XF/ATy8SERG1VpxebFyRkZHIycmpcv3w4cO47LLLfK6Pgy6iS/GWKNXjvlI1YWrlhfaucg7FebyPw5kk1e62eN5R9egfXxfRO1/jSjkhWdRkqzqLAzqLAtkmINvg/FdAtqupKtSHuqjeFflyfRirC+iFMxEqoBgFlGAFwqhAGBTtU0RXIUFfBhiLBQzFDsilFYDFCuFM9CqEYJSLqKExI32juvfeezF37lzk5uZCkiQoioK9e/fiySefxOTJk32uj4MuIiKiQMVBV6NavHgxevTogbi4OJSUlKBXr14YMWIEhg0b1vLydBE1S5UTpVanSuoIZ1JVV+oIWVZTSbjqVJzruhRRt1QRlTkcah0O9cgh2a5AtgM6m7q8TPKWBBW4mCjV/ZIO6loug4AwCkCvXDw4W5Eg2SQYSgFjkUBQoQJjodWZENVS99QXRERNSAiB3NxcvP7665g/fz4yMzNRUlKCAQMGoFu3bnWqk4MuIiKiAMWM9I1HCIErr7wSx44dQ7du3RrkHGZOLxLVRuW1SJUPwa4NV1mHAtjtEHYHhNUG4fy/mhBVubjLryE4HOrOSEWBZBfQOddy6WyAZHcmRgWcuxudxwN5+VTQEqPq1bVd0AlAVs8NkmzqIdrGQoHgAgXGC1boCysgKixqP92P/iGihsXpxUYjyzK6deuGc+fONVydDVYTERERUQuydOlSzJkzB0ePHm2Q+ji9SFRHQghIknRxvZY3lQ/Adj8WSLE77zuvC6V+uxarb6hzd6IC2Sqgc/2pJSR1N6JrXZcrF5eXI4AgQY1syeq/kiwgFAlwSJAtEvSlEoIKHQgqsEFfbIFUWq5G8HjANVGjkoSAVI+frfq8tjWYPHkyysrK0K9fPxiNRoSEhHjcP3/+vE/1cdBFREQUqJiRvlG9+uqrDVofB11EteWenR64uIuxrtEu4GKWeuf1OmWh90ZRAJ1OjcY5dw5KNgd0VgWAuvPSoTizz+slKJKAJCT189c98qXzEv2SoD6xy5AsMvRlEgzFQFChA/oiC+TicjULvWv3pOtrR0QUYJKTk6u952uUC+CaLiIiooDFjPT+t23bNtx9993MSE/U6CpnVVfczkisaSdj5SiYIqo8GizKVfl9HApgV3N16crs0Jc5oC9TYChToK8QkK2AbHfbzejKRC+rmegVg4AwqLsWhU79lBY2GVKFDEOJBGOhhOALAsYLFshF5UB5BYTNBsGzFokaH3cv+sVPP/2EBQsWoEuXLrjrrrsgyzI++OADn+vh9CIRERFRJVarFRs3bsT//u//Yu/evUhMTMTPP/+Mw4cPIz4+vk51ctBFREQUoJgctXE89thj+PDDD9GtWzfcf//9+OijjxAdHQ2DwQCdTlfnejnoIqqLSovqtfQRNam8oN6juob/5FMX0TuPAbI7AIsdugo7JIeAbJPhCJIhKTLswRKELEGW1c0AinCmkXAtpHcd/2NwnQ8kQSrTqVOLFyQEnxMIOWeHXFQOqUydWoTN7mpEg/eLiNxw92KjWLlyJebOnYunn34aYWFhDVYv13QREREFKC6kbxxr1qzBwYMH0bFjR9xzzz3YvHkzHA1wWggHXUT15UyLoB7qfIlPMC9pJRplAb2Lw3mQts0OyWqDXG6DrtwG2WKHzqZAcgCyQ00dITmgJmp1tUsWnkf/OFNFSFYZxkIJQeckhPwm0OY3O4znrWpCVIvz6B9GuIgogE2YMAFpaWnIzMxEjx49kJKSArPZDEVRcPz48TrXy0EXERFRoOLuxUbVtWtXPP/88zhz5gz+/ve/Y/z48bj//vtx+eWX4/HHH/e5Pq7pIqor93VdigLIzr9hakqU6oUkSVUjQ7LcMEcBCefh2nAe96HXqceG6CTAISA5I3OuKQZJqGu23I8FUvRQ/zwTgGSXoCuXEXROQvB5dS1X0HkLdBfKICoqPA+4ZrSLyC84Rdj4JElCUlISkpKScP78eXzwwQdYtWqVz/Uw0kVERES1tmfPHtx6662IjY2FJEnYtGmTx30hBObPn4+OHTsiJCQEiYmJOHnypEeZ8+fPY+LEiQgPD0dkZCSmTZuGkpISjzLff/89hg8fjuDgYMTFxWHZsmWN3bVaiYqKwsyZM3HkyBGfX8tIF1F9VIp21elYIDRStEtRnG1TF38KRUDS6yAkCZJdp0a5FHFxesH1r9txP0IW6kHXblEufYmEkHMKgs85EHSuArrCcu8HXBNR46ucsLkur/dRaWkp+vXrh6lTp2LcuHFV7i9btgyvv/463n//fXTt2hXPPfcckpKScPz4cQQHBwMAJk6ciJycHKSlpcFms2HKlCl46KGHsG7dOgBAUVERRo0ahcTERLz11lvIzMzE1KlTERkZiYceeqju/a2Dn3/+GZ999hmys7NhtVq165Ik4eWXX/apLg66iIiIAlRT5OkaPXo0Ro8e7fWeEAKvvvoqnn32Wdx+++0AgA8++AAmkwmbNm3CvffeixMnTmDLli349ttvMWjQIADAX//6V9x888146aWXEBsbi7Vr18JqteK9996D0WhE7969kZGRgVdeecWvg64dO3bgtttuwxVXXIF///vf6NOnD86cOQMhBK6++mqf6+P0IlF9VfpLsdbHAlWKhF0yz1cdCCHU6JPDAdjt6nFAdgfgEJ4LaN3+7zrcWjvgWgCSTYJcIUNfKsFYBARfcMBYYIWuuEKNclVUeEa5uJ6LKKAUFRV5PCwWS53qOX36NHJzc5GYmKhdi4iIwJAhQ7Bv3z4AwL59+xAZGakNuAAgMTERsizjwIEDWpkRI0bAaDRqZZKSkpCVlYULFy7UqW11MW/ePDz55JPIzMxEcHAw/u///g9nz57F9ddfj7vuusvn+jjoIiIiClQNtHsxLi4OERER2mPJkiV1ak5ubi4AwGQyeVw3mUzavdzcXMTExHjc1+v1iIqK8ijjrQ739/CHEydOYPLkyVoby8vL0bZtW7zwwgv485//7HN9nF4kagiutV3OXYy1ylAPVFnfVWVtV0Os65JlCIcCSQc14iWEuoPRoXhOTUiAkCQIGeqfY7Iz2iUkyFYJ+jIJhhLAWChgLLBBX1gOqaQcwmJVo2iMchH5naSoj/q8HgDOnj2L8PBw7XpQUFA9W9YyhIaGauu4OnbsiFOnTqF3794AgN9//93n+jjoIiIiauXCw8M9Bl11ZTabAQB5eXno2LGjdj0vLw/9+/fXyuTn53u8zm634/z589rrzWYz8vLyPMq4nrvK+MPQoUPx9ddfo2fPnrj55pvxxBNPIDMzExs3bsTQoUN9ro/Ti0RERIGqmSVH7dq1K8xmM3bs2KFdKyoqwoEDB5CQkAAASEhIQEFBAdLT07UyO3fuhKIoGDJkiFZmz549sNlsWpm0tDR0794d7dq1a9hG1+CVV17R2vT8889j5MiR+Oijj9ClSxe8++67PtfHSBdRQ3OfYlTgU6JUoPGmGLVpTPct5sJtwbzrkGsZUHRCvQ71eCB9mQRDMWAsEAguUKArrFAPt7ZaAZtVXUTvqpuI/KYpdi+WlJTghx9+0J6fPn0aGRkZiIqKQqdOnTBz5kz86U9/Qrdu3bSUEbGxsRg7diwAoGfPnrjpppvw4IMP4q233oLNZkNqairuvfdexMbGAgDuu+8+PP/885g2bRrmzp2Lo0eP4rXXXsPy5cvr3tk6uOKKK7T/h4aG4q233qpXfRx0ERERBaomyNN16NAh/PGPf9Sez549GwCQnJyM1atX46mnnkJpaSkeeughFBQU4LrrrsOWLVu0HF0AsHbtWqSmpmLkyJGQZRnjx4/H66+/rt2PiIjAtm3bkJKSgoEDB6J9+/aYP3++33N0ffvttx4ROJcDBw5Ap9N57MCsDUnwZNpLKioqQkREBG7A7dDLRkCSIckSIMmALKkLpmXO1BIuJkoFAFeiVODS0a5K6SWq/FjWN+Goqy0hwZCCgyBCQ6CEBsEWZkSZyQB7sARHMOAIlmCNABxBzsOuJTXSFfy7hKALAiEXFASfs8L40zmI8grAaoNwLaLnRwkFkkoH1QuHQz02S71Yr6rtwobd+BSFhYUNsk7KG9fvpcG3LYLeEHzpF1TDbqvAwc+ea9S2BrLBgwfjqaeewp133ulxfePGjfjzn/+spbioLUa6iIiIAlRTTC+2JsePH/eaBHXAgAE4fvy4z/UxPEPUWBSldolSgUtHwmS54aKpzuibcB1qrQMUA+AwSnAYAUXvXM+lALJNXc8VfF4g5Lwa5dJfKAcqLIDVpqag4LE/RE2nmS2kb2mCgoKq7KIEgJycHOj1vsetOOgiIiIi8mLUqFGYN28eCgsLtWsFBQX4n//5H/zXf/2Xz/VxepGoIbkfgK1dEpc+BLsSrwdgA57RrjpEmLQ1ZpIEoZMhdBIUnQRFL0Ho1aiXkJ1TFg5AVyHBUAoEX1AQfF6NcsnFzoSoDoe6DsbVbyLyO04vNq6XXnoJI0aMQOfOnTFgwAAAQEZGBkwmE9asWeNzfRx0ERERBaom2L3Ymlx22WX4/vvvsXbtWhw5cgQhISGYMmUKJkyYAIPB4HN9HHQRNTT3aFflY4FqinZd6kigKuXrmL9LkiAkyZmby3nsj+uAawA6q6St5zKUqsf+BP9uhb5QjXKhvIJRLiJqNUJDQxssVQUHXURERAGK04uN79SpU3j11Vdx4sQJAECvXr0wY8YM/OEPf/C5Li6kJ2oMXqI/tUqJVykKdslDsxtgR6Pk3MEkOwDZDuhLAWMhEHxOIOQ3BW1+t6truYrKgPIKCIv1YpSLiJoWdy82qq1bt6JXr144ePAg+vbti759++LAgQPo3bs30tLSfK6PkS4iIiIiL55++mnMmjULS5curXJ97ty5Pu9gZKSLiIgoQLmmF+vzoOqdOHEC06ZNq3J96tSpTI5K1KxoiVEVt0vi0olSK7nkFGN9CAEIQFIEJDsgW4CgAoGQcwra/KagTZ4NwfkVkItLIZxTi3CfWuQieqKmpYj6P6haHTp0QEZGRpXrGRkZiImJ8bk+Ti8SEREFqvquy+KYq0YPPvggHnroIfz4448YNmwYAGDv3r3485//rB307QsOuoj8wZk64uJz5yedt/QRlVJHABejXXU6n971vtWkqpCci+ghCUgKYCwSMBY7YCiyQV9sgVRaAVFaBtjtEA7lYuSOUS4iauGee+45hIWF4eWXX8a8efMAALGxsVi4cCEef/xxn+vjoIuIiChASahnyogGa0nLY7fbsW7dOtx3332YNWsWiouLAQBhYWF1rpNruoj8xRkh8ohW+XN9l3viVedaLsC5nssByFZAXw4YixwwFtqgL6iAXFQGqbScUS6i5sqVkb4+D/JKr9fjkUceQUVFBQB1sFWfARfAQRcRERGRV4MHD8bhw4cbrD5OLxI1psoHYFc+FgjwfjSQl3VdLlWOB/L1OCDnX7eSEJAcArJNvSYpgM4qYCyyQVdcAbm0HKiwQFitnlEuImo2mJG+cT366KN44okn8PPPP2PgwIEIDQ31uN+3b1+f6uOgi4iIKFBx92KjuvfeewHA66J5SZLg8PF0Dg66iBqbP6JdtW6KGuGCQ4Fkc0Bn08FQpkDIgGwX0FUo0BV6RrngcDDKRUSt0unTpxu0Pg66iIiIApTk+kOqHq+n6rVt2xbR0dEAgLNnz+Kdd95BeXk5brvtNgwfPtzn+jjoIvIH1webFtmqJtoFeEa85Er36ktRo1xwOCBZHNDJdhgBQAEkuwK5wg65pEyNctlsgMOhrufy1hcianqK81Gf11MVmZmZuPXWW3H27Fl069YN69evx0033YTS0lLIsozly5fjH//4B8aOHetTvdy9SEREROTmqaeeQnx8PPbs2YMbbrgBt9xyC8aMGYPCwkJcuHABDz/8cJVDsGuDkS4iIqIAxenFxvHtt99i586d6Nu3L/r164e3334bjz76KGTnCR+PPfYYhg4d6nO9zTrStWTJElxzzTUICwtDTEwMxo4di6ysLI8yFRUVSElJQXR0NNq2bYvx48cjLy/Po0x2djbGjBmDNm3aICYmBnPmzIHdbvdnV4hUHolRvSRLBbwfQitL1R7jo96v5Y+yUAC7HZLNDqnCArmkAvpz5TCcL4P+XAl0BSUQpeXqwdY2O1NFEDV3ogEeVMX58+dhNpsBqOu6QkND0a5dO+1+u3bttAz1vmjWg64vv/wSKSkp2L9/P9LS0mCz2TBq1CiUlpZqZWbNmoV//vOf2LBhA7788kv8+uuvGDdunHbf4XBgzJgxsFqt+Oabb/D+++9j9erVmD9/flN0iYiIqOEwI32jqXwCSL1OBHFq1tOLW7Zs8Xi+evVqxMTEID09HSNGjEBhYSHeffddrFu3DjfeeCMAYNWqVejZsyf279+PoUOHYtu2bTh+/Di2b98Ok8mE/v37Y9GiRZg7dy4WLlwIo9HYFF0jUnlbUK/dqzmNRJ3SRjgUCEmBZLFCciiAza6evaYI9agfRQFsVkARat2MchFRK/XAAw8gKCgIgDqr9sgjj2jJUS0WS53qbNaRrsoKCwsBAFFRUQCA9PR02Gw2JCYmamV69OiBTp06Yd++fQCAffv2IT4+HiaTSSuTlJSEoqIiHDt2zI+tJyIialiujPT1eVBVycnJiImJQUREBCIiInD//fcjNjZWex4TE4PJkyf7XG+zjnS5UxQFM2fOxLXXXos+ffoAAHJzc2E0GhEZGelR1mQyITc3VyvjPuBy3Xfd88ZisXiMYouKihqqG0Q1JksFKoWwfUma6lrX5YpOVVrnpSZGVdd0CSGrqSNcdQlFbZd7iojqolySxCkJouaivlOE/Fn2atWqVY1Sb8BEulJSUnD06FGsX7++0d9ryZIl2mg2IiICcXFxjf6eRERE1LIFxKArNTUVmzdvxq5du3D55Zdr181mM6xWKwoKCjzK5+XlabsOzGZzld2MrueuMpXNmzcPhYWF2uPs2bMN2BsiVP3r1C2q5HU3Y2XO6JfXhZ2yXP1uRkWNZsFuVx9Wm7qGy2733K3ItVxEAUFS6v8g/2nWgy4hBFJTU/HJJ59g586d6Nq1q8f9gQMHwmAwYMeOHdq1rKwsZGdnIyEhAQCQkJCAzMxM5Ofna2XS0tIQHh6OXr16eX3foKAghIeHezyIiIiaHe5eDCjNek1XSkoK1q1bh08//RRhYWHaGqyIiAiEhIQgIiIC06ZNw+zZsxEVFYXw8HA89thjSEhI0JKWjRo1Cr169cKkSZOwbNky5Obm4tlnn0VKSoq2K4Goybiv73Ku7VIve9nNWA1fdjFq68YUAHBUuU5ERI2nWQ+6Vq5cCQC44YYbPK6vWrUKDzzwAABg+fLlkGUZ48ePh8ViQVJSEt58802trE6nw+bNmzF9+nQkJCQgNDQUycnJeOGFF/zVDSIiosZR3wSn/HvLr5r1oKs2f30HBwdjxYoVWLFiRbVlOnfujC+++KIhm0bUOKqLdnnbxejG15xd1ZblWi6igMJjgAJLs17TRURERNRSNOtIFxEREdWAeboCCgddRE2tmmSp6q1KU4xAtdOMrnJ1XhTPqUWiwCMA1OdHl2Muv+Kgi4iIKEBxTVdg4ZououbA12Sp3hKmOkmSpD1qzdcoly91ExERAA66iIiIApdAPZOj+vZ2Cxcu9PjDTpIk9OjRQ7tfUVGBlJQUREdHo23bthg/fnyVU2Gys7MxZswYtGnTBjExMZgzZw7sdnsDfDGaP04vEjUnDZAs1V2tUklwLRdR4GqChfS9e/fG9u3bted6/cWhxKxZs/D5559jw4YNiIiIQGpqKsaNG4e9e/cCABwOB8aMGQOz2YxvvvkGOTk5mDx5MgwGAxYvXlz3fgQIDrqIiIio1vR6vdeziwsLC/Huu+9i3bp1uPHGGwGoycx79uyJ/fv3Y+jQodi2bRuOHz+O7du3w2QyoX///li0aBHmzp2LhQsXwmg0+rs7fsXpRaLmprZru2qpLhGyWlbcOPUSUe0pDfAAUFRU5PGwWCzVvuXJkycRGxuLK664AhMnTkR2djYAID09HTabDYmJiVrZHj16oFOnTti3bx8AYN++fYiPj4fJZNLKJCUloaioCMeOHWuAL0jzxkEXERFRgHLtXqzPAwDi4uIQERGhPZYsWeL1/YYMGYLVq1djy5YtWLlyJU6fPo3hw4ejuLgYubm5MBqNiIyM9HiNyWTSzk7Ozc31GHC57rvutXScXiRq7iqt7fKm0aJZlyJJTK5I1AKcPXsW4eHh2vOgoCCv5UaPHq39v2/fvhgyZAg6d+6Mjz/+GCEhIY3ezkDHSBcREVGgqtfOxYuL8MPDwz0e1Q26KouMjMRVV12FH374AWazGVarFQUFBR5l8vLytDVgZrO5ym5G13Nv68RaGg66iJojH6NHl1rv1aiRMK7tImo6DTToqquSkhKcOnUKHTt2xMCBA2EwGLBjxw7tflZWFrKzs5GQkAAASEhIQGZmJvLz87UyaWlpCA8PR69everVlkDA6UUiIiKqlSeffBK33norOnfujF9//RULFiyATqfDhAkTEBERgWnTpmH27NmIiopCeHg4HnvsMSQkJGDo0KEAgFGjRqFXr16YNGkSli1bhtzcXDz77LNISUmpdXQtkHHQRUREFKj8nKfr559/xoQJE3Du3Dl06NAB1113Hfbv348OHToAAJYvXw5ZljF+/HhYLBYkJSXhzTff1F6v0+mwefNmTJ8+HQkJCQgNDUVycjJeeOGFuvchgEiizqfjth5FRUWIiIjADbgdetkISDIkWQIkGZCdx63InKmlRlB56u4S32c1TSNW+6PeEMlR+TFCgcb5fS+EeqyWcDgA4fxZqOf3s13YsBuforCw0GNxekNy/V4a2f0J6HV1jxDZHRbsyHq5UdtKFzHSRUREFKB44HVgYXiGqDmrcti1cvHhtXjNB2E3Gi6mJyK6JEa6iIiIAlUTnL1IdcdBF1Fz534Itjv3aFd91hTKMg+9JgpUigCkegycFA66/InTi0RERER+wEgXUUtQ6aggn9dvNUS0y/WenK4g8h9OLwYUDrqIiIgCVn2zynPQ5U+cXiQKBA1wXAdwiR2MDZVrjjsZiYi8YqSLiIgoUHF6MaBw0EUUSFwfkNXtZqzPui6AOxmJAo0iUK8pQu5e9CtOLxIRERH5ASNdREREgUooF8+MrOvryW846CIKRNUlTPUo4n2KUZKkGo8LIqIAwjVdAYWDLiIiokDFNV0BhWu6iAKVt79wm8MieP7lTETkFSNdREREgYrTiwGFgy6iQFd5fVctUkdwXRdRCyFQz0FXg7WEaoHTi0RERER+wEgXUUtwiWgXcIkjgIgoMHF6MaBw0EVERBSoFAVAPTbQNIfNN60IpxeJWqpKH6ZCCC3qVeN6roY6+JqIiDww0kVERBSoOL0YUDjoImopvGWpd1vbdbEYP2SJWgwOugIK5xGIiIiI/ICRLiIiokDFY4ACCgddRC2Ja6qgcvoIwLcF8rLMXU1EAUAIBULU/We1Pq8l33HQRUREFKiEqF+0imu6/IpruohaIm8fpIxcERE1KUa6iIiIApWo55ouRrr8ioMuopaqlikkvKprVIwf4ET+pSiAVI8oNtd0+RWnF4mIiIj8gJEuopasumiXC4/8IQpsnF4MKBx0ERERBSihKBD1mF5kygj/4p+5RC1dTceEKErV9Vvc5UhE1CgY6SIiIgpUnF4MKBx0EbUW3tZ3uTC6RRSYFAFIHHQFCk4vEhEREfkBI11ERESBSggA9cnTxUiXP3HQRdSa1DTFSEQBRygCoh7Ti4KDLr9qVdOLK1asQJcuXRAcHIwhQ4bg4MGDTd0kIiKiuhNK/R91wN+nddNqBl0fffQRZs+ejQULFuC7775Dv379kJSUhPz8/KZuGpF/1ZRCor71ElGLx9+ndddqBl2vvPIKHnzwQUyZMgW9evXCW2+9hTZt2uC9995r6qYRERHViVBEvR++4u/TumsVgy6r1Yr09HQkJiZq12RZRmJiIvbt21elvMViQVFRkceDqMVhZIpaM/cjsOQAXufo5+lFX3+fkqdWsZD+999/h8PhgMlk8rhuMpnw73//u0r5JUuW4Pnnn69y3Q4bICQAMiTnvxASJAAQrWL8Si1OA/6y4SCOAo1QtG9bIewXByD1/F62w+aspvF/JtTfS/V8PVAluBAUFISgoKAq5X39fUqeWsWgy1fz5s3D7NmzteenT59G//798TW+UL+567lDl4iIWr7i4mJEREQ0St1GoxFmsxlf535R77ratm2LuLg4j2sLFizAwoUL6103eWoVg6727dtDp9MhLy/P43peXh7MZnOV8pVH+J07dwYAZGdnN9oPUHNUVFSEuLg4nD17FuHh4U3dHL9hv9nv1oD9brx+CyFQXFyM2NjYRqkfAIKDg3H69GlYrdZ61yWEgFQplYy3KBfg++9T8tQqBl1GoxEDBw7Ejh07MHbsWACAoijYsWMHUlNTL/l62Tn3HxER0ao+nFzCw8PZ71aE/W5d2O/G4Y8/0IODgxEcHNzo7+Ouvr9PW7tWMegCgNmzZyM5ORmDBg3C4MGD8eqrr6K0tBRTpkxp6qYREREFDP4+rbtWM+i655578Ntvv2H+/PnIzc1F//79sWXLliqLAYmIiKh6/H1ad61m0AUAqampdQp/BgUFYcGCBdXOcbdU7Df73Rqw3+w3+a6uv09bO0nw4CUiIiKiRsfkUkRERER+wEEXERERkR9w0EVERETkBxx0EREREfkBB121sGLFCnTp0gXBwcEYMmQIDh482NRNqrUlS5bgmmuuQVhYGGJiYjB27FhkZWV5lKmoqEBKSgqio6PRtm1bjB8/vkq24ezsbIwZMwZt2rRBTEwM5syZA7vd7lFm9+7duPrqqxEUFIQrr7wSq1evbuzu1drSpUshSRJmzpypXWup/f7ll19w//33Izo6GiEhIYiPj8ehQ4e0+0IIzJ8/Hx07dkRISAgSExNx8uRJjzrOnz+PiRMnIjw8HJGRkZg2bRpKSko8ynz//fcYPnw4goODERcXh2XLlvmlf944HA4899xz6Nq1K0JCQvCHP/wBixYt8jj7riX0e8+ePbj11lsRGxsLSZKwadMmj/v+7OOGDRvQo0cPBAcHIz4+Hl98Uf/jaKpTU79tNhvmzp2L+Ph4hIaGIjY2FpMnT8avv/7qUUcg9ptaIEE1Wr9+vTAajeK9994Tx44dEw8++KCIjIwUeXl5Td20WklKShKrVq0SR48eFRkZGeLmm28WnTp1EiUlJVqZRx55RMTFxYkdO3aIQ4cOiaFDh4phw4Zp9+12u+jTp49ITEwUhw8fFl988YVo3769mDdvnlbmxx9/FG3atBGzZ88Wx48fF3/961+FTqcTW7Zs8Wt/vTl48KDo0qWL6Nu3r5gxY4Z2vSX2+/z586Jz587igQceEAcOHBA//vij2Lp1q/jhhx+0MkuXLhURERFi06ZN4siRI+K2224TXbt2FeXl5VqZm266SfTr10/s379ffPXVV+LKK68UEyZM0O4XFhYKk8kkJk6cKI4ePSo+/PBDERISIv72t7/5tb8uL774ooiOjhabN28Wp0+fFhs2bBBt27YVr732mlamJfT7iy++EM8884zYuHGjACA++eQTj/v+6uPevXuFTqcTy5YtE8ePHxfPPvusMBgMIjMz0+/9LigoEImJieKjjz4S//73v8W+ffvE4MGDxcCBAz3qCMR+U8vDQdclDB48WKSkpGjPHQ6HiI2NFUuWLGnCVtVdfn6+ACC+/PJLIYT6gWUwGMSGDRu0MidOnBAAxL59+4QQ6geeLMsiNzdXK7Ny5UoRHh4uLBaLEEKIp556SvTu3dvjve655x6RlJTU2F2qUXFxsejWrZtIS0sT119/vTboaqn9njt3rrjuuuuqva8oijCbzeIvf/mLdq2goEAEBQWJDz/8UAghxPHjxwUA8e2332pl/vWvfwlJksQvv/wihBDizTffFO3atdO+Dq737t69e0N3qVbGjBkjpk6d6nFt3LhxYuLEiUKIltnvyoMPf/bx7rvvFmPGjPFoz5AhQ8TDDz/coH30xttgs7KDBw8KAOKnn34SQrSMflPLwOnFGlitVqSnpyMxMVG7JssyEhMTsW/fviZsWd0VFhYCAKKiogAA6enpsNlsHn3s0aMHOnXqpPVx3759iI+P98g2nJSUhKKiIhw7dkwr416Hq0xTf51SUlIwZsyYKm1rqf3+7LPPMGjQINx1112IiYnBgAED8M4772j3T58+jdzcXI82R0REYMiQIR79joyMxKBBg7QyiYmJkGUZBw4c0MqMGDECRqNRK5OUlISsrCxcuHChsbtZxbBhw7Bjxw785z//AQAcOXIEX3/9NUaPHg2g5fbbnT/72Ny+7ysrLCyEJEmIjIwE0Hr6Tc0fB101+P333+FwOKocbWAymZCbm9tErao7RVEwc+ZMXHvttejTpw8AIDc3F0ajUftwcnHvY25urtevgeteTWWKiopQXl7eGN25pPXr1+O7777DkiVLqtxrqf3+8ccfsXLlSnTr1g1bt27F9OnT8fjjj+P999/3aHdN39O5ubmIiYnxuK/X6xEVFeXT18afnn76adx7773o0aMHDAYDBgwYgJkzZ2LixIkebWpp/Xbnzz5WV6apvwaAulZz7ty5mDBhgnagdWvoNwWGVnUMUGuXkpKCo0eP4uuvv27qpjS6s2fPYsaMGUhLS0NwcHBTN8dvFEXBoEGDsHjxYgDAgAEDcPToUbz11ltITk5u4tY1no8//hhr167FunXr0Lt3b2RkZGDmzJmIjY1t0f0mTzabDXfffTeEEFi5cmVTN4eoCka6atC+fXvodLoqO9ry8vJgNpubqFV1k5qais2bN2PXrl24/PLLtetmsxlWqxUFBQUe5d37aDabvX4NXPdqKhMeHo6QkJCG7s4lpaenIz8/H1dffTX0ej30ej2+/PJLvP7669Dr9TCZTC2y3x07dkSvXr08rvXs2RPZ2dkALra7pu9ps9mM/Px8j/t2ux3nz5/36WvjT3PmzNGiXfHx8Zg0aRJmzZqlRTlbar/d+bOP1ZVpyq+Ba8D1008/IS0tTYtyAS273xRYOOiqgdFoxMCBA7Fjxw7tmqIo2LFjBxISEpqwZbUnhEBqaio++eQT7Ny5E127dvW4P3DgQBgMBo8+ZmVlITs7W+tjQkICMjMzPT60XB9qrl/wCQkJHnW4yjTV12nkyJHIzMxERkaG9hg0aBAmTpyo/b8l9vvaa6+tkhLkP//5Dzp37gwA6Nq1K8xms0ebi4qKcODAAY9+FxQUID09XSuzc+dOKIqCIUOGaGX27NkDm82mlUlLS0P37t3Rrl27RutfdcrKyiDLnh9nOp0OiqIAaLn9dufPPja373vXgOvkyZPYvn07oqOjPe631H5TAGrqlfzN3fr160VQUJBYvXq1OH78uHjooYdEZGSkx4625mz69OkiIiJC7N69W+Tk5GiPsrIyrcwjjzwiOnXqJHbu3CkOHTokEhISREJCgnbflTph1KhRIiMjQ2zZskV06NDBa+qEOXPmiBMnTogVK1Y0m5QRLu67F4Vomf0+ePCg0Ov14sUXXxQnT54Ua9euFW3atBF///vftTJLly4VkZGR4tNPPxXff/+9uP32272mFRgwYIA4cOCA+Prrr0W3bt08ttcXFBQIk8kkJk2aJI4ePSrWr18v2rRp02QpI5KTk8Vll12mpYzYuHGjaN++vXjqqae0Mi2h38XFxeLw4cPi8OHDAoB45ZVXxOHDh7Vdev7q4969e4VerxcvvfSSOHHihFiwYEGjpk6oqd9Wq1Xcdttt4vLLLxcZGRken3PuOxEDsd/U8nDQVQt//etfRadOnYTRaBSDBw8W+/fvb+om1RoAr49Vq1ZpZcrLy8Wjjz4q2rVrJ9q0aSPuuOMOkZOT41HPmTNnxOjRo0VISIho3769eOKJJ4TNZvMos2vXLtG/f39hNBrFFVdc4fEezUHlQVdL7fc///lP0adPHxEUFCR69Ogh3n77bY/7iqKI5557TphMJhEUFCRGjhwpsrKyPMqcO3dOTJgwQbRt21aEh4eLKVOmiOLiYo8yR44cEdddd50ICgoSl112mVi6dGmj9606RUVFYsaMGaJTp04iODhYXHHFFeKZZ57x+KXbEvq9a9curz/PycnJQgj/9vHjjz8WV111lTAajaJ3797i888/b5J+nz59utrPuV27dgV0v6nlkYRwS9lMRERERI2Ca7qIiIiI/ICDLiIiIiI/4KCLiIiIyA846CIiIiLyAw66iIiIiPyAgy4iIiIiP+Cgi4iIiMgPOOgiCgBnzpyBJEmQJAn9+/dvkLoyMjIapG2B7oYbbtC+tvyaEFFj4qCLKIBs3769ytlvvoqLi0NOTg769OnTQK3yrwceeABjx45tsPo2btyIgwcPNlh9RETV4aCLKIBER0dXOczXVzqdDmazGXq9vk6vt1qt9Xr/5sLVj6ioKHTo0KGJW0NErQEHXUR+9ttvv8FsNmPx4sXatW+++QZGo9HnKJYr6rN48WKYTCZERkbihRdegN1ux5w5cxAVFYXLL78cq1at0l7jbXrx2LFjuOWWWxAeHo6wsDAMHz4cp06d8niPF198EbGxsejevTsAIDMzEzfeeCNCQkIQHR2Nhx56CCUlJfVqGwCcPXsWd999NyIjIxEVFYXbb78dZ86cAQAsXLgQ77//Pj799FNtSnD37t2XfF1N/SAi8hcOuoj8rEOHDnjvvfewcOFCHDp0CMXFxZg0aRJSU1MxcuRIn+vbuXMnfv31V+zZswevvPIKFixYgFtuuQXt2rXDgQMH8Mgjj+Dhhx/Gzz//7PX1v/zyC0aMGIGgoCDs3LkT6enpmDp1Kux2u1Zmx44dyMrKQlpaGjZv3ozS0lIkJSWhXbt2+Pbbb7FhwwZs374dqamp9WqbzWZDUlISwsLC8NVXX2Hv3r1o27YtbrrpJlitVjz55JO4++67cdNNNyEnJwc5OTkYNmzYJV9XXT+IiPyqqU/cJmqtHn30UXHVVVeJ++67T8THx4uKiopqy54+fVoAEIcPH/a4npycLDp37iwcDod2rXv37mL48OHac7vdLkJDQ8WHH37ota558+aJrl27CqvV6vW9k5OThclkEhaLRbv29ttvi3bt2omSkhLt2ueffy5kWRa5ubl1btuaNWtE9+7dhaIoWhmLxSJCQkLE1q1btXpvv/12jzbW9nWV++FS3deXiKgh1W1RBxHV20svvYQ+ffpgw4YNSE9PR1BQUJ3q6d27N2T5YtDaZDJ5LJLX6XSIjo5Gfn6+19dnZGRg+PDhMBgM1b5HfHw8jEaj9vzEiRPo168fQkNDtWvXXnstFEVBVlYWTCZTndp25MgR/PDDDwgLC/N4/4qKCm2605vavq5yP4iI/ImDLqImcurUKfz6669QFAVnzpxBfHx8neqpPFiSJMnrNUVRvL4+JCTkku/hPrhqzLaVlJRg4MCBWLt2bZW6alrsXtvX1bUfREQNgYMuoiZgtVpx//3345577kH37t3x3//938jMzERMTIzf29K3b1+8//77sNlsNUa73PXs2ROrV69GaWmpNpDZu3cvZFmu1wL1q6++Gh999BFiYmIQHh7utYzRaITD4fD5dURETY0L6YmawDPPPIPCwkK8/vrrmDt3Lq666ipMnTq1SdqSmpqKoqIi3HvvvTh06BBOnjyJNWvWICsrq9rXTJw4EcHBwUhOTsbRo0exa9cuPPbYY5g0aZI2tVgXEydORPv27XH77bfjq6++wunTp7F79248/vjj2mL7Ll264Pvvv0dWVhZ+//132Gy2Wr2OiKipcdBF5Ge7d+/Gq6++ijVr1iA8PByyLGPNmjX46quvsHLlSr+3Jzo6Gjt37kRJSQmuv/56DBw4EO+8806NUa82bdpg69atOH/+PK655hrceeedGDlyJN544416taVNmzbYs2cPOnXqhHHjxqFnz56YNm0aKioqtAjWgw8+iO7du2PQoEHo0KED9u7dW6vXERE1NUkIIZq6EURUszNnzqBr1644fPhwvY8Boqr49SUif2CkiyiADBs2DMOGDWvqZrQoo0ePRu/evZu6GUTUCjDSRRQA7Ha7ll09KCgIcXFxTdugFuSXX35BeXk5AKBTp05MKUFEjYaDLiIiIiI/4PQiERERkR9w0EVERETkBxx0EREREfkBB11EREREfsBBFxEREZEfcNBFRERE5AccdBERERH5AQddRERERH7AQRcRERGRH/w/bmi1IM4uNa4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHFCAYAAAAjaPebAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAufJJREFUeJzsnXucVVXd/99r7b3PmSvDTRhGETHRRDBMDcFKDREvRKVmSiFeMo0SUcwyn5T8GSb1KCk+loai4jV9rEwlpAs+CqiRlyQjL4iiDCAMcz1zztl7rd8fa589DNeZYUDGvu/Xawuz99prr73PDH5nrc/+fJS11iIIgiAIgiDscvRHPQBBEARBEIT/FKTwEgRBEARB2E1I4SUIgiAIgrCbkMJLEARBEARhNyGFlyAIgiAIwm5CCi9BEARBEITdhBRegiAIgiAIuwkpvARBEARBEHYTUngJgiAIgiDsJqTwEoROYuXKlZx33nlUVVWRTqfZe++9+cpXvrLVtr/73e845phj6NatG6WlpRxyyCHcfvvtW7RbsGABI0aMoKSkhN69e3POOeewdu3aNo/pwQcfZNiwYRQVFVFVVcWUKVNoaGjY4Xlz5sxBKZVsH374YZuv2da+33nnnU7rc09j0aJFTJs2jY0bN+6S/qdMmZJ8NmVlZbvkGoIg7Bqk8BKETuC1117j8MMP57XXXuPnP/85Tz/9NDfeeCM9evTYou1Pf/pTTj31VIYMGcLDDz/M73//eyZNmkQul2vVbuHChZx00kn07duX3/3ud/ziF79gwYIFjBo1imw2u8Mx3XfffZx11lkceeSRPPXUU1xzzTXMmTOHU089tc339b//+78sXryY7t27t/mcHXHKKaewePFi+vXr12l97mksWrSIH//4x7us8Lr00ktZvHgxJ5988i7pXxCEXYgVBGGnMMbYYcOG2WHDhtnm5ubttv3b3/5mtdb2hhtu2GG/Rx55pB08eLDN5/PJvueee84C9n/+53+2e24YhrZfv372hBNOaLX/vvvus4B98sknt3v+XXfdZQG7YsWKHY7zo6SxsfGjHsJW+dnPfrZLnt/m9ztx4kRbWlraqdcQBGHXIjNeQpdm0+WwzbfdtZT1zDPP8PLLLzNlyhTS6fR2286aNYt0Os3FF1+83Xbvv/8+L774IhMmTMD3/WT/yJEjOfDAA3nssce2e/6SJUtYvXo15557bqv9X/3qVykrK9vh+dvj2GOPZciQISxevJiRI0dSXFzMfvvtx1133QXAE088wac//WlKSkoYOnQo8+bNa3X+tpYa582bx6hRo6ioqKCkpISDDz6Y66+/Pjl+zjnnUFZWxj/+8Q9OOOEEysvLGTVqFAAbNmxg0qRJ7L333qRSKfbff3+uuuqqLWYGlVJ897vf5a677uKggw6iuLiYI444giVLlmCt5Wc/+xkDBw6krKyML3zhC7z55ptb3H9h1rFbt26UlJRw9NFH86c//Sk5Pm3aNL73ve8BMHDgwOT78a9//WvS5qGHHmLEiBGUlpZSVlbGmDFjeOmll1pdZ3v3KwhC10UKL6FLs3jx4lbbn//8Z/bee28qKyvp2bPnds8Nw7BNm7V2u/0888wzAJSXl3PyySdTVFREWVkZY8eO5V//+tcWbQ8++GAeffRRDjroIDzPY5999uEHP/hBq6XG1157DYBDDz10i+sdeuihyfFtsa3zgyDgk5/85A7P3xHV1dWce+65fPOb3+R3v/sdQ4cO5bzzzuPaa6/lyiuv5IorruDRRx+lrKyML3/5y3zwwQfb7W/27NmcfPLJGGP45S9/yeOPP87kyZNZtWpVq3a5XI5x48bxhS98gd/97nf8+Mc/prm5meOOO4577rmHyy67jCeeeIJvfOMbzJgxY6vLqn/4wx/49a9/zU9/+lMeeOAB6uvrOeWUU5g6dSrPPfccs2bN4vbbb+ef//wnp512WqvPf+7cuZxwwgl069aNu+++m4cffpiePXsyZsyYpPj65je/mRTWhaXaxYsX8+lPfxqA6dOnc9ZZZzF48GAefvhh7r33Xurr6/nc5z7HP//5zx3eryAIXZyPeMZNEDqNMAztl770JVtWVmaXLl263bYrVqywQJu2v/zlL9vt68ILL7SA7datmz3//PPtggUL7L333msHDBhge/fubT/44IOkbTqdtuXl5bZHjx521qxZ9s9//rO96qqrrOd5dvz48Um7wpLg4sWLt7jet771LZtKpbY7pp/85CcWsKtXr97i2AknnGAPPPDA7Z6/vaXGY445xgL2b3/7W7Jv/fr11vM8W1xcbN9///1k/8svv2wBe/PNN2+z7/r6etutWzf72c9+1hpjtjmmiRMnWsDeeeedrfb/8pe/tIB9+OGHW+2/4YYbLGDnz5+f7ANsZWWlbWhoSPb99re/tYAdNmxYq+vPnDnTAvbVV1+11rplvp49e9ovfvGLra4TRZH91Kc+ZT/zmc8k+7a11Pjuu+9a3/ftxRdf3Gp/fX29raystGecccYO73fzZyJLjYLQtWhZwxCELs53v/tdnnjiCR5//PFkdmFbVFVV8eKLL7ap34MOOmi7x40xAIwYMYJf//rXyf4hQ4Zw2GGHceutt3Ldddclbevr63nggQc488wzATjuuONobGxk5syZ/PjHP+aAAw5I+lBKbfWa29rf1nZtPX9b9OvXj8MPPzz5umfPnvTp04f99tuPqqqqZP/BBx8MuDc+t8WiRYuoq6tj0qRJbRrXaaed1urrP//5z5SWlnL66ae32n/OOefw/e9/nz/96U+MHj062X/cccdRWlq6xRhPOumkVtffdOxDhw5l0aJFbNiwgYkTJxKGYatrnXjiicyYMYPGxsZWfW/OH//4R8Iw5Oyzz27VR1FREccccwx/+ctfdni/giB0baTwEj4WXHfddfzyl79k9uzZnHjiiTtsn0qlGDZsWJv69jxvu8d79eoFwJgxY1rtHzZsGP369ePvf/97q7bV1dVbtD3ppJOYOXMmf//73znggAOSPtevX7/F9TZs2LDDZdRNz+/bt2+7z98RWzs/lUptsT+VSgHQ3Ny8zb7WrVsHwD777LPD65aUlNCtW7dW+9avX09lZeUWRVufPn3wfX+LZ7itMe5o7GvWrAHYosDblA0bNmy38Cr0ceSRR271uNat1R9bu19BELo2UngJXZ45c+bwox/9iGnTpnHeeee16Zx33nmHgQMHtqntX/7yF4499thtHt+aDquAtbbV/0wPPfRQqqurt9oOWv7HO2TIEAD+8Y9/bGEZ8I9//CM5vi2GDh2atB08eHCyPwxD/vWvf3HWWWdt9/zdyV577QWwhZ5ra2xtRqxXr148//zzWGtbHV+7di1hGNK7d+9OGWehn1tuuYWjjjpqq202L3K31ccjjzzCgAEDdnjNnZ2ZFARhz0MKL6FLM2/ePC644ALOO+88rrnmmjaf15lLjSeddBIlJSU89dRTXHrppcn+v//971RXV7f6n/Rpp53G/Pnzeeqppxg/fnyy/8knn0RrncyE7L333nzmM59h7ty5XH755cms25IlS1i+fDlTpkzZ7piGDx9Ov379mDNnDl/72teS/Y888ggNDQ3t8vLa1YwcOZKKigp++ctfcuaZZ7a72Bg1ahQPP/wwv/3tb1sZ1t5zzz3J8c7g6KOPpnv37vzzn//ku9/97nbbFt5uzWQyrfaPGTMG3/d56623ZAlREP5DkcJL6LKsWLGCr371q+y///6ce+65LFmypNXxww47bJv2DqlUiiOOOKJTxtG9e3euvfZaLr/8cs455xzOOussqqur+dGPfsS+++7LpEmTkrbnnnsuv/rVr5g0aRIffvghgwcPZsGCBdx6661MmjSp1SzIDTfcwOjRo/nqV7/KpEmTWLt2LT/4wQ8YMmRIK5uIlStX8olPfIKJEycye/ZswC2PzpgxgwkTJnDhhRdy1lln8cYbb3DFFVcwevToNi3H7i7Kysr47//+b775zW9y/PHHc8EFF9C3b1/efPNNXnnlFWbNmrXd888++2xuvfVWJk6cyDvvvMPQoUN59tlnmT59OieffDLHH398p43zlltuYeLEiWzYsIHTTz+dPn36sG7dOl555RXWrVvHbbfdBrTMOP7iF79g4sSJBEHAQQcdxH777ce1117LVVddxdtvv82JJ55Ijx49WLNmDS+88AKlpaXy5qIgfNz5iMX9gtBh/vKXv2z3bcTdbf55xx132CFDhthUKmV79eplv/71r9v33ntvi3br16+3F154oe3bt68NgsAeeOCB9mc/+5mNomiLtvPnz7dHHXWULSoqsj179rRnn322XbNmTas2hTc0J06cuMX5999/vz300ENtKpWylZWVdvLkyba+vn6H97KjtxoPOeSQLfYPGDDAnnLKKVvsB+x3vvOdHfb95JNP2mOOOcaWlpbakpISO3jw4FZGs9t7g2/9+vX2oosusv369bO+79sBAwbYK6+8cgtD283HYm3L8/vZz37Wan/h++s3v/lNq/0LFy60p5xyiu3Zs6cNgsDuvffe9pRTTtmi3ZVXXmmrqqqs1nqLt2N/+9vf2uOOO85269bNptNpO2DAAHv66afbBQsWtOl+29NGEIQ9C2XtDkyKBEH4j2POnDmce+65vPnmmwwYMKCViavw0WOMwRjD+eefz6OPPtqm/E1BEPYMxEBVEIRtcsABBxAEQaeGZAs7z2WXXUYQBImOTRCEroPMeAmCsAXr169nxYoVydfDhg2TWa89iPfeey+xpvA8j8MOO+wjHpEgCG1FCi9BEARBEITdhCw1CoIgCIIg7Cak8BIEQRAEQdhNSOElCIIgCIKwmxC1bBsxxvDBBx9QXl4uMR6CIAjCdrHWUl9fT1VV1RYZnJ1Fc3MzuVyuU/pKpVIUFRV1Sl/C9pHCq4188MEH9O/f/6MehiAIgtCFeO+999oUAN9empubGTigjOq1Uaf0V1lZyYoVK6T42g1I4dVGysvLAfgsJ+MTuJ1KofzgIxzVbkJvMsNntvISrFYoT4PnxX/G31bK/ZanfA98z/XjeVjPA2PiNqpl87T701pQClPkY32Nyhn06g9RJUXkK7u7YaQ0KrRYPx6bBRQoY8kX++S6eaTqI0qXrcaWl9K0bzdQ4DUbUKBDd33jaXTegLVY3/3d+ooo0DT3DkjVRRhfkaoPiVIav8n9I6eMxWrlFusjiw00uW4+Om/BgLIWZUGFlmwPHx1aVARWg4rAy0ZYTxMWa/yMQUUGZdxxtAJjCUs8orR7hoVx+M0RXiZEGUu2e5pUbQ7ra0xKY3xFtrtP+YpG/A/riHqWExX5mLRHFGh0/Nk1d/fd2CKLSStU3qIMeDlLvlTjZS1hiXJ/FmushrAImvpBqlbhZyx+xt2H32wwgSJMK6yGbHeFlwO/2aJz7n6sxl3PQMM+iooVhlypIixWmAD85jhqwHOfofEgaLToPPhZ95yN7z5j64GXc88/aDD4zQa/IY9Je+RLfHRosEphUsp9FhaCTEiU9tB5Q5TyAIuKLNZT+I1h8nysr1DG4mUN1mv5nlehJdfNJ9dNE6UhaLBUPPbKTv1ICXsmNt85s0cAIXme5cnk/x2dTS6Xo3ptxMql+9GtfOdm1OrqDQMOf4dcLieF125ACq82Ulhe9Anw1SaFl/oPKLw2XVpVWym8lEIpD5SHUhr0ZoWX9tw+rUDHhZdqQ+Hl+VjfQ0URWqdQOo313T8Kxtcotl542cDHBB5+EOHrNNZL4wdFrvAK48KLTQovu0nhZV3hpXyNFwT4QVzw+CHK1/j+Vgov5c41gY8mLrxMXHhhiQIfrSyqUIRo8KII62sINH5oUGrLwovAQwXuGSbjCCM83xVeUZDG97W7tu8Kryjw8f0IX2dRXhrlBxjf9aMjG/cVF17aEgUKTVx4WVdAesZiUwrfWGzKFV42BboIvGaFF1m8KC68IkMUKGzKFV5eWuEp8IxFs2Xh5aUVXmDwUgqbVqgAPANWtRReygMvb12dbt1zVpsWXvHz9wODHxp838P4Hjbw0RhXqMX3hQU/H6J8D20NKvDAWpSKCy8/TJ5PUnhFmxVeWEzgE6U0pMBL2ZZ/A4SPFXZr/751uDP3x66WppSVK8rKd+4aBpHP7E6k8BIEQRCELkpkDdFO1ouRNZ0zGKFNyFuNwo7Z2vLiZsdtFEEUYSMDhW3TH+Z8HkLXBtyMBeBmtwrLjjb5FREbeKjQoJtDVBShtAZjsMpdT2cjlLHonEHl3SxHlPYA8LLxElRTBEoRdStChxYvY1DWnWuVwiqFjgwm0OApVDy7AqBDS9Dklq3ALTfpTZc2wc2KGNxyaGjxmt1yokm5GTwVWbxshNfsrq1zBhXhltMCnSxrueVNt1xYWNYt/OKtQ0tzd0W+VLvzfOVmdOJ7BchVBElbP+OeB9kcuiGLDTRYktkujLsPL2uwGqKUIizSZLtpmnt4hOn4OShFrlTj5dxsWFSs8LKKKO3OMYVZqdDN7OkQUo0WFPhNFj9jMSl3H0FTy/dP+TuWsEiRqrekN7rNKrA+eFmLl7F4WZIZJz8Tz1plLEHGYnyI4skmP2Piz0FjlcJrjvByhaVk91nqvGujIkuUdt9T1lNutnGTmYjCsrCK3DK0zhmMpzCeIkprjO+WYrGQrpX/SQl7DgbbKZuw+5DCSxAEQRAEYTchS42CIAiC0EUxGHZ2DnbnexDagxRegiAIgtBFiawl2snI5Z09X2gfstQoCIIgCIKwm5AZL6FtGBvbQaiti+2NxRKhjHGiZa0gAjywJhaMx+1UJut8vZRGRSYRtCdWEtai8k5gbQMPXZ8D7cTQBZ8mlIpF2ZqoyImmvebICaRjZbrfkAOtnPVEZFvE84F2gvxAx55PGp2J+40tDaxW5Es0QSYWxANec5SM1aQ0OmfQzflk7F5DDpv2yPZMY3UshC/2khcJrO8E9zpvYnsFi1XOBsLLurFbTxGWeNiUxms25Ms9jO/E9UFDHusp8hUBQUOYCMf9pghlnfBbGZygPhWg8iG6OSIsD8BYTFpjlY49vOJhGye815t4MDZUenhZJ5j3ck4Mr/Mkr8cHDa59lFJALN4PLWFaUbLGxl9DeqP7XsiXOB+uoMkJ9XPdNFZBkLEoowhj2yAnhrf4zZZ8iYIihfEVxRtCMj39WOAO6TqDl7UYz4nnTcqNISryMPFzKHx+7nN3Y9d5g866GzWBds+yW4D13HVy5c5TLSxO4WWdvYfxFdZ3/RWeb3pDtsM/RoLQ2XSGOF7E9bsXKbwEQRAEoYtisERSeHUpZKlREARBEARhNyGFlyAIgiB0UT4qH6/333+fb3zjG/Tq1YuSkhKGDRvG0qVLk+PWWqZNm0ZVVRXFxcUce+yxLFu2rFUf2WyWiy++mN69e1NaWsq4ceNYtWpVqzY1NTVMmDCBiooKKioqmDBhAhs3buzQs9pTkMJLaDsFbdem2Y2bHbfWYsMwNlKNIAwhDFtiM4xJjFITfVdB25UP3RbFrzZrjQoNqjnrNF3F6cTQ1PoKk/LQ2Qg/EyYGoVa1aIUAbDrlzDIL3qwm1kLFGisVWvwGp9Mq5B1inQYIBSqMMw0Dp0vCWlRkiNKeM1M17rj1NTbtofIRQX1IqiaHl3M6IRSxoSruJ04rZwAba728nEE3R/j1WadDCp0Rab7cw3jObFRFNjFlxQCRMy/NdU8RFWuitEdY7KFCS1iWwpaVgDF49VlnuJpyerYo3doAVuedNkuHTs9kPEXRRkuq0RKloLlC4zdbggZLugZStWBSLR+5Vbi8xazTZgWNBi/vTFGjtCLT0+m7dL6QsQjFHxq8PORL3TG/yfWvIku+LDZnzVmUsYTFikxPp4jIdXfjVPEzTz5zT8WxRM4AVUWur1R9lJjVRmn3+dk4giks0ZiUy3R05reG4g9D/Ix1+rzA9em+T933i/XimKSNmXb92AjCrqTwVuPObu2hpqaGo48+miAIeOqpp/jnP//Jf//3f9O9e/ekzYwZM7jxxhuZNWsWL774IpWVlYwePZr6+vqkzZQpU3jsscd48MEHefbZZ2loaGDs2LFEUYvodPz48bz88svMmzePefPm8fLLLzNhwoSdfm4fJaLxEgRBEAShzdxwww3079+fu+66K9m33377JX+31jJz5kyuuuoqTj31VADuvvtu+vbty/3338+FF15IbW0ts2fP5t577+X4448HYO7cufTv358FCxYwZswYXn/9debNm8eSJUsYPnw4AHfccQcjRoxg+fLlHHTQQbvvpjsRmfESBEEQhC6K6aStPfz+97/niCOO4Ktf/Sp9+vThsMMO44477kiOr1ixgurqak444YRkXzqd5phjjmHRokUALF26lHw+36pNVVUVQ4YMSdosXryYioqKpOgCOOqoo6ioqEjadEWk8BIEQRCELkoUv9W4sxtAXV1dqy2b3bp1yttvv81tt93GoEGD+OMf/8hFF13E5MmTueeeewCorq4GoG/fvq3O69u3b3KsurqaVCpFjx49ttumT58+W1y/T58+SZuuiCw1Ch1jR35e4PRYVqOUxlqLiiLw4nDngs4rdF5P1otDi5VyHl8FzYG1TvPle9iUH+t4rPsNrVgTFftxKLJxPli+wvoKr9mg65uTayilnG9WrHciD8bTaAxWaacLy7kA5SityZVrst0UfkYR1EfOeyuySXhzUJ8HYwkr0uhsFPuLOX1RsKYOmwrwP8xhuhVjUiXuPgo6L3Ah1xb8xtCFe2tFvnuR841S4GUijO/j543zIbNOM6XzJHqvsDR+lgb8TAiRJSpy+8KKInSR754vxLo1hQ4tJlBkK9w9Wy/WLymSMG0Xom0BTb5Eke2mUIZEu4VynlxhWqEjl4XuNRt0Lva88hQmBVGgEo2bjiBX6tor4/RgKoJcucLLxY/HgNfs7jNocJ9/WOT2pxosQX08TlwQuc4ZvDggHQvWs3g5Q1jsuc8ztC06LeN0eIWQ9qDREKXjwPFUi27Ma47cGIo9whJ3slVuU8ZttFMPIwi7ksi6bWf7AOjfv3+r/ddccw3Tpk3bor0xhiOOOILp06cDcNhhh7Fs2TJuu+02zj777KSd2iSIHtwS5Ob7NmfzNltr35Z+9mSk8BIEQRAEgffee49u3bolX6fT6a2269evH4MHD2617+CDD+bRRx8FoLKyEnAzVv369UvarF27NpkFq6ysJJfLUVNT02rWa+3atYwcOTJps2bNmi2uv27dui1m07oSstQoCIIgCF2UztR4devWrdW2rcLr6KOPZvny5a32/fvf/2bAgAEADBw4kMrKSp5++unkeC6XY+HChUlRdfjhhxMEQas2q1ev5rXXXkvajBgxgtraWl544YWkzfPPP09tbW3SpisiM16CIAiC0EUxqFjcsXN9tIdLL72UkSNHMn36dM444wxeeOEFbr/9dm6//XbALQ9OmTKF6dOnM2jQIAYNGsT06dMpKSlh/PjxAFRUVHD++eczdepUevXqRc+ePbn88ssZOnRo8pbjwQcfzIknnsgFF1zAr371KwC+9a1vMXbs2C77RiNI4SUIgiAIQjs48sgjeeyxx7jyyiu59tprGThwIDNnzuTrX/960uaKK64gk8kwadIkampqGD58OPPnz6e8vDxpc9NNN+H7PmeccQaZTIZRo0YxZ84cvIIWGLjvvvuYPHly8vbjuHHjmDVr1u672V2AslaUom2hrq6OiooKjuVL+CpwO5VC+cFHO7CPgk0NVLcmsI/bKKWcCarvO1G976N8zwVeB36LSDn+IUvMVLXGBu53AmUtqrYBW16CKSvCBBqdCd2li/3EEFOFsfDbU4RFHspC0Xu1oDW5vUpdiDRO8G98Rao250TTnk4E8ybtoWMxer7UJ9vdw89YUrUhXiZs1YeyFhUaoiIfPOWE+nknzg8+bHJh4WGEyoc0frIPOnJmrYnY27aYuW5KIbC58DxsHN5slQuHVqELfdZ5Ewc4u7Zes7u2zjmxuTLxiwAWgrosJuWR75bCBIrm7h5WO5NSq911/KwT1QOEaRUHRMdj0E5Yn61wYvSwGIo/tM78NGPx8qDzTrSvjBPdK+tCtAsvE+jIEqXiYHMNUZHCb7LOKNWSGNdaD4wXm6XmXP8FUbuKwG82iUA/qI/wmqMkJNukdPKCRZTWeJnIPQOlUKFpMYwt9eL27t503l3DapJngKFFiGEh180jLHLj7/33jdh/vrXjnxOhy2HzuU7rK7R5/srvqK2tbaWb6iwK/0/627K+lJXvnGqood5wxCFrdtlYhdbIjJcgCIIgdFGiTlhq3NnzhfYh4npBEARBEITdhMx4CYIgCEIXRWa8uh5SeAntx9gWndf2jFQ1KGOwUYTyPOe0SSyajAx42um8Cmaqsc4Ga1H5EFOSxnoKr06hsnkoTTtNVKzb8ZryhBVpp0MKXIB0WOw7HRFgPQ9b5AxWLQqdi5z2THsu9Fq7oG0AHRn8xjzG15i0M+DMl6hEB6VjjZAKDTbtY5TCK7gORhYvHzq9mQJbHGCtRTdmsSogvb6ZqDRwwdvEAc+5OCw81pdZpVwod2TRxMHP8SP2m51uCkiMVLEq0XAVzD+xJPounYuSezOBh0l5zhw06/RUUcq1y/TSKAN+FvLFqpXeS1mF8S2RdlqtKKUImizpjZZUg8EEsb4s6wKtvZy7fmICm7OkayLC0tiIVLv79HIWGizWc/eW6aUJGi2mEHZtXHC2zjuNl/EVOmoxXS1gFcn3XkF/58Kt3f1hPXTexPvdZxP5LhQ7KtLO4DUJv3aauMhTeFnj9Hq+ToLU6eahDGhjUblwc2meIHxkGKswducKp509X2gfstQoCIIgCIKwm5AZL0EQBEHooshSY9dDCi9BEARB6KJEaKKdXLyKdtxE6ESk8BI6xqY6r+20sRoXjh2HE1vyztdLawgjp/OClhBps4nXVT5ywiBjIIpc2HXhmtZiUl7sa2UwKQ+T0phgEx+stIcJPKKUJmgInQbKj3VYWjkNj7VYpZy/V9qDyKJDg5dTFK93Ydtec9SiJ7IWlY9QWqHyEdpTLf5jgG522iqdi7CBhwoNXkMW62mM5wK6/ZxJfKUKflFOo+W0UjpvMIEmKvKJ0hqbcuHSOu+ejQkUXtZ5bQX1ecJir8XDSrt7jIq8+BlpippDdC4iLPGdTim0NPfQRCkVe29BlHKaKpTzQzOe01B5WYufsURpRVGNCyjPlym8vMZvMljPab9QCj/jvvZyrp0OLTqypDaGmJRGh4oo5TzJij/ME6U1zT28RNcVZA1hUUF31eIBpqwbh1WQL3O6q1SDC712ujv33JRnMUXum0dHNgkTz5dqorQiVe+CsY3vdGZezroA75xFWYvOQeEXf2Xd5208BZ7Cy9pYs5ZH1dTt9I+PIHQWthM0XlY0XrsV0XgJgiAIgiDsJmTGSxAEQRC6KKLx6npI4SUIgiAIXZTIaiK7kxov8UfZrXykS43PPPMMX/ziF6mqqkIpxW9/+9tWx621TJs2jaqqKoqLizn22GNZtmxZqzbZbJaLL76Y3r17U1payrhx41i1alWrNjU1NUyYMIGKigoqKiqYMGECGzdu3MV3JwiCIAiC0JqPtPBqbGzkU5/61DaTxmfMmMGNN97IrFmzePHFF6msrGT06NHU19cnbaZMmcJjjz3Ggw8+yLPPPktDQwNjx44lilre0xg/fjwvv/wy8+bNY968ebz88stMmDBhl9/fx56Ccer2RPbGYq3FRhE2DCEy7s8wdIL7bA7ybn8Smm2M2zQQur/bdAooiONVYhQKLjBZZyOM78Ti+RL3p0n55LqnMIFODDR13onlKQRdx2ajOhehcs5s02qF8RRhkcLLGXfMuvu0gYf1tDPcVArjaxe07StU3rg22u1Hx4apmSzB6hqK315PekPW7YsMXnOIikO50bGge5M+TeBMUqM4zNl6gMKFQ2cj/EwI1uJlDV4mciai2pmXRmlFVKzROUNYGhAV+6DdvrBIkS9V5MsUppDxbl3fxid+wUHFLyG4w4lgPoKiDcbdv++E/k7I3hJ0XfhcrFbkunnky33yZR5hkSYKnPBdZ6NEyF4Q7Xs5S5BxfXk54qBuRa5MJZ+5G6NKXgyIijxUZFq+3zb5zV1HTpBfMF8thGEbjySQOyxSzpDWuK+tFwepB+4zRjuhv9dsKF7dTOqfq4hqNrb1J0QQdjkGhUHv5CZLjbuTj3Sp8aSTTuKkk07a6jFrLTNnzuSqq67i1FNPBeDuu++mb9++3H///Vx44YXU1tYye/Zs7r33Xo4//ngA5s6dS//+/VmwYAFjxozh9ddfZ968eSxZsoThw4cDcMcddzBixAiWL1/OQQcdtHtuVhAEQRA6GdF4dT322LcaV6xYQXV1NSeccEKyL51Oc8wxx7Bo0SIAli5dSj6fb9WmqqqKIUOGJG0WL15MRUVFUnQBHHXUUVRUVCRttkY2m6Wurq7VJgiCIAiCsDPssYVXdXU1AH379m21v2/fvsmx6upqUqkUPXr02G6bPn36bNF/nz59kjZb4/rrr080YRUVFfTv33+n7kcQBEEQOpuCuH5nN2H3sce/1ahU6ylQa+0W+zZn8zZba7+jfq688kouu+yy5Ou6ujopvrZGwUh1W2HZhTZRlJikohXWGJRS7nOwtiUwu/CZaO3MReMQaZXJYsqL8Bpz7msAa7HFAeBMOU3gTEGzFZqiGkNU4pMv0+goPsG6c3ToDEqJWvRI0BIwbXFasKINFr8+59pEFlSs2SpozzQujLrYd8ar+U20RrF2ywYeUbcKdHOIrm3EX1uH6lnmrpULUb7GAsbTTmmRN9iUu/fCePxmGwdjx48mjE1ffYUNNFGxh5c1mwRGtxiOmpQmqMu6Z1HqoYwlW6GxHuQqLMqCzir8JoUxTldFrIsC8DMuDNuiCDJOJ2W9ltvUodNk2YA4eBv8JvdsCmapNlBg3X0UQr3DsoAorZOwbR26vnXeEnV3pqpWQ6reULQxNjrNW6K8BgtBfYiO4mDtOHzcBIqwRCfaMeMXdGruORaMdYs2RlitCAONl3MmryYee+H/P1FaARqv2WAVFK1ugA/WYpqatv19LggfAU7jtZMh2bLUuFvZY8vcyspKgC1mpdauXZvMglVWVpLL5aipqdlumzVr1mzR/7p167aYTduUdDpNt27dWm2CIAiCIAg7wx5beA0cOJDKykqefvrpZF8ul2PhwoWMHDkSgMMPP5wgCFq1Wb16Na+99lrSZsSIEdTW1vLCCy8kbZ5//nlqa2uTNoIgCILQFTFxVuPObGbPLQU+lnykS40NDQ28+eabydcrVqzg5ZdfpmfPnuy7775MmTKF6dOnM2jQIAYNGsT06dMpKSlh/PjxAFRUVHD++eczdepUevXqRc+ePbn88ssZOnRo8pbjwQcfzIknnsgFF1zAr371KwC+9a1vMXbsWHmjURAEQejSdI6Bqiyf704+0sLrb3/7G8cdd1zydUFTNXHiRObMmcMVV1xBJpNh0qRJ1NTUMHz4cObPn095eXlyzk033YTv+5xxxhlkMhlGjRrFnDlz8LwWIcp9993H5MmTk7cfx40bt03vMEEQBEHoKphOmLEySOG1O1HWSqnbFurq6qioqOBYvoSvYtdJpVB+sP0T/xPY1EB1W8JjrdzLDJ6H8jxItTw35fvg+xD4WE/HAnyNDXxnLLpmA8r3Mb0rACdYL4jww9IgNk7V5Ms01lNkemq6vRsSpRX5UiegLvowj5c3qNA6w82tmL8aX2N9nYixVeQMVrEWFRonvI+P67zB+BqvKUdUlgZj0fnIGbwadw0VGqzWRGUpvOYQXZeBKEIZS75fdyfMT3lYX0FkMSkPvyHnTFoVREUeuQof4yu8nCVVG7rxKJxZq6eIYnNYL2eIUpqgKcT4mrDYcwaxEVgFfnNEWOyR6eWT6aNoGBBhiwz4Fm99QI/XnUmqMy615EtiEXuTe0lAFd4bULHBqnKCeKtx1/Cc0ShA0BA5Ub2vCIs0OnTP2gQqaVsQ4isDUfyt4OUhVRcRxiavKhbi67zFb3ImtlHajcuLzW4LL3fonCEs8Wju6eFlLV7eXVPnrXtJQ0FUpJ3ZbLN7VmGJdt878a+fQZM7J1UboiNDvtRHRZagPo/3j7exzdl2/VgIXQ+bz3VaX6HN81d+R21t7S7RCBf+n3T/y0MoKfd2fMJ2aKqPGD/stV02VqE1e/xbjYIgCIIgbJ3IKiK7kwaqO3m+0D6k8BIEQRCELkpBIL9zfcjC1+5EXmUQBEEQBEHYTciMl7DzbKqX2paRqinogdzvViqMp7aVxiqD8mItVdyOKA59LqDjcGzPmXGaIA5HVu66yjgz0Ex3RbrWULQ2Q6aqmLAYjKdI+xqyLojbhS2761tfo0KDDg3Kwxmh5lzAeq4i5fQ9zWHS3viaqMgjVdPsgqHTPjobJn1ZT6PzeRdynfLR+Qgvkycq8gmruuFvzKLyEV5DlqjUBXgrGwd1xzoyE2u+vKxxeim/ZRnAaoWOTGIaGjS4vsEZp+ZLffdMlAt7DoudFivv+7HmDcIiwCq6962nX7c6ltftC1bFIdcWHSqKPwwJi7XTWUUWXTAa9Zxxqw7jZ29Vcr18scLLQ1isXfu8hSKn01KRxcvG95Z3urCw2Om8dEj8veHMWb1mQ77Uc7+DW6c9C0ucSWzh+eTLPIrW54jSXqLX0llLeqMzZI1STs9ltYqDriGMTVGxTm9WMIr1m2M9WK5Fi2Z9Dx1a/Po8weoaItF3CXsoxmrMTr7VaETqvVuRwksQBEEQuiiy1Nj1kKVGQRAEQRCE3YTMeAmCIAhCF8Ww828lmh03EToRKbyEzqMQmL2d4wWdF57n2loDJsI2RyiKYm80D+t7EPhgnOeWLSlyHlmRTeZpbeChQguBC4POlWnyZYrKv6xDNWdJF/s09faIilxgsvUV2NgfKoycRizUGN9tia+Wp7G+ItvDQ0cWLxu5cWiNl421WJEFjBtDLkLlI0xxgFWKqCSFzjudmC3o3pTCy4SYIh+KfLxMHv/DBlQmiy0pIqooRmUjVBShY62YC3l23lfOQyzWz+VcILdJeVitEv8sLxu552Et+YrA+WYZp3EzaXffqQZL3QGW0n3rePKwX/PDD07izb4ZrC4B43RiUcrpn/yM00gV/Lq8bARpD2udtMt6iqAhjMPJNX4czB0WaygiCaB28hOFif26dM7i5w1+RuFlI8Ii52WWL9XkdRxcHbZ4eEWBuz+dVy0B3Zb4c3PjM6jk+0IZS9Doxm6160MZ8HybfCZ+xpCLdVwqcqHYUVrjNxnCEk2qNqTonQ2wfiNRU1Pn/YwIQifTOQaqsvi1O5GnLQiCIAiCsJuQGS9BEARB6KJ0TlajzMHsTqTwEgRBEIQuikG5pfad7EPYfUjhJQiCIAhdFJnx6npI4SV0LpsK7LdjpEoUofBaGa7aMERpHZunOqG6O2BQ2RyqKHAB2ZFFhy6k2gaaKK3Jl7ow5qL1wJp1mFyeVBjRXVVSv28a60OU9giyEVgnIkc7UX0h+DkRq/uKfKmPVaBzxnmEah0L/XGmr56KBfaRG5N1onY3XktYGqBzxons8wYdG7wqLCbQmJSHtilnzOrHz0EDVrv7NrGA3ldExR5+kxP0q1jYryKDCjRRkZ9cx2qFSXuYwCNf6pGqizA+5Es1UVoRFjkRuUlH9Cpt4pVcL15ZW0VVr1rW9ywlqLd4eWdmGhZrVBQL00OD0goVWnSclq0iS1jqO+G+p7A+iTBd5d29Wg+IFMo6Y9RCsHaqLp+EgCtjMWmFVQq/2fXtZS0msJsI+53Y33qAci8LKBN7t0Y2bqPxMxEm0ITFmnyJM3/1MyZ5+UBF7t4KfVjtXrrwjMXL2cSQt3htnmBDE3bNh9hcbtvB74IgCB1ACi9BEARB6KJ0joGqzHjtTqTwEgRBEIQuirEKs7M+Xjt5vtA+pMwVBEEQBEHYTciMl9D5FHRe2wnMphCWjQfagNJuv7JO9xRGKC82UlXafZ0LXRB1oFF5g/Kc9keFFhVZ0g2W0rc3YjLNYCymZiPpf0XoXCWN+xTjNUcuXNoAsUZMWRubsiqnkQo0+XKPXJkmaLJOnxSbpALgKacFMi4UG5yRKL5G5eMJexWbtBZMVAONSfuxhshdw88borI0Ue8SdDZyAdEpH90coiKT9I1WZLtp/EbXV1TkTD91XuE15vGsReUjovIiorSHzhtsWhEFJLq3TC+NSUNqo3u++xy4lpXv9ea/HjqPVNayvp9G5yEsUXg5SNcavJwl/oDQUfyMABU649aC5soqjTIWnXOGp35TrKmyTjeHIjFmtdr1memTjs+J+4zAyxusB1FaY+J/lXTogsKtp50my1NY5UKsdejMWSNfO8NXC5neATpyYdjKuOGHxTr5LK2GoNEQpRTaAx0BFvymKDGr9bIRqVUbsOtrsBKMLXQBTCcsNYqB6u5FCi9BEARB6KIYqzE7+Vbizp4vtA952oIgCIIgCLsJmfESBEEQhC5KhCLaSQPUnT1faB9SeAm7hoK2axueXjZyXsmtdF5hiDUKFbg0ZRufqzwNvof1PFTowqqVMVijyXXzCYs1qbqIkjc3YN+vbvEFy4dENRsJ3guI9t8HqyEKtAtMzljnsaUUKh85TVXgwpqjlKJkTR6Tjj21lHUh2s0Gm9bOX6qg+Yo9t9AatPO8ikpS7vq+hjAO0o4Mytg4nFuTvEQUa6GUdTo1G2inY/M0KjL4jSFlOeO0aEBY5uM3RFjtoXMRur4ZU9B35SLy5QHKWIpqIpSBpr18Gj/XiOcbGleWYgLY8E5v9n5a0+3/3qLxyP348ORmzPo0pe96TrflFT4Z52NmAqe/UwqIPbGitIffFBGWeM5PTTvPLCyJ71ZBi+XlnB+ZM96ConVZ8uWFxGwVB17Hvmjx8/CyTp8Vxc9bGacp03kXgB2l3TisB7lyDz9j0GHcZQRYiwkURim8rPP6wjofMyyJR5z1IF/moSJI1efRmRCzZh02H+7c978g7CZkqbHrIU9bEARBEARhNyEzXoIgCILQRYnY+aXCqHOGIrQRKbwEQRAEoYsiS41dDym8BEEQBKGLIiHZXQ952sKuZTsBwzYy2DDEhmGrdtY6g1WVD10wte9+P1D50AU2Z/LYwHObVk5Y/04t9v1qbC6/xfVtJoPOQ1AfOmF9NsIEnhO/WwuhQYXO+DNKuUDpog/qY2E9iaDcBk7ojU0G6kxYjcUqJ6a3qdgoFdDZEN2Uj8XmiqjIx6R9rFJOPJ+P8JpD159xRqjKWGcuGodeJ7fha4gsqY0hQV0OLxM6UXvad/ei3fhSG3P4TRFe1o3Bz1rsyhJ8PyI9sJ7eB6yncqFHt7+8Abk875+V581j5+A1thiXWk0cJG6xniJf6iUvSVjlQq913sTjdCanXrNxIvjIttxDaAnqQvfSgOfCx61WREUeXtY4Y1ZoaR9Z/IzBb3LPAZz43W8yTlTfYPAbI4K6HDpvCYs8sBA0uOM6HwdmKyfw13mLMk5sb3yFlzOo2MzVde5MX6OUuyevKcRbuUaE9YIg7FKk8BIEQRCELopFYXZys+3UiE2bNg2lVKutsrKyZUzWMm3aNKqqqiguLubYY49l2bJlrfrIZrNcfPHF9O7dm9LSUsaNG8eqVatatampqWHChAlUVFRQUVHBhAkT2LhxY4ef1Z6CLDUKgiAIQhflo1pqPOSQQ1iwYEHyted5yd9nzJjBjTfeyJw5czjwwAO57rrrGD16NMuXL6e8vByAKVOm8Pjjj/Pggw/Sq1cvpk6dytixY1m6dGnS1/jx41m1ahXz5s0D4Fvf+hYTJkzg8ccf35nbbRP33HNPm9qdffbZ7e5bCi9BEARBENqF7/utZrkKWGuZOXMmV111FaeeeioAd999N3379uX+++/nwgsvpLa2ltmzZ3Pvvfdy/PHHAzB37lz69+/PggULGDNmDK+//jrz5s1jyZIlDB8+HIA77riDESNGsHz5cg466KBden/nnHMOZWVl+L7v5C9bQSnVocJLlhqFXc+modlbOWajCJvLgTWubUHvFWt/8LQLy/acoWlB2wUQNMbGqe+t3lLfFWOzOcreyzg9F8Rh0i6Ymshi007vpXORM/70FMQ6JizoTIgOnWZKhSb5OwZnwmotKu80ThjTEpAdjxVrE/2TzoaxRirCes4otWCYaop8F0Bt4vamYGIaobPuhW9l3TPxMvmWcYDTTGUjbMrp1qIi7cxBSxR7vWzp/4Mce80uYf2/e9HzufexuTw2DOn1xyK+v2aYC8MOIdtDke1W0HFZdM44c9Jcy7Va6dwKxAHTyuB0XpELLw9LfaK0bjFGzRmiIo+oSLtA6g3NiUGqzhuiIuVMWQOn0QJnxArgN+RBK3LdU5iUIirSSZC3CRRRWhEWKXSsM3OmrTbWrDlDVWfOGn+WxmI8KKnOUbL8Q/Qb72I21u7w21kQ9iSMVZ2ytZc33niDqqoqBg4cyJlnnsnbb78NwIoVK6iuruaEE05I2qbTaY455hgWLVoEwNKlS8nn863aVFVVMWTIkKTN4sWLqaioSIougKOOOoqKioqkza7k4IMPJpVKcfbZZ7Nw4UJqamq22DZs2NChvqXwEgRBEIQuSoTulA2grq6u1ZbNZrd6zeHDh3PPPffwxz/+kTvuuIPq6mpGjhzJ+vXrqa6uBqBv376tzunbt29yrLq6mlQqRY8ePbbbpk+fPltcu0+fPkmbXcmyZct44oknyGQyfP7zn+eII47gtttuo66ubqf7lsJLEARBEAT69++fCNkrKiq4/vrrt9rupJNO4rTTTmPo0KEcf/zxPPHEE4BbUiygVOtZNGvtFvs2Z/M2W2vfln46i+HDh/OrX/2K1atXM3nyZB5++GH69evH17/+9W0WpW1BCi9BEARB6KJ05lLje++9R21tbbJdeeWVbRpDaWkpQ4cO5Y033kh0X5vPSq1duzaZBausrCSXy1FTU7PdNmvWrNniWuvWrdtiNm1XU1xczNlnn82Pf/xjPvOZz/Dggw/S1NTU4f6k8BJ2DwXt1jZ1Xsb5J1kD1rQSM9rAd2HUkXHfsZ7zwbJaUfzGOuzqtdjm7fz2kc87/VCJj47iwOnCb0yauG+LSXs0VnoUbYxoOMhNgeu8cRosVQizjsekFTbt9FvE8qeCfxfGJOOzgQZPoSKD15BzerBYW6bzkfMlCw3J29w2DteO/46xWC/uw1hUaGneq5h8jyLCsgAbeHiZvPPb6pYiX+q7AGoL+RJNYz9FxWsbsStXUfJWDVjI7dub2pMPYcNXhqDzlgW/HAH9M2R7WXLlTgsVpTTGV1hf4zfGvlaeSsapYh2azhvnf5WNUKF1f0Y20bWZwGm2UIBx+rlUfZ7UxhxElqg4IGgI0bnYFyznPL9URKLxKlzPpLwkeDuoi1zwtY41ZQb3Nc6by8tbvNjHS0Xu8zaxj5jVTsMWpZy/WrB6I3bNh5jGzHZ95wRhT8SgO2UD6NatW6stnU63aQzZbJbXX3+dfv36MXDgQCorK3n66aeT47lcjoULFzJy5EgADj/8cIIgaNVm9erVvPbaa0mbESNGUFtbywsvvJC0ef7556mtrU3a7A7ef/99pk+fzqBBgzjzzDM58sgjWbZs2RbLpO1B3moUBEEQBKHNXH755Xzxi19k3333Ze3atVx33XXU1dUxceJElFJMmTIlKVYGDRrE9OnTKSkpYfz48QBUVFRw/vnnM3XqVHr16kXPnj25/PLLk6VLcOL2E088kQsuuIBf/epXgLOTGDt27C5/oxHg4Ycf5q677mLhwoWMGTOG//7v/+aUU05pZZvRUaTwEgRBEIQuSmQVUQfeSty8j/awatUqzjrrLD788EP22msvjjrqKJYsWcKAAQMAuOKKK8hkMkyaNImamhqGDx/O/PnzEw8vgJtuugnf9znjjDPIZDKMGjWKOXPmtCps7rvvPiZPnpy8/Thu3DhmzZq1U/faVs4880z23XdfLr30Uvr27cs777zDrbfeukW7yZMnt7tvKbwEQRAEoYvSUTuIzftoDw8++OB2jyulmDZtGtOmTdtmm6KiIm655RZuueWWbbbp2bMnc+fObdfYOot9990XpRT333//NtsopaTwEgRBEIT/JKzVmJ10rrcSkr0F77zzzi7rWwovYfeyvdDsMHRi9cigfN+FY0cRysQBzanANYwsWhlUUw6z9sNtGqcm/VpLWBoQFrt/XHTeuHBra1HWmWziKZp7BuRLFSXvNrJ2eDd6/DtCZ8PEzNSZoBpQCoXCGosNvERMntxi4MTk1tOoyKBC6wT0nsKkPCeo17GIXsfXt7SEYlswRR4qDqIGnEGr58xRg4YQvzYDShF2L3L9R07YnqvwCdPuPr2cJVUHatVqjLXobA5lYMW3LRMOeYZFH+7PG6v6cMCvIoLGYj4cZlFaERa7cGrrKXQuigPE3fS/iQPDdWRj0bxCa4WNw8SVBZPSmJRr5zW7FwJsLMy3HtiMezFB5d3LEjobEZX47jOJCuHYLaHc1nfvQISlbgxRWuFHUctnYtzz06F7McD9P8SJ6HXoBPtOYA/ZbhpfOwE+QPG6HPYDCcYWBGH3IYWXIAiCIHRRIhRRO0Out9aH0Jqbb765Te1kqVEQBEEQ/oNwTj07q/HqpMF8jLjpppt22EY0XoIgCIIgCJ3AihUrdlnfUngJHw1abflrlrFYE0IUgXFGqvg+eB7K991kuFIoHaGac9i6eswO9F0JCrxsrB/SzhiU0JmpqnyE9TyitKL3q1l0U5Z8+SZmoZGBghFnoj0i0RYVzEKJg7C9ppwz7Ey1vBZtPQ04zVbBaNUqhc6GmMBzWrD4eVhfO02Xr1FZF8JtA43KmcRc1Xoeylq8xjwm5REV+4TFGp21pHJRfFEIGjUU9Fnr1nPQrYp/Xt2b3zxwLOkaS3EvxapR0Ou1iL3+rmisVGR7WaL3FV42NiC1Th+Fddoup7tSeDnj7qFwPU+BcfosZSAs1oTFimyFxstZ/IwLyTa+e1amyMPLGYLGPDbUGF9jvdjgtGCOatwWpeLw6wiMrwiLvWRMGLBp8JosnrKJlkxF7nMyaacd83KWdJ1xJqw5S/GGLP5bqzGi7xK6MKYTxPU7e/7HFWstb775Jvl8ngMPPBDf75ySSZ62IAiCIHRRDKpTNqE177zzDsOGDeOTn/wkQ4cO5YADDmDp0qWd0rcUXoIgCIIgCJvw/e9/n+bmZu69915+85vf0K9fP7797W93St+y1CgIgiAIXZSPwrn+P4H/+7//44EHHuCYY44B4DOf+QwDBgwgk8lQXFy8U31L4SV8NBT0XQXvqk31XsZic3lsGKLiMGurtfP28jywBpMPne9XG68VpT2Mr/CbDDoyeJm88wPLhU435WushvS7GzA9ytzQci7A2irVMjcch2Ir6zy8dHOIKfKdT1fetLSxFp21LmDba5lYtkpB4CWB4SbwsCmNytrkGah8hDZ2U2sw5+llXRurIOqWwmpFsL4JLzSxB5iP1xRi0h6Z3gHWi4OmYw2TKi6i8ZN9CKp9UhstfhOUNVmyPRQbPulRtMHSbWVEdZWKg7KdWErnIqelAqfzMgYKerf41pQFGzktmgv2dn5aXtZSsi4EE+vDtCIq8tzYYv+x5r7FYMDLFtLGwcsZoiLd4tOlIEo5rZayzostLPXwmg06shhiL7GCV5iKfcM28RgzAXgZg7ZQ8m4d6r01mKamtn0PCcIeimi8dg3V1dV88pOfTL7eZ599KC4uZs2aNey333471bc8bUEQBEEQhE1QSqF16xJJa421dhtntB2Z8RIEQRCELoqhE7IaRVy/BdZaDjzwwGTVBaChoYHDDjusVUG2YcOGdvcthZcgCIIgdFFsJ7yVaKXw2oK77rprl/UthZcgCIIgdFGM7YQZLxHXb8HEiRN3Wd9SeAkfLdvLqjAWW1B1R8YFGW9NjN8Ggvo82R4pUE6oDoCnsIGH9RTG12BB5UMwhlRtHGxNLKQ3sZDcgIoiVNZg85ELyc5HYEgUk1FR2p2jVGxymgXlwrBNSQoA3ZTHlLl7UZn4vpSKjVljsbq1rh/PCdZVNiKq8FHWorMRxteYogBT7BMF7uJRiY/fGFKyxtLcK6B+X8/1oxRmQCXVRwWkap3oXocWL29BadIbobFKoUJNqkYRpSx+s8L61gV7m5b7wRQ+n9gslVjE7imMpzApnQR+u7EavObIifS1cgasKU2UdiawqZocYYmPCdw5flOECTRexsT9OiF+ovC3Togflnrkunl4OReEHRW5ZxCmddw+Pi8O0LYagoaQ4MMGeH8NJpuVrBRBENpMc3MzDz30EI2NjYwePZpBgwZ1qB8pvARBEAShiyJvNe4avve975HL5fjFL34BQC6XY8SIESxbtoySkhKuuOIKnn76aUaMGNHuvuVpC4IgCEIXpbDUuLOb0JqnnnqKUaNGJV/fd999rFy5kjfeeIOamhq++tWvct1113Wobym8BEEQBEEQNuHdd99l8ODBydfz58/n9NNPZ8CAASiluOSSS3jppZc61PceXXiFYch//dd/MXDgQIqLi9l///259tprMcYkbay1TJs2jaqqKoqLizn22GNZtmxZq36y2SwXX3wxvXv3prS0lHHjxrFq1ardfTtCZ2Bsh3Q5/oZGdN5gPUVYFmDSbpXdKhdsjVboEMjl0fXNFG20iU4LaNFaeQqb8jGlaWw6aKXvsoEHWqPzESo2ZwWwKd+ZtCqFbsq5c/zYaFQrrKexSjmT17SfaL1cALSF2HjUFPvobOQCtGNjUZPy4kDpOFw6cs8ntaaesncayJe0PIPGAWVk+4aUv2so2mjw8hYvayleH5Kuiyh935IvV5SsseS6KaKUC6Q2QYtuy3guyFpZUKHBb3CB4Em4tXW6LxMovJzTV5mUJtcjRdPeJWR7pF04dlOI35BH5UyiwVLWBZFH6TgI3FfufF8RpnUi8YrSmnyZj1Ut2i0biya8rCVoNKiCF6uxWA/yJZqwWJNasRa78n1Mpln0XcLHAslq3DVs7tm1ZMkSjjrqqOTr7t27U1NT07G+d3p0u5AbbriBX/7yl8yaNYvXX3+dGTNm8LOf/YxbbrklaTNjxgxuvPFGZs2axYsvvkhlZSWjR4+mvr4+aTNlyhQee+wxHnzwQZ599lkaGhoYO3YsURR9FLclCIIgCJ2CLDXuGj75yU/y+OOPA7Bs2TLeffddjjvuuOT4ypUr6du3b4f63qPF9YsXL+ZLX/oSp5xyCgD77bcfDzzwAH/7298AN9s1c+ZMrrrqKk499VQA7r77bvr27cv999/PhRdeSG1tLbNnz+bee+/l+OOPB2Du3Ln079+fBQsWMGbMmI/m5gRBEARB2CP53ve+x1lnncUTTzzBsmXLOPnkkxk4cGBy/Mknn+Qzn/lMh/reo2e8PvvZz/KnP/2Jf//73wC88sorPPvss5x88skArFixgurqak444YTknHQ6zTHHHMOiRYsAWLp0Kfl8vlWbqqoqhgwZkrTZGtlslrq6ulabIAiCIOxJyIzXruG0007jySef5NBDD+XSSy/loYceanW8pKSESZMmdajvPXrG6/vf/z61tbV88pOfxPM8oijiJz/5CWeddRbgQiyBLab7+vbty8qVK5M2qVSKHj16bNGmcP7WuP766/nxj3/cmbcjtBWtOl1/o2rq8HuXkS/zQTkfLZWPnHYr1luZANAaVddAqq5ny8nW6ayUpxIfL+t5TnMVei4sGqd5sgU/Ll+jjLsP62tUPnJB35HThFlfQ6zTUpELldZZg1VOIwXuT+t52EC7kOzYV8z6Gp03SRi304j5WM/9Ixz2TpPtnSbT0yPTP4QoAs8jV6oJNoIzLAO/ycQaLOWONRlMoDEB5CqgeJ0iCsD3FSpvk7BqqxUm0E5vZnH6Nk8lGiydM6jI3YNJOW8vF2ztdFxhsYeJw7T9xhBT5Lk2oQUNUZFG59z1dGihGVQAYZHGz5pYB+Z0ZTrvNF7GV6jI3VtYrAjie8v09lHGkmowFK3NYj5cj41aNKKC0NURA9Vdx/HHH5+slG3ONddc0+rrSZMmce2119K7d+8d9rtHz3g99NBDzJ07l/vvv5+///3v3H333fz85z/n7rvvbtVu0ywlIDGM3B47anPllVdSW1ubbO+9917Hb0QQBEEQhI8tc+fObfPK2B494/W9732PH/zgB5x55pkADB06lJUrV3L99dczceJEKisrATer1a9fv+S8tWvXJrNglZWV5HI5ampqWs16rV27lpEjR27z2ul0mnQ6vStuSxAEQRA6BZnx2jPY9A3IHbFHz3g1NTW1SgEH8DwvsZMYOHAglZWVPP3008nxXC7HwoULk6Lq8MMPJwiCVm1Wr17Na6+9tt3CSxAEQRD2dCw7bykhxiq7lz16xuuLX/wiP/nJT9h333055JBDeOmll7jxxhs577zzALfEOGXKFKZPn86gQYMYNGgQ06dPp6SkhPHjxwNQUVHB+eefz9SpU+nVqxc9e/bk8ssvZ+jQodtcuxUEQRCEroDMeHU99ujC65ZbbuFHP/oRkyZNYu3atVRVVXHhhRdy9dVXJ22uuOIKMpkMkyZNoqamhuHDhzN//nzKy8uTNjfddBO+73PGGWeQyWQYNWoUc+bMwfO8j+K2hB2xC4wtTWMTfn2WfDcfr9k4QbzVWONE6spaStaG2KYMqrSEKO2E8crEonZjUBnjTFJxAnuv0TghfQTKuGPK4ow985uY/BongFcaoiIfFRln7KljQbpyAnuVj0A5o1QVujGq0ELetSc2W8U4MX5UHKBCi4qMMyDNGYynCIs1uVJFWKIgMNgoQpeXsf5TlvJ3NKn6yJmvBgodOgF7yZp8HM7t09hHY9KWsBjStTiD2Hi8yli0MYmxrHu4zqgUQOUtxvdcX6EhSvv4zaaljVJ4zYaoWKOz8X2kPWdu6yuMr1pE+GUeOmexfotRqs5ZNDY2aXV9Gl/h5S1+kxPe+xln4BoW6cRMtWhdDv/fqzAirBcE4SNmjy68ysvLmTlzJjNnztxmG6UU06ZNY9q0adtsU1RUxC233NLKeFUQBEEQujoy49X12KMLL0EQBEEQto0UXnsG3/jGN+jWrVub2u7R4npBEARBEITdzdKlS9vV/rbbbmuThxdI4SX8h2BzOdTqDyla2xzrqpzJqQ08Z4YaeBS/+SE2k8F2K8UEsYnppm/VWqdRohDAHGu/CmHYRM7QVBkLoUFl86hc6DRY2RCVC/Hqs+hcnBFqcWaxOr5WrJvSOafBIg681rkILM4o1VfofOTCvfPG/V07M9F8qU9zr4DGSk39fopcN1CZWJOWTie6LRekDX7GONNRC1GRh44MfmNEus5iPLCe01YVKOi4jKdBAQpnhLpJmDg4M9VcucYEmqDRjV1HNgnWducpoiIPk/JiM1jwshE61xIArnNO+2Y8lYwlKtKYlHIavHhoLlwbwmJNWOIRFjutWHpjRNBoKHujFn/ZCkx9Q6d9PwnCnoI41+8ajjzySD7xiU8wffp03n///U7tWwovQRAEQeiiWKs6ZRO2ZNSoUdx8883st99+jB07lt/+9rdEUbTT/UrhJQiCIAiCsBnXXXcdq1at4sEHH8Ray+mnn87ee+/N97//fZYvX97hfqXwEgRBEIQuys6apxY2Yev4vs9pp53GE088wcqVK/nOd77DI488wuDBg/n85z/foT6l8BIEQRCELopovHYNW8ty3nvvvfnRj37EW2+9xfz58+nfv3+H+hY7CeE/A2OxtXV4HxZjUj2cIWponHheQ1TsYWtqXVtrSdeETvTuORE+kfshVLnQCfK1BhOhIpuI9Ilscj4arB+gciFojQ2UM0jVuPMVqMhg0fE4FEqTCPex1pm8xqJ0rMXGv5VGxUFyPF+SwsYi97BEU99f09jfgG8pft/Da9QopTC9K/DrNV7Wieutduas2hpMoDG+E82ryJLeGFH0YUBYAsZXmLRCWY3R7v4KYnj3koIT5ltPofOgsPiZCJQT1JvAXcd4Cuu78XuZiKA+ovBvvQk0Om+IAvd7oDNLVaDAyxlsRpEv1Vit8HKuL+MpgmbjRPa4FwGM5wxhVTw2EyjKXluDWfshJpffdd9bgiB87NhR9uKoUaMYNWpUh/qWwksQBEEQuiidIY4Xcf2W/OUvf6Fnz567pG8pvARBEAShiyIGqruGY445Zpf1LYWXIAiCIHRRZMZr15DNZtFaEwQBAG+99RZ33nkn7777LgMGDOD8889n4MCBHepbxPXCfww2Mtj1Nfjr6lu0VDjNlc4bbDbrdhiL35h3RqPxpqwLzCYWXCpj3E+PdRovwGmylAKt3VY4FhYcV1XL+XFQtooM1tdOlxT34UxGnb7LegqrnHkqm2gOnBmpRYUWvzlKzE2b+1gGDVnFvoPWEH6qAT+jUEVpPvhCD/KVeawGk9IoY8l384hSGuMrlHH7rafwsoagHlJ1Fj/rTFa9bJQEZefL4t/X4n+rlYl1Y74zcrWJISzovE3uGQs6Z5x2zhIHXSs3pkCjQ4uXNe6z0E5fFhZ7To9mwcvbxLhVRxaTcvutVs7AVTkj1YI+rLg6g1m9Biv6LkEQ2slJJ53E448/DsBzzz3HIYccwh/+8Afy+TxPPvkkQ4YMYfHixR3qW2a8BEEQBKGLYjthqVFmvLbkpZde4lOf+hQAV111FZMmTeLGG29Mjv/oRz/ie9/7Hs8++2y7+5YZL0EQBEHoosQvPe/c9lHfxB5IPp8nn3ez5f/617+YOHFiq+PnnHMOr7zySof6lsJLEARBEARhE4YPH54sNX7iE5/Yosh6+eWXO/zWoyw1Cv9RmGwWvW4DOuiDVQodhhjPBU7bKHKmeVqhm3LYdIBuyoLX8vuJVcp5eXme03TFwdkqNE7f5Du/KasVXnOI9TQ6DLFo5x0WWYjyzh8s8Jx2SxGfr1F5F7yN8lquGXhOL6ZdQLcyNvYEU+jI6ZuUAawlKrEoZRnco5r31vRgv2ecbq25lyX9XoqiDS2/2wZ1zm+LvMVqnPbKuF9/vbwlChRRoPAjS1jkuaDr0KCURlmLDdx4C/eJhijtJf5c1lPuN2kFOmuwVuPlDCq0RGmdaLd0zuBlnZ+Y8wQj1p6RBGZ72XiM7kMAYo8vpdA5p/3KpzV+ZAgaIopX1aPeXY2JNhHzCcLHEINC7aTzvDjXb8l1113HSSedRGNjI2eddRZTp07ljTfe4OCDD2b58uXcfPPNXHnllR3qWwovQRAEQeiiyFuNu4YRI0bw1FNPcdlll/H8888D8JOf/ASAqqoqpk2bxiWXXNKhvqXwEgRBEARB2IwRI0awePFi1q1bx9tvv40xhn79+rHffvvtVL9SeAmCIAhCF8VYhRID1V3KXnvtxV577dVp/Ym4XhAEQRC6KDv9RqNtZRHYbq6//nqUUkyZMmWTMVmmTZtGVVUVxcXFHHvssSxbtqzVedlslosvvpjevXtTWlrKuHHjWLVqVas2NTU1TJgwgYqKCioqKpgwYQIbN27s0DhXrVqFMe3TfBpjuPPOOxk7dixDhgxh6NChjBs3jnvuuWeHWY7bQwov4T8LYzFNTai6RlQUYVI+KjT4DTknLNcaIoNuaHYCdojNTA3k8qh8iMrmUcagmvNYz0PlI1QudMJ5Y9G5CC+Td/stzkRVg/U8J74vctdUuRCdC535aWRBK2wQm6+GToivQ4NuyqNCg5eN3HmRE+KHJc5R2WqF9ZwgXnXPsfzNKp5aeihF/ywm/Y93sZEhXeNCrI3nAqWtdualJnDi/oLxqTIuXDpotPjNlrBYJ0HUGItJ69jU1Qn9baCxgcYETiwfpV3Qts5bdGjxmyK8ZpMYxJo4CNt6Lb9hm5Qm1z3A+sqFcgcKZS1Bk0HnrTNoNTYxbNV5mwjrlXFB3PlSjZ8xpOrylP5jNbz1HqYxs1u+pQThP5UXX3yR22+/nUMPPbTV/hkzZnDjjTcya9YsXnzxRSorKxk9ejT19fVJmylTpvDYY4/x4IMP8uyzz9LQ0MDYsWOJoihpM378eF5++WXmzZvHvHnzePnll5kwYUKHxjp48GDeeeedNre31jJu3Di++c1v8v777zN06FAOOeQQVq5cyTnnnMNXvvKVDo0DZKlREARBELosH5W4vqGhga9//evccccdXHfddZv0ZZk5cyZXXXUVp556KgB33303ffv25f777+fCCy+ktraW2bNnc++993L88ccDMHfuXPr378+CBQsYM2YMr7/+OvPmzWPJkiUMHz4cgDvuuIMRI0awfPlyDjrooHbeY/tmqObMmcMzzzzDn/70J4477rhWx/785z/z5S9/mXvuuYezzz67Xf2CzHgJgiAIQpelUHjt7AZQV1fXassWYtS2wne+8x1OOeWUpHAqsGLFCqqrqznhhBOSfel0mmOOOYZFixYBsHTpUvL5fKs2VVVVDBkyJGmzePFiKioqkqIL4KijjqKioiJpsyt54IEH+OEPf7hF0QXwhS98gR/84Afcd999Heq7TTNer776ars7Hjx4ML4vE2qCIAiCsKvoTHF9//79W+2/5pprmDZt2hbtH3zwQf7+97/z4osvbnGsuroagL59+7ba37dvX1auXJm0SaVS9OjRY4s2hfOrq6vp06fPFv336dMnadMefvjDH7bL8PTVV19lxowZ2zx+0kkncfPNN7d7HNDGwmvYsGEopdo8Vae15t///jf7779/hwYlCLsUY7H19ShPuylfpVBNzUTgTE7rG+OQ62KnOs2HgNMZ2SAOgbYWogiKU87wNDKofIQ2xum+osj1gQuQJu6bxIDVBWbr5hCjlNOTxTor6ylMynfaK6Ug7Tk9U2jQoUn0VDpf+LsLzPYi8PyI7kuLML6iaIPBNjeje/WgcR+D3xAbj2ac2aszL41c2LZxei9lnVkpFryc01d5WYsu3IONDVxD4wxkAQzoKML6Gi/rzFABomLPGa1ap9nSeYNVEKV1Epxtdaw38xVexoWRWxQqdCHZOmeJijVes8XE1/PisejQmaoqY9F5KFnViF61DlNbhxXjVEFoN++99x7dunVLvk6n01ttc8kllzB//nyKioq22ZdSrYtBa+0W+zZn8zZba9+WfjYnl8tx6qmnUlZW1uZzNmzYsEXxuCl9+/alpqamXeMo0OYpqeeff75Nr1NaaxkyZEiHBiMIgiAIQtvZ2bcSC30AdOvWrVXhtTWWLl3K2rVrOfzww5N9URTxzDPPMGvWLJYvXw64Gat+/folbdauXZsUMpWVleRyOWpqalrNeq1du5aRI0cmbdasWbPF9detW7fdgmhTmpqauPjii7n77rsBkgmhyZMnU1VVxQ9+8INtnhtF0XZX7TzPIwzDNo1jc9pUeB1zzDEccMABdO/evU2dfv7zn6e4uLhDAxIEQRAEoW24wmtnxfVtbztq1Cj+8Y9/tNp37rnn8slPfpLvf//77L///lRWVvL0009z2GGHAW7GaeHChdxwww0AHH744QRBwNNPP80ZZ5wBwOrVq3nttdeS5b0RI0ZQW1vLCy+8wGc+8xnATQDV1tYmxdmOuPLKK3nllVf461//yoknnpjsP/7447nmmmu2W3hZaznnnHO2OusHbFf/tiPaVHj95S9/aVenTz75ZIcGIwiCIAjCnkt5efkWq1qlpaX06tUr2T9lyhSmT5/OoEGDGDRoENOnT6ekpITx48cDUFFRwfnnn8/UqVPp1asXPXv25PLLL2fo0KGJWP/ggw/mxBNP5IILLuBXv/oVAN/61rcYO3Zsm99o/O1vf8tDDz3EUUcd1Wp5cvDgwbz11lvbPXfixIk77L8jbzRCO+0k8vk8Bx10EH/4wx8YPHhwhy4oCHsCJtOMBlRYBqkAmt1vL9ZabGMTpNNOd7XJD6vVyum9PM/tTwWuTRg5/RZeHGIdoYzBppwfF8a4/daCNS70GiCyTmsVGkxJgIoMOus8bJRnsL52/lWAzoWgnYcWFnQcql3wvrKeormHh3rTZ6+/1aEzeVQmi8nnyRywF8UD6mlaXQZvx/qwnEFH1vlqeRY/E2ECTVjs4TdF+M3ONysscl5ZVoHSynlpKWL/LNcXOB2bCg1KK6ftiiwqsoTFPljbIv41zq/M7Wvx89J5i0lpVAReaBJPMWUsfpNxGrCc056p+NdzG/uPKQN+xqDf/gDT1OSuIQj/IeyJWY1XXHEFmUyGSZMmUVNTw/Dhw5k/fz7l5eVJm5tuugnf9znjjDPIZDKMGjWKOXPm4Hle0ua+++5j8uTJyduP48aNY9asWW0ex7p167Yq0G9sbNyhTuyuu+5q83XaS7sKryAIyGaz7Ra2CYIgCILQ+dh429k+doa//vWvrb5WSjFt2rStvhFZoKioiFtuuYVbbrllm2169uzJ3LlzOzyuI488kieeeIKLL744GRe0+IF1FGMMTzzxBLNnz+a3v/1tu89vt9/DxRdfzA033MCvf/1rsYsQBEEQBGGP5Prrr+fEE0/kn//8J2EY8otf/IJly5axePFiFi5c2O7+3njjDe68807uvvtuampqGDNmTIfG1e7K6fnnn+dPf/oT8+fPZ+jQoZSWlrY6/r//+78dGoggCIIgCO1jT1xq3FMYOXIkzz33HD//+c/5xCc+wfz58/n0pz/N4sWLGTp0aJv6yGQyPPzww8yePZslS5YQRRE33XQT5513XrvsKTal3YVX9+7dOe200zp0MUEQBEEQOpE9Ya1xD2bo0KGJnUR7eOGFF/j1r3/NQw89xIEHHsg3vvENfvOb37DPPvtw/PHHd7jogg4UXrtScCYIuw1jMZlmF3od+C2Gm8ZiQ7dvU2E9Ng7QLqTbRyYRiQOx4ap1Oc5h5I4Zg9Iu9NoGygVf513QdSE4G7VJH8qZqlpfO+E5TrTuROQatDNaVVqjciGmOIjNXCEs1uRLnCGp98F6TM1GTNxv8WurCBZ8Anto6AxLPUXkedAcofPGGahGBq8pRBfMWUMnjg/qjAvG1gqVN3HQtkJnQ/LlQdIOIF8R4DdFWJQzSi1yIlkVxfdiLPjO8FWHzhDVpNzLAQB+o01Cr72MwfoKFVmidPxnkXvZQOVBGSeu95sivEyIv7ZOhPXCfyadMOPFx2jGq66urs1tt+dZNnLkSC6++GJeeOGFdudC7ogOibTCMOSvf/0rb731FuPHj6e8vJwPPviAbt267VQVKAiCIAiC0FG6d+/eZof8KIq22eYLX/gCs2fPZu3atUyYMIExY8Z02ouF7S68Vq5cyYknnsi7775LNptl9OjRlJeXM2PGDJqbm/nlL3/ZKQMTBEEQBGH7dKZz/ceB9vqObov58+fz3nvvcdddd/Htb3+bTCbD1772NWDrUUbtod2F1yWXXMIRRxzBK6+8Qq9evZL9X/nKV/jmN7+5U4MRBEEQBKHtiLi+Ncccc0yn9dW/f3+uvvpqrr76ap5++mnuvPNOfN/nS1/6Eqeffjqnn346n/70p9vdb7sLr2effZbnnnuOVCrVav+AAQN4//332z0AQdglaLVjvY+x2Fzeabo2/w3GWBdMHQdbA4kGS+VDp7myCjyn7cL3WoKf0y0/Vla5gGgMTrsVOo2YDTx3XhyQrYz7tbVgqGqVigO3daLv0tkQk/axgUYFcQC3ic+JnElpqk5hczkXaB/ff1SzkX4L1lD/ib2Iil1bCn6mnsILLcbX4DmzVDcWp88yKY1VCi8fYVJxCHZknXEsLsjaM3GodsaFdkcpjd8UoaxFRYC1hKUeXrNx4zTKBWVbiIL4mRrrNF05Q5CJCEt9JzuJDWOVsfgZg9+QJ18eJPee+rAJVb0eW1sn+i5BELagpqaG2bNn8/rrr6OU4uCDD+bcc8+lZ8+e7epn9OjRjB49mpqaGubOncudd97JDTfcsN3lym2h23uCMWarF1q1alUrV1pBEARBEHYxVnXO9jFk4cKF7Lffftx8883U1NSwYcMGbr75ZgYOHNghHy+AHj16cPHFF/PSSy/x4osvdqiPds94jR49mpkzZ3L77bcDbq2zoaGBa665hpNPPrlDgxAEQRAEof2IxmvbfOc73+FrX/sat912WxJFFEURkyZN4jvf+Q6vvfbads+vq6tL3nx88sknCcMwOeb7fodrnnYXXjfddBPHHXccgwcPprm5mfHjx/PGG2/Qu3dvHnjggQ4NQhAEQRAEoTN56623ePTRR1vlP3qex2WXXcY999yz3XP/8Ic/8KMf/YiXXnoJgK997Ws0NjYmx5VSPPTQQ5x++untHle7lxqrqqp4+eWX+d73vseFF17IYYcdxk9/+lNeeumlrYZRCsJHQiGMubDtoG3i41Ugchqlgq4La1G5vPvV0JhEn4Vxf1qtnTeXcTom63nYdAB+7O9lDCobYZVyuq/QxFor59tVQMXB2WjiUGyNshadi5J2KmfAgkl7+I0hqNi/qxm8DFtqnYyFmjqKV2tMADpv0GEcvh26cOqoxCdKu3+cbKz18pqNC9MO3Zisp4hSLqhbNefdWLXCxLo0HTkNlp+JsL7CakWUdufpnPPnQrX4dhW+VpElX6KJUoqw2CNf5qPzBpOKNXNxCHiUVuS6pzApRVSkKH63FrXyA8zG2i0/P0H4T8F20vYx5NOf/jSvv/76Fvtff/11hg0btt1zb7/9dr773e+22vfmm29ijMEYw/XXX8+dd97ZoXG1e8brmWeeYeTIkZx77rmce+65yf4wDHnmmWf4/Oc/36GBCIIgCILQPuStxm0zefJkLrnkEt58802OOuooAJYsWcKtt97KT3/6U1599dWk7aGHHtrq3FdffZWrr756m32fdNJJ/PznP+/QuNpdeB133HGsXr16i9mt2tpajjvuuA4p/AVBEARBEDqTs846C4Arrrhiq8eUUts0U62urm5lmfWXv/yF/v37J1+XlZVRW1vboXG1u/AqDHJz1q9fv0VgtiAIgiAIu5iP6VLhzrJixYoOn9uzZ0/eeustBg4cCMARRxzR6vgbb7zRbkuKAm0uvE499VTACcrOOecc0ul0ciyKIl599VVGjhzZoUEIgiAIgtB+ZKlx2wwYMKDD537+85/n5ptv5vjjj9/q8ZtvvrnD0qo2F14VFRWAm/EqLy+nuLg4OZZKpTjqqKO44IILOjQIQdglFAT2bSVua6PIieTz8avDm7+vXRDcF77Mh85ANRdBGGGLPZS12IL5aiFgW8eGqaFp/QtqoS+tsRgwoIxxYdKFUO5YwI8FU+S5wOqcwWqFlzVkKzxQ0DDAOFPXTQT2KvBpHD6QKA3pNRYTm6+6/zrzU50zRGlnlmp1i/hdFfK7LbFJK3jZCJXLJ2J/6yln6mqc2N56yp0bWnSLF6t7CUDhXlqwbocyFi/nXj7wmyJStTmiYt8FaAcKnXch3PlSjZ+JzV1RBI0h9t0PsLl82z9fQfg40hni+I/xjNn777/Pc889x9q1azGm9Us4kydP3uZ53//+9xkxYgRf/epXueKKKzjwwAMBWL58OTfccAMLFixg0aJFHRpTmwuvu+66C4D99tuPyy+/XJYVBUEQBEHYY7nrrru46KKLSKVS9OrVq5VMSim13cLrsMMO46GHHuKb3/wm//u//9vqWI8ePXjwwQc7FBcEHdB4XXPNNYRhyIIFC3jrrbcYP3485eXlfPDBB3Tr1o2ysrIODUQQBEEQhPaiSDLAdqqPjx+FnMUrr7wSrdvtnsWXvvQlRo8ezR//+EfeeOMNAAYNGsQJJ5ywU5NP7S68Vq5cyYknnsi7775LNptl9OjRlJeXM2PGDJqbm/nlL3/Z4cEIgiAIgtAOZKlxmzQ1NXHmmWd2qOgqUFJSwle+8pVOHFUHDFQvueQSjjjiCGpqalrpvL7yla/wpz/9qVMHJwg7jbEdCk+21qKyuUTfVQixVpFp0XgZAzrWRGVzELXosZJ+fI1N+c40NXLjMCnf9ZWPIDSxOWsY9+fCqgHwNTbwsIGHCTwXYG0tKrRJGy+Tj4On3Sk9/qlgM92TKi1l7RE+zX0MJogNUguarciZswJ4OeP6j81TlQUvE7nwbu3Cqk2gyJe639ds/K9HognznBGr8RResyk8SKfTigOzlQWdt/hNETbOGS8YqjptmEeUch37TSY2TtWk6g3WByyUvFtH6rX3RN8lCMJ2Of/88/nNb37Taf1NmjSJDz/8cKf7afeM17PPPstzzz1HKpVqtX/AgAG8//77Oz0gQRAEQRDaiMx4bZPrr7+esWPHMm/ePIYOHUoQBK2O33jjje3qb+7cuVx++eX07t17p8bV7sLLGLNVk9RVq1ZRXl6+U4MRBEEQBKEd2Ph14Z3t42PI9OnT+eMf/8hBBx0EsIW4vr3YTkoTb3fhNXr0aGbOnMntt98OuME3NDRwzTXXdDipWxAEQRAEoTO58cYbufPOOznnnHM+6qG0ot2F10033cRxxx3H4MGDaW5uZvz48bzxxhv07t2bBx54YFeMURB2DwUtmHbh17auAVVW6jy6Cl5e8W9JBY8vqxRojcqH2FTgvLbi/SpyOjGb9sBTmKL4x60gf/I1yjjfrsTfK4g1Y4GH8TUoXKC2BuO7IG5lLRgwgUblFSalXZC1UnjZ2IdsE1Q6hdWW0lWuHYpYr2axfstvyzobufvz3bVU5AK0vawhLPFce6tcH9Y6HzHf+XdFKZ14inlxALeXM+TLPJQphH8DOUtYrFEp7Xy6Qrffy7r9VgdYD1TUEuZtfI+wRFNc3Yy/tg7Wrsdks7vs20AQuhKb2wx2tI+PI+l0mqOPPrrT+quvr++Uftotrq+qquLll1/m8ssv58ILL+Swww7jpz/9KS+99NIW+Y2dwfvvv883vvENevXqRUlJCcOGDWPp0qXJcWst06ZNo6qqiuLiYo499liWLVvWqo9sNsvFF19M7969KS0tZdy4caxatarTxyoIgiAIuxXbSdvHkEsuuYRbbrllp/sxxvDvf/+bZ599lmeeeabV1hHaPeMFUFxczHnnncd5553XoYu2lZqaGo4++miOO+44nnrqKfr06cNbb71F9+7dkzYzZszgxhtvZM6cORx44IFcd911jB49muXLlyeasylTpvD444/z4IMP0qtXL6ZOncrYsWNZunQpnudt4+qCIAiCIHRVXnjhBf785z/zhz/8gUMOOWQLcf3mxqhbY8mSJYwfP56VK1duofHaWrh2W+hQ4dVRC/72csMNN9C/f//ENR+cc34Bay0zZ87kqquuSrIk7777bvr27cv999/PhRdeSG1tLbNnz+bee+9NMpfmzp1L//79WbBgAWPGjOm08QqCIAjCbkXE9duke/fuSW3QUS666CKOOOIInnjiCfr169chUf7mtLvw2hkL/vby+9//njFjxvDVr36VhQsXsvfeezNp0qQkE3LFihVUV1dzwgknJOek02mOOeYYFi1axIUXXsjSpUvJ5/Ot2lRVVTFkyBAWLVq0zcIrm82S3URHUldX12n3JQiCIAidgbIkmao708fHkU0nbTrKG2+8wSOPPMIBBxzQCSNytFvjVbDgr62t5Z133mHFihXJ9vbbb3fawADefvttbrvtNgYNGsQf//hHLrroIiZPnsw999wDQHV1NQB9+/ZtdV7fvn2TY9XV1aRSKXr06LHNNlvj+uuvp6KiItn69+/fmbcm7MnEInubyWAbGqE52xJ0bS1EsamoHy9Tb02Z6imi4oCoPO3E84U2BWF9ym8JmdaxyWq8z3pOqK7ic6yvMYHnBPiRdUalxR5WK6KSgCgWqisL9fsqdPeKVuHgtqSIXIUlLI5/OfZwodteSyC2shaT9jCBu7ZVJGHaBfNUZXFB1jVZ0NqJ+vPuhnRo8XLGBWFrsL4iLPHQORuL5S1esxPze9mC+N7GLwWwSVh2fM+eu67VToBfvCZL8EENds2HmExzh0xxBeFjiWi8dinDhw/nzTff7NQ+2z3j1RkW/G3FGMMRRxzB9OnTARdauWzZMm677TbOPvvspN3mU3/W2h1OB+6ozZVXXslll12WfF1XVyfFlyAIgiB0IR555BEefvhh3n33XXK5XKtjf//733d4/sUXX8zUqVOprq7eqgnroYce2u4xtbt66mwL/u3Rr18/Bg8e3GrfwQcfzLvvvgtAZWUlwBYzV2vXrk1mwSorK8nlctTU1GyzzdZIp9N069at1SYIgiAIexQFjdfObh9Dbr75Zs4991z69OnDSy+9xGc+8xl69erF22+/zUknndSmPk477TRef/11zjvvPI488kiGDRvGYYcdlvzZEdo949XZFvzb4+ijj2b58uWt9v373/9mwIABAAwcOJDKykqefvrp5AHkcjkWLlzIDTfcAMDhhx9OEAQ8/fTTnHHGGQCsXr2a1157jRkzZnTaWAVBEARhtyORQdvkf/7nf7j99ts566yzuPvuu7niiivYf//9ufrqq9mwYUOb+lixYkWnj6vdhVdnW/Bvj0svvZSRI0cyffp0zjjjDF544QVuv/32Vq75U6ZMYfr06QwaNIhBgwYxffp0SkpKGD9+PAAVFRWcf/75TJ06lV69etGzZ08uv/xyhg4dmrzlKAhbw0YGMhmIIpQthiCAwG8Jzo6M0z95HjZo0UpZVKzJinVKgXbiVWvBA5ULsYUgbKVcGHast7JaoXMRKm+wac/pvXynsUKRBEijFKZYoUKni1IGjAdeFkgFKKWw8b+mKnSvO+e7GcI6jVUKq22s91JoCypv3ZgU5Ms9/IyJ7xN0ZDDG6b7wFcbXePHbzFFau4BuYxNdmYn7sRpsyo3deir5H4TxnW5Lh5aoSOE3u+BvG6jkfwDWU4Qlrp3XbPDf/ABTW+c+E0EQhDbw7rvvMnLkSMDZYBUMUCdMmMBRRx3FrFmzdthHYaKnM2l34bU7LfiPPPJIHnvsMa688kquvfZaBg4cyMyZM/n617+etLniiivIZDJMmjSJmpoahg8fzvz581vlRt500034vs8ZZ5xBJpNh1KhRzJkzRzy8BEEQhK6NzHhtk8rKStavX8+AAQMYMGAAS5Ys4VOf+hQrVqzYbu7i73//e0466SSCIOD3v//9dq8xbty4do+r3YVXZ1vw74ixY8cyduzYbR5XSjFt2jSmTZu2zTZFRUXccsstneJgKwiCIAh7DFJ4bZMvfOELPP7443z605/m/PPP59JLL+WRRx7hb3/723b9vb785S9TXV1Nnz59+PKXv7zNdrvNQLVgwX/zzTe3+2KCIAiCIAi7g9tvvz0xeb/ooovo2bMnzz77LF/84he56KKLtnnepsbwm5vEdwbtLrw6w4JfELoKNjLYbBYVRahUClVa4nRZngZjUJGFyGA97URNOI+ugt5Jhwa0whqLQoExzg8MwMQh28Qh0kqhQ+P0YJ7CpL3kuNN/uXZohSl0kdLO82oTeaWpKIU1GmI9lNUKP6PQOQgaLcYHLwde1mB9hfFU7N/lPMN0zoKxmEDjRdaFdeN8vKwCFRnI5VFRrNNKaUyxh5eNPb0ipx8jUC4gO9ahWV+5e/ZA5SxeNsIEASoO1VaR+1PnLPlyF86dqg1JrarBbKwV7y5B2BriXL9NtNatrK/OOOOM5CW7j5J2F16dYcEvCIIgCMLOI87122bevHmUlZXx2c9+FoBbb72VO+64g8GDB3PrrbduYay+LRobG1m4cOFWvcA6ktbTocggQRAEQRCEPZnvfe97ibXUP/7xDy677DKmTp3Kn//8Zy677LI21TMvvfQSJ598Mk1NTTQ2NtKzZ08+/PBDSkpK6NOnT4cKrw7bz69bt45nn32W5557jnXr1nW0G0EQBEEQOopEBm2TFStWJCbsjz76KF/84heZPn06//M//8NTTz3Vpj4uvfRSvvjFL7JhwwaKi4tZsmQJK1eu5PDDD+fnP/95h8bV7sKrsbGR8847j379+vH5z3+ez33uc1RVVXH++efT1NTUoUEIgiAIgiB0JqlUKqlLFixYwAknnABAz549qaura1MfL7/8MlOnTsXzPDzPI5vN0r9/f2bMmMEPf/jDDo2r3YXXZZddxsKFC3n88cfZuHEjGzdu5He/+x0LFy5k6tSpHRqEIHzk6O2IS43FhqELzc7nIZ93+zf1gVHKidnDyAnorROTW88ZlqKdsF43hxAaVGhcCLbeRBurFVYpTMpz58eGqlHKBVIXtiiliYo0UVqTL9HOkDSypBotOgQbbOZPpxQqD8oocuVO8G6VIiz1Xfi1ccavOrRY7cTx4IKrracwvmoJ6A60G2cYuXu24DdHBA0hXlOIzpskeNtrNuh8fI++uzcdWbysRecMVikXil3whLUtW1AfUfJuI+l/vY/9YI0I6wVhGyha/+x0aPuob2IX8dnPfpbLLruM//f//h8vvPACp5xyCuAScPbZZ5829REEQWIO37dv3ySysKKiIvl7e2l34fXoo48ye/ZsTjrppCTD8OSTT+aOO+7gkUce6dAgBEEQBEEQOpNZs2bh+z6PPPIIt912G3vvvTcATz31FCeeeGKb+jjssMP429/+BsBxxx3H1VdfzX333ceUKVMYOnRoh8bVbnF9U1PTVsOl+/TpI0uNgiAIgrA7ETuJbbLvvvvyhz/8YYv9N910U6uvf/rTn3LRRRfRvXv3LdpOnz49iRr6f//v/zFx4kS+/e1vc8ABB3DnnXd2aFztLrxGjBjBNddcwz333ENRUREAmUyGH//4x4wYMaJDgxAEQRAEoQOIc/1OU8iD3lrhdcQRRyR/32uvvXjyySd3+nrtXmqcOXMmixYtYp999mHUqFEcf/zx9O/fn0WLFvGLX/xipwckCB8ZO9J5RQayWZfxVdA4aR3rn4zTdhVQCuM5TZY7Zp1JqudCsQldexUadxySP7EWlY+I0l5saqowgdvCEk1YrMiVacK0IkorwrRCRRAFiop3QvQ71dhNYixUc46Kt8DLgEnFBqd+/IuydoHWJnD/FHjNJjFpRSnC4tgUNg7U9prjfk2U6NSscvotWzBaje/Vyxl0zjiDVOt0ZOAMVAuiEhXhTFVjg9jC/Ze8tQG9YhVRzUZsPuzwRyoIgrAjtpfb+IUvfIGNGzdusb+uro4vfOELHbpeu2e8hg4dyhtvvMHcuXP517/+hbWWM888k69//esUFxd3aBCCIAiCIHQAmfHapfz1r3/dwjQVoLm5mf/7v//rUJ/tmvHK5/Psv//+rFixggsuuID//u//5sYbb+Sb3/ymFF2CIAiCsJvZ6TcaO+B8f9ttt3HooYcmL9iNGDGilS+WtZZp06ZRVVVFcXExxx57LMuWLWvVRzab5eKLL6Z3796UlpYybtw4Vq1a1apNTU0NEyZMoKKigoqKCiZMmLDV2addwauvvsqrr74KwD//+c/k61dffZWXXnqJ2bNnJ2L99tKuGa8gCMhms8mrlYIgCIIg/Gexzz778NOf/pQDDjgAgLvvvpsvfelLvPTSSxxyyCHMmDGDG2+8kTlz5nDggQdy3XXXMXr0aJYvX055eTkAU6ZM4fHHH+fBBx+kV69eTJ06lbFjx7J06VI8z1nijB8/nlWrVjFv3jwAvvWtbzFhwgQef/zxXX6Pw4YNQymFUmqrS4rFxcXccsstHeq73UuNF198MTfccAO//vWv8f12ny4IgiAIQmfxESw1fvGLX2z19U9+8hNuu+02lixZwuDBg5k5cyZXXXVVkut8991307dvX+6//34uvPBCamtrmT17Nvfeey/HH388AHPnzqV///4sWLCAMWPG8PrrrzNv3jyWLFnC8OHDAbjjjjsYMWIEy5cv56CDDtrJm94+K1aswFrL/vvvzwsvvMBee+2VHEulUvTp0ycpENtLuyun559/nj/96U/Mnz+foUOHUlpa2ur4//7v/3ZoIIKwW4gF9NuctfVa9m9NcGmbs84otciibACpoNAYUOC7H0Trx6J1rVBpH52PEgNRq0EZg0WDtqjQODG+r7GedqL10MTmos7AVEVOgB4Fiiil8HKWKK0wAXhZhfUs1oNcmQZrWo+5vp7S6pCmygCdB+MpvKxtJTQoCP+VcUL4gqErxMsQ8T5tCoL82BQ2sonRakEwb7VCxY/E+Cru151vYiPVKNUi2m/u5eHlQIeW1MaQoLYZ+341NgzFOFUQdkQnFl6bu7mn02nS6fR2T42iiN/85jc0NjYyYsQIVqxYQXV1deISX+jnmGOOYdGiRVx44YUsXbqUfD7fqk1VVRVDhgxh0aJFjBkzhsWLF1NRUZEUXQBHHXUUFRUVLFq0qFMLr8997nNbyKUGDBgAgDFma6fsFO1+q7F79+6cdtppjBkzhqqqqmTttbAJgiAIgtD16N+/f6v/n19//fXbbPuPf/yDsrIy0uk0F110EY899hiDBw+muroaYAu/z759+ybHqqurSaVS9OjRY7tt+vTps8V1+/Tpk7RpK2EY8vTTTzN79mwWLFhAtMlb3wBPPvkk/fr12+q5d999N0888UTy9RVXXEH37t0ZOXIkK1eubNc4CrR7xqstad6CIAiCIOx6OiKO31ofAO+99x7dunVL9m9vtuuggw7i5ZdfZuPGjTz66KNMnDiRhQsXtvS52aqCtXaH+vDN22ytfVv6mTx5MmPGjOGUU05h1apVjB49mjfeeIPevXvz4YcfMnjwYJ566qk2ieOnT5/ObbfdBsDixYuZNWsWM2fO5A9/+AOXXnpph1b52j3jtWLFCt54440t9r/xxhu888477R6AIAiCIAgdpOBcv7MbJG8pFrbtFV6pVIoDDjiAI444guuvv55PfepT/OIXv6CyshJgi1mptWvXJrNglZWV5HI5ampqtttmzZo1W1x33bp1W03P2ZRHHnmE/fffH4CpU6eyzz77UF1dTXV1NWvXrmXAgAFMmTJlu30UeO+995KXCH77299y+umn861vfYvrr79+99hJAJxzzjksWrRoi/3PP/8855xzTocGIQi7jc01Q1q3/LnZVnijZdPfrqy12FwO29iIrW+A5izk8s701Fin/1IKFVp0NkLHwdKF4OiCyShhPNWtnF7KauW0XoWfyLzTN7mQbEWuXJPprcmXOKPRKK3IlynypYooDfliDRbK38uigmCT+1PY5iwl/15H2XuGKO2MUIOGkFRNzunQfBd2bT1FWOS5oO60G4jOW6KUduHZeYvOx/fXrdz93ZLo0axWmFgnpiKbpJBYr8UcVYcukdf67qCOLPlSdzyoC0mv2oh++wNsLi/6LkFoC7aTtp0dhrVks1kGDhxIZWUlTz/9dHIsl8uxcOFCRo4cCcDhhx9OEASt2qxevZrXXnstaTNixAhqa2t54YUXkjbPP/88tbW1SZttUVNTkyTrLFq0iJ/85Cf07t0bgJ49e3L99dfz17/+tU33VVZWxvr16wGYP39+8jJAUVERmUymTX1sTruXGl966SWOPvroLfYfddRRfPe73+3QIARBEARB6Br88Ic/5KSTTqJ///7U19fz4IMP8te//pV58+ahlGLKlClMnz6dQYMGMWjQIKZPn05JSQnjx48HoKKigvPPP5+pU6fSq1cvevbsyeWXX87QoUOTwubggw/mxBNP5IILLuBXv/oV4Owkxo4du0Nh/YEHHsgLL7zAwIEDKS8v3+Klgfr6+jaL5kePHs03v/lNDjvsMP79739zyimnALBs2TL222+/9jy2hHYXXkqpJDByU2pra7cQrAmCIAiCsOvoTI1XW1mzZg0TJkxg9erVVFRUcOihhzJv3jxGjx4NOAF6JpNh0qRJ1NTUMHz4cObPn594eIELqvZ9nzPOOINMJsOoUaOYM2dOK4uG++67j8mTJydvP44bN45Zs2btcHyXXnopl19+OX379uXKK69k8uTJ3HLLLRx88MEsX76cSy65JLG62BG33nor//Vf/8V7773Ho48+Sq9evQBYunQpZ511Vpuf2aYou72Qoq0wduxYSkpKeOCBB5IHFEURX/va12hsbGzlXvtxoq6ujoqKCo7lS/gqXspRCuUH2z9R2PPQmywfau0yFvVWVt03+Y1o8x8T5Xko30eVloDnORsJrbGBjykvwqR9J50INFYpvOYQnQlRJl6qa8piU4Gzr1AKk3I/S6bYR+UM/of1NA/ogfU1uXKN8d3SIgaUcf9Q5ssUxoeg0eI1g9VQ8U4zqX+vJtpQ45bq4nvVVZWsH1FJ/QBN9zcNxWtz6FxEVOxjfIXOW5cJ6Sm8rCEq1rGFRWwPYSxes0Hn3bJisHoj2QE9k6VGGy+nFmwoCkuN1lNxXqWzqdCRJUprtxwZWpSF2oEB6VpL0Yd5it7dCOs2YBoad9GHLwjbxua3jIbpKKHN81d+R21tbSvBemdR+H/S/ldPR8fLah3FNDfz9rU/3GVj/Si48cYb+dGPfoS1liiKCMOWzNdx48Zx7733UlZW1mnXmzRpEtdee22ypLk92j3jNWPGDD7/+c9z0EEH8bnPfQ6A//u//6Ouro4///nP7R+tIOxujMUSFyWF4mprxVehKKPl7ZpCAWajCIxxb9j4Pvg+KhWgoggvl0cXpzElKWi05HvG/yh6zveKyELgOz1XZJ2Xl/WcF1bUUuCZtCYsjrciCIsVOnQh1EEjYCAsAXCaMutBZq8U2e77UvaXJkymGZ1OY8MQs2YdPf/mo0xvV2RphfVa7jcqigsnH0zKc1osXJFnPfenjgxRrP3yfQ/jOS8vtWm4eFx0YV3RGaWdfi3IGqcVi/VfqlDTGvf3VH1E8ZvrMOvWO/8uQRCEneCyyy7jvPPO4+mnn+btt9/GGEO/fv04+uijGTRoUKdfb+7cuVx++eW7pvAaPHgwr776KrNmzeKVV16huLiYs88+m+9+97v07NmzQwMWBEEQBKEDdMJS48c1JLt79+589atf3S3Xas/iYYcyf6qqqpg+fXpHThUEQRAEobP4CCKDuirnnnsuP/nJT6iqqvpIx9GmwuvVV19lyJAhaK2TtO5tceihh3bKwARBEARBENrLtuqU++67jy996UuJx9dHVa+0qfAaNmxYYt9fSOze2rSaUkrebBQEQRCE3YXMeG3B9uqU0047LXG//6jqlTYVXitWrEiSuVesWLFLByQIu41NRPaQZDy3ZlPB/Wa+L9ZayOUgnwfPwza7tkopCHy8VAprDF5xP/cPWxQHYkcGfM/93VqwGmsMKO3MVH2FCiPCIk2+WGN8J243AbHBqnt70Pqg8+5YWOyCr0veb8Zf34DNubezVM/ukGnGbKxFrV1P+cpSGvcuIizxUJFGR+7NQmudiN7G4ngVQb5Uowx4zQbjK6JAOwNYa7GpAGVdCLhNufEo48xidWjROYP1nGFqwRjbBArr6ySkW0VgAk2vVxrwP9iA+XA9Nur8QFpB+DjzUdhJ7Okceuih7LPPPvz85z9Pwq+ttQwaNIinnnpql4jr20ObCq9CSvfmfxcEQRAEQdiTeOGFF7jiiis47bTTmDt3LocddlhyrKqqapfUMd/4xjfabMXRIXH9+++/z3PPPcfatWu3cH+dPHlyR7oUBEEQBEHYaVKpFDNnzuSpp55i3LhxTJo0ie9///udeo3GxkaWLl3K5z//eYAkSLsttLvwuuuuu7joootIpVL06tVriyRxKbwEQRAEYTchGq9tctJJJ/G3v/2Nc889lyeffLJT+37zzTc57rjjOqQTa3fhdfXVV3P11Vdz5ZVXorfm9i0IXY1CGHPB1XNb39daJ4arm4o2rbWwiemnBchmUaoJAK+uJzbtoaLIiamMAaOc1staKDi7x2IrZQGlKHu3CRNo8t1SKGNJ/60Jk/KISgNy3XwyvTyCetCh01L5WUvwzhoX4h2Pz6xb7/pUClVRTlgWxOapTmOlcwZlLabUd7cfiz2Mr/CbDSpquSeTcs/FepqoW9oZvhYeTRQHY3s2Dt12pq5RkU60XFFKoaPYeT+yeFmDlwnRr79DlMtJKLYgdADReG2fvn378uSTT3LzzTfTu3fvPcKZv92FV1NTE2eeeaYUXYIgCIIgdAkmT57crhW5HRnC78wbke0uvM4//3x+85vf8IMf/KDDFxUEQRAEoZP4GM9YdYTf//73bWo3bty4bR7LZrN8+9vfZujQoVs9vnLlSn784x93aHztLryuv/56xo4dy7x58xg6dChB0Dok+sYbb+zQQARBEARBaCei8dqCL3/5yztssyMfr2HDhtG/f38mTpy41eOvvPLK7iu8pk+fzh//+EcOOugggC3E9YLQVbGRaR2cvbXl9Dg4e/PQ7K32Fx/zmpqxUQCh+yFXYYQt/KwoBWGELfIxgecukQ0hH5IvT6EjQ1CXw6vLotZtwNcar3s5XmMRfiaN1xSiQ4MJPEygMQ2NEEWJXsqGIXq//mAMUUUJtQMDdA78rPPdCos9TFqhs3EoduT0V1YrrFIoa5yvmLVYT6GMxW+KQMXB3Cnl/L+UwovDr3VoMJ5CRxads3EAt7ueDi1RSuMbS2ptI6p6HaY5u9OfnSAIQoHN3RY6wimnnMLGjRu3ebxnz56cffbZHeq73YXXjTfeyJ133sk555zToQsKgiAIgtA5iLh+1/DDH/5wu8f79+/PXXfd1aG+262QT6fTHH300R26mCAIgiAInYjtpO1jTrdu3Xj77bc/6mEAHZjxuuSSS7jlllu4+eabd8V4BEEQBEEQOpXtyUK2d86CBQtYtGgR1dXVKKXo27cvR///9u49Luoq/x/46/OZgeEijIIC4i0sVy20DMtLXhdFTTPzu6t5Qdz8VaZ4r9S1fUhtSrl5+Zab39UtMy9rm2nZZQ3UwrwbSuIl1xQVFcILDnfm8jm/P0Y+MTAgDMPAwOv5eMxj4zPnc+YcWujNOe/P+zzxBCIjIx1Or6p24HX06FHs3bsXX331FR566KFyyfXbt293aCBERERUPdxqrB3Xrl3DiBEjkJqaivDwcAQHB0MIgYMHD+Kvf/0rHn74YezcuROtWrWqdt/VDryaNm2K0aNHV/uDiNxCqYOzK/xbpiTp/m6S/b3+khI5uZCa+P52n2Q9BFtorIdiQ1iLj8pmBTAq1mKqGhlmHw088gU8DEXA9SwoBQXWQqhGIzRZgNavCYQhF7BYoPVrAug8oVgsEKWf1FEEsh9tjmK9BN8sBZLZerg2cPeXbclLBmSTgJCtxVgVDSA01gO7hSxZC63CmmBv8tPcPWT77rhN1oR8CGvhVeuB3hKExfodVLR3+5IBi6cE/0tF8LhyE8rtbCilCs8SkQP4VGOVVOcsRQCYNm0aAgICkJ6ejpYtW9q8l5GRgYkTJ2L69On4/PPPqz0Wh44MIiIiInIX1TlLEQD27NmDAwcOlAu6AKBly5Z455130LdvX4fGwvLzRERE7orJ9ZXas2cPRowYgfvvvx8PPPAARowYgd27d9/zPm9vb9y+fbvC97Ozs+Ht7e3QmKoUeD366KPIzs6ucqd9+vTBtWvXHBoQERERVU1JjldNXw3R6tWrMXToUPj5+WHWrFmYOXMm/P398eSTT2L16tWV3vvss88iJiYG27Ztg8FgUK8bDAZs27YNf/rTnzB+/HiHxlWlrcaUlBT89NNP9zy7qHT74mIWRSQ3pggIWKxPrVRyaHZViqmKwiJIHh6AVgvIEoSHFlLJAdklT8WYFUgALD7WQ6w98rXQZRvhcT0b4lY2xN1DpAUERE6e9Z68/N8Oli7981bmsGnZLKB4yjB7SZDNgEUHm79wS84GhxCQzYCQANmkQJFla66WJAHC+s+aYsVabFUGNEUKLDoZksnageIhARIgZOnugduA2dtaPFU2Cev9ZgHtuXQoefnWgrVEVDPM8apQfHw8Vq5cidjYWPXazJkz8cQTT2DJkiU218tavnw5zGYzJkyYALPZDE9PTwCA0WiEVqvFlClT8Le//c2hcVU5xysyMrLKj2Oygj0RERHVpZycHAwdOrTc9aioKMyfP7/Sez09PbFmzRq8/fbbSE5ORmZmJgAgJCQEERER1UrUL6tKgVdaWlq1O27dunW17yEiIqJq4IpXhUaOHIkdO3bglVdesbn+xRdf4KmnnqpSH/7+/hg4cKBTx1WlwKtdu3ZO/VAiIiKqOdbxslW6uHvnzp2xZMkSfP/99+jVqxcA4PDhwzhw4ADmzZtXaT9HjhzB7du3MWzYMPXaxx9/jMWLFyM/Px+jRo3Ce++9B51OV+0xVrucBFGjUVLTS4iKc73u5nkBqLCmlzCbIQoLIXl5ARqNtT6YLEMqNgEaGcLD+mNorXX12za9x6UsKNl3IEwV1LoqnculVPybU2MU0BZa62zJZgGLzpqLBVjzuay5W9YDrGWjNW9LaK1zlY13f6sLQDbdvUd794BsrfXQbOlu/S6zjwbS3flbPOW7fVvv88y1QFNghue1bFhy8yodLxGRo1auXGnzdbNmzXDmzBmcOXNGvda0aVN8+OGHeO211yrsJy4uDgMGDFADr9TUVEyZMgWTJ09G586d8be//Q2hoaGIi4ur9hgZeBEREbkrbjXacCQ1yp6UlBT89a9/Vb/eunUrevTogXXr1gGwHpK9ePFiBl5ERESNCbcaa0d2djaCg4PVr5OSkmwS9R977DGkp6c71DcDLyIiImpwnnvuuUrf//DDDyt8Lzg4GGlpaWjTpg2MRiOOHz+O119/XX0/Nze33FnVVVXtyvWTJ0/Gvn37HPowIiIiciJWrq9Qdna2zSsrKwt79+7F9u3bcefOnUrvHTp0KBYsWIAffvgBCxcuhI+Pj80RQSdPnsT999/v0LiqHXjl5uYiKioKHTp0wNKlS11aoT4+Ph6SJGH27NnqNSEE4uLiEBoaCm9vbwwYMACnT5+2ua+4uBgzZsxA8+bN4evri5EjR+Lq1asuGze5OUVAWBTbw6dL16orlXRfUQ07pbAISn4BhNEEmC3WhHz57gHZZgukkgR9AchGCySjCcodg/Uz5ZrVxWvyiwG6O7/1b/aWYNbJsOhkKJ4SLJ7Sb794hYDGpEDI1kKoJQn/isfdMdz9H4uXDLOPDMVDhtBId7c7BCyeMkw+1mKtQgNIFsAr2wyvtNvwOH0ZSsavTKwnciYGXhXasWOHzeurr77CxYsX8eyzz6Jnz56V3vvmm29Co9Ggf//+WLduHdatW6cWUQWsq2VRUVEOjavagddnn32Ga9euITY2Fp9++inuu+8+DBs2DNu2bYPJZHJoEFVx7NgxrF27Fl27drW5vmzZMqxYsQKrV6/GsWPHEBISgsGDByM3N1dtM3v2bOzYsQNbt27F/v37kZeXhxEjRsBS+j+kRERE1KDJsow5c+aUe/qxrBYtWuCHH35QV8ueeeYZm/c//fRTLF682LExOHJTYGAgZs2ahRMnTuDo0aN44IEHEB0djdDQUMyZMwfnz593aDAVycvLw4QJE7Bu3To0a9ZMvS6EwKpVq7Bo0SKMHj0a4eHh2LBhAwoKCrBlyxYA1nOVPvjgAyxfvhyDBg1Ct27dsGnTJqSmplbpoEwiIqL6SnLSqzG5cOECzOYKyvSUodfrodFoyl0PCAiwWQGrjhol12dkZCAhIQEJCQnQaDR48skncfr0aTz44INYtmwZ5syZU5PuVdOnT8fw4cMxaNAgvPnmm+r1tLQ0ZGZm2iz36XQ69O/fHwcPHsSLL76I5ORkmEwmmzahoaEIDw/HwYMHMWTIEKeMkYiIyOVYTqJCc+fOtflaCIGMjAx8/fXXiImJqXI/x44dw6effoorV67AaDTavLd9+/Zqj6vagZfJZMLOnTuxfv16JCQkoGvXrpgzZw4mTJgAPz8/ANZ6Fy+99JJTAq+tW7fi+PHjOHbsWLn3Ss5OKv3IZ8nXly9fVtt4enrarJSVtCm5357i4mKbg75zcnIcngM1EGUPzpasOVoAqlZI1Wi0tjF7QvLSARqN9X7FBHhoIRXL0BaaIBUZIfILIMxm5+RDXcuEZxt/5Adr4ZNlhnK38KniYc3vsnhac7gkRQYErPldGsl6uLXZ2k7RSpAhIBkBRWf9+1jRSNCaFFg8ZVi8rHliJp+7B2QLQFsk4P1rMTwu37AWgnXWfIhIxXISFTtx4oTN17Iso0WLFli+fPk9n3gssXXrVkyaNAlRUVFITExEVFQUzp8/j8zMzHLbj1VV7cCrZcuWUBQF48aNw9GjR/HII4+UazNkyBA0bdrUoQGVlp6ejlmzZiEhIQFeXl4Vtiub0CxKKo1X4l5t4uPjbR4dJSIiIvfx9ddfQwgBX19fAMClS5fw+eefo127dtBqqxb+LF26FCtXrsT06dPh5+eH//3f/0VYWBhefPFFtGzZ0qFxVTvHa+XKlbh+/Tr+/ve/2w26AGuJfmdUj01OTkZWVhYiIiKg1Wqh1WqRlJSEd999F1qtVl3pKrtylZWVpb4XEhICo9GI7OzsCtvYs3DhQhgMBvXlaKE0IiKiWsOnGis0atQobNy4EQBw584d9OzZE8uXL8eoUaOwZs2aKvVx4cIFDB8+HIA1lSk/Px+SJGHOnDlYu3atQ+OqduAVHR1d6eqTM0VGRiI1NRUpKSnqq3v37pgwYQJSUlLQvn17hISEIDExUb3HaDQiKSkJvXv3BgBERETAw8PDpk1GRgZOnTqltrFHp9PB39/f5kVERFTvMOiy6/jx42rtrW3btqlpSB9//LHNYdqVCQgIUKsktGrVCqdOnQJgDeQKCgocGle9rlzv5+eH8PBwm2u+vr4IDAxUr8+ePRtLly5Fhw4d1NpiPj4+GD9+PADrEwlTpkzBvHnzEBgYiICAALz88svo0qULBg0a5PI5kZtTBIQMa92te+R5lSid7yXMZqCkNpdWC0mWIRQFUBTIufnW3C4AotjotHwopbAIPqeuQ0ih8LmSA0j+MPprYJEBCMA30wTJbP0s2aLAIssw+smQTQKSBRCSBNls/WepJAdMstb5KmqqgcZoPXhb0UpQ7v5G0RQDXreM0KZehKW4mLldRORyBQUFau55QkICRo8eDVmW0bNnTzUP/F769u2LxMREdOnSBWPGjMGsWbOwd+9eJCYmIjIy0qFx1evAqypeffVVFBYWYtq0acjOzkaPHj2QkJCgfrMB6/aoVqvFmDFjUFhYiMjISHz00Ud2HxElIiJyF0yur9gDDzyAzz//HM888wy+/fZb9YG/rKysKu9irV69GkVFRQCsKUgeHh7Yv38/Ro8ejb/85S8OjUsS9h6/onJycnKg1+sxAE9DK909n0mSIGkdO6uJ3Jgs2X+yEVBXvEor+yMmSRIkXx/bFS8/X0gmM0S+delaFBshiorL9eXoeDUtmiO/i3XFq6CddcWrZIvBK9tsu+LlIaMwyAOySUBbaH2qURICktn6lKOpiayueClaVLji5X+lCB4nLkDhihe5CWEy3rtRFZmFCd/jCxgMhlpJVSn5b1L480uh8axZ+o/FWIRT6/5ca2OtK9u2bcP48eNhsVgQGRmJhIQEANaH5/bt24f//Oc/dTIuhwqoEhEREdVnf/jDH3DlyhX8+OOP2LVrl3o9MjLynpXrS7tw4QJee+01jBs3DllZWQCAXbt2lTuesKoYeBEREbmpkq3Gmr4aqpCQEHTr1g1yqTN1H3/8cXTq1KlK9yclJaFLly44cuQItm/fjry8PADWQ7JdemQQUaNW+tDssjv1cvkfKXt15kRRMVBcbC2qajZDKjZBFBVDFBRC5OVbrztxvMrNW/BNvQ7czEaxXgPPXAskRcD7hgked4ohKQKaIusRGhqTAm2RgCRgPRxbsibYK56/bauafGQU6yWYfCUYm8gw+UowewMQgGeegP5CATzOXIVSWMRtRqLaxHIStWrBggV48803kZiYaHNE0MCBA3Ho0CGH+mTgRURERGRHamqq3Qr1LVq0wK1btxzqk4EXERGRm+JWY+1q2rQpMjIyyl0/ceIEWrVq5VCfDLyIiIjcFbcaa9X48eMxf/58ZGZmQpIkKIqCAwcO4OWXX8akSZMc6pOBF5GjFGHN87JTQqIsSZJsi6qazRDGu3ldRhNEQQFQWARhsdg9YLumhEWBcvMWYLFAWyzgedsIXbYZ2gITLD4ekMwKhIcMi04Dk4/2bikJ5W4RVQFJCOsh2E00KPaXoXgCFi8JQgNYvKAetB1wtgDNDlyFJvUiFB4sT1T76iDwio+Px2OPPQY/Pz8EBQVh1KhROHfunO2whEBcXBxCQ0Ph7e2NAQMGlHsKsLi4GDNmzEDz5s3h6+uLkSNH4urVqzZtsrOzER0dDb1eD71ej+joaNy5c6d6A66BJUuWoG3btmjVqhXy8vLw4IMPol+/fujduzdee+01h/pk4EVERERVlpSUhOnTp+Pw4cNITEyE2WxGVFQU8vPz1TbLli3DihUrsHr1ahw7dgwhISEYPHiwevwOYD15ZseOHdi6dSv279+PvLw8jBgxAhaLRW0zfvx4pKSkYNeuXdi1axdSUlIQHR3tknkKIXD9+nWsW7cO58+fx7///W9s2rQJP//8MzZu3OhwEXa3r1xPRETUWNVF5frSNbEAYP369QgKCkJycjL69esHIQRWrVqFRYsWYfTo0QCADRs2IDg4GFu2bMGLL74Ig8GADz74ABs3blSP79u0aRPatGmD3bt3Y8iQITh79ix27dqFw4cPo0ePHgCAdevWoVevXjh37hw6duxYs4nfgxACHTp0wOnTp9GhQwe0b9/eKf1yxYuIiMhdOXGrMScnx+ZVXFy10zMMBgMA64HSAJCWlobMzExERUWpbXQ6Hfr374+DBw8CAJKTk2EymWzahIaGIjw8XG1z6NAh6PV6NegCgJ49e0Kv16ttapMsy+jQoYPDTy9W2K9TeyNqbErX9Cohy3breQG2uV7CYrEemm2y5nopZX/JyZKdHmrOI88C7Y0ceF3PhaLTQDJbc9SEJMHsLUNoJAgZsHjKEFpA0UqweEjWvK8ixXqMkAYwewNmHwlmb+t7+jQztGcuwZJ1w1qnjPW7iNxKmzZt1FwqvV6P+Pj4e94jhMDcuXPRp08fhIeHAwAyMzMBAMHBwTZtg4OD1fcyMzPh6emJZs2aVdomKCio3GcGBQWpbWrbsmXL8Morr+DUqVNO65NbjURERG5KEncffqlhHwCQnp5uc1ajTqe7572xsbE4efIk9u/fX75fO8Wjy14rq2wbe+2r0o+zTJw4EQUFBXj44Yfh6ekJb29vm/dv375d7T4ZeBEREbkrZ5SDuHu/v79/tQ7JnjFjBnbu3Il9+/ahdevW6vWQkBAA1hWrli1bqtezsrLUVbCQkBAYjUZkZ2fbrHplZWWhd+/eaptff/213OfeuHGj3GpabVm1apXT+2TgRURERFUmhMCMGTOwY8cOfP/99wgLC7N5PywsDCEhIUhMTES3bt0AAEajEUlJSXj77bcBABEREfDw8EBiYiLGjBkDAMjIyMCpU6ewbNkyAECvXr1gMBhw9OhRPP744wCAI0eOwGAwqMFZbYuJianwvRs3bjjUJwMvIiIiN1UXTzVOnz4dW7ZswRdffAE/Pz8130qv18Pb2xuSJGH27NlYunQpOnTogA4dOmDp0qXw8fHB+PHj1bZTpkzBvHnzEBgYiICAALz88svo0qWL+pRj586dMXToUDz//PP4xz/+AQB44YUXMGLEiFp/orEiQgj85z//wT//+U98/fXXVX4AoTQGXkTOoAgIWKx5ByWJ9bJcpeKqQghIpZPzSytJsHdCorqwKJDMZmhzTUDWLQijER5ZvrA80Mp6kDYAzxyztVCqnxaAgJAlWHQShAQYm8jwKBQwe1nHZNEB2kKgyTULmlzMg3w1C0p+YY3HSUTV4MStxqpas2YNAGDAgAE219evX4/JkycDAF599VUUFhZi2rRpyM7ORo8ePZCQkAA/Pz+1/cqVK6HVajFmzBgUFhYiMjISH330kU19rM2bN2PmzJnq048jR47E6tWrqz/HGrp48SI+/PBDbNiwAXl5eRg+fDi2bt3qUF8MvIiIiKjKqnK6hiRJiIuLQ1xcXIVtvLy88N577+G9996rsE1AQAA2bdrkyDBrrKioCNu2bcM///lPHD58GIMHD0ZGRgZSUlLUJzgdwcCLiIjITdXFVmNjMG3aNGzduhUdO3bExIkT8dlnnyEwMBAeHh6QKygXVFUMvIiIiNxVHWw1NgZr167F/PnzsWDBApvtUWdgAVUiZ7lbTNUmr+sehVRLXvdcundSMVVhNMEj/SaU4mJrbplWCyFJEB6/5VRIFgFNoQWK1lpIFQAsOglGvQSjr/VgbKGV0DzVgpCDOdAfuATpXBoPxSaqAyUrXjV9ka2PP/4YR48eRcuWLTF27Fh89dVXMJvNTumbgRcRERFRKePHj0diYiJOnTqFTp06Yfr06WjZsiUURcGZM2dq1DcDLyIiInflxLMaqbz77rsPr7/+Oi5duoSNGzfif/7nfzBx4kS0bt0aM2fOdKhP5ngRERG5MW4V1j5JkjB06FAMHToUt2/fxscff4z169c71BdXvIiIiIiqKCAgALNnz8ZPP/3k0P1c8SJyMmFRgGoe4lrSttIk+8qKqcpSlYqsCosFys1b1rayBGi1EFoZcrEZ0MrWXQeNBIuXBopWgkeBYi2YKmBNtJcBKID3DQX+hy5BycmFxWJxSoFXInKAENZXTfugCl29ehU7d+7ElStXYDQa1euSJGH58uXV7o+BFxERkZtiHa/atWfPHowcORJhYWE4d+4cwsPDcenSJQgh8OijjzrUJ7caiYiIiOxYuHAh5s2bh1OnTsHLywufffYZ0tPT0b9/f/zxj390qE8GXkRERO6KTzXWqrNnzyImJgYAoNVqUVhYiCZNmuCNN97A22+/7VCfDLyIaoMiIIQon7N1j6MmqpQXJku/vUq+Ln39XuOylCrwarFALjZDaGQIWYKQJMgm6/uKFihqqoHiIUHxALQFAtoCAX2aEc2OZcKSfQfCZGZ+F1EdkhTnvMg+X19fFBcXAwBCQ0Nx4cIF9b2bN2861CdzvIiIiIjs6NmzJw4cOIAHH3wQw4cPx7x585Camort27ejZ8+eDvXJwIuIiMhd8azGWrVixQrk5eUBAOLi4pCXl4dPPvkEDzzwAFauXOlQnwy8iIiI3BSfaqxd7du3V//Zx8cH77//fo37ZOBFVFvu5j4JuVTuVskB2rJse5h2KVWq6VXCXk5XFWt6lXyOZFIgPDSweGmsNby8PVDUTANFC0Cy5n9ojECTq0Z4X7wFcTsbSlExc7uI6gPW8apVx44dg6Io6NGjh831I0eOQKPRoHv37tXuk8n1RERERHZMnz4d6enp5a5fu3YN06dPd6hPrngRERG5KW411q4zZ87YLZTarVs3nDlzxqE+ueJFRETkrljHq1bpdDr8+uuv5a5nZGRAq3Vs7YqBFxEREZEdgwcPxsKFC2EwGNRrd+7cwZ///GcMHjzYoT651UhU2xRhPWAaZZLsS4qpOiPJvqzKDtRW28iAVgvIgOIhQ/GUYfGSISkCigcgJOsWhGwS8LlhhlfyRSiFhdbxMLGeqF7gVmPtWr58Ofr164d27dqhW7duAICUlBQEBwdj48aNDvXJwIuIiMhd8anGWtWqVSucPHkSmzdvxk8//QRvb2/86U9/wrhx4+Dh4eFQnwy8iIiIiCrg6+uLF154wWn9MfAiIiJyU9xqrH0XLlzAqlWrcPbsWUiShM6dO2PWrFm4//77HeqPgReRK1RWTLUSVc7vUoRjxVRlCZBlyEYLJC8NAMDsJaPJdTM8ck2Qi82Q7+QDt+5AKShgbhdRfcMjg2rVt99+i5EjR+KRRx7BE088ASEEDh48iIceeghffvmlQwn2DLyIiIiI7FiwYAHmzJmDt956q9z1+fPnOxR4sZwEERGRmyrZaqzpi+w7e/YspkyZUu76c889xwKqREREjY4inPMiu1q0aIGUlJRy11NSUhAUFORQn9xqJHKluzW91Dyve5AkSc3zKn1Pudwve/ldVXlflq2PkksSLF4ShAwoWsDnbCZEfgFEYRGExcLaXUT1FXO8atXzzz+PF154ARcvXkTv3r0hSRL279+Pt99+G/PmzXOoTwZeRERERHb85S9/gZ+fH5YvX46FCxcCAEJDQxEXF4eZM2c61CcDLyIiIjclwQnlJJwykobHbDZj8+bNGDduHObMmYPc3FwAgJ+fX436ZY4XERGRuyqpXF/TF5Wj1Wrx0ksvobi4GIA14Kpp0AUw8CIiIiKyq0ePHjhx4oRT++RWI5GrlTo0u0Rlyfb23qvWAdoVJdYrClBUDMnoDaWJJxSNBF22GX6/5kO5cQtQlN/6Z2I9Ub3EyvW1a9q0aZg3bx6uXr2KiIgI+Pr62rzftWvXavfJwIuIiMhd8anGWjV27FgAsJtIL0kSLBZLtftk4EVERERkR1pamtP7ZOBFRETkpiQhINUwOb6m9zdkTZo0QWBgIAAgPT0d69atQ2FhIUaOHIm+ffs61CcDL6K6UDpnSrYWSa1qUVWnkmXIeUXQ5RbC86oM5OZD5OVDlF4+Z34XUf2l3H3VtA+ykZqaiqeeegrp6eno0KEDtm7diqFDhyI/Px+yLGPlypXYtm0bRo0aVe2+6/VTjfHx8Xjsscfg5+eHoKAgjBo1CufOnbNpI4RAXFwcQkND4e3tjQEDBuD06dM2bYqLizFjxgw0b94cvr6+GDlyJK5everKqRAREZGbePXVV9GlSxckJSVhwIABGDFiBJ588kkYDAZkZ2fjxRdfLHdwdlXV68ArKSkJ06dPx+HDh5GYmAiz2YyoqCjk5+erbZYtW4YVK1Zg9erVOHbsGEJCQjB48GC10BkAzJ49Gzt27MDWrVuxf/9+5OXlYcSIEQ4lxREREdUXJVuNNX2RrWPHjmHJkiXo06cP3nnnHVy/fh3Tpk2DLMuQZRkzZszAzz//7FDf9XqrcdeuXTZfr1+/HkFBQUhOTka/fv0ghMCqVauwaNEijB49GgCwYcMGBAcHY8uWLXjxxRdhMBjwwQcfYOPGjRg0aBAAYNOmTWjTpg12796NIUOGuHxeRERETsGnGmvF7du3ERISAsCa5+Xr64uAgAD1/WbNmtks8FRHvV7xKstgMACAOvm0tDRkZmYiKipKbaPT6dC/f38cPHgQAJCcnAyTyWTTJjQ0FOHh4Wobojp1N4dKCGHzqoqa5oWJoiKI29lQbt6GuP4rlDsGCLP5t3Exv4uofmPl+lpT9vers/Jw6/WKV2lCCMydOxd9+vRBeHg4ACAzMxMAEBwcbNM2ODgYly9fVtt4enqiWbNm5dqU3G9PcXGxekwAAOTk5DhlHkRERFT/TZ48GTqdDgBQVFSEqVOnqgVUS8cH1eU2gVdsbCxOnjyJ/fv3l3uvbBRalSfE7tUmPj4er7/+umODJSIicgFWrq8dMTExNl9PnDixXJtJkyY51LdbBF4zZszAzp07sW/fPrRu3Vq9XrL/mpmZiZYtW6rXs7Ky1FWwkJAQGI1GZGdn26x6ZWVloXfv3hV+5sKFCzF37lz165ycHLRp08ZpcyIiIqoxZ2wVcquxnPXr19da3/U6x0sIgdjYWGzfvh179+5FWFiYzfthYWEICQlBYmKies1oNCIpKUkNqiIiIuDh4WHTJiMjA6dOnao08NLpdPD397d5EREREdVEvV7xmj59OrZs2YIvvvgCfn5+ak6WXq+Ht7c3JEnC7NmzsXTpUnTo0AEdOnTA0qVL4ePjg/Hjx6ttp0yZgnnz5iEwMBABAQF4+eWX0aVLF/UpR6I6V5LEXupA67IJ9s4usCqEAPIL7H4Wk+qJ3IOkWF817YNcp14HXmvWrAEADBgwwOb6+vXrMXnyZADWImeFhYWYNm0asrOz0aNHDyQkJMDPz09tv3LlSmi1WowZMwaFhYWIjIzERx99BI1G46qpEBEROR+3Gt1Ovd9qtPcqCboA6ypAXFwcMjIyUFRUhKSkJPWpxxJeXl547733cOvWLRQUFODLL79kvhYREZED9u3bh6eeegqhoaGQJAmff/65zfvOOlEmOzsb0dHR0Ov10Ov1iI6Oxp07d2p5drWvXgdeREREVAnhpFc15Ofn4+GHH8bq1avtvu+sE2XGjx+PlJQU7Nq1C7t27UJKSgqio6OrN9h6qF5vNRI1OmUOz65tdgu1Mr+LyG0448if6t4/bNgwDBs2zO57zjpR5uzZs9i1axcOHz6MHj16AADWrVuHXr164dy5c+jYsWMNZly3uOJFREREyMnJsXk5UiTUWSfKHDp0CHq9Xg26AKBnz57Q6/Vuf+oMAy8iIiJ35cQjg9q0aaPmU+n1esTHx1d7OJWdKFPyXlVOlMnMzERQUFC5/oOCgio9dcYdcKuRiIjIXQkANS0HcXenMT093aZmZclxOY5wxoky9tpXpZ/6jiteRPVVmVyrex2eLUlSzQ515aHYRG6nJMerpi8A5YqGOxJ4lT5RprSKTpSprM2vv/5arv8bN26UW01zNwy8iIiIyCmcdaJMr169YDAYcPToUbXNkSNHYDAYKj11xh1wq5GIiMhdCTihgGr1mufl5eGXX35Rv05LS0NKSgoCAgLQtm1bp5wo07lzZwwdOhTPP/88/vGPfwAAXnjhBYwYMcKtn2gEGHgRERG5rzqoXP/jjz9i4MCB6tdz584FAMTExOCjjz5y2okymzdvxsyZM9WnH0eOHFlh7TB3IonKkkZIlZOTA71ejwF4GlrJw3pRkiBpPep2YNSw2anlZS9ptfT10j/SkiRVmhdmg/ld1MgJk9FpfZmFCd/jCxgMBpuEdWcp+W/S7x+eD63G8SR4ADBbirH3p7drbaxkiyteRPVZFQ7Ptnfdoad+ZInBF5G7UQDU9CE/HpLtUgy8iIiI3FRdVK6nmuFTjUREREQuwhUvIiIid1UHyfVUMwy8iNyBIhw+NLtaCfYln8FcLyL3wMDL7XCrkYiIiMhFuOJFRETkrrji5XYYeBEREbkrlpNwOwy8iNyFnZpedq/ZYa+4aqWY60XkFlhOwv0wx4uIiIjIRbjiRURE5K6Y4+V2GHgRERG5K0UAUg0DJ6YUuBS3GomIiIhchCteRO7G3l+nZZLshRB2D8quVjHVUv3xL2KieopbjW6HgRcREZHbckLgBQZersStRiIiIiIX4YoXERGRu+JWo9th4EXUkJQ6TLuiPC8iakAUgRpvFTKH06W41UhERETkIlzxIiIicldCsb5q2ge5DAMvIiIid8UcL7fDwIuIiMhdMcfL7TDHi6ihKfVLVAihvoiIqO5xxYuIiMhdcavR7TDwIiIiclcCTgi8nDISqiJuNRIRERG5CFe8iBqiModmA6hZnpcsMQGXqD7iVqPbYeBFRETkrhQFQA3rcCms4+VK3GokIiIichGueBEREbkrbjW6HQZeRA1Z6bwsmQdmEzU4DLzcDrcaiYiIiFyEK15ERETuikcGuR0GXkRERG5KCAVC1OypxJreT9XDwIuIiMhdCVHzFSvmeLkUc7yIGgvFCb+giYioRrjiRURE5K6EE3K8uOLlUgy8iIiI3JWiAFINc7SY4+VS3GokIiIichGueBE1NiyqStRwcKvR7TDwIiIiclNCUSBquNXIchKuxa1GIiIiIhfhihcREZG74laj22HgRdSYVTXfi/W/iOonRQASAy93wq1GIiIiIhdpVIHX+++/j7CwMHh5eSEiIgI//PBDXQ+JiIjIcUJY63DV6MUVL1dqNIHXJ598gtmzZ2PRokU4ceIE+vbti2HDhuHKlSt1PTQiIiKHCEU45UWu02gCrxUrVmDKlCn4f//v/6Fz585YtWoV2rRpgzVr1tT10IiIiBxT49UuxaHK9dxBclyjCLyMRiOSk5MRFRVlcz0qKgoHDx6so1ER1TMlh2jzr18iqgR3kGqmUQReN2/ehMViQXBwsM314OBgZGZm2r2nuLgYOTk5Ni8iIqL6pC62GrmDVDONIvAqIUm2j8sLIcpdKxEfHw+9Xq++2rRp44ohEhERVZ2Ltxq5g1RzjaKOV/PmzaHRaMqtbmVlZZVbBSuxcOFCzJ07V/3aYDCgbdu2MMNUqladVOPyKUT1kijzBwmfeqJGQAiT0/oyw3S3z9r92bH9b1IN+gDK7ezodDrodDqba47sIJGtRhF4eXp6IiIiAomJiXjmmWfU64mJiXj66aft3lP2/3A3b94EAOzHN781EgCc93NKREQNTG5uLvR6vdP79fT0REhICPZnfnPvxlXQpEmTcjs7ixcvRlxcnN321dlBIluNIvACgLlz5yI6Ohrdu3dHr169sHbtWly5cgVTp06t0v0BAQEAgCtXrtTKD1F9lZOTgzZt2iA9PR3+/v51PRyX4bw578aA8669eQshkJubi9DQ0Frp38vLC2lpaTAajU7pz17gVHa1C3BsB4lsNZrAa+zYsbh16xbeeOMNZGRkIDw8HN988w3atWtXpftl2ZoOp9frG9UvqBL+/v6cdyPCeTcunHftqO0/0r28vODl5VWrn1GWIztIZKvRBF4AMG3aNEybNq2uh0FEROS2arqD1Ng1qsCLiIiIaqamO0iNHQOvKtLpdFi8eLHdPe+GjPPmvBsDzpvzpurhDpLjJFHbz7oSEREREYBGVkCViIiIqC4x8CIiIiJyEQZeRERERC7CwIuIiIjIRRh4VdH777+PsLAweHl5ISIiAj/88ENdD6lK4uPj8dhjj8HPzw9BQUEYNWoUzp07Z9NGCIG4uDiEhobC29sbAwYMwOnTp23aFBcXY8aMGWjevDl8fX0xcuRIXL161aZNdnY2oqOj1YPFo6OjcefOndqeYpXEx8dDkiTMnj1bvdZQ533t2jVMnDgRgYGB8PHxwSOPPILk5GT1/YY4b7PZjNdeew1hYWHw9vZG+/bt8cYbb0BRfjv8tyHMe9++fXjqqacQGhoKSZLw+eef27zvyjleuXIFTz31FHx9fdG8eXPMnDnTaVXUy6ps3iaTCfPnz0eXLl3g6+uL0NBQTJo0CdevX3f7eVMDJeietm7dKjw8PMS6devEmTNnxKxZs4Svr6+4fPlyXQ/tnoYMGSLWr18vTp06JVJSUsTw4cNF27ZtRV5entrmrbfeEn5+fuKzzz4TqampYuzYsaJly5YiJydHbTN16lTRqlUrkZiYKI4fPy4GDhwoHn74YWE2m9U2Q4cOFeHh4eLgwYPi4MGDIjw8XIwYMcKl87Xn6NGj4r777hNdu3YVs2bNUq83xHnfvn1btGvXTkyePFkcOXJEpKWlid27d4tffvlFbdMQ5/3mm2+KwMBA8dVXX4m0tDTx6aefiiZNmohVq1apbRrCvL/55huxaNEi8dlnnwkAYseOHTbvu2qOZrNZhIeHi4EDB4rjx4+LxMREERoaKmJjY10+7zt37ohBgwaJTz75RPz888/i0KFDokePHiIiIsKmD3ecNzVMDLyq4PHHHxdTp061udapUyexYMGCOhqR47KysgQAkZSUJIQQQlEUERISIt566y21TVFRkdDr9eL//u//hBDWX2weHh5i69ataptr164JWZbFrl27hBBCnDlzRgAQhw8fVtscOnRIABA///yzK6ZmV25urujQoYNITEwU/fv3VwOvhjrv+fPniz59+lT4fkOd9/Dhw8Vzzz1nc2306NFi4sSJQoiGOe+yAYgr5/jNN98IWZbFtWvX1Db/+te/hE6nEwaDoVbmW8JewFnW0aNHBQD1j+OGMG9qOLjVeA9GoxHJycmIioqyuR4VFYWDBw/W0agcZzAYAPx26HdaWhoyMzNt5qfT6dC/f391fsnJyTCZTDZtQkNDER4errY5dOgQ9Ho9evToobbp2bMn9Hp9nX6fpk+fjuHDh2PQoEE21xvqvHfu3Inu3bvjj3/8I4KCgtCtWzesW7dOfb+hzrtPnz7Ys2cP/vvf/wIAfvrpJ+zfvx9PPvkkgIY779JcOcdDhw4hPDzc5gDoIUOGoLi42GZbu64YDAZIkoSmTZsCaDzzJvfAyvX3cPPmTVgslnKnrgcHB5c7nb2+E0Jg7ty56NOnD8LDwwFAnYO9+V2+fFlt4+npiWbNmpVrU3J/ZmYmgoKCyn1mUFBQnX2ftm7diuPHj+PYsWPl3muo87548SLWrFmDuXPn4s9//jOOHj2KmTNnQqfTYdKkSQ123vPnz4fBYECnTp2g0WhgsViwZMkSjBs3DkDD/fddmivnmJmZWe5zmjVrBk9Pzzr/PhQVFWHBggUYP368egB2Y5g3uQ8GXlUkSZLN10KIctfqu9jYWJw8eRL79+8v954j8yvbxl77uvo+paenY9asWUhISICXl1eF7RravBVFQffu3bF06VIAQLdu3XD69GmsWbMGkyZNUts1tHl/8skn2LRpE7Zs2YKHHnoIKSkpmD17NkJDQxETE6O2a2jztsdVc6yP3weTyYRnn30WiqLg/fffv2f7hjJvci/caryH5s2bQ6PRlPtrJisrq9xfPvXZjBkzsHPnTnz33Xdo3bq1ej0kJAQAKp1fSEgIjEYjsrOzK23z66+/lvvcGzdu1Mn3KTk5GVlZWYiIiIBWq4VWq0VSUhLeffddaLVadUwNbd4tW7bEgw8+aHOtc+fOuHLlCoCG++/7lVdewYIFC/Dss8+iS5cuiI6Oxpw5cxAfHw+g4c67NFfOMSQkpNznZGdnw2Qy1dn3wWQyYcyYMUhLS0NiYqK62gU07HmT+2HgdQ+enp6IiIhAYmKizfXExET07t27jkZVdUIIxMbGYvv27di7dy/CwsJs3g8LC0NISIjN/IxGI5KSktT5RUREwMPDw6ZNRkYGTp06pbbp1asXDAYDjh49qrY5cuQIDAZDnXyfIiMjkZqaipSUFPXVvXt3TJgwASkpKWjfvn2DnPcTTzxRrlzIf//7X7Rr1w5Aw/33XVBQAFm2/XWm0WjUchINdd6luXKOvXr1wqlTp5CRkaG2SUhIgE6nQ0RERK3O056SoOv8+fPYvXs3AgMDbd5vqPMmN+XKTH53VVJO4oMPPhBnzpwRs2fPFr6+vuLSpUt1PbR7eumll4Rerxfff/+9yMjIUF8FBQVqm7feekvo9Xqxfft2kZqaKsaNG2f3EfTWrVuL3bt3i+PHj4vf//73dh/F7tq1qzh06JA4dOiQ6NKlS70oJ1Gi9FONQjTMeR89elRotVqxZMkScf78ebF582bh4+MjNm3apLZpiPOOiYkRrVq1UstJbN++XTRv3ly8+uqrapuGMO/c3Fxx4sQJceLECQFArFixQpw4cUJ9es9VcywpqxAZGSmOHz8udu/eLVq3bl1rZRUqm7fJZBIjR44UrVu3FikpKTa/54qLi9163tQwMfCqor///e+iXbt2wtPTUzz66KNqOYb6DoDd1/r169U2iqKIxYsXi5CQEKHT6US/fv1EamqqTT+FhYUiNjZWBAQECG9vbzFixAhx5coVmza3bt0SEyZMEH5+fsLPz09MmDBBZGdnu2CWVVM28Gqo8/7yyy9FeHi40Ol0olOnTmLt2rU27zfEeefk5IhZs2aJtm3bCi8vL9G+fXuxaNEim//wNoR5f/fdd3Z/nmNiYlw+x8uXL4vhw4cLb29vERAQIGJjY0VRUZHL552Wllbh77nvvvvOredNDZMkhBCuW18jIiIiaryY40VERETkIgy8iIiIiFyEgRcRERGRizDwIiIiInIRBl5ERERELsLAi4iIiMhFGHgRERERuQgDLyI3cOnSJUiSBEmS8Mgjjzilr5SUFKeMzd0NGDBA/d7ye0JEtY2BF5Eb2b17N/bs2VOjPtq0aYOMjAyEh4c7aVSuNXnyZIwaNcpp/W3fvt3mfD4iotrEwIvIjQQGBpY7ALi6NBoNQkJCoNVqHbrfaDTW6PPri5J5BAQEoEWLFnU8GiJqLBh4EbnYjRs3EBISgqVLl6rXjhw5Ak9PTyQkJFSrr5LVn6VLlyI4OBhNmzbF66+/DrPZjFdeeQUBAQFo3bo1PvzwQ/Uee1uNp0+fxvDhw+Hv7w8/Pz/07dsXFy5csPmM+Ph4hIaG4ne/+x0AIDU1Fb///e/h7e2NwMBAvPDCC8jLy6vR2ADg2rVrGDt2LJo1a4bAwEA8/fTTuHTpEgAgLi4OGzZswBdffKFuD37//ff3vK+yeRARuRIDLyIXa9GiBT788EPExcXhxx9/RF5eHiZOnIhp06YhKiqq2v3t3bsX169fx759+7BixQrExcVhxIgRaNasGY4cOYKpU6di6tSpSE9Pt3v/tWvX0K9fP3h5eWHv3r1ITk7Gc889B7PZrLbZs2cPzp49i8TERHz11VcoKCjA0KFD0axZMxw7dgyffvopdu/ejdjY2BqNraCgAAMHDkSTJk2wb98+7N+/H02aNMHQoUNhNBrx8ssvY8yYMRg6dCgyMjKQkZGB3r173/O+iuZBRORydX1KN1FjNW3aNPG73/1OTJgwQYSHh4vCwsIK26alpQkA4sSJEzbXY2JiRLt27YTFYlGvdezYUfTt21f92mw2C19fX/Gvf/3Lbl8LFy4UYWFhwmg02v3smJgYERwcLIqLi9Vra9euFc2aNRN5eXnqta+//lrIsiwyMzMdHtsHH3wgOnbsKBRFUdsUFxcLb29v8e2336r9Pv300zZjrOp9ZedRoqLvLxGRszmW5EFENfbOO+8gPDwc//73v/Hjjz/Cy8vLoX4eeughyPJvi9fBwcE2ifMajQaBgYHIysqye39KSgr69u0LDw+PCj+jS5cu8PT0VL8+e/YsHn74Yfj6+qrXnnjiCSiKgnPnziE4ONihsSUnJ+OXX36Bn5+fzecXFRWpW5/2VPW+svMgInI1Bl5EdeTixYu4fv06FEXB5cuX0bVrV4f6KRswSZJk95qiKHbv9/b2vudnlA6wAEAIAUmS7LYtfb26Y1MUBREREdi8eXO5fitLgK/qfWXnQUTkagy8iOqA0WjEhAkTMHbsWHTq1AlTpkxBamqqulLkSl27dsWGDRtgMpkqXfUq7cEHH8SGDRuQn5+vBjMHDhyALMs1Slp/9NFH8cknnyAoKAj+/v5223h6esJisVT7PiKi+oDJ9UR1YNGiRTAYDHj33Xfx6quvonPnzpgyZUqdjCU2NhY5OTl49tln8eOPP+L8+fPYuHEjzp07V+E9EyZMgJeXF2JiYnDq1Cl89913mDFjBqKjo2sUPE6YMAHNmzfH008/jR9++AFpaWlISkrCrFmzcPXqVQDAfffdh5MnT+LcuXO4efMmTCZTle4jIqoPGHgRudj333+PVatWYePGjfD394csy9i4cSP279+PNWvWuHw8gYGB2Lt3L/Ly8tC/f39ERERg3bp1la5++fj44Ntvv8Xt27fx2GOP4Q9/+AMiIyOxevXqGo3Fx8cH+/btQ9u2bTF69Gh07twZzz33HAoLC9WVrOeffx4dO3ZE9+7d0aJFCxw4cKBK9xER1QeSEELU9SCIqHKXLl1CWFgYTpw4UeMjg6g8fn+JyFW44kXkRnr37o3evXvX9TAalGHDhuGhhx6q62EQUSPBFS8iN2A2m9Uq7DqdDm3atKnbATUg165dQ2FhIQCgbdu2LDdBRLWKgRcRERGRi3CrkYiIiMhFGHgRERERuQgDLyIiIiIXYeBFRERE5CIMvIiIiIhchIEXERERkYsw8CIiIiJyEQZeRERERC7CwIuIiIjIRf4/1qp30JUyuSQAAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -1227,7 +1326,7 @@ } ], "source": [ - "multiscale['scale2'].ds[name].isel(z=100).plot.imshow()" + "multiscale['scale3'].ds[name].isel(z=50).plot.imshow()" ] }, { @@ -1244,8 +1343,8 @@ }, { "cell_type": "code", - "execution_count": 20, - "id": "554a5c53", + "execution_count": null, + "id": "802f973a", "metadata": {}, "outputs": [], "source": [ @@ -1272,7 +1371,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "1ac7998c", "metadata": {}, "outputs": [ @@ -1298,19 +1397,24 @@ } ], "source": [ - "store = zarr.storage.DirectoryStore(f'{image_name}.zarr/0', dimension_separator='/')\n", + "# Handle both Zarr v2 and v3 storage APIs for deserialization\n", + "try:\n", + " # Zarr v2\n", + " from zarr.storage import DirectoryStore\n", + " store = DirectoryStore(f'{image_name}.zarr/0', dimension_separator='/')\n", + "except ImportError:\n", + " # Zarr v3\n", + " from zarr.storage import LocalStore\n", + " store = LocalStore(f'{image_name}.zarr/0')\n", "\n", "new_multiscale = open_datatree(store, engine='zarr')\n", - "new_multiscale['scale2'].ds[name].isel(x=250).plot.imshow()" + "new_multiscale['scale3'].ds[name].isel(x=250).plot.imshow()" ] } ], "metadata": { - "interpreter": { - "hash": "5108159e926a957efbf78924adfcf51570e7c16c3091fc603e070659d85c3c31" - }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "napari-omero", "language": "python", "name": "python3" }, @@ -1324,7 +1428,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.11" + "version": "3.12.11" } }, "nbformat": 4, diff --git a/multiscale_spatial_image/to_multiscale/to_multiscale.py b/multiscale_spatial_image/to_multiscale/to_multiscale.py index bd83088..475f5e8 100644 --- a/multiscale_spatial_image/to_multiscale/to_multiscale.py +++ b/multiscale_spatial_image/to_multiscale/to_multiscale.py @@ -1,20 +1,13 @@ from typing import Union, Sequence, Optional, Dict, Mapping, Any, Tuple from enum import Enum +import warnings -from spatial_image import SpatialImage # type: ignore - - +from spatial_image import SpatialImage, to_spatial_image # type: ignore +import ngff_zarr as nz from xarray import DataTree - -from ._xarray import _downsample_xarray_coarsen -from ._itk import ( - _downsample_itk_bin_shrink, - _downsample_itk_gaussian, - _downsample_itk_label, -) -from ._dask_image import _downsample_dask_image from .._docs import inject_docs +from ngff_zarr import Methods as NZMethods class Methods(Enum): XARRAY_COARSEN = "xarray_coarsen" @@ -25,12 +18,21 @@ class Methods(Enum): DASK_IMAGE_MODE = "dask_image_mode" DASK_IMAGE_NEAREST = "dask_image_nearest" - -@inject_docs(m=Methods) +MSI_METHOD_MAPPING = { + 'xarray_coarsen': NZMethods.ITK_BIN_SHRINK, + 'itk_bin_shrink': NZMethods.ITK_BIN_SHRINK, + 'itk_gaussian': NZMethods.ITK_GAUSSIAN, + 'itk_label_gaussian': NZMethods.ITKWASM_LABEL_IMAGE, + 'dask_image_gaussian': NZMethods.DASK_IMAGE_GAUSSIAN, + 'dask_image_mode': NZMethods.DASK_IMAGE_MODE, + 'dask_image_nearest': NZMethods.DASK_IMAGE_NEAREST, +} + +@inject_docs(m=NZMethods) def to_multiscale( image: SpatialImage, scale_factors: Sequence[Union[Dict[str, int], int]], - method: Optional[Methods] = None, + method: Optional[NZMethods] = None, chunks: Optional[ Union[ int, @@ -51,16 +53,19 @@ def to_multiscale( scale_factors : int per scale or dict of spatial dimension int's per scale Integer scale factors to apply uniformly across all spatial dimension or - along individual spatial dimensions. - Examples: [2, 2] or [{{'x': 2, 'y': 4 }}, {{'x': 5, 'y': 10}}] + along individual spatial dimensions. The scale factors need to be passed + in **ascending order**. + This will work: [2, 4] or [{{'x': 2, 'y': 4}}, {{'x': 5, 'y': 10}}]. + This will not work: [4, 2] or [{{'x': 5, 'y': 10}}, {{'x': 2, 'y': 4}}]. method : multiscale_spatial_image.Methods, optional Method to reduce the input image. Available methods are the following: - - `{m.XARRAY_COARSEN.value!r}` - Use xarray coarsen to downsample the image. - - `{m.ITK_BIN_SHRINK.value!r}` - Use ITK BinShrinkImageFilter to downsample the image. + - `{m.ITK_BIN_SHRINK.value!r}` - Use ITK ShrinkImageFilter to downsample the image (DEFAULT). + - `{m.ITKWASM_BIN_SHRINK.value!r}` - Use ITKWASM BinShrinkImageFilter to downsample the image. - `{m.ITK_GAUSSIAN.value!r}` - Use ITK GaussianImageFilter to downsample the image. - - `{m.ITK_LABEL_GAUSSIAN.value!r}` - Use ITK LabelGaussianImageFilter to downsample the image. + - `{m.ITKWASM_GAUSSIAN.value!r}` - Use ITK ShrinkImageFilter to downsample the image. + - `{m.ITKWASM_LABEL_IMAGE.value!r}` - Use ITK LabelGaussianImageFilter to downsample the image. - `{m.DASK_IMAGE_GAUSSIAN.value!r}` - Use dask-image gaussian_filter to downsample the image. - `{m.DASK_IMAGE_MODE.value!r}` - Use dask-image mode_filter to downsample the image. - `{m.DASK_IMAGE_NEAREST.value!r}` - Use dask-image zoom to downsample the image. @@ -84,6 +89,8 @@ def to_multiscale( default_chunks = {d: default_chunks for d in image.dims} if "t" in image.dims: default_chunks["t"] = 1 + if "c" in image.dims: + default_chunks["c"] = 1 out_chunks = chunks if out_chunks is None: out_chunks = default_chunks @@ -110,79 +117,58 @@ def to_multiscale( # https://github.com/pydata/xarray/issues/5219 if "chunks" in current_input.encoding: del current_input.encoding["chunks"] - data_objects = { - "scale0": current_input.to_dataset(name=image.name, promote_attrs=True) + + # get metadata from the image + axes_names = {d: image[d].attrs.get('long_name', None) for d in image.dims} + axes_names = None if all(v is None for v in axes_names.values()) else axes_names + + axes_units = {d: image[d].attrs.get('units', None) for d in image.dims} + axes_units = None if all(v == '' or v is None for v in axes_units.values()) else axes_units + + spatial_dims = [d for d in image.dims if d in {"z", "y", "x"}] + scale = { + d: float(image[d][1] - image[d][0]) if len(image[d]) > 1 else 1.0 for d in spatial_dims + } + translation = { + d: float(image[d][0]) if len(image[d]) > 0 else 0.0 for d in spatial_dims } + ngff_image = nz.to_ngff_image( + current_input, + dims=image.dims, + name=image.name, + scale=scale, + translation=translation, + ) + if method is None: - method = Methods.XARRAY_COARSEN - - if method is Methods.XARRAY_COARSEN: - data_objects = _downsample_xarray_coarsen( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image.name, - ) - elif method is Methods.ITK_BIN_SHRINK: - data_objects = _downsample_itk_bin_shrink( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - ) - elif method is Methods.ITK_GAUSSIAN: - data_objects = _downsample_itk_gaussian( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - ) - elif method is Methods.ITK_LABEL_GAUSSIAN: - data_objects = _downsample_itk_label( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - ) - elif method is Methods.DASK_IMAGE_GAUSSIAN: - data_objects = _downsample_dask_image( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - label=False, - ) - elif method is Methods.DASK_IMAGE_NEAREST: - data_objects = _downsample_dask_image( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - label="nearest", - ) - elif method is Methods.DASK_IMAGE_MODE: - data_objects = _downsample_dask_image( - current_input, - default_chunks, - out_chunks, - scale_factors, - data_objects, - image, - label="mode", - ) + method = nz.Methods.ITK_BIN_SHRINK + else: + if isinstance(method, Enum) and method.value in MSI_METHOD_MAPPING: + warnings.warn( + f"Method {method.name} is deprecated, use {MSI_METHOD_MAPPING[method.value]} instead.", + DeprecationWarning, + ) + method = MSI_METHOD_MAPPING[method.value] + + multiscales = nz.to_multiscales( + ngff_image, + scale_factors=scale_factors, + method=method, + chunks=out_chunks, + ) + + data_objects = {} + for factor, img in enumerate(multiscales.images): + si = to_spatial_image( + img.data, + dims=img.dims, + scale=img.scale, + axis_names=axes_names, + axis_units=axes_units, + translation=img.translation, + ) + data_objects[f"scale{factor}"] = si.to_dataset(name=image.name, promote_attrs=True) multiscale = DataTree.from_dict(data_objects) diff --git a/pixi.lock b/pixi.lock index fc8b702..01f6e3c 100644 --- a/pixi.lock +++ b/pixi.lock @@ -7,11 +7,11 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hf71b8c6_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.2.0-py311h7c6b74e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-2.0.0-py311h03d9500_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda @@ -20,72 +20,73 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha75aee5_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.25.0-py311haee01d2_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda osx-64: - - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py310h6954a95_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.2.0-py311h55b82c4_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.17.1-py310hfce808e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-2.0.0-py311h26bcf6e_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-20.1.8-h3d58e20_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.23.0-py310hbb8c376_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.25.0-py311h62e9434_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py310h853098b_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.2.0-py311h69b7e7c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py310h497396d_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-2.0.0-py311hd10dc20_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda @@ -94,49 +95,50 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-20.1.8-hf598326_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py310h078409c_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.25.0-py311h5bb9006_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda win-64: - - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py310h9e98ed7_3.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.2.0-py311h69b5583_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-h4c7d964_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-2.0.0-py311h3485c13_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh09c184e_7.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda @@ -146,7 +148,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_31.conda - conda: https://conda.anaconda.org/conda-forge/win-64/vcomp14-14.44.35208-h818238b_31.conda - conda: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyh7428d3b_8.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py310ha8f682b_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.25.0-py311hf893f09_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda default: channels: - url: https://conda.anaconda.org/conda-forge/ @@ -162,26 +165,29 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.1.3-py311haee01d2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310h89163eb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.3-py311h3778330_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda @@ -189,42 +195,54 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ca/29/63972fc1452778e2092ae998c50cbfc2fc93e3fa9798a0278650cd6169c5/crc32c-2.8-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/16/e4/b9ec2f4dfc34ecf724bc1beb96a9f6fa9b91801645688ffadacd485089da/numcodecs-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/2c/95/79ab37aa4c25d1e7df953dde407bb9c3e4ae47d154bc0dd1692f3a6dcf8c/pandas-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b6/0f/49d1f74a216149240c4b9403218111f11670bd11af0919fda357bb056bf2/numcodecs-0.16.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/07/5f/63760ff107bcf5146eee41b38b3985f9055e710a72fdd637b791dea3495c/pandas-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/de/7b8898c9e7f73a2f4c20b621279143cfc27836dba0db676e9a923cd0a461/wasmtime-38.0.0-py3-none-manylinux1_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-64: - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.1.3-py311h62e9434_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py310h8e2f543_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.3-py311he13f9b5_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda @@ -232,23 +250,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h4132b18_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6b/38/2fe0051ffe8c6a650c8b1ac0da31b8802d1dbe5fa40a84e4b6b6f5583db5/crc32c-2.8-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/14/c0/6d72cde772bcec196b7188731d41282993b2958440f77fdf0db216f722da/numcodecs-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/c4/ca/aa97b47287221fa37a49634532e520300088e290b20d690b21ce3e448143/pandas-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/cc/917a85972537498f2bbd7914047efc98babc8667587ceb9dcb228378978a/numcodecs-0.16.3-cp311-cp311-macosx_10_13_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/76/1c/ccf70029e927e473a4476c00e0d5b32e623bff27f0402d0a92b7fc29bb9f/pandas-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/be/c470e5be91cccf7fbc4db4ce42eafb8f0f34b45aeb92c5bfbf963d100e0b/wasmtime-38.0.0-py3-none-macosx_10_13_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-arm64: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda @@ -256,18 +284,21 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py311h5bb9006_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py310hc74094e_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.3-py311ha9b3269_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda @@ -275,23 +306,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3e/30/5837a71c014be83aba1469c58820d287fc836512a0cad6b8fdd43868accd/crc32c-2.8-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/94/1d/f81fc1fa9210bbea97258242393a1f9feab4f6d8fb201f81f76003005e4b/numcodecs-0.13.1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/80/bf/7938dddc5f01e18e573dcfb0f1b8c9357d9b5fa6ffdee6e605b92efbdff2/pandas-2.3.1-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/6a/64c25a089e8537441fe67c09ecb7f3f7fb5d98cd04faf01f605d43aca41c/numcodecs-0.16.3-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/ec/d3/3c37cb724d76a841f14b8f5fe57e5e3645207cc67370e4f84717e8bb7657/pandas-2.3.1-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/83/83d598af08eb297f1a644e678ce2d6c335f015c9f3c8c2532e289801293b/wasmtime-38.0.0-py3-none-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ win-64: - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda @@ -299,17 +340,20 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.1.3-py311hf893f09_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py310h38315fa_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.3-py311h3f79411_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda @@ -320,23 +364,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/vcomp14-14.44.35208-h818238b_31.conda - conda: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h6a83c73_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d6/e8/94e839c9f7e767bf8479046a207afd440a08f5c59b52586e1af5e64fa4a0/crc32c-2.8-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/fe/90/299952e1477954ec4f92813fa03e743945e3ff711bb4f6c9aace431cb3da/numcodecs-0.13.1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/3f/d6/d7f5777162aa9b48ec3910bca5a58c9b5927cfd9cfde3aa64322f5ba4b9f/pandas-2.3.1-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/aa/51/03aece765108fe247717105b5131856546e5428f22a56a14ffdebd017424/numcodecs-0.16.3-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/c8/7b/bdcb1ed8fccb63d04bdb7635161d0ec26596d92c9d7a6cce964e7876b6c1/pandas-2.3.1-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/66/99/6da689c6534b16b2e6959321533f0000228854e5f4211eb00bfa7b6bcebc/wasmtime-38.0.0-py3-none-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ lint: channels: @@ -347,7 +401,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-2.0.0-py311h03d9500_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/distlib-0.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda @@ -355,69 +409,68 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/identify-2.6.12-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.2.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.4.0-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310h89163eb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.3-py311h3778330_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py310h3788b33_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311hdf67eae_6.conda - conda: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.32.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda osx-64: - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.17.1-py310hfce808e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-2.0.0-py311h26bcf6e_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/distlib-0.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/identify-2.6.12-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-20.1.8-h3d58e20_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.2.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.4.0-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py310h8e2f543_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.3-py311he13f9b5_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/ukkonen-1.0.1-py310hfa8da69_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/ukkonen-1.0.1-py311hd4d69bb_6.conda - conda: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.32.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h4132b18_3.conda osx-arm64: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py310h497396d_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-2.0.0-py311hd10dc20_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/distlib-0.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda @@ -425,52 +478,52 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/identify-2.6.12-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-20.1.8-hf598326_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.2.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.4.0-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py310hc74094e_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.3-py311ha9b3269_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ukkonen-1.0.1-py310h7306fd8_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ukkonen-1.0.1-py311h57a9ea7_6.conda - conda: https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.32.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda win-64: - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-h4c7d964_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-2.0.0-py311h3485c13_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/distlib-0.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/identify-2.6.12-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.2.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.4.0-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py310h38315fa_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.3-py311h3f79411_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/ukkonen-1.0.1-py310hc19bc0b_5.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/ukkonen-1.0.1-py311h3fd045d_6.conda - conda: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h41ae7f8_31.conda - conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_31.conda - conda: https://conda.anaconda.org/conda-forge/win-64/vcomp14-14.44.35208-h818238b_31.conda @@ -485,9 +538,10 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.14-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.9.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-25.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py310ha75aee5_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-25.1.0-py311h49ec1c0_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.5-pyh29332c3_0.conda @@ -496,24 +550,36 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyh29332c3_4.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hf71b8c6_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.2.0-py311h7c6b74e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.4-h3394656_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-2.0.0-py311h03d9500_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.15-py310h25320af_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.17-py311hc665b79_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-hc364b38_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.14.1-ha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.14-hecca717_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.16.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-12.1.0-h15599e2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.9-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda @@ -521,14 +587,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh82676e8_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyha191276_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/jpype1-1.4.1-py310hbf28c38_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/jpype1-1.6.0-py311hdf67eae_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py310hff52083_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py311h38be061_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2025.4.1-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.25.0-he01879c_0.conda @@ -538,31 +604,44 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.2.7-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.10-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/lark-1.2.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.17-h717163a_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h0aef613_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-hb8b1518_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.25-h17f619e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfreetype-2.14.1-ha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfreetype6-2.14.1-h73754d4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.86.1-h32235b2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.1.2-hb03c661_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.50-h421ea60_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.1-h9d88235_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.6.0-hd42ef1d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py310h89163eb_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.3-py311h3778330_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/maven-3.9.10-ha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/maven-3.9.11-ha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.6-pyh29332c3_0.conda @@ -570,39 +649,42 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openjdk-8.0.412-h2b85faf_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openjdk-25.0.1-h5755bd7_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.46-h1321c63_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.46.4-h54a6638_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.22.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.0.0-py310ha75aee5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.1.3-py311haee01d2_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310h89163eb_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.0.0-py310h71f11fc_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.3-py311h3778330_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.1.0-py311h2315fbb_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3987-syntax-1.1.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.26.0-py310hbcd0ec0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.28.0-py311h902ca64_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda @@ -613,7 +695,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.1-py310ha75aee5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.2-py311h49ec1c0_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20250708-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.14.1-h4440ef1_0.conda @@ -626,74 +708,97 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.6-he73a12e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.12-h4f16b4b_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb03c661_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb03c661_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.2-hb03c661_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.1-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha75aee5_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.25.0-py311haee01d2_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda - pypi: https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/56/9d/d8090552e532684f3881e2843f9defb1c664ecd905034f1d0e15695fa052/cjdk-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/32/5c/1ee32d1c7956923202f00cf8d2a14a62ed7517bdc0ee1e55301227fc273c/contourpy-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/c2/f3/20c5d1ef4f4748e52d60771b8560cf00b69d5c6368b5c2e9311bcfa2a08b/contourpy-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ca/29/63972fc1452778e2092ae998c50cbfc2fc93e3fa9798a0278650cd6169c5/crc32c-2.8-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/05/57/767e31e48861045d89691128bd81fd4c62b62150f9a17a666f731ce4f197/fonttools-4.59.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/0c/707c5a19598eafcafd489b73c4cb1c142102d6197e872f531512d084aa76/fonttools-4.59.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/0c/61/d088cd14e5a56b3fe0be6390d9b06cfb5f5974cd504c5c81126df4853e0f/imglyb-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/9f/9b/a34151ac07ad36f0494084b65f7b4394746fe2ccf1a0dc9a9d414064faa1/itk_core-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9e/79/0c172339595838dbecb90d6b96b9063b7d2ce6c7657b36b7f3dba0bc4e1b/itk_filtering-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/c4/25/38e59be9d63aa67ddbe49c9a26924a1d15db2101daa2c24374217bd6ac7b/itk_numerics-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d9/1e/23647191e7532b7d5ec2475537f8e7ec9baee30477180b0f7805d0161d6c/itk_core-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f2/64/677f5be959b799e5c0927ae36780b82e9b81117e3dd508b4c01f33a7234f/itk_filtering-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/6c/6a/2868a0cd0ae08506fede1ae37a251da10fa25b9ab56c173e26370d3a0d13/itk_numerics-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/6c/0c/c29fcd6a59f50d953fd296d10fa5d455a239c84fa74ed8db4913f30d13cc/jgo-1.0.6-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/de/c6/7b9bb8044e150d4d1558423a1568e4f227193662a02231064e3824f37e0a/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3a/97/5edbed69a9d0caa2e4aa616ae7df8127e10f6586940aa683a496c2c280b9/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/26/bf/aec7359ac7f779425eba5fa1dd2c01a983c4f73023e9dfb08bf65b5ddb66/labeling-0.1.14-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/85/c7/1866e972fed6d71ef136efbc980d4d1854ab7ef1ea8152bbd995ca231c81/matplotlib-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/4f/19/dae6c55e87ee426fb76980f7e78484450cad1c01c55a1dc4e91c930bea01/mypy-1.17.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/10/b7/4aa196155b4d846bd749cf82aa5a4c300cf55a8b5e0dfa5b722a63c0f8a0/matplotlib-3.10.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/82/16/b775047054de4d8dbd668df9137707e54b07fe18c7923839cd1e524bf756/mypy-1.17.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/16/e4/b9ec2f4dfc34ecf724bc1beb96a9f6fa9b91801645688ffadacd485089da/numcodecs-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b6/0f/49d1f74a216149240c4b9403218111f11670bd11af0919fda357bb056bf2/numcodecs-0.16.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/0d/81/264aca3b548d77554039abd29ed75e4bc57c1d4e2f1ba6a76c1d547ff4d2/ome_types-0.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2c/95/79ab37aa4c25d1e7df953dde407bb9c3e4ae47d154bc0dd1692f3a6dcf8c/pandas-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/07/5f/63760ff107bcf5146eee41b38b3985f9055e710a72fdd637b791dea3495c/pandas-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/f0/16/1a6bf01fb622fb9cf5c91683823f073f053005c849b1f52ed613afcf8dae/pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f2/2f/d7675ecae6c43e9f12aa8d58b6012683b20b6edfbdac7abcb4e6af7a3784/pillow-11.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/44/28/b6672962639e85dc0ac36f71ab3a8f5f38e01b51343d7aa372a6b56fa3f3/pyarrow-21.0.0-cp310-cp310-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/74/dc/035d54638fc5d2971cbf1e987ccd45f1091c83bcf747281cf6cc25e72c88/pyarrow-21.0.0-cp311-cp311-manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7f/65/2edf586ff7b3dfc520977c6529c9b718c86ef8459ece088f1ef1f74bf1d4/pydantic_compat-0.1.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/31/0d/c8f7593e6bc7066289bbc366f2235701dcbebcd1ff0ef8e64f6f239fb47d/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/47/bc/cd720e078576bdb8255d5032c5d63ee5c0bf4b7173dd955185a1d658c456/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/a1/96/bcf9f2e90460ac1d4707279a700cdc634e90b2fc30878ce4705b7edffc53/pyimagej-1.7.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/8e/6d/41991e503e51fc1134502694c5fa7a1671501a17ffa12716a4a9151af3df/scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/bd/37/89f19c8c05505d0601ed5650156e50eb881ae3918786c8fd7262b4ee66d3/scipy-1.15.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/5a/fb/6473334c0e2ce1f95278845eba87daa2947ff9feb36e94c12511b5eefd47/scyjava-1.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/de/7b8898c9e7f73a2f4c20b621279143cfc27836dba0db676e9a923cd0a461/wasmtime-38.0.0-py3-none-manylinux1_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e9/ac/27a6fcf61c64549a17b9eaa087ae7876417b5ed9efb6efdec8b52289cae4/xsdata-24.3.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-64: - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.9.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-25.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-21.2.0-py310h837254d_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-25.1.0-py311hf197a57_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.5-pyh29332c3_0.conda @@ -702,16 +807,16 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyh29332c3_4.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py310h6954a95_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.2.0-py311h55b82c4_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.17.1-py310hfce808e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-2.0.0-py311h26bcf6e_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.15-py310h31e056b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.17-py311h1854d6b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda @@ -724,17 +829,16 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.9-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh92f572d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh5552912_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/jpype1-1.4.1-py310ha23aa8a_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/jpype1-1.6.0-py311hd4d69bb_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-3.0.0-py310h2ec42d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-3.0.0-py311h6eed73b_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2025.4.1-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.25.0-he01879c_0.conda @@ -744,7 +848,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.2.7-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.10-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/krb5-1.21.3-h37d8d59_0.conda @@ -752,14 +856,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-20.1.8-h3d58e20_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20250104-pl5321ha958ccf_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libsodium-1.0.20-hfdf4475_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-3.0.2-py310h8e2f543_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-3.0.3-py311he13f9b5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/maven-3.9.10-h694c41f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/maven-3.9.11-h694c41f_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.6-pyh29332c3_0.conda @@ -767,8 +871,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openjdk-8.0.412-h6e16a3a_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openjdk-25.0.1-h2014cc5_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 @@ -776,32 +880,32 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.22.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.0.0-py310hbb8c376_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.1.3-py311h62e9434_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-11.1-py310h89b807b_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-11.1-py310hae5a141_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-12.0-py311h0e44a47_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-12.0-py311hbebd54f_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py310h8e2f543_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.0.0-py310he599bfe_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.3-py311he13f9b5_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.1.0-py311h0ab6910_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3987-syntax-1.1.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.26.0-py310h4c9a074_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.28.0-py311hd2a4513_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda @@ -812,7 +916,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.1-py310hbb8c376_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.2-py311hf197a57_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20250708-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.14.1-h4440ef1_0.conda @@ -828,71 +932,82 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h4132b18_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/zeromq-4.3.5-h7130eaa_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.23.0-py310hbb8c376_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.25.0-py311h62e9434_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda - pypi: https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/56/9d/d8090552e532684f3881e2843f9defb1c664ecd905034f1d0e15695fa052/cjdk-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/12/a3/da4153ec8fe25d263aa48c1a4cbde7f49b59af86f0b6f7862788c60da737/contourpy-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/b9/ede788a0b56fc5b071639d06c33cb893f68b1178938f3425debebe2dab78/contourpy-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/6b/38/2fe0051ffe8c6a650c8b1ac0da31b8802d1dbe5fa40a84e4b6b6f5583db5/crc32c-2.8-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/eb/0e/ae3a1884fa1549acac1191cc9ec039142f6ac0e9cbc139c2e6a3dab967da/fonttools-4.59.0-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/87/6a/170fce30b9bce69077d8eec9bea2cfd9f7995e8911c71be905e2eba6368b/fonttools-4.59.0-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/0c/61/d088cd14e5a56b3fe0be6390d9b06cfb5f5974cd504c5c81126df4853e0f/imglyb-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/91/27/c2e68af2f29a7b47b10eafd1a762281c6c2c38856ccc851dcb5851d314de/itk_core-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/69/9a/f1bae269d683d24c09f6494b604d5a431827897d326955d396bd9755ef4d/itk_filtering-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9e/62/d58c1729d0a4472c0a05910c7efbe937b792744560505872ec493510558a/itk_numerics-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/75/53/b80d7065ec14737ed7a98a14ba5e7599420231718b584b775fd7f6102bad/itk_core-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a4/8c/d22d4920fa1c1f211c9d74f36dcf820a6d41e9c319c315eda938ad39597f/itk_filtering-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/fc/646eb6eb6656ed22b746d37b0e25a1bc7fa4f970ca647ceab8e7160ca99a/itk_numerics-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/6c/0c/c29fcd6a59f50d953fd296d10fa5d455a239c84fa74ed8db4913f30d13cc/jgo-1.0.6-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/1d/70/7f5af2a18a76fe92ea14675f8bd88ce53ee79e37900fa5f1a1d8e0b42998/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/4c/45/4a7f896f7467aaf5f56ef093d1f329346f3b594e77c6a3c327b2d415f521/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/26/bf/aec7359ac7f779425eba5fa1dd2c01a983c4f73023e9dfb08bf65b5ddb66/labeling-0.1.14-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/d0/ea/2bba25d289d389c7451f331ecd593944b3705f06ddf593fa7be75037d308/matplotlib-3.10.3-cp310-cp310-macosx_10_12_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/6a/31/e762baa3b73905c856d45ab77b4af850e8159dffffd86a52879539a08c6b/mypy-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fc/bc/0fb489005669127ec13f51be0c6adc074d7cf191075dab1da9fe3b7a3cfc/matplotlib-3.10.7-cp311-cp311-macosx_10_12_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/24/82efb502b0b0f661c49aa21cfe3e1999ddf64bf5500fc03b5a1536a39d39/mypy-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/14/c0/6d72cde772bcec196b7188731d41282993b2958440f77fdf0db216f722da/numcodecs-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/cc/917a85972537498f2bbd7914047efc98babc8667587ceb9dcb228378978a/numcodecs-0.16.3-cp311-cp311-macosx_10_13_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/0d/81/264aca3b548d77554039abd29ed75e4bc57c1d4e2f1ba6a76c1d547ff4d2/ome_types-0.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/c4/ca/aa97b47287221fa37a49634532e520300088e290b20d690b21ce3e448143/pandas-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/76/1c/ccf70029e927e473a4476c00e0d5b32e623bff27f0402d0a92b7fc29bb9f/pandas-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/4c/5d/45a3553a253ac8763f3561371432a90bdbe6000fbdcf1397ffe502aa206c/pillow-11.3.0-cp310-cp310-macosx_10_10_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/26/77f8ed17ca4ffd60e1dcd220a6ec6d71210ba398cfa33a13a1cd614c5613/pillow-11.3.0-cp311-cp311-macosx_10_10_x86_64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/df/5f/c1c1997613abf24fceb087e79432d24c19bc6f7259cab57c2c8e5e545fab/pyarrow-21.0.0-cp310-cp310-macosx_12_0_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ea/cc/3b51cb2db26fe535d14f74cab4c79b191ed9a8cd4cbba45e2379b5ca2746/pyarrow-21.0.0-cp311-cp311-macosx_12_0_x86_64.whl - pypi: https://files.pythonhosted.org/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7f/65/2edf586ff7b3dfc520977c6529c9b718c86ef8459ece088f1ef1f74bf1d4/pydantic_compat-0.1.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/e5/92/b31726561b5dae176c2d2c2dc43a9c5bfba5d32f96f8b4c0a600dd492447/pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3f/8d/71db63483d518cbbf290261a1fc2839d17ff89fce7089e08cad07ccfce67/pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl - pypi: https://files.pythonhosted.org/packages/a1/96/bcf9f2e90460ac1d4707279a700cdc634e90b2fc30878ce4705b7edffc53/pyimagej-1.7.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/78/2f/4966032c5f8cc7e6a60f1b2e0ad686293b9474b65246b0c642e3ef3badd0/scipy-1.15.3-cp310-cp310-macosx_10_13_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/96/ab/5cc9f80f28f6a7dff646c5756e559823614a42b1939d86dd0ed550470210/scipy-1.15.3-cp311-cp311-macosx_10_13_x86_64.whl - pypi: https://files.pythonhosted.org/packages/5a/fb/6473334c0e2ce1f95278845eba87daa2947ff9feb36e94c12511b5eefd47/scyjava-1.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/be/c470e5be91cccf7fbc4db4ce42eafb8f0f34b45aeb92c5bfbf963d100e0b/wasmtime-38.0.0-py3-none-macosx_10_13_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e9/ac/27a6fcf61c64549a17b9eaa087ae7876417b5ed9efb6efdec8b52289cae4/xsdata-24.3.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-arm64: - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.9.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-25.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/argon2-cffi-bindings-21.2.0-py310h493c2e1_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/argon2-cffi-bindings-25.1.0-py311h9408147_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.5-pyh29332c3_0.conda @@ -901,16 +1016,16 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyh29332c3_4.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py310h853098b_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.2.0-py311h69b7e7c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py310h497396d_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-2.0.0-py311hd10dc20_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.15-py310hf6ed2a0_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.17-py311hc58e375_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda @@ -926,14 +1041,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh92f572d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh5552912_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/jpype1-1.4.1-py310h2887b22_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/jpype1-1.6.0-py311h57a9ea7_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/jsonpointer-3.0.0-py310hbe9552e_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/jsonpointer-3.0.0-py311h267d04e_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2025.4.1-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.25.0-he01879c_0.conda @@ -943,7 +1058,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.2.7-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.10-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda @@ -951,14 +1066,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-20.1.8-hf598326_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py310hc74094e_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.3-py311ha9b3269_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/maven-3.9.10-hce30654_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/maven-3.9.11-hce30654_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.6-pyh29332c3_0.conda @@ -966,8 +1081,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjdk-8.0.412-h5505292_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjdk-25.0.1-hde7fb7b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 @@ -975,32 +1090,32 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.22.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.0.0-py310h078409c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py311h5bb9006_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-core-11.1-py310h3532944_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-framework-cocoa-11.1-py310h4e4eb3c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-core-12.0-py311hce6e4fa_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-framework-cocoa-12.0-py311h9049b8e_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py310hc74094e_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.0.0-py310h6d25ecc_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.3-py311ha9b3269_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.1.0-py311h13abfa4_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3987-syntax-1.1.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.26.0-py310hb4f9fe2_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.28.0-py311h71babbd_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda @@ -1011,7 +1126,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.1-py310h078409c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.2-py311h9408147_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20250708-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.14.1-h4440ef1_0.conda @@ -1027,70 +1142,81 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py310h078409c_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.25.0-py311h5bb9006_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda - pypi: https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/56/9d/d8090552e532684f3881e2843f9defb1c664ecd905034f1d0e15695fa052/cjdk-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/6c/330de89ae1087eb622bfca0177d32a7ece50c3ef07b28002de4757d9d875/contourpy-1.3.2-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/e6/75/3469f011d64b8bbfa04f709bfc23e1dd71be54d05b1b083be9f5b22750d1/contourpy-1.3.2-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/3e/30/5837a71c014be83aba1469c58820d287fc836512a0cad6b8fdd43868accd/crc32c-2.8-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/1c/1f/3dcae710b7c4b56e79442b03db64f6c9f10c3348f7af40339dffcefb581e/fonttools-4.59.0-cp310-cp310-macosx_10_9_universal2.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/06/96/520733d9602fa1bf6592e5354c6721ac6fc9ea72bc98d112d0c38b967199/fonttools-4.59.0-cp311-cp311-macosx_10_9_universal2.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/0c/61/d088cd14e5a56b3fe0be6390d9b06cfb5f5974cd504c5c81126df4853e0f/imglyb-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/9e/c3/27474d97eb6af1d7eb805a136c021ef32a0bcb69ebb1000258bc7e38d2c1/itk_core-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/54/0d/b683b06536a16118f17ad1d4e9dbe606ce7c9bf26b751dcd715d2d87d3ee/itk_filtering-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/9b/de/b8983fe3662ddab41b4a22f9d5d79d64ea4b5b29557514582a75516b2947/itk_numerics-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/3a/4e/e5ade29d4478713426f08abb75f871c15a57f7c08ad7a5587c404de583e8/itk_core-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/8c/95/538f02700ab648a099b296c1c7ceec48b38e368916b0b1fb2f6e7634946c/itk_filtering-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/9c/a1/a7f5c445f3b49696276a5f1d98d0843ea678ff6e04296796b2b9eb079dd9/itk_numerics-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/6c/0c/c29fcd6a59f50d953fd296d10fa5d455a239c84fa74ed8db4913f30d13cc/jgo-1.0.6-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/c6/13/e15f804a142353aefd089fadc8f1d985561a15358c97aca27b0979cb0785/kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/5f/b4/c12b3ac0852a3a68f94598d4c8d569f55361beef6159dce4e7b624160da2/kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/26/bf/aec7359ac7f779425eba5fa1dd2c01a983c4f73023e9dfb08bf65b5ddb66/labeling-0.1.14-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/41/81/cc70b5138c926604e8c9ed810ed4c79e8116ba72e02230852f5c12c87ba2/matplotlib-3.10.3-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/1c/c1/25b2f0d46fb7e0b5e2bee61ec3a47fe13eff9e3c2f2234f144858bbe6485/mypy-1.17.0-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/6a/d42588ad895279ff6708924645b5d2ed54a7fb2dc045c8a804e955aeace1/matplotlib-3.10.7-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/03/96/8ef9a6ff8cedadff4400e2254689ca1dc4b420b92c55255b44573de10c54/mypy-1.17.0-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/94/1d/f81fc1fa9210bbea97258242393a1f9feab4f6d8fb201f81f76003005e4b/numcodecs-0.13.1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/6a/64c25a089e8537441fe67c09ecb7f3f7fb5d98cd04faf01f605d43aca41c/numcodecs-0.16.3-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/0d/81/264aca3b548d77554039abd29ed75e4bc57c1d4e2f1ba6a76c1d547ff4d2/ome_types-0.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/80/bf/7938dddc5f01e18e573dcfb0f1b8c9357d9b5fa6ffdee6e605b92efbdff2/pandas-2.3.1-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/ec/d3/3c37cb724d76a841f14b8f5fe57e5e3645207cc67370e4f84717e8bb7657/pandas-2.3.1-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/7c/c8/67c12ab069ef586a25a4a79ced553586748fad100c77c0ce59bb4983ac98/pillow-11.3.0-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/cb/39/ee475903197ce709322a17a866892efb560f57900d9af2e55f86db51b0a5/pillow-11.3.0-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/17/d9/110de31880016e2afc52d8580b397dbe47615defbf09ca8cf55f56c62165/pyarrow-21.0.0-cp310-cp310-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/94/dc/80564a3071a57c20b7c32575e4a0120e8a330ef487c319b122942d665960/pyarrow-21.0.0-cp311-cp311-macosx_12_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7f/65/2edf586ff7b3dfc520977c6529c9b718c86ef8459ece088f1ef1f74bf1d4/pydantic_compat-0.1.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a3/44/3f0b95fafdaca04a483c4e685fe437c6891001bf3ce8b2fded82b9ea3aa1/pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/24/2f/3cfa7244ae292dd850989f328722d2aef313f74ffc471184dc509e1e4e5a/pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/a1/96/bcf9f2e90460ac1d4707279a700cdc634e90b2fc30878ce4705b7edffc53/pyimagej-1.7.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a0/6e/0c3bf90fae0e910c274db43304ebe25a6b391327f3f10b5dcc638c090795/scipy-1.15.3-cp310-cp310-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/4a/66ba30abe5ad1a3ad15bfb0b59d22174012e8056ff448cb1644deccbfed2/scipy-1.15.3-cp311-cp311-macosx_12_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/5a/fb/6473334c0e2ce1f95278845eba87daa2947ff9feb36e94c12511b5eefd47/scyjava-1.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/83/83d598af08eb297f1a644e678ce2d6c335f015c9f3c8c2532e289801293b/wasmtime-38.0.0-py3-none-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e9/ac/27a6fcf61c64549a17b9eaa087ae7876417b5ed9efb6efdec8b52289cae4/xsdata-24.3.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ win-64: - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.9.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-25.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-21.2.0-py310ha8f682b_5.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-25.1.0-py311h3485c13_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.5-pyh29332c3_0.conda @@ -1099,18 +1225,18 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.13.4-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyh29332c3_4.conda - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-with-css-6.2.0-h82add2a_4.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py310h9e98ed7_3.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.2.0-py311h69b5583_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-h4c7d964_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cached-property-1.5.2-hd8ed1ab_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-2.0.0-py311h3485c13_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.10.18-py310hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.15-py310h699e580_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.11.14-py311hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.17-py311h5dfdfe8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda @@ -1125,14 +1251,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh3521513_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh6dadd2b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyha7b4d00_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/jpype1-1.4.1-py310h232114e_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/jpype1-1.6.0-py311h3fd045d_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-3.0.0-py310h5588dad_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-3.0.0-py311h1ea47a8_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2025.4.1-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.25.0-he01879c_0.conda @@ -1142,69 +1268,70 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.12.0-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.16.0-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.2.7-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.10-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.3-hdf4eb48_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/lark-1.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libsodium-1.0.20-hc70643c_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/markupsafe-3.0.2-py310h38315fa_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/markupsafe-3.0.3-py311h3f79411_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/maven-3.9.10-h57928b3_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/maven-3.9.11-h57928b3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.6-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openjdk-8.0.412-h57928b3_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openjdk-25.0.1-hda6743d_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.22.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.0.0-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.1.3-py311hf893f09_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh09c184e_7.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py310h282bd7d_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.15-py310h9e98ed7_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py310h38315fa_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.0.0-py310h656833d_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py311hefeebc8_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.15-py311hda3d55a_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.3-py311h3f79411_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.1.0-py311hb77b9c8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3987-syntax-1.1.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.26.0-py310h034784e_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.28.0-py311hf51aa87_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh5737063_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-80.9.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.7-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/symlink-exe-runtime-1.0-hcfcfb64_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh5737063_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.2-py311h3485c13_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20250708-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.14.1-h4440ef1_0.conda @@ -1227,65 +1354,76 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h6a83c73_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/zeromq-4.3.5-ha9f60a1_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py310ha8f682b_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.25.0-py311hf893f09_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda - pypi: https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - pypi: https://files.pythonhosted.org/packages/56/9d/d8090552e532684f3881e2843f9defb1c664ecd905034f1d0e15695fa052/cjdk-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/54/ec/5162b8582f2c994721018d0c9ece9dc6ff769d298a8ac6b6a652c307e7df/contourpy-1.3.2-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/5e/fe/4029038b4e1c4485cef18e480b0e2cd2d755448bb071eb9977caac80b77b/contourpy-1.3.2-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/d6/e8/94e839c9f7e767bf8479046a207afd440a08f5c59b52586e1af5e64fa4a0/crc32c-2.8-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/d8/eb/f8388d9e19f95d8df2449febe9b1a38ddd758cfdb7d6de3a05198d785d61/fonttools-4.59.0-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/25/5aa7ca24b560b2f00f260acf32c4cf29d7aaf8656e159a336111c18bc345/fonttools-4.59.0-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/0c/61/d088cd14e5a56b3fe0be6390d9b06cfb5f5974cd504c5c81126df4853e0f/imglyb-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ce/ff/876d3c2ca5641106d0c83c8391cdd9988bdb7e58dd03c82dcdf10b40f7cf/itk_core-5.4.4.post1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/af/9e/007e98b5d299df78a088bfcfe4328593757cafa630185c9452ed5f03757e/itk_filtering-5.4.4.post1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/c2/77/09020197d4fbf7a453ddf467d570f2347b945d10d4106ad87029f5f5b486/itk_numerics-5.4.4.post1-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f3/f7/370e7609d9dc7a95e7d4838d1cf035f75015132fe7dda02df3a74303d2c3/itk_core-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/23/6a/bf0fcbc6ad597e351bf9aa168589414513f2bd6f16858487425b15b45605/itk_filtering-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/95/4a/85c22f3b48f1f95d2e01c392c98a95f2b0523bcb551aef4682093790e6f1/itk_numerics-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/6c/0c/c29fcd6a59f50d953fd296d10fa5d455a239c84fa74ed8db4913f30d13cc/jgo-1.0.6-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/98/99/0dd05071654aa44fe5d5e350729961e7bb535372935a45ac89a8924316e6/kiwisolver-1.4.8-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/2d/27/bdf1c769c83f74d98cbc34483a972f221440703054894a37d174fba8aa68/kiwisolver-1.4.8-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/26/bf/aec7359ac7f779425eba5fa1dd2c01a983c4f73023e9dfb08bf65b5ddb66/labeling-0.1.14-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/1f/78/8bf07bd8fb67ea5665a6af188e70b57fcb2ab67057daa06b85a08e59160a/matplotlib-3.10.3-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/ae/dc/414760708a4ea1b096bd214d26a24e30ac5e917ef293bc33cdb6fe22d2da/mypy-1.17.0-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/33/cd/b145f9797126f3f809d177ca378de57c45413c5099c5990de2658760594a/matplotlib-3.10.7-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/75/3f5a29209f27e739ca57e6350bc6b783a38c7621bdf9cac3ab8a08665801/mypy-1.17.0-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/fe/90/299952e1477954ec4f92813fa03e743945e3ff711bb4f6c9aace431cb3da/numcodecs-0.13.1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/aa/51/03aece765108fe247717105b5131856546e5428f22a56a14ffdebd017424/numcodecs-0.16.3-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/0d/81/264aca3b548d77554039abd29ed75e4bc57c1d4e2f1ba6a76c1d547ff4d2/ome_types-0.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/3f/d6/d7f5777162aa9b48ec3910bca5a58c9b5927cfd9cfde3aa64322f5ba4b9f/pandas-2.3.1-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/c8/7b/bdcb1ed8fccb63d04bdb7635161d0ec26596d92c9d7a6cce964e7876b6c1/pandas-2.3.1-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f1/cc/29c0f5d64ab8eae20f3232da8f8571660aa0ab4b8f1331da5c2f5f9a938e/pillow-11.3.0-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/7b/f5/c372ef60593d713e8bfbb7e0c743501605f0ad00719146dc075faf11172b/pyarrow-21.0.0-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/6e/0b/77ea0600009842b30ceebc3337639a7380cd946061b620ac1a2f3cb541e2/pyarrow-21.0.0-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7f/65/2edf586ff7b3dfc520977c6529c9b718c86ef8459ece088f1ef1f74bf1d4/pydantic_compat-0.1.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/fe/1b/25b7cccd4519c0b23c2dd636ad39d381abf113085ce4f7bec2b0dc755eb1/pydantic_core-2.33.2-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/a1/96/bcf9f2e90460ac1d4707279a700cdc634e90b2fc30878ce4705b7edffc53/pyimagej-1.7.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/d1/84/55bc4881973d3f79b479a5a2e2df61c8c9a04fcb986a213ac9c02cfb659b/scipy-1.15.3-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/a7/0ddaf514ce8a8714f6ed243a2b391b41dbb65251affe21ee3077ec45ea9a/scipy-1.15.3-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/5a/fb/6473334c0e2ce1f95278845eba87daa2947ff9feb36e94c12511b5eefd47/scyjava-1.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/66/99/6da689c6534b16b2e6959321533f0000228854e5f4211eb00bfa7b6bcebc/wasmtime-38.0.0-py3-none-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e9/ac/27a6fcf61c64549a17b9eaa087ae7876417b5ed9efb6efdec8b52289cae4/xsdata-24.3.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ test: channels: @@ -1298,14 +1436,14 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-25.3.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hf71b8c6_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.2.0-py311h7c6b74e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-2.0.0-py311h03d9500_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.15-py310h25320af_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.17-py311hc665b79_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda @@ -1316,7 +1454,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh82676e8_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyha191276_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda @@ -1328,17 +1466,17 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.1-hecca717_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.1.0-h69a702a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.1.0-h4852527_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda @@ -1346,36 +1484,35 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.0.0-py310ha75aee5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.1.3-py311haee01d2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310h89163eb_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.0.0-py310h71f11fc_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.3-py311h3778330_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.1.0-py311h2315fbb_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.26.0-py310hbcd0ec0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.28.0-py311h902ca64_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_hd72426e_102.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.1-py310ha75aee5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.2-py311h49ec1c0_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda @@ -1384,56 +1521,67 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha75aee5_2.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.25.0-py311haee01d2_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ca/29/63972fc1452778e2092ae998c50cbfc2fc93e3fa9798a0278650cd6169c5/crc32c-2.8-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/9f/9b/a34151ac07ad36f0494084b65f7b4394746fe2ccf1a0dc9a9d414064faa1/itk_core-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9e/79/0c172339595838dbecb90d6b96b9063b7d2ce6c7657b36b7f3dba0bc4e1b/itk_filtering-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/c4/25/38e59be9d63aa67ddbe49c9a26924a1d15db2101daa2c24374217bd6ac7b/itk_numerics-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d9/1e/23647191e7532b7d5ec2475537f8e7ec9baee30477180b0f7805d0161d6c/itk_core-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f2/64/677f5be959b799e5c0927ae36780b82e9b81117e3dd508b4c01f33a7234f/itk_filtering-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/6c/6a/2868a0cd0ae08506fede1ae37a251da10fa25b9ab56c173e26370d3a0d13/itk_numerics-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/4f/19/dae6c55e87ee426fb76980f7e78484450cad1c01c55a1dc4e91c930bea01/mypy-1.17.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/82/16/b775047054de4d8dbd668df9137707e54b07fe18c7923839cd1e524bf756/mypy-1.17.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/16/e4/b9ec2f4dfc34ecf724bc1beb96a9f6fa9b91801645688ffadacd485089da/numcodecs-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/2c/95/79ab37aa4c25d1e7df953dde407bb9c3e4ae47d154bc0dd1692f3a6dcf8c/pandas-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b6/0f/49d1f74a216149240c4b9403218111f11670bd11af0919fda357bb056bf2/numcodecs-0.16.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/07/5f/63760ff107bcf5146eee41b38b3985f9055e710a72fdd637b791dea3495c/pandas-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/f0/16/1a6bf01fb622fb9cf5c91683823f073f053005c849b1f52ed613afcf8dae/pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f2/2f/d7675ecae6c43e9f12aa8d58b6012683b20b6edfbdac7abcb4e6af7a3784/pillow-11.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/44/28/b6672962639e85dc0ac36f71ab3a8f5f38e01b51343d7aa372a6b56fa3f3/pyarrow-21.0.0-cp310-cp310-manylinux_2_28_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/74/dc/035d54638fc5d2971cbf1e987ccd45f1091c83bcf747281cf6cc25e72c88/pyarrow-21.0.0-cp311-cp311-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/8e/6d/41991e503e51fc1134502694c5fa7a1671501a17ffa12716a4a9151af3df/scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/bd/37/89f19c8c05505d0601ed5650156e50eb881ae3918786c8fd7262b4ee66d3/scipy-1.15.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/de/7b8898c9e7f73a2f4c20b621279143cfc27836dba0db676e9a923cd0a461/wasmtime-38.0.0-py3-none-manylinux1_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-64: - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-25.3.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py310h6954a95_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.2.0-py311h55b82c4_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/bzip2-1.0.8-hfdf4475_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.17.1-py310hfce808e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-2.0.0-py311h26bcf6e_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.15-py310h31e056b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.17-py311h1854d6b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda @@ -1441,10 +1589,9 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh92f572d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh5552912_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda @@ -1455,46 +1602,45 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-20.1.8-h3d58e20_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libedit-3.1.20250104-pl5321ha958ccf_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libexpat-2.7.1-h21dd04a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/liblzma-5.8.1-hd471939_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libsodium-1.0.20-hfdf4475_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/libzlib-1.3.1-hd23fc13_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/ncurses-6.5-h0622a9a_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.0.0-py310hbb8c376_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.1.3-py311h62e9434_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py310h8e2f543_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.0.0-py310he599bfe_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.3-py311he13f9b5_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.1.0-py311h0ab6910_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/readline-8.2-h7cca4af_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.26.0-py310h4c9a074_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.28.0-py311hd2a4513_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/tk-8.6.13-hf689a15_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.1-py310hbb8c376_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.2-py311hf197a57_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda @@ -1503,56 +1649,67 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-64/yaml-0.2.5-h4132b18_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-64/zeromq-4.3.5-h7130eaa_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.23.0-py310hbb8c376_2.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.25.0-py311h62e9434_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6b/38/2fe0051ffe8c6a650c8b1ac0da31b8802d1dbe5fa40a84e4b6b6f5583db5/crc32c-2.8-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/91/27/c2e68af2f29a7b47b10eafd1a762281c6c2c38856ccc851dcb5851d314de/itk_core-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/69/9a/f1bae269d683d24c09f6494b604d5a431827897d326955d396bd9755ef4d/itk_filtering-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9e/62/d58c1729d0a4472c0a05910c7efbe937b792744560505872ec493510558a/itk_numerics-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/75/53/b80d7065ec14737ed7a98a14ba5e7599420231718b584b775fd7f6102bad/itk_core-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a4/8c/d22d4920fa1c1f211c9d74f36dcf820a6d41e9c319c315eda938ad39597f/itk_filtering-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/fc/646eb6eb6656ed22b746d37b0e25a1bc7fa4f970ca647ceab8e7160ca99a/itk_numerics-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/6a/31/e762baa3b73905c856d45ab77b4af850e8159dffffd86a52879539a08c6b/mypy-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/24/82efb502b0b0f661c49aa21cfe3e1999ddf64bf5500fc03b5a1536a39d39/mypy-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/14/c0/6d72cde772bcec196b7188731d41282993b2958440f77fdf0db216f722da/numcodecs-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/c4/ca/aa97b47287221fa37a49634532e520300088e290b20d690b21ce3e448143/pandas-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/cc/917a85972537498f2bbd7914047efc98babc8667587ceb9dcb228378978a/numcodecs-0.16.3-cp311-cp311-macosx_10_13_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/76/1c/ccf70029e927e473a4476c00e0d5b32e623bff27f0402d0a92b7fc29bb9f/pandas-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/4c/5d/45a3553a253ac8763f3561371432a90bdbe6000fbdcf1397ffe502aa206c/pillow-11.3.0-cp310-cp310-macosx_10_10_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/26/77f8ed17ca4ffd60e1dcd220a6ec6d71210ba398cfa33a13a1cd614c5613/pillow-11.3.0-cp311-cp311-macosx_10_10_x86_64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/df/5f/c1c1997613abf24fceb087e79432d24c19bc6f7259cab57c2c8e5e545fab/pyarrow-21.0.0-cp310-cp310-macosx_12_0_x86_64.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ea/cc/3b51cb2db26fe535d14f74cab4c79b191ed9a8cd4cbba45e2379b5ca2746/pyarrow-21.0.0-cp311-cp311-macosx_12_0_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/78/2f/4966032c5f8cc7e6a60f1b2e0ad686293b9474b65246b0c642e3ef3badd0/scipy-1.15.3-cp310-cp310-macosx_10_13_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/96/ab/5cc9f80f28f6a7dff646c5756e559823614a42b1939d86dd0ed550470210/scipy-1.15.3-cp311-cp311-macosx_10_13_x86_64.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/be/c470e5be91cccf7fbc4db4ce42eafb8f0f34b45aeb92c5bfbf963d100e0b/wasmtime-38.0.0-py3-none-macosx_10_13_x86_64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ osx-arm64: - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-25.3.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py310h853098b_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.2.0-py311h69b7e7c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py310h497396d_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-2.0.0-py311hd10dc20_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.15-py310hf6ed2a0_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.17-py311hc58e375_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda @@ -1563,7 +1720,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh92f572d_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh5552912_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda @@ -1574,46 +1731,45 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-20.1.8-hf598326_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.1-hec049ff_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.1-h39f12f2_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.0.0-py310h078409c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py311h5bb9006_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py310hc74094e_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.0.0-py310h6d25ecc_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.3-py311ha9b3269_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.1.0-py311h13abfa4_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h1d1bf99_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.26.0-py310hb4f9fe2_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.28.0-py311h71babbd_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h892fb3f_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.1-py310h078409c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.2-py311h9408147_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda @@ -1622,57 +1778,68 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py310h078409c_2.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.25.0-py311h5bb9006_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3e/30/5837a71c014be83aba1469c58820d287fc836512a0cad6b8fdd43868accd/crc32c-2.8-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/9e/c3/27474d97eb6af1d7eb805a136c021ef32a0bcb69ebb1000258bc7e38d2c1/itk_core-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/54/0d/b683b06536a16118f17ad1d4e9dbe606ce7c9bf26b751dcd715d2d87d3ee/itk_filtering-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/9b/de/b8983fe3662ddab41b4a22f9d5d79d64ea4b5b29557514582a75516b2947/itk_numerics-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/3a/4e/e5ade29d4478713426f08abb75f871c15a57f7c08ad7a5587c404de583e8/itk_core-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/8c/95/538f02700ab648a099b296c1c7ceec48b38e368916b0b1fb2f6e7634946c/itk_filtering-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/9c/a1/a7f5c445f3b49696276a5f1d98d0843ea678ff6e04296796b2b9eb079dd9/itk_numerics-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/1c/c1/25b2f0d46fb7e0b5e2bee61ec3a47fe13eff9e3c2f2234f144858bbe6485/mypy-1.17.0-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/03/96/8ef9a6ff8cedadff4400e2254689ca1dc4b420b92c55255b44573de10c54/mypy-1.17.0-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/94/1d/f81fc1fa9210bbea97258242393a1f9feab4f6d8fb201f81f76003005e4b/numcodecs-0.13.1-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/80/bf/7938dddc5f01e18e573dcfb0f1b8c9357d9b5fa6ffdee6e605b92efbdff2/pandas-2.3.1-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/6a/64c25a089e8537441fe67c09ecb7f3f7fb5d98cd04faf01f605d43aca41c/numcodecs-0.16.3-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/ec/d3/3c37cb724d76a841f14b8f5fe57e5e3645207cc67370e4f84717e8bb7657/pandas-2.3.1-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/7c/c8/67c12ab069ef586a25a4a79ced553586748fad100c77c0ce59bb4983ac98/pillow-11.3.0-cp310-cp310-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/cb/39/ee475903197ce709322a17a866892efb560f57900d9af2e55f86db51b0a5/pillow-11.3.0-cp311-cp311-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/17/d9/110de31880016e2afc52d8580b397dbe47615defbf09ca8cf55f56c62165/pyarrow-21.0.0-cp310-cp310-macosx_12_0_arm64.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/dc/80564a3071a57c20b7c32575e4a0120e8a330ef487c319b122942d665960/pyarrow-21.0.0-cp311-cp311-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a0/6e/0c3bf90fae0e910c274db43304ebe25a6b391327f3f10b5dcc638c090795/scipy-1.15.3-cp310-cp310-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/4a/66ba30abe5ad1a3ad15bfb0b59d22174012e8056ff448cb1644deccbfed2/scipy-1.15.3-cp311-cp311-macosx_12_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/83/83d598af08eb297f1a644e678ce2d6c335f015c9f3c8c2532e289801293b/wasmtime-38.0.0-py3-none-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ win-64: - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-25.3.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py310h9e98ed7_3.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.2.0-py311h69b5583_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.7.14-h4c7d964_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/cffi-2.0.0-py311h3485c13_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.3-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.10.18-py310hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.15-py310h699e580_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.11.14-py311hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.17-py311h5dfdfe8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.2.0-pyhd8ed1ab_0.conda @@ -1682,7 +1849,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.7.0-pyhe01879c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh3521513_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh6dadd2b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyha7b4d00_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda @@ -1691,43 +1858,42 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.8.1-pyh5737063_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/krb5-1.21.3-hdf4eb48_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.1-hac47afa_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libsodium-1.0.20-hc70643c_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-25.0-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.51-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.0.0-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.1.3-py311hf893f09_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.19.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh09c184e_7.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py310h282bd7d_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py310h38315fa_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.0.0-py310h656833d_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py311hefeebc8_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.3-py311h3f79411_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.1.0-py311hb77b9c8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.36.2-pyh29332c3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.26.0-py310h034784e_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.28.0-py311hf51aa87_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhe01879c_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhe01879c_2.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.1-py310ha8f682b_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.2-py311h3485c13_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.14.1-pyhe01879c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda @@ -1741,43 +1907,54 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/yaml-0.2.5-h6a83c73_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/zeromq-4.3.5-ha9f60a1_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py310ha8f682b_2.conda - - pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz + - conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.25.0-py311hf893f09_1.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda - pypi: https://files.pythonhosted.org/packages/85/32/10bb5764d90a8eee674e9dc6f4db6a0ab47c8c4d0d83c27f7c39ac415a4d/click-8.2.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7e/e8/64c37fadfc2816a7701fa8a6ed8d87327c7d54eacfbfb6edab14a2f2be75/cloudpickle-3.1.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d6/e8/94e839c9f7e767bf8479046a207afd440a08f5c59b52586e1af5e64fa4a0/crc32c-2.8-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/bd/b394387b598ed84d8d0fa90611a90bee0adc2021820ad5729f7ced74a8e2/imageio-2.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ce/ff/876d3c2ca5641106d0c83c8391cdd9988bdb7e58dd03c82dcdf10b40f7cf/itk_core-5.4.4.post1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/af/9e/007e98b5d299df78a088bfcfe4328593757cafa630185c9452ed5f03757e/itk_filtering-5.4.4.post1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/c2/77/09020197d4fbf7a453ddf467d570f2347b945d10d4106ad87029f5f5b486/itk_numerics-5.4.4.post1-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f3/f7/370e7609d9dc7a95e7d4838d1cf035f75015132fe7dda02df3a74303d2c3/itk_core-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/23/6a/bf0fcbc6ad597e351bf9aa168589414513f2bd6f16858487425b15b45605/itk_filtering-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/95/4a/85c22f3b48f1f95d2e01c392c98a95f2b0523bcb551aef4682093790e6f1/itk_numerics-5.4.4.post1-cp311-abi3-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ae/dc/414760708a4ea1b096bd214d26a24e30ac5e917ef293bc33cdb6fe22d2da/mypy-1.17.0-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/75/3f5a29209f27e739ca57e6350bc6b783a38c7621bdf9cac3ab8a08665801/mypy-1.17.0-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/eb/be/b257e12f9710819fde40adc972578bee6b72c5992da1bc8369bef2597756/nbmake-1.5.5-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/fe/90/299952e1477954ec4f92813fa03e743945e3ff711bb4f6c9aace431cb3da/numcodecs-0.13.1-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/3f/d6/d7f5777162aa9b48ec3910bca5a58c9b5927cfd9cfde3aa64322f5ba4b9f/pandas-2.3.1-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/aa/51/03aece765108fe247717105b5131856546e5428f22a56a14ffdebd017424/numcodecs-0.16.3-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/c8/7b/bdcb1ed8fccb63d04bdb7635161d0ec26596d92c9d7a6cce964e7876b6c1/pandas-2.3.1-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/f1/cc/29c0f5d64ab8eae20f3232da8f8571660aa0ab4b8f1331da5c2f5f9a938e/pillow-11.3.0-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/7b/f5/c372ef60593d713e8bfbb7e0c743501605f0ad00719146dc075faf11172b/pyarrow-21.0.0-cp310-cp310-win_amd64.whl - - pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6e/0b/77ea0600009842b30ceebc3337639a7380cd946061b620ac1a2f3cb541e2/pyarrow-21.0.0-cp311-cp311-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/d1/84/55bc4881973d3f79b479a5a2e2df61c8c9a04fcb986a213ac9c02cfb659b/scipy-1.15.3-cp310-cp310-win_amd64.whl + - pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/a7/0ddaf514ce8a8714f6ed243a2b391b41dbb65251affe21ee3077ec45ea9a/scipy-1.15.3-cp311-cp311-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5d/06/bd0a6097da704a7a7c34a94cfd771c3ea3c2f405dd214e790d22c93f6be1/tifffile-2025.5.10-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/66/99/6da689c6534b16b2e6959321533f0000228854e5f4211eb00bfa7b6bcebc/wasmtime-38.0.0-py3-none-win_amd64.whl - pypi: https://files.pythonhosted.org/packages/82/8a/6b50c1dd2260d407c1a499d47cf829f59f07007e0dcebafdabb24d1d26a5/xarray-2025.6.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl - pypi: ./ packages: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 @@ -1801,6 +1978,17 @@ packages: purls: [] size: 23621 timestamp: 1650670423406 +- conda: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.14-hb9d3cd8_0.conda + sha256: b9214bc17e89bf2b691fad50d952b7f029f6148f4ac4fe7c60c08f093efdf745 + md5: 76df83c2a9035c54df5d04ff81bcc02d + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-or-later + license_family: GPL + purls: [] + size: 566531 + timestamp: 1744668655747 - pypi: https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl name: annotated-types version: 0.7.0 @@ -1853,66 +2041,66 @@ packages: - pkg:pypi/argon2-cffi?source=hash-mapping size: 18715 timestamp: 1749017288144 -- conda: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py310ha75aee5_5.conda - sha256: 1050f55294476b4d9b36ca3cf22b47f2f23d6e143ad6a177025bc5e5984d5409 - md5: a2da54f3a705d518c95a5b6de8ad8af6 +- conda: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-25.1.0-py311h49ec1c0_2.conda + sha256: b81f852f13a1d148f6ad7e2a29ab375eb1558b73c9bfa38792d98ea7fb414cff + md5: 6e36e9d2b535c3fbe2e093108df26695 depends: - __glibc >=2.17,<3.0.a0 - cffi >=1.0.1 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/argon2-cffi-bindings?source=hash-mapping - size: 34425 - timestamp: 1725356664523 -- conda: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-21.2.0-py310h837254d_5.conda - sha256: a5418c8096b8d4070c0f88ea0dc823d2f630dc2dd929b2a1c7d1bcd3e9629dee - md5: ba0ed7f857ceb937002efb98b6d66328 + size: 35831 + timestamp: 1762509453632 +- conda: https://conda.anaconda.org/conda-forge/osx-64/argon2-cffi-bindings-25.1.0-py311hf197a57_2.conda + sha256: 4e54d6fef36a1954f5289aa0b5f01b6ae6f0b4f37bb77e644635f8e085d7e4dc + md5: 32981d5201015f7391caa145a6c75c7d depends: - __osx >=10.13 - cffi >=1.0.1 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/argon2-cffi-bindings?source=hash-mapping - size: 31413 - timestamp: 1725356783377 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/argon2-cffi-bindings-21.2.0-py310h493c2e1_5.conda - sha256: 888c99261419d786a511bbc711b51bdae06ee1bfa35e8c653a0dda1aa8a348f8 - md5: a6a3f529a421164ba519f564b0559a9e + size: 33645 + timestamp: 1762509779250 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/argon2-cffi-bindings-25.1.0-py311h9408147_2.conda + sha256: c15fc1aa6184185f1b31670a16b76d59f484d3efa25b467f28d59088cf0085c0 + md5: 501c2a606787bcd55b9ddee776208333 depends: - __osx >=11.0 - cffi >=1.0.1 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/argon2-cffi-bindings?source=hash-mapping - size: 32379 - timestamp: 1725356978614 -- conda: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-21.2.0-py310ha8f682b_5.conda - sha256: f0b23aa9a3c27500d58a383d635c01b86ab652c34646c3ad9e89fd82607178a0 - md5: d18002177f557891c1fc5482da6decd7 + size: 34403 + timestamp: 1762509963182 +- conda: https://conda.anaconda.org/conda-forge/win-64/argon2-cffi-bindings-25.1.0-py311h3485c13_2.conda + sha256: 787e9a5f0a5624fee2af4f58c823bd7933b8ca560e794dd9a821e990b31d2d49 + md5: 5fde0926a521a37d454a5e3162cb6e51 depends: - cffi >=1.0.1 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: MIT license_family: MIT purls: - pkg:pypi/argon2-cffi-bindings?source=hash-mapping - size: 33837 - timestamp: 1725357171155 + size: 38502 + timestamp: 1762509668838 - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda sha256: c4b0bdb3d5dee50b60db92f99da3e4c524d5240aafc0a5fcc15e45ae2d1a3cd1 md5: 46b53236fdd990271b03c3978d4218a9 @@ -1926,10 +2114,6 @@ packages: - pkg:pypi/arrow?source=hash-mapping size: 99951 timestamp: 1733584345583 -- pypi: https://files.pythonhosted.org/packages/2d/6a/885bc91484e1aa8f618f6f0228d76d0e67000b0fdd6090673b777e311913/asciitree-0.3.3.tar.gz - name: asciitree - version: 0.3.3 - sha256: 4aa4b9b649f85e3fcb343363d97564aa1fb62e249677f2e18a96765145cc0f6e - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda sha256: 93b14414b3b3ed91e286e1cbe4e7a60c4e1b1c730b0814d1e452a8ac4b9af593 md5: 8f587de4bcf981e26228f268df374a9b @@ -2016,73 +2200,73 @@ packages: purls: [] size: 4213 timestamp: 1737382993425 -- conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hf71b8c6_3.conda - sha256: 313cd446b1a42b55885741534800a1d69bd3816eeef662f41fc3ac26e16d537e - md5: 63d24a5dd21c738d706f91569dbd1892 +- conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.2.0-py311h7c6b74e_0.conda + sha256: 5e6858dae1935793a7fa7f46d8975b0596b546c28586cb463dd2fdeba3bcc193 + md5: 645bc783bc723d67a294a51bc860762d depends: - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - libstdcxx >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - libstdcxx >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 constrains: - - libbrotlicommon 1.1.0 hb9d3cd8_3 + - libbrotlicommon 1.2.0 h09219d5_0 license: MIT license_family: MIT purls: - pkg:pypi/brotli?source=hash-mapping - size: 351561 - timestamp: 1749230186849 -- conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.1.0-py310h6954a95_3.conda - sha256: 37d279d1dc96e8d7724d6b01e243a21b3ba47b047d6f61328ca67847b2df53fe - md5: edbc5225cf9117cf971f2685b3867b88 + size: 368532 + timestamp: 1761592301216 +- conda: https://conda.anaconda.org/conda-forge/osx-64/brotli-python-1.2.0-py311h55b82c4_0.conda + sha256: c73b81f23549ff50e0016499d9b3b0db3e83f43af0633e37d9d5dd7c7297330e + md5: 19ab4e7dfeaaf73d985aed51f958d3e3 depends: - __osx >=10.13 - - libcxx >=18 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libcxx >=19 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 constrains: - - libbrotlicommon 1.1.0 h6e16a3a_3 + - libbrotlicommon 1.2.0 h105ed1c_0 license: MIT license_family: MIT purls: - pkg:pypi/brotli?source=hash-mapping - size: 366352 - timestamp: 1749230660474 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py310h853098b_3.conda - sha256: 0a14aeeafecf813e5406efd68725405ef89f0cf2cabb52822acd08741c066d3e - md5: de22f7dbf06b30e27a1f91031d2f5d94 + size: 389579 + timestamp: 1761593287425 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.2.0-py311h69b7e7c_0.conda + sha256: 8607bf12713530f24e1f2b132a6508d1d50bd55b9fe9428197225651fda9b43d + md5: cbafc1e7eb065f480b8c7e5c5a39651e depends: - __osx >=11.0 - - libcxx >=18 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - libcxx >=19 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 constrains: - - libbrotlicommon 1.1.0 h5505292_3 + - libbrotlicommon 1.2.0 h87ba0bc_0 license: MIT license_family: MIT purls: - pkg:pypi/brotli?source=hash-mapping - size: 338668 - timestamp: 1749230528849 -- conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py310h9e98ed7_3.conda - sha256: 6eac109d40bd36d158064a552babc3da069662ad93712453eb43320f330b7c82 - md5: 52d37d0f3a9286d295fbf72cf0aa99ee - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 359369 + timestamp: 1761592603100 +- conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.2.0-py311h69b5583_0.conda + sha256: ba85fe5b277ad03bfac3c4376dd5c50a2216dea58519edf75a92b7763fb4ea98 + md5: 2df0b338e8fb85c8bdcb38813165b48b + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 constrains: - - libbrotlicommon 1.1.0 h2466b09_3 + - libbrotlicommon 1.2.0 hc82b238_0 license: MIT license_family: MIT purls: - pkg:pypi/brotli?source=hash-mapping - size: 321491 - timestamp: 1749231194190 + size: 335584 + timestamp: 1761592832613 - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda sha256: 5ced96500d945fb286c9c838e54fa759aa04a7129c59800f0846b4335cee770d md5: 62ee74e96c5ebb0af99386de58cf9553 @@ -2166,6 +2350,32 @@ packages: - pkg:pypi/cached-property?source=hash-mapping size: 11065 timestamp: 1615209567874 +- conda: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.4-h3394656_0.conda + sha256: 3bd6a391ad60e471de76c0e9db34986c4b5058587fbf2efa5a7f54645e28c2c7 + md5: 09262e66b19567aff4f592fb53b28760 + depends: + - __glibc >=2.17,<3.0.a0 + - fontconfig >=2.15.0,<3.0a0 + - fonts-conda-ecosystem + - freetype >=2.12.1,<3.0a0 + - icu >=75.1,<76.0a0 + - libexpat >=2.6.4,<3.0a0 + - libgcc >=13 + - libglib >=2.82.2,<3.0a0 + - libpng >=1.6.47,<1.7.0a0 + - libstdcxx >=13 + - libxcb >=1.17.0,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - pixman >=0.44.2,<1.0a0 + - xorg-libice >=1.1.2,<2.0a0 + - xorg-libsm >=1.2.5,<2.0a0 + - xorg-libx11 >=1.8.11,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxrender >=0.9.12,<0.10.0a0 + license: LGPL-2.1-only or MPL-1.1 + purls: [] + size: 978114 + timestamp: 1741554591855 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.7.14-pyhd8ed1ab_0.conda sha256: f68ee5038f37620a4fb4cdd8329c9897dce80331db8c94c3ab264a26a8c70a08 md5: 4c07624f3faefd0bb6659fb7396cfa76 @@ -2176,69 +2386,69 @@ packages: - pkg:pypi/certifi?source=compressed-mapping size: 159755 timestamp: 1752493370797 -- conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda - sha256: 1b389293670268ab80c3b8735bc61bc71366862953e000efbb82204d00e41b6c - md5: 1fc24a3196ad5ede2a68148be61894f4 +- conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-2.0.0-py311h03d9500_1.conda + sha256: 3ad13377356c86d3a945ae30e9b8c8734300925ef81a3cb0a9db0d755afbe7bb + md5: 3912e4373de46adafd8f1e97e4bd166b depends: - __glibc >=2.17,<3.0.a0 - - libffi >=3.4,<4.0a0 - - libgcc >=13 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 - pycparser - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/cffi?source=hash-mapping - size: 243532 - timestamp: 1725560630552 -- conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-1.17.1-py310hfce808e_0.conda - sha256: a9a98a09031c4b5304ca04d29f9b35329e40a915e8e9c6431daee97c1b606d36 - md5: eefa80a0b01ffccf57c7c865bc6acfc4 + size: 303338 + timestamp: 1761202960110 +- conda: https://conda.anaconda.org/conda-forge/osx-64/cffi-2.0.0-py311h26bcf6e_1.conda + sha256: 5519d7a6fb4709454971a9212105b40d95b44b0f1f37ccc2112f45368bfa61b4 + md5: 9a3f0928baf6f2754d9d437984c79b00 depends: - __osx >=10.13 - - libffi >=3.4,<4.0a0 + - libffi >=3.5.2,<3.6.0a0 - pycparser - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/cffi?source=hash-mapping - size: 229844 - timestamp: 1725560765436 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py310h497396d_0.conda - sha256: 2cd81f5f8bb45f7625c232905e5f50f4f50a0cef651ec7143c6cf7d8d87bebcb - md5: 61ed55c277b0bdb5e6e67771f9e5b63e + size: 295108 + timestamp: 1761203293287 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-2.0.0-py311hd10dc20_1.conda + sha256: 1ffde698463d6e7ed571bdb85cb17bfc1d3a107c026d20047995512dcc2749ec + md5: 4d7f6780e36f18e7601811dddf3bbec5 depends: - __osx >=11.0 - - libffi >=3.4,<4.0a0 + - libffi >=3.5.2,<3.6.0a0 - pycparser - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/cffi?source=hash-mapping - size: 229224 - timestamp: 1725560797724 -- conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py310ha8f682b_0.conda - sha256: 32638e79658f76e3700f783c519025290110f207833ae1d166d262572cbec8a8 - md5: 9c7ec967f4ae263aec56cff05bdbfc07 + size: 294848 + timestamp: 1761203196617 +- conda: https://conda.anaconda.org/conda-forge/win-64/cffi-2.0.0-py311h3485c13_1.conda + sha256: c9caca6098e3d92b1a269159b759d757518f2c477fbbb5949cb9fee28807c1f1 + md5: f02335db0282d5077df5bc84684f7ff9 depends: - pycparser - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: MIT license_family: MIT purls: - pkg:pypi/cffi?source=hash-mapping - size: 238887 - timestamp: 1725561032032 + size: 297941 + timestamp: 1761203850323 - conda: https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_1.conda sha256: d5696636733b3c301054b948cdd793f118efacce361d9bd4afb57d5980a9064f md5: 57df494053e17dce2ac3a0b33e1b2a2e @@ -2307,10 +2517,10 @@ packages: - pkg:pypi/comm?source=compressed-mapping size: 14690 timestamp: 1753453984907 -- pypi: https://files.pythonhosted.org/packages/12/a3/da4153ec8fe25d263aa48c1a4cbde7f49b59af86f0b6f7862788c60da737/contourpy-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/5e/fe/4029038b4e1c4485cef18e480b0e2cd2d755448bb071eb9977caac80b77b/contourpy-1.3.2-cp311-cp311-win_amd64.whl name: contourpy version: 1.3.2 - sha256: ba38e3f9f330af820c4b27ceb4b9c7feee5fe0493ea53a8720f4792667465934 + sha256: 5ebac872ba09cb8f2131c46b8739a7ff71de28a24c869bcad554477eb089a878 requires_dist: - numpy>=1.23 - furo ; extra == 'docs' @@ -2332,10 +2542,10 @@ packages: - pytest-xdist ; extra == 'test-no-images' - wurlitzer ; extra == 'test-no-images' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/2f/6c/330de89ae1087eb622bfca0177d32a7ece50c3ef07b28002de4757d9d875/contourpy-1.3.2-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/b3/b9/ede788a0b56fc5b071639d06c33cb893f68b1178938f3425debebe2dab78/contourpy-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl name: contourpy version: 1.3.2 - sha256: dc41ba0714aa2968d1f8674ec97504a8f7e334f48eeacebcaa6256213acb0989 + sha256: 6a37a2fb93d4df3fc4c0e363ea4d16f83195fc09c891bc8ce072b9d084853445 requires_dist: - numpy>=1.23 - furo ; extra == 'docs' @@ -2357,10 +2567,10 @@ packages: - pytest-xdist ; extra == 'test-no-images' - wurlitzer ; extra == 'test-no-images' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/32/5c/1ee32d1c7956923202f00cf8d2a14a62ed7517bdc0ee1e55301227fc273c/contourpy-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/c2/f3/20c5d1ef4f4748e52d60771b8560cf00b69d5c6368b5c2e9311bcfa2a08b/contourpy-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: contourpy version: 1.3.2 - sha256: ad687a04bc802cbe8b9c399c07162a3c35e227e2daccf1668eb1f278cb698631 + sha256: 3859783aefa2b8355697f16642695a5b9792e7a46ab86da1118a4a23a51a33d7 requires_dist: - numpy>=1.23 - furo ; extra == 'docs' @@ -2382,10 +2592,10 @@ packages: - pytest-xdist ; extra == 'test-no-images' - wurlitzer ; extra == 'test-no-images' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/54/ec/5162b8582f2c994721018d0c9ece9dc6ff769d298a8ac6b6a652c307e7df/contourpy-1.3.2-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/e6/75/3469f011d64b8bbfa04f709bfc23e1dd71be54d05b1b083be9f5b22750d1/contourpy-1.3.2-cp311-cp311-macosx_11_0_arm64.whl name: contourpy version: 1.3.2 - sha256: c440093bbc8fc21c637c03bafcbef95ccd963bc6e0514ad887932c18ca2a759a + sha256: b7cd50c38f500bbcc9b6a46643a40e0913673f869315d8e70de0438817cb7773 requires_dist: - numpy>=1.23 - furo ; extra == 'docs' @@ -2407,17 +2617,37 @@ packages: - pytest-xdist ; extra == 'test-no-images' - wurlitzer ; extra == 'test-no-images' requires_python: '>=3.10' -- conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.10.18-py310hd8ed1ab_0.conda +- conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.11.14-py311hd8ed1ab_2.conda noarch: generic - sha256: 44329b37f854a90b4b9bcf500c25c13dce91180eca26a9272f6a254725d2db8c - md5: 7004cb3fa62ad44d1cb70f3b080dfc8f + sha256: c871fe68dcc6b79b322e4fcf9f2b131162094c32a68d48c87aa8582995948a01 + md5: 43ed151bed1a0eb7181d305fed7cf051 depends: - - python >=3.10,<3.11.0a0 - - python_abi * *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi * *_cp311 license: Python-2.0 purls: [] - size: 50504 - timestamp: 1749048166134 + size: 47257 + timestamp: 1761172995774 +- pypi: https://files.pythonhosted.org/packages/3e/30/5837a71c014be83aba1469c58820d287fc836512a0cad6b8fdd43868accd/crc32c-2.8-cp311-cp311-macosx_11_0_arm64.whl + name: crc32c + version: '2.8' + sha256: 60670569f5ede91e39f48fb0cb4060e05b8d8704dd9e17ede930bf441b2f73ef + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/6b/38/2fe0051ffe8c6a650c8b1ac0da31b8802d1dbe5fa40a84e4b6b6f5583db5/crc32c-2.8-cp311-cp311-macosx_10_9_x86_64.whl + name: crc32c + version: '2.8' + sha256: 6762d276d90331a490ef7e71ffee53b9c0eb053bd75a272d786f3b08d3fe3671 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/ca/29/63972fc1452778e2092ae998c50cbfc2fc93e3fa9798a0278650cd6169c5/crc32c-2.8-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + name: crc32c + version: '2.8' + sha256: 711743da6ccc70b3c6718c328947b0b6f34a1fe6a6c27cc6c1d69cc226bf70e9 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/d6/e8/94e839c9f7e767bf8479046a207afd440a08f5c59b52586e1af5e64fa4a0/crc32c-2.8-cp311-cp311-win_amd64.whl + name: crc32c + version: '2.8' + sha256: 60e0a765b1caab8d31b2ea80840639253906a9351d4b861551c8c8625ea20f86 + requires_python: '>=3.7' - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl name: cycler version: 0.12.1 @@ -2431,10 +2661,10 @@ packages: - pytest-cov ; extra == 'tests' - pytest-xdist ; extra == 'tests' requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/b3/f9/3e04725358c17329652da8c1b2dbd88de723f3dc78bf52ca6d28d52c9279/dask-2025.7.0-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/1d/54/a46920229d12c3a6e9f0081d1bdaeffad23c1826353ace95714faee926e5/dask-2025.11.0-py3-none-any.whl name: dask - version: 2025.7.0 - sha256: 073c29c4e99c2400a39a8a67874f35c1d15bf7af9ae3d0c30af3c7c1199f24ae + version: 2025.11.0 + sha256: 08c35a8146c05c93b34f83cf651009129c42ee71762da7ca452fb7308641c2b8 requires_dist: - click>=8.1 - cloudpickle>=3.0.0 @@ -2448,7 +2678,7 @@ packages: - dask[array] ; extra == 'dataframe' - pandas>=2.0 ; extra == 'dataframe' - pyarrow>=14.0.1 ; extra == 'dataframe' - - distributed==2025.7.0 ; extra == 'distributed' + - distributed==2025.11.0 ; extra == 'distributed' - bokeh>=3.1.0 ; extra == 'diagnostics' - jinja2>=2.10.3 ; extra == 'diagnostics' - dask[array,dataframe,diagnostics,distributed] ; extra == 'complete' @@ -2463,10 +2693,10 @@ packages: - pytest-xdist ; extra == 'test' - pre-commit ; extra == 'test' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/22/70/e34e5090865c3f840256c462e4671937270317fdf260871cd72546449d54/dask_image-2024.5.3-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl name: dask-image - version: 2024.5.3 - sha256: b936f6d19a52974094cf8b7c6b51a3fdea77d9c7c80ca9862d764eda7ffbcd9a + version: 2025.11.0 + sha256: 4834ece8d7133f8cd7d4e672f7f5a598c9057e687b20f14f3121360e3e1690b4 requires_dist: - dask[array,dataframe]>=2024.4.1 - numpy>=1.18 @@ -2474,7 +2704,6 @@ packages: - pandas>=2.0.0 - pims>=0.4.1 - tifffile>=2018.10.18 - - cupy>=9.0.0 ; extra == 'gpu' - build>=1.2.1 ; extra == 'test' - coverage>=7.2.1 ; extra == 'test' - flake8>=6.0.0 ; extra == 'test' @@ -2484,55 +2713,56 @@ packages: - pytest-flake8>=1.1.1 ; extra == 'test' - pytest-timeout>=2.3.1 ; extra == 'test' - twine>=3.1.1 ; extra == 'test' + - cupy>=9.0.0 ; extra == 'gpu' requires_python: '>=3.9' -- conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.15-py310h25320af_0.conda - sha256: c2c781772677a4b5d8b67328f72b98a9217cdb0ddb31342d29f64f2904aadaa1 - md5: 513541327fd828430aaf3d3af621664e +- conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.17-py311hc665b79_0.conda + sha256: d9a621da97c263fbea14f6cd3ff3f24f94ab55c7fbca50efe8dd8f1007c11c97 + md5: af20efc4f52675e7ce9a3e3ed8447fbb depends: - python - - __glibc >=2.17,<3.0.a0 - - libgcc >=14 - libstdcxx >=14 - libgcc >=14 - - python_abi 3.10.* *_cp310 + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/debugpy?source=hash-mapping - size: 2230477 - timestamp: 1752827112427 -- conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.15-py310h31e056b_0.conda - sha256: ad70b29620ae9fc177835d406b87e73cbba0bb580ee00131007cf072289e376a - md5: d002247195c137da857adbbd778324ed + size: 2730518 + timestamp: 1758162063262 +- conda: https://conda.anaconda.org/conda-forge/osx-64/debugpy-1.8.17-py311h1854d6b_0.conda + sha256: 0b07c46d15fc32e9eb35a74c56de4fa7bac5c36cf4a05f326e73baa3273a5520 + md5: ebc7f723cde7539c66ec925ec761f792 depends: - python - libcxx >=19 - __osx >=10.13 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/debugpy?source=hash-mapping - size: 2224361 - timestamp: 1752827138196 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.15-py310hf6ed2a0_0.conda - sha256: 5dfcef53c82613e7404e14ce3b804a6557fcf9340205bb2c98613a1f54049eff - md5: 77658cf3687e545eb38d67b82994d227 + size: 2666646 + timestamp: 1758162088550 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.17-py311hc58e375_0.conda + sha256: 27ab3612dea9db4fd46ed270366968f5cf333fc44376df8a314a2798f93cda82 + md5: 0552b12026620a95945c3398ac847c83 depends: - python - - python 3.10.* *_cpython - __osx >=11.0 - libcxx >=19 - - python_abi 3.10.* *_cp310 + - python 3.11.* *_cpython + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/debugpy?source=hash-mapping - size: 2222243 - timestamp: 1752827131394 -- conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.15-py310h699e580_0.conda - sha256: c39c8de81bbb55e7351a1e1c0095a52f8e6371f8e20c862b9574097594104737 - md5: 71b9b4a4db2133776f0b83d416317a49 + size: 2667017 + timestamp: 1758162064247 +- conda: https://conda.anaconda.org/conda-forge/win-64/debugpy-1.8.17-py311h5dfdfe8_0.conda + sha256: 2f426feb8da1a1cc20e4982a36c3dd0fd5f0a4045c4ba2a8bf8b16cef0b028ca + md5: abd693d9f8de989841dba4d651acb6e4 depends: - python - vc >=14.3,<15 @@ -2541,13 +2771,13 @@ packages: - vc >=14.3,<15 - vc14_runtime >=14.44.35208 - ucrt >=10.0.20348.0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/debugpy?source=hash-mapping - size: 3478876 - timestamp: 1752827140814 + size: 3935426 + timestamp: 1758162063397 - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.2.1-pyhd8ed1ab_0.conda sha256: c17c6b9937c08ad63cb20a26f403a3234088e57d4455600974a0ce865cb14017 md5: 9ce473d1d1be1cc3810856a48b3fab32 @@ -2581,6 +2811,19 @@ packages: - pkg:pypi/distlib?source=compressed-mapping size: 275642 timestamp: 1752823081585 +- pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + name: donfig + version: 0.8.1.post1 + sha256: 2a3175ce74a06109ff9307d90a230f81215cbac9a751f4d1c6194644b8204f9d + requires_dist: + - pyyaml + - sphinx>=4.0.0 ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pytest ; extra == 'docs' + - cloudpickle ; extra == 'docs' + - pytest ; extra == 'test' + - cloudpickle ; extra == 'test' + requires_python: '>=3.8' - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.3.0-pyhd8ed1ab_0.conda sha256: ce61f4f99401a4bd455b89909153b40b9c823276aefcbb06f2044618696009ca md5: 72e42d28960d875c7654614f8b50939a @@ -2603,11 +2846,6 @@ packages: - pkg:pypi/executing?source=hash-mapping size: 29652 timestamp: 1745502200340 -- pypi: https://files.pythonhosted.org/packages/61/bf/fd60001b3abc5222d8eaa4a204cd8c0ae78e75adc688f33ce4bf25b7fafa/fasteners-0.19-py3-none-any.whl - name: fasteners - version: '0.19' - sha256: 758819cb5d94cdedf4e836988b74de396ceacb8e2794d21f82d131fd9ee77237 - requires_python: '>=3.6' - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.18.0-pyhd8ed1ab_0.conda sha256: de7b6d4c4f865609ae88db6fa03c8b7544c2452a1aa5451eb7700aad16824570 md5: 4547b39256e296bb758166893e909a7c @@ -2618,10 +2856,80 @@ packages: - pkg:pypi/filelock?source=hash-mapping size: 17887 timestamp: 1741969612334 -- pypi: https://files.pythonhosted.org/packages/05/57/767e31e48861045d89691128bd81fd4c62b62150f9a17a666f731ce4f197/fonttools-4.59.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl +- conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 + sha256: 58d7f40d2940dd0a8aa28651239adbf5613254df0f75789919c4e6762054403b + md5: 0c96522c6bdaed4b1566d11387caaf45 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 397370 + timestamp: 1566932522327 +- conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 + sha256: c52a29fdac682c20d252facc50f01e7c2e7ceac52aa9817aaf0bb83f7559ec5c + md5: 34893075a5c9e55cdafac56607368fc6 + license: OFL-1.1 + license_family: Other + purls: [] + size: 96530 + timestamp: 1620479909603 +- conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2 + sha256: 00925c8c055a2275614b4d983e1df637245e19058d79fc7dd1a93b8d9fb4b139 + md5: 4d59c254e01d9cde7957100457e2d5fb + license: OFL-1.1 + license_family: Other + purls: [] + size: 700814 + timestamp: 1620479612257 +- conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda + sha256: 2821ec1dc454bd8b9a31d0ed22a7ce22422c0aef163c59f49dfdf915d0f0ca14 + md5: 49023d73832ef61042f6a237cb2687e7 + license: LicenseRef-Ubuntu-Font-Licence-Version-1.0 + license_family: Other + purls: [] + size: 1620504 + timestamp: 1727511233259 +- conda: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda + sha256: 7093aa19d6df5ccb6ca50329ef8510c6acb6b0d8001191909397368b65b02113 + md5: 8f5b0b297b59e1ac160ad4beec99dbee + depends: + - __glibc >=2.17,<3.0.a0 + - freetype >=2.12.1,<3.0a0 + - libexpat >=2.6.3,<3.0a0 + - libgcc >=13 + - libuuid >=2.38.1,<3.0a0 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 265599 + timestamp: 1730283881107 +- conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2 + sha256: a997f2f1921bb9c9d76e6fa2f6b408b7fa549edd349a77639c9fe7a23ea93e61 + md5: fee5683a3f04bd15cbd8318b096a27ab + depends: + - fonts-conda-forge + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3667 + timestamp: 1566974674465 +- conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-hc364b38_1.conda + sha256: 54eea8469786bc2291cc40bca5f46438d3e062a399e8f53f013b6a9f50e98333 + md5: a7970cd949a077b7cb9696379d338681 + depends: + - font-ttf-ubuntu + - font-ttf-inconsolata + - font-ttf-dejavu-sans-mono + - font-ttf-source-code-pro + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 4059 + timestamp: 1762351264405 +- pypi: https://files.pythonhosted.org/packages/06/96/520733d9602fa1bf6592e5354c6721ac6fc9ea72bc98d112d0c38b967199/fonttools-4.59.0-cp311-cp311-macosx_10_9_universal2.whl name: fonttools version: 4.59.0 - sha256: 62224a9bb85b4b66d1b46d45cbe43d71cbf8f527d332b177e3b96191ffbc1e64 + sha256: 841b2186adce48903c0fef235421ae21549020eca942c1da773ac380b056ab3c requires_dist: - lxml>=4.0 ; extra == 'lxml' - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' @@ -2652,10 +2960,10 @@ packages: - skia-pathops>=0.5.0 ; extra == 'all' - uharfbuzz>=0.23.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/1c/1f/3dcae710b7c4b56e79442b03db64f6c9f10c3348f7af40339dffcefb581e/fonttools-4.59.0-cp310-cp310-macosx_10_9_universal2.whl +- pypi: https://files.pythonhosted.org/packages/87/6a/170fce30b9bce69077d8eec9bea2cfd9f7995e8911c71be905e2eba6368b/fonttools-4.59.0-cp311-cp311-macosx_10_9_x86_64.whl name: fonttools version: 4.59.0 - sha256: 524133c1be38445c5c0575eacea42dbd44374b310b1ffc4b60ff01d881fabb96 + sha256: 9bcc1e77fbd1609198966ded6b2a9897bd6c6bcbd2287a2fc7d75f1a254179c5 requires_dist: - lxml>=4.0 ; extra == 'lxml' - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' @@ -2686,10 +2994,10 @@ packages: - skia-pathops>=0.5.0 ; extra == 'all' - uharfbuzz>=0.23.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/d8/eb/f8388d9e19f95d8df2449febe9b1a38ddd758cfdb7d6de3a05198d785d61/fonttools-4.59.0-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/ab/25/5aa7ca24b560b2f00f260acf32c4cf29d7aaf8656e159a336111c18bc345/fonttools-4.59.0-cp311-cp311-win_amd64.whl name: fonttools version: 4.59.0 - sha256: 8b4309a2775e4feee7356e63b163969a215d663399cce1b3d3b65e7ec2d9680e + sha256: 84fc186980231a287b28560d3123bd255d3c6b6659828c642b4cf961e2b923d0 requires_dist: - lxml>=4.0 ; extra == 'lxml' - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' @@ -2720,10 +3028,10 @@ packages: - skia-pathops>=0.5.0 ; extra == 'all' - uharfbuzz>=0.23.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/eb/0e/ae3a1884fa1549acac1191cc9ec039142f6ac0e9cbc139c2e6a3dab967da/fonttools-4.59.0-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/eb/0c/707c5a19598eafcafd489b73c4cb1c142102d6197e872f531512d084aa76/fonttools-4.59.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl name: fonttools version: 4.59.0 - sha256: 21e606b2d38fed938dde871c5736822dd6bda7a4631b92e509a1f5cd1b90c5df + sha256: fa39475eaccb98f9199eccfda4298abaf35ae0caec676ffc25b3a5e224044464 requires_dist: - lxml>=4.0 ; extra == 'lxml' - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' @@ -2766,10 +3074,20 @@ packages: - pkg:pypi/fqdn?source=hash-mapping size: 16705 timestamp: 1733327494780 -- pypi: https://files.pythonhosted.org/packages/2f/e0/014d5d9d7a4564cf1c40b5039bc882db69fd881111e03ab3657ac0b218e2/fsspec-2025.7.0-py3-none-any.whl +- conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.14.1-ha770c72_0.conda + sha256: bf8e4dffe46f7d25dc06f31038cacb01672c47b9f45201f065b0f4d00ab0a83e + md5: 4afc585cd97ba8a23809406cd8a9eda8 + depends: + - libfreetype 2.14.1 ha770c72_0 + - libfreetype6 2.14.1 h73754d4_0 + license: GPL-2.0-only OR FTL + purls: [] + size: 173114 + timestamp: 1757945422243 +- pypi: https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl name: fsspec - version: 2025.7.0 - sha256: 8b012e39f63c7d5f10474de957f3ab793b47b45ae7d39f2fb735f8bbe25c0e21 + version: 2025.10.0 + sha256: 7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d requires_dist: - adlfs ; extra == 'abfs' - adlfs ; extra == 'adl' @@ -2873,6 +3191,28 @@ packages: - zstandard ; python_full_version < '3.14' and extra == 'test-full' - tqdm ; extra == 'tqdm' requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda + sha256: aac402a8298f0c0cc528664249170372ef6b37ac39fdc92b40601a6aed1e32ff + md5: 3bf7b9fd5a7136126e0234db4b87c8b6 + depends: + - libgcc-ng >=12 + license: MIT + license_family: MIT + purls: [] + size: 77248 + timestamp: 1712692454246 +- conda: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.14-hecca717_2.conda + sha256: 25ba37da5c39697a77fce2c9a15e48cf0a84f1464ad2aafbe53d8357a9f6cc8c + md5: 2cd94587f3a401ae05e03a6caf09539d + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: LGPL-2.0-or-later + license_family: LGPL + purls: [] + size: 99596 + timestamp: 1755102025473 - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.16.0-pyhd8ed1ab_0.conda sha256: f64b68148c478c3bfc8f8d519541de7d2616bf59d44485a5271041d40c061887 md5: 4b69232755285701bc86a5afe4d9933a @@ -2898,6 +3238,26 @@ packages: - pkg:pypi/h2?source=hash-mapping size: 53888 timestamp: 1738578623567 +- conda: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-12.1.0-h15599e2_0.conda + sha256: df2a964f5b7dd652b59da018f1d2d9ae402b815c4e5d849384344df358d2a565 + md5: 7704b1edaa8316b8792424f254c1f586 + depends: + - __glibc >=2.17,<3.0.a0 + - cairo >=1.18.4,<2.0a0 + - graphite2 >=1.3.14,<2.0a0 + - icu >=75.1,<76.0a0 + - libexpat >=2.7.1,<3.0a0 + - libfreetype >=2.14.1 + - libfreetype6 >=2.14.1 + - libgcc >=14 + - libglib >=2.86.0,<3.0a0 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 2058414 + timestamp: 1759365674184 - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda sha256: 6ad78a180576c706aabeb5b4c8ceb97c0cb25f1e112d76495bff23e3779948ba md5: 0a802cb9888dd14eeefc611f05c40b6e @@ -2964,16 +3324,6 @@ packages: purls: [] size: 12129203 timestamp: 1720853576813 -- conda: https://conda.anaconda.org/conda-forge/osx-64/icu-75.1-h120a0e1_0.conda - sha256: 2e64307532f482a0929412976c8450c719d558ba20c0962832132fd0d07ba7a7 - md5: d68d48a3060eb5abdc1cdc8e2a3a5966 - depends: - - __osx >=10.13 - license: MIT - license_family: MIT - purls: [] - size: 11761697 - timestamp: 1720853679409 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 md5: 5eb22c1d7b3fc4abb50d92d621583137 @@ -3102,16 +3452,38 @@ packages: - pkg:pypi/importlib-metadata?source=hash-mapping size: 34641 timestamp: 1747934053147 +- pypi: https://files.pythonhosted.org/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl + name: importlib-resources + version: 6.5.2 + sha256: 789cfdc3ed28c78b67a06acb8126751ced69a3d5f79c095a98298cd8a760ccec + requires_dist: + - zipp>=3.1.0 ; python_full_version < '3.10' + - pytest>=6,!=8.1.* ; extra == 'test' + - zipp>=3.17 ; extra == 'test' + - jaraco-test>=5.4 ; extra == 'test' + - sphinx>=3.5 ; extra == 'doc' + - jaraco-packaging>=9.3 ; extra == 'doc' + - rst-linker>=1.9 ; extra == 'doc' + - furo ; extra == 'doc' + - sphinx-lint ; extra == 'doc' + - jaraco-tidelift>=1.4 ; extra == 'doc' + - pytest-checkdocs>=2.4 ; extra == 'check' + - pytest-ruff>=0.2.1 ; sys_platform != 'cygwin' and extra == 'check' + - pytest-cov ; extra == 'cover' + - pytest-enabler>=2.2 ; extra == 'enabler' + - pytest-mypy ; extra == 'type' + requires_python: '>=3.9' - pypi: https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl name: iniconfig version: 2.1.0 sha256: 9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760 requires_python: '>=3.8' -- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh3521513_0.conda - sha256: 8aba90dd3322a1d8a7f77eebedde434b7bcafb101a0b047e4f76bffbc858d613 - md5: d22c697b8e00832675afbfdc335f2358 +- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh5552912_0.conda + sha256: b5f7eaba3bb109be49d00a0a8bda267ddf8fa66cc1b54fc5944529ed6f3e8503 + md5: 1849eec35b60082d2bd66b4e36dec2b6 depends: - - __win + - appnope + - __osx - comm >=0.1.1 - debugpy >=1.6.5 - ipython >=7.23.1 @@ -3121,21 +3493,25 @@ packages: - nest-asyncio >=1.4 - packaging >=22 - psutil >=5.7 - - python >=3.9 + - python >=3.10 - pyzmq >=25 - tornado >=6.2 - traitlets >=5.4.0 + - python + constrains: + - appnope >=0.1.2 license: BSD-3-Clause license_family: BSD purls: - - pkg:pypi/ipykernel?source=compressed-mapping - size: 121334 - timestamp: 1753750017851 -- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh82676e8_0.conda - sha256: c49650d0af6dab125dfb8ca1593c24172ae640fa3298530704fe4151499d24b2 - md5: 4aeff93cd0cc9b39f82cc5df70c58a43 + - pkg:pypi/ipykernel?source=hash-mapping + size: 132289 + timestamp: 1761567969884 +- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyh6dadd2b_0.conda + sha256: 75e42103bc3350422896f727041e24767795b214a20f50bf39c371626b8aae8b + md5: f22cb16c5ad68fd33d0f65c8739b6a06 depends: - - __linux + - python + - __win - comm >=0.1.1 - debugpy >=1.6.5 - ipython >=7.23.1 @@ -3145,22 +3521,25 @@ packages: - nest-asyncio >=1.4 - packaging >=22 - psutil >=5.7 - - python >=3.9 + - python >=3.10 - pyzmq >=25 - tornado >=6.2 - traitlets >=5.4.0 + - python + constrains: + - appnope >=0.1.2 license: BSD-3-Clause license_family: BSD purls: - - pkg:pypi/ipykernel?source=compressed-mapping - size: 120251 - timestamp: 1753749937819 -- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.30.0-pyh92f572d_0.conda - sha256: 914c9246beab819973703590f0f8c32dae95a52975104a3e6fafb0d496bc65f0 - md5: dc33a40ba1954857c46db0a25ab8ac90 + - pkg:pypi/ipykernel?source=hash-mapping + size: 132418 + timestamp: 1761567966860 +- conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-7.1.0-pyha191276_0.conda + sha256: a9d6b74115dbd62e19017ff8fa4885b07b5164427f262cc15b5307e5aaf3ee73 + md5: c6f63cfe66adaa5650788e3106b6683a depends: - - __osx - - appnope + - python + - __linux - comm >=0.1.1 - debugpy >=1.6.5 - ipython >=7.23.1 @@ -3170,16 +3549,19 @@ packages: - nest-asyncio >=1.4 - packaging >=22 - psutil >=5.7 - - python >=3.9 + - python >=3.10 - pyzmq >=25 - tornado >=6.2 - traitlets >=5.4.0 + - python + constrains: + - appnope >=0.1.2 license: BSD-3-Clause license_family: BSD purls: - - pkg:pypi/ipykernel?source=compressed-mapping - size: 120339 - timestamp: 1753792936372 + - pkg:pypi/ipykernel?source=hash-mapping + size: 133820 + timestamp: 1761567932044 - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.37.0-pyh8f84b5b_0.conda sha256: e43fa762183b49c3c3b811d41259e94bb14b7bff4a239b747ef4e1c6bbe2702d md5: 177cfa19fe3d74c87a8889286dc64090 @@ -3240,90 +3622,118 @@ packages: - pkg:pypi/isoduration?source=hash-mapping size: 19832 timestamp: 1733493720346 -- pypi: https://files.pythonhosted.org/packages/91/27/c2e68af2f29a7b47b10eafd1a762281c6c2c38856ccc851dcb5851d314de/itk_core-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/3a/4e/e5ade29d4478713426f08abb75f871c15a57f7c08ad7a5587c404de583e8/itk_core-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl name: itk-core version: 5.4.4.post1 - sha256: 8ba1f9f3920051633a46e61e9e3b97ddc3adb001e9252923dfbe0c94c73e1cb6 + sha256: ba88c34c11495cac2a3429777f3eeff7fef7360cf473fb02f164543ccb3774f0 requires_dist: - numpy requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/9e/c3/27474d97eb6af1d7eb805a136c021ef32a0bcb69ebb1000258bc7e38d2c1/itk_core-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/75/53/b80d7065ec14737ed7a98a14ba5e7599420231718b584b775fd7f6102bad/itk_core-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl name: itk-core version: 5.4.4.post1 - sha256: a45ea9301a3663a628817c8da263f25730dbba27f127fcd61448916495019fb8 + sha256: 628e3375b2b1795aa6042e4e01ec0f920d328ec1e5dbd61e27fc341377ac1020 requires_dist: - numpy requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/9f/9b/a34151ac07ad36f0494084b65f7b4394746fe2ccf1a0dc9a9d414064faa1/itk_core-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/d9/1e/23647191e7532b7d5ec2475537f8e7ec9baee30477180b0f7805d0161d6c/itk_core-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl name: itk-core version: 5.4.4.post1 - sha256: d4223762e2bb3775bc6666848e44c6061826f1274876f94f76b1e9dbc6fa2276 + sha256: f2e3ece3e6ad83dcde255bd32ed81244b5ce77822e64a849e2f4f8aef08443db requires_dist: - numpy requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/ce/ff/876d3c2ca5641106d0c83c8391cdd9988bdb7e58dd03c82dcdf10b40f7cf/itk_core-5.4.4.post1-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/f3/f7/370e7609d9dc7a95e7d4838d1cf035f75015132fe7dda02df3a74303d2c3/itk_core-5.4.4.post1-cp311-abi3-win_amd64.whl name: itk-core version: 5.4.4.post1 - sha256: ecdaa78f8303432f3a2bf936cbb44b9c5e95b2495897986d37768f3d7d9f9b47 + sha256: b6759a019afd4b5c01532ea4096ff95cc533ad8d3d8a4d750cee5a03779e964d requires_dist: - numpy requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/54/0d/b683b06536a16118f17ad1d4e9dbe606ce7c9bf26b751dcd715d2d87d3ee/itk_filtering-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/23/6a/bf0fcbc6ad597e351bf9aa168589414513f2bd6f16858487425b15b45605/itk_filtering-5.4.4.post1-cp311-abi3-win_amd64.whl name: itk-filtering version: 5.4.4.post1 - sha256: 4ffb0925ac83989b65674b3401dbc8399149e67df425fd5912e174d2c38e84d0 + sha256: 4584776ecbb3492e8ebfadd2f96a9cd4627bea7948ad8ae2fe3ab14450a47bb6 requires_dist: - itk-numerics==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/69/9a/f1bae269d683d24c09f6494b604d5a431827897d326955d396bd9755ef4d/itk_filtering-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/8c/95/538f02700ab648a099b296c1c7ceec48b38e368916b0b1fb2f6e7634946c/itk_filtering-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl name: itk-filtering version: 5.4.4.post1 - sha256: eb14c551d151773c33097f69ba0473563ab03e352a33a15cec837f0cd7b6efae + sha256: 997c9b0b1debd41aab12480997f343b9459b72535062715fee381ec3ea1488d6 requires_dist: - itk-numerics==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/9e/79/0c172339595838dbecb90d6b96b9063b7d2ce6c7657b36b7f3dba0bc4e1b/itk_filtering-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/a4/8c/d22d4920fa1c1f211c9d74f36dcf820a6d41e9c319c315eda938ad39597f/itk_filtering-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl name: itk-filtering version: 5.4.4.post1 - sha256: 0c651a6a6e55d21362a6cf330cb35d77bbf30e354270f4bf5cc24e36e67c2d6c + sha256: a68c5a9adb6dad7429256074f87a0b85677e5351da5fee4bb0d24ff9f9489986 requires_dist: - itk-numerics==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/af/9e/007e98b5d299df78a088bfcfe4328593757cafa630185c9452ed5f03757e/itk_filtering-5.4.4.post1-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/f2/64/677f5be959b799e5c0927ae36780b82e9b81117e3dd508b4c01f33a7234f/itk_filtering-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl name: itk-filtering version: 5.4.4.post1 - sha256: d835951e9325b08269cc9ee0c71912e6a11f8932e5a850c3583f2815effa7edc + sha256: 4fae68c23c43fb64afbaf8e896743b2d77232576057123f774c7315c04770eb5 requires_dist: - itk-numerics==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/9b/de/b8983fe3662ddab41b4a22f9d5d79d64ea4b5b29557514582a75516b2947/itk_numerics-5.4.4.post1-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/25/fc/646eb6eb6656ed22b746d37b0e25a1bc7fa4f970ca647ceab8e7160ca99a/itk_numerics-5.4.4.post1-cp311-abi3-macosx_10_9_x86_64.whl name: itk-numerics version: 5.4.4.post1 - sha256: a7e1c45fe4bb6ecfe8eac4ab4a2fa181c0cc6d2b9420cf434672a1f0917ea556 + sha256: fcef7440b6c4cb6988ed23624ed8c1cdc486fb48edb93bb7a40eb6f252209fd7 requires_dist: - itk-core==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/9e/62/d58c1729d0a4472c0a05910c7efbe937b792744560505872ec493510558a/itk_numerics-5.4.4.post1-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/6c/6a/2868a0cd0ae08506fede1ae37a251da10fa25b9ab56c173e26370d3a0d13/itk_numerics-5.4.4.post1-cp311-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl name: itk-numerics version: 5.4.4.post1 - sha256: 8c0bde63963fcd924b022e3cd80ac8346f6a32f0c7a14a4289ac997fffc28c72 + sha256: 071a11a8c4435990fb896f52eebca485e959614e1cd7691b8c806a16db1cb901 requires_dist: - itk-core==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/c2/77/09020197d4fbf7a453ddf467d570f2347b945d10d4106ad87029f5f5b486/itk_numerics-5.4.4.post1-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/95/4a/85c22f3b48f1f95d2e01c392c98a95f2b0523bcb551aef4682093790e6f1/itk_numerics-5.4.4.post1-cp311-abi3-win_amd64.whl name: itk-numerics version: 5.4.4.post1 - sha256: 73158a2721eebc3c466db148ccd72cad5c0939c4b221524159324ba4ca0a5a9b + sha256: c0e40fae5ecb1f88aa3a768394568f238746406abc0b5637bd0111d9cbe59081 requires_dist: - itk-core==5.4.4.post1 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/c4/25/38e59be9d63aa67ddbe49c9a26924a1d15db2101daa2c24374217bd6ac7b/itk_numerics-5.4.4.post1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/9c/a1/a7f5c445f3b49696276a5f1d98d0843ea678ff6e04296796b2b9eb079dd9/itk_numerics-5.4.4.post1-cp311-abi3-macosx_11_0_arm64.whl name: itk-numerics version: 5.4.4.post1 - sha256: 91f6aa39f037ddde7f688f16c6ab86e57e78691cc6214cb020f52d8bc1fe728f + sha256: 149e19586def0ab06d66f7964a0470da9c0843c6101aeeaf0137c745f5bfc563 requires_dist: - itk-core==5.4.4.post1 requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/1d/df/5ba47e12638ac537a8166a454c497032af83f2d5eb826bca81024ac8f78c/itkwasm-1.0b195-py3-none-any.whl + name: itkwasm + version: 1.0b195 + sha256: c98eaf4263a89cd3e639f40da0c1e0b021f85903fdfad54606b994c42e0d057a + requires_dist: + - importlib-metadata ; python_full_version < '3.10' + - numpy + - platformdirs ; sys_platform != 'emscripten' + - typing-extensions + - wasmtime>=28.0.0 ; sys_platform != 'emscripten' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/12/c6/906a1c94a9e0d12b6cbc8a36d6fe284d06298d3d3eda14934d21609845ab/itkwasm_downsample-1.8.1-py3-none-any.whl + name: itkwasm-downsample + version: 1.8.1 + sha256: f1315d32a1d80a610c682c3a32ab41aa46b584f91f17a839a7c0b6e3796e60c7 + requires_dist: + - itkwasm-downsample-emscripten ; sys_platform == 'emscripten' + - itkwasm-downsample-wasi ; sys_platform != 'emscripten' + - itkwasm>=1.0b145 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/b5/2b/2cca4261bab978eb3d9f1aa32fe7dcd9021e193bdc88b3dcf0bb366e9f91/itkwasm_downsample_wasi-1.8.1-py3-none-any.whl + name: itkwasm-downsample-wasi + version: 1.8.1 + sha256: a3807838a0e2354c7fcc2ec83ba281884fc80b792a1baacc4215a26a80db6535 + requires_dist: + - importlib-resources + - itkwasm>=1.0b145 + requires_python: '>=3.8' - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda sha256: 92c4d217e2dc68983f724aa983cca5464dcb929c566627b26a2511159667dba8 md5: a4f4c5dc9b80bc50e0d3dc4e6e8f1bd9 @@ -3364,66 +3774,69 @@ packages: - pkg:pypi/jinja2?source=hash-mapping size: 112714 timestamp: 1741263433881 -- conda: https://conda.anaconda.org/conda-forge/linux-64/jpype1-1.4.1-py310hbf28c38_1.conda - sha256: 697f87a8caeb4935d4204d916ad42b017d7e4ab5b803a7fea5ae35ced8a9fec9 - md5: 5f6f3d6c675da6c2efb2ba3dde180381 +- conda: https://conda.anaconda.org/conda-forge/linux-64/jpype1-1.6.0-py311hdf67eae_1.conda + sha256: 0ac94709f352f5499a355c066237a91df4cb08e837b94bc8ef9e0368c1f4ac8b + md5: 8400029dfe9e208c942cfa8a05db34c1 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 - packaging - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE purls: - pkg:pypi/jpype1?source=hash-mapping - size: 429307 - timestamp: 1669728053339 -- conda: https://conda.anaconda.org/conda-forge/osx-64/jpype1-1.4.1-py310ha23aa8a_1.conda - sha256: 9f03ddee8a8bb475ea34210f977530e0958f902db8875c3e381432e1ce195543 - md5: b09d5e483b0bba6ae2b303085b9f4b4f + size: 473382 + timestamp: 1757354036059 +- conda: https://conda.anaconda.org/conda-forge/osx-64/jpype1-1.6.0-py311hd4d69bb_1.conda + sha256: 6bf72575d77a22f95ab80c0e366a0e58c7a8c6c37c6c7c79556dd856eadc21d2 + md5: f7f9e65034bb5161c3450180b3d38345 depends: - - libcxx >=14.0.6 + - __osx >=10.13 + - libcxx >=19 - packaging - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE purls: - pkg:pypi/jpype1?source=hash-mapping - size: 371344 - timestamp: 1669728260315 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/jpype1-1.4.1-py310h2887b22_1.conda - sha256: 0f8b5cf67d46fc58c558c76114acddc048bff514cdbc870ac5477188acd1ff20 - md5: d85f9f4b451469c1776509d680918c89 + size: 413108 + timestamp: 1757354177060 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/jpype1-1.6.0-py311h57a9ea7_1.conda + sha256: 87116ab9b13e07c1328446826618821f2eec7033ddac9dbb9503f8b60b13d14b + md5: e1aa04eea1797031a11ee7c41550289c depends: - - libcxx >=14.0.6 + - __osx >=11.0 + - libcxx >=19 - packaging - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE purls: - pkg:pypi/jpype1?source=hash-mapping - size: 363676 - timestamp: 1669728463246 -- conda: https://conda.anaconda.org/conda-forge/win-64/jpype1-1.4.1-py310h232114e_1.conda - sha256: 28fe2c336ea5b9daff808ddcd5da466c6b53e3e3d622b9323446dc10df69512c - md5: 51a636a96b00fd47ac8aa03d868d0552 + size: 407533 + timestamp: 1757354416998 +- conda: https://conda.anaconda.org/conda-forge/win-64/jpype1-1.6.0-py311h3fd045d_1.conda + sha256: 4aa562c2e90b18821ab5289b6f1fb8528dd054856beedbb16185a0fd09366835 + md5: 6ea72249ed383022486f31853ea5afb5 depends: - packaging - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vs2015_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: Apache-2.0 license_family: APACHE purls: - pkg:pypi/jpype1?source=hash-mapping - size: 336994 - timestamp: 1669728200123 + size: 383603 + timestamp: 1757354251762 - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.12.0-pyhd8ed1ab_0.conda sha256: 889e2a49de796475b5a4bc57d0ba7f4606b368ee2098e353a6d9a14b0e2c6393 md5: 56275442557b3b45752c10980abfe2db @@ -3435,55 +3848,55 @@ packages: - pkg:pypi/json5?source=hash-mapping size: 34114 timestamp: 1743722170015 -- conda: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py310hff52083_1.conda - sha256: ac8e92806a5017740b9a1113f0cab8559cd33884867ec7e99b556eb2fa847690 - md5: ce614a01b0aee1b29cee13d606bcb5d5 +- conda: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py311h38be061_2.conda + sha256: 4e744b30e3002b519c48868b3f5671328274d1d78cc8cbc0cda43057b570c508 + md5: 5dd29601defbcc14ac6953d9504a80a7 depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/jsonpointer?source=hash-mapping - size: 15658 - timestamp: 1725302992487 -- conda: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-3.0.0-py310h2ec42d9_1.conda - sha256: 31196633ceb84ec0fb5641fc07e184351f2bf9e8ec6fc4d0364937d967aed828 - md5: 5ffcadd6c7ab558770473b54f084d9c3 - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 18368 + timestamp: 1756754243123 +- conda: https://conda.anaconda.org/conda-forge/osx-64/jsonpointer-3.0.0-py311h6eed73b_2.conda + sha256: 8e0f5af4d5bd59f52d27926750416638e32a65d58a202593fa0e97f312ad78c3 + md5: 9983b3959da3b695c8da48c93510cbdf + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/jsonpointer?source=hash-mapping - size: 15789 - timestamp: 1725303070637 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/jsonpointer-3.0.0-py310hbe9552e_1.conda - sha256: 1c370862b867e7f3d26ea5eaaa56e60a298281b2722343870309a3c6efee83e0 - md5: 5fbabed21a92bb57aaf0701d3bb3a701 - depends: - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + size: 18407 + timestamp: 1756754411612 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/jsonpointer-3.0.0-py311h267d04e_2.conda + sha256: 92b998fa9e68b7793b5b15882932f7703cdc1cc6e1348d0a1799567ef6f04428 + md5: 0edc5f25c32d86d5b4327e0f4de539f9 + depends: + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/jsonpointer?source=hash-mapping - size: 16203 - timestamp: 1725303244939 -- conda: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-3.0.0-py310h5588dad_1.conda - sha256: 8fa0874cd000f5592719f084abdeeffdb9cf096cc1ba09d45c265bb149a2ad63 - md5: 6810fe21e6fa93f073584994ea178a12 - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 18716 + timestamp: 1756754690458 +- conda: https://conda.anaconda.org/conda-forge/win-64/jsonpointer-3.0.0-py311h1ea47a8_2.conda + sha256: 64bcf78dbbda7ec523672c4b3f085527fd109732518e33907eac6b8049125113 + md5: c8f80d7bee5c66371969936eba774c45 + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/jsonpointer?source=hash-mapping - size: 40682 - timestamp: 1725303369662 + size: 43432 + timestamp: 1756754355044 - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.25.0-pyhe01879c_0.conda sha256: 87ba7cf3a65c8e8d1005368b9aee3f49e295115381b7a0b180e56f7b68b5975f md5: c6e3fd94e058dba67d917f38a11b50ab @@ -3655,14 +4068,14 @@ packages: - pkg:pypi/jupyter-server-terminals?source=hash-mapping size: 19711 timestamp: 1733428049134 -- conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.2.7-pyhd8ed1ab_0.conda - sha256: c1a9b64cc5a96583a977bd233e207f9385f76513bae9cd0a2d0758d369ca2a6e - md5: 83a5ba6ceb40fe5b175e0b7e898e13de +- conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.4.10-pyhd8ed1ab_0.conda + sha256: 1ce33112e545bcfc41f92747f4f8b0f36310937339334bfaabe2496a65b3f5b2 + md5: 0fc7cfcd261709ef5591c1ea3415e8a7 depends: - async-lru >=1.0.0 - - httpx >=0.25.0 + - httpx >=0.25.0,<1 - importlib-metadata >=4.8.3 - - ipykernel >=6.5.0 + - ipykernel >=6.5.0,!=6.30.0 - jinja2 >=3.0.3 - jupyter-lsp >=2.0.0 - jupyter_core @@ -3670,17 +4083,17 @@ packages: - jupyterlab_server >=2.27.1,<3 - notebook-shim >=0.2 - packaging - - python >=3.9 - - setuptools >=40.1.0 + - python >=3.10 + - setuptools >=41.1.0 - tomli >=1.2.2 - tornado >=6.2.0 - traitlets license: BSD-3-Clause license_family: BSD purls: - - pkg:pypi/jupyterlab?source=hash-mapping - size: 8259288 - timestamp: 1736347839437 + - pkg:pypi/jupyterlab?source=compressed-mapping + size: 8034306 + timestamp: 1761146412485 - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda sha256: dc24b900742fdaf1e077d9a3458fd865711de80bca95fe3c6d46610c532c6ef0 md5: fd312693df06da3578383232528c468d @@ -3725,25 +4138,25 @@ packages: purls: [] size: 117831 timestamp: 1646151697040 -- pypi: https://files.pythonhosted.org/packages/1d/70/7f5af2a18a76fe92ea14675f8bd88ce53ee79e37900fa5f1a1d8e0b42998/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/2d/27/bdf1c769c83f74d98cbc34483a972f221440703054894a37d174fba8aa68/kiwisolver-1.4.8-cp311-cp311-win_amd64.whl name: kiwisolver version: 1.4.8 - sha256: c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b + sha256: ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34 requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/98/99/0dd05071654aa44fe5d5e350729961e7bb535372935a45ac89a8924316e6/kiwisolver-1.4.8-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/3a/97/5edbed69a9d0caa2e4aa616ae7df8127e10f6586940aa683a496c2c280b9/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: kiwisolver version: 1.4.8 - sha256: 89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751 + sha256: 3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0 requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/c6/13/e15f804a142353aefd089fadc8f1d985561a15358c97aca27b0979cb0785/kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/4c/45/4a7f896f7467aaf5f56ef093d1f329346f3b594e77c6a3c327b2d415f521/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl name: kiwisolver version: 1.4.8 - sha256: ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d + sha256: 856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561 requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/de/c6/7b9bb8044e150d4d1558423a1568e4f227193662a02231064e3824f37e0a/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/5f/b4/c12b3ac0852a3a68f94598d4c8d569f55361beef6159dce4e7b624160da2/kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl name: kiwisolver version: 1.4.8 - sha256: 034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c + sha256: c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7 requires_python: '>=3.10' - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda sha256: 99df692f7a8a5c27cd14b5fb1374ee55e756631b9c3d659ed3ee60830249b238 @@ -3824,6 +4237,19 @@ packages: - pkg:pypi/lark?source=hash-mapping size: 92093 timestamp: 1734709450256 +- conda: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.17-h717163a_0.conda + sha256: d6a61830a354da022eae93fa896d0991385a875c6bba53c82263a289deda9db8 + md5: 000e85703f0fd9594c81710dd5066471 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libjpeg-turbo >=3.0.0,<4.0a0 + - libtiff >=4.7.0,<4.8.0a0 + license: MIT + license_family: MIT + purls: [] + size: 248046 + timestamp: 1739160907615 - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.44-h1423503_1.conda sha256: 1a620f27d79217c1295049ba214c2f80372062fd251b569e9873d4a953d27554 md5: 0be7c6e070c19105f966d3758448d018 @@ -3836,6 +4262,32 @@ packages: purls: [] size: 676044 timestamp: 1752032747103 +- conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h0aef613_1.conda + sha256: 412381a43d5ff9bbed82cd52a0bbca5b90623f62e41007c9c42d3870c60945ff + md5: 9344155d33912347b37f0ae6c410a835 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 264243 + timestamp: 1745264221534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcups-2.3.3-hb8b1518_5.conda + sha256: cb83980c57e311783ee831832eb2c20ecb41e7dee6e86e8b70b8cef0e43eab55 + md5: d4a250da4737ee127fb1fa6452a9002e + depends: + - __glibc >=2.17,<3.0.a0 + - krb5 >=1.21.3,<1.22.0a0 + - libgcc >=13 + - libstdcxx >=13 + - libzlib >=1.3.1,<2.0a0 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 4523621 + timestamp: 1749905341688 - conda: https://conda.anaconda.org/conda-forge/osx-64/libcxx-20.1.8-h3d58e20_1.conda sha256: 9643d6c5a94499cddb5ae1bccc4f78aef8cfd77bcf6b37ad325bc7232a8a870f md5: d2db320b940047515f7a27f870984fe7 @@ -3856,6 +4308,17 @@ packages: purls: [] size: 568267 timestamp: 1752814881595 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.25-h17f619e_0.conda + sha256: aa8e8c4be9a2e81610ddf574e05b64ee131fab5e0e3693210c9d6d2fba32c680 + md5: 6c77a605a7a689d17d4819c0f8ac9a00 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 73490 + timestamp: 1761979956660 - conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda sha256: d789471216e7aba3c184cd054ed61ce3f6dac6f87a50ec69291b9297f8c18724 md5: c277e0a4d549b03ac1e9d6cbbe3d017b @@ -3944,49 +4407,72 @@ packages: purls: [] size: 141322 timestamp: 1752719767870 -- conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.6-h2dba641_1.conda - sha256: 764432d32db45466e87f10621db5b74363a9f847d2b8b1f9743746cd160f06ab - md5: ede4673863426c0883c0063d853bbd85 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h9ec8514_0.conda + sha256: 25cbdfa65580cfab1b8d15ee90b4c9f1e0d72128f1661449c9a999d341377d54 + md5: 35f29eec58405aaf55e01cb470d8c26a depends: - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - libgcc >=14 license: MIT license_family: MIT purls: [] - size: 57433 - timestamp: 1743434498161 -- conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.4.6-h281671d_1.conda - sha256: 6394b1bc67c64a21a5cc73d1736d1d4193a64515152e861785c44d2cfc49edf3 - md5: 4ca9ea59839a9ca8df84170fab4ceb41 + size: 57821 + timestamp: 1760295480630 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libffi-3.5.2-h750e83c_0.conda + sha256: 277dc89950f5d97f1683f26e362d6dca3c2efa16cb2f6fdb73d109effa1cd3d0 + md5: d214916b24c625bcc459b245d509f22e depends: - __osx >=10.13 license: MIT license_family: MIT purls: [] - size: 51216 - timestamp: 1743434595269 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.4.6-h1da3d7d_1.conda - sha256: c6a530924a9b14e193ea9adfe92843de2a806d1b7dbfd341546ece9653129e60 - md5: c215a60c2935b517dcda8cad4705734d + size: 52573 + timestamp: 1760295626449 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-he5f378a_0.conda + sha256: 9b8acdf42df61b7bfe8bdc545c016c29e61985e79748c64ad66df47dbc2e295f + md5: 411ff7cd5d1472bba0f55c0faf04453b depends: - __osx >=11.0 license: MIT license_family: MIT purls: [] - size: 39839 - timestamp: 1743434670405 -- conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda - sha256: d3b0b8812eab553d3464bbd68204f007f1ebadf96ce30eb0cbc5159f72e353f5 - md5: 85d8fa5e55ed8f93f874b3b23ed54ec6 + size: 40251 + timestamp: 1760295839166 +- conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.5.2-h52bdfb6_0.conda + sha256: ddff25aaa4f0aa535413f5d831b04073789522890a4d8626366e43ecde1534a3 + md5: ba4ad812d2afc22b9a34ce8327a0930f depends: - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: MIT license_family: MIT purls: [] - size: 44978 - timestamp: 1743435053850 + size: 44866 + timestamp: 1760295760649 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfreetype-2.14.1-ha770c72_0.conda + sha256: 4641d37faeb97cf8a121efafd6afd040904d4bca8c46798122f417c31d5dfbec + md5: f4084e4e6577797150f9b04a4560ceb0 + depends: + - libfreetype6 >=2.14.1 + license: GPL-2.0-only OR FTL + purls: [] + size: 7664 + timestamp: 1757945417134 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfreetype6-2.14.1-h73754d4_0.conda + sha256: 4a7af818a3179fafb6c91111752954e29d3a2a950259c14a2fc7ba40a8b03652 + md5: 8e7251989bca326a28f4a5ffbd74557a + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libpng >=1.6.50,<1.7.0a0 + - libzlib >=1.3.1,<2.0a0 + constrains: + - freetype >=2.14.1 + license: GPL-2.0-only OR FTL + purls: [] + size: 386739 + timestamp: 1757945416744 - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.1.0-h767d61c_3.conda sha256: 59a87161212abe8acc57d318b0cc8636eb834cdfdfddcf1f588b5493644b39a3 md5: 9e60c55e725c20d23125a5f0dd69af5d @@ -4011,6 +4497,22 @@ packages: purls: [] size: 29033 timestamp: 1750808224854 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.86.1-h32235b2_2.conda + sha256: fc82277d0d6340743732c48dcbac3f4e9ee36902649a7d9a02622b0713ce3666 + md5: 986dcf488a1aced411da84753d93d078 + depends: + - __glibc >=2.17,<3.0.a0 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 + - libiconv >=1.18,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - pcre2 >=10.46,<10.47.0a0 + constrains: + - glib 2.86.1 *_2 + license: LGPL-2.1-or-later + purls: [] + size: 3933707 + timestamp: 1762787455198 - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.1.0-h767d61c_3.conda sha256: 43710ab4de0cd7ff8467abff8d11e7bb0e36569df04ce1c099d48601818f11d1 md5: 3cd1a7238a0dd3d0860fdefc496cc854 @@ -4021,6 +4523,28 @@ packages: purls: [] size: 447068 timestamp: 1750808138400 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + sha256: c467851a7312765447155e071752d7bf9bf44d610a5687e32706f480aad2833f + md5: 915f5995e94f60e9a4826e0b0920ee88 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: LGPL-2.1-only + purls: [] + size: 790176 + timestamp: 1754908768807 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.1.2-hb03c661_0.conda + sha256: cc9aba923eea0af8e30e0f94f2ad7156e2984d80d1e8e7fe6be5a1f257f0eb32 + md5: 8397539e3a0bbd1695584fb4f927485a + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - jpeg <0.0.0a + license: IJG AND BSD-3-Clause AND Zlib + purls: [] + size: 633710 + timestamp: 1762094827865 - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.1-hb9d3cd8_2.conda sha256: f2591c0069447bbe28d4d696b7fcb0c5bd0b4ac582769b89addbcf26fb3430d8 md5: 1a580f7796c7bf6393fddb8bbbde58dc @@ -4079,6 +4603,17 @@ packages: purls: [] size: 33731 timestamp: 1750274110928 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.50-h421ea60_1.conda + sha256: e75a2723000ce3a4b9fd9b9b9ce77553556c93e475a4657db6ed01abc02ea347 + md5: 7af8e91b0deb5f8e25d1a595dea79614 + depends: + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - libzlib >=1.3.1,<2.0a0 + license: zlib-acknowledgement + purls: [] + size: 317390 + timestamp: 1753879899951 - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda sha256: 0105bd108f19ea8e6a78d2d994a6d4a8db16d19a41212070d2d1d48a63c34161 md5: a587892d3c13b6621a6091be690dbca2 @@ -4117,9 +4652,9 @@ packages: purls: [] size: 202344 timestamp: 1716828757533 -- conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.50.3-hee844dc_1.conda - sha256: 8c4faf560815a6d6b5edadc019f76d22a45171eaa707a1f1d1898ceda74b2e3f - md5: 18d2ac95b507ada9ca159a6bd73255f7 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.0-hee844dc_0.conda + sha256: 4c992dcd0e34b68f843e75406f7f303b1b97c248d18f3c7c330bdc0bc26ae0b3 + md5: 729a572a3ebb8c43933b30edcc628ceb depends: - __glibc >=2.17,<3.0.a0 - icu >=75.1,<76.0a0 @@ -4127,41 +4662,40 @@ packages: - libzlib >=1.3.1,<2.0a0 license: blessing purls: [] - size: 936339 - timestamp: 1753262589168 -- conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.50.3-h875aaf5_1.conda - sha256: 3a585d1ddf823a3d7b033196d4aa769971922a984b0735ba741f3cc756a2e576 - md5: 10de0664b3e6f560c7707890aca8174c + size: 945576 + timestamp: 1762299687230 +- conda: https://conda.anaconda.org/conda-forge/osx-64/libsqlite-3.51.0-h86bffb9_0.conda + sha256: ad151af8192c17591fad0b68c9ffb7849ad9f4be9da2020b38b8befd2c5f6f02 + md5: 1ee9b74571acd6dd87e6a0f783989426 depends: - __osx >=10.13 - - icu >=75.1,<76.0a0 - libzlib >=1.3.1,<2.0a0 license: blessing purls: [] - size: 984580 - timestamp: 1753262751819 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.50.3-h4237e3c_1.conda - sha256: 248ba9622ee91c3ae1266f7b69143adf5031e1f2d94b6d02423e192e47531697 - md5: 6d034f4604ac104a1256204af7d1a534 + size: 986898 + timestamp: 1762300146976 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.0-h8adb53f_0.conda + sha256: b43d198f147f46866e5336c4a6b91668beef698bfba69d1706158460eadb2c1b + md5: 5fb1945dbc6380e6fe7e939a62267772 depends: - __osx >=11.0 - icu >=75.1,<76.0a0 - libzlib >=1.3.1,<2.0a0 license: blessing purls: [] - size: 902818 - timestamp: 1753262833682 -- conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.3-hf5d6505_1.conda - sha256: 9bf199ca8b388d8585c53432949524767532f84a5a881f1cef4808d0e7a3f95a - md5: 8b63428047c82a0b853aa348fe56071c + size: 909508 + timestamp: 1762300078624 +- conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.51.0-hf5d6505_0.conda + sha256: 2373bd7450693bd0f624966e1bee2f49b0bf0ffbc114275ed0a43cf35aec5b21 + md5: d2c9300ebd2848862929b18c264d1b1e depends: - ucrt >=10.0.20348.0 - vc >=14.3,<15 - vc14_runtime >=14.44.35208 license: blessing purls: [] - size: 1287590 - timestamp: 1753262771829 + size: 1292710 + timestamp: 1762299749044 - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.1.0-h8f9b012_3.conda sha256: 7650837344b7850b62fdba02155da0b159cf472b9ab59eb7b472f7bd01dff241 md5: 6d11a5edae89fe413c0569f16d308f5a @@ -4183,16 +4717,62 @@ packages: purls: [] size: 29093 timestamp: 1750808292700 -- conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - sha256: 787eb542f055a2b3de553614b25f09eefb0a0931b0c87dbcce6efdfd92f04f18 - md5: 40b61aab5c7ba9ff276c41cfffe6b80b +- conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.1-h9d88235_1.conda + sha256: e5f8c38625aa6d567809733ae04bb71c161a42e44a9fa8227abe61fa5c60ebe0 + md5: cd5a90476766d53e901500df9215e927 depends: - - libgcc-ng >=12 + - __glibc >=2.17,<3.0.a0 + - lerc >=4.0.0,<5.0a0 + - libdeflate >=1.25,<1.26.0a0 + - libgcc >=14 + - libjpeg-turbo >=3.1.0,<4.0a0 + - liblzma >=5.8.1,<6.0a0 + - libstdcxx >=14 + - libwebp-base >=1.6.0,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - zstd >=1.5.7,<1.6.0a0 + license: HPND + purls: [] + size: 435273 + timestamp: 1762022005702 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.2-he9a06e4_0.conda + sha256: e5ec6d2ad7eef538ddcb9ea62ad4346fde70a4736342c4ad87bd713641eb9808 + md5: 80c07c68d2f6870250959dcc95b209d1 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 37135 + timestamp: 1758626800002 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.6.0-hd42ef1d_0.conda + sha256: 3aed21ab28eddffdaf7f804f49be7a7d701e8f0e46c856d801270b470820a37b + md5: aea31d2e5b1091feca96fcfe945c3cf9 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - libwebp 1.6.0 license: BSD-3-Clause license_family: BSD purls: [] - size: 33601 - timestamp: 1680112270483 + size: 429011 + timestamp: 1752159441324 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda + sha256: 666c0c431b23c6cec6e492840b176dde533d48b7e6fb8883f5071223433776aa + md5: 92ed62436b625154323d40d5f2f11dd7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - pthread-stubs + - xorg-libxau >=1.0.11,<2.0a0 + - xorg-libxdmcp + license: MIT + license_family: MIT + purls: [] + size: 395888 + timestamp: 1727278577118 - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c md5: 5aa797f8787fe7a17d1b0821485b5adc @@ -4258,74 +4838,107 @@ packages: version: 1.0.0 sha256: b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3 requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*' -- conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py310h89163eb_1.conda - sha256: 0bed20ec27dcbcaf04f02b2345358e1161fb338f8423a4ada1cf0f4d46918741 - md5: 8ce3f0332fd6de0d737e2911d329523f +- pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + name: markdown-it-py + version: 4.0.0 + sha256: 87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147 + requires_dist: + - mdurl~=0.1 + - psutil ; extra == 'benchmarking' + - pytest ; extra == 'benchmarking' + - pytest-benchmark ; extra == 'benchmarking' + - commonmark~=0.9 ; extra == 'compare' + - markdown~=3.4 ; extra == 'compare' + - mistletoe~=1.0 ; extra == 'compare' + - mistune~=3.0 ; extra == 'compare' + - panflute~=2.3 ; extra == 'compare' + - markdown-it-pyrs ; extra == 'compare' + - linkify-it-py>=1,<3 ; extra == 'linkify' + - mdit-py-plugins>=0.5.0 ; extra == 'plugins' + - gprof2dot ; extra == 'profiling' + - mdit-py-plugins>=0.5.0 ; extra == 'rtd' + - myst-parser ; extra == 'rtd' + - pyyaml ; extra == 'rtd' + - sphinx ; extra == 'rtd' + - sphinx-copybutton ; extra == 'rtd' + - sphinx-design ; extra == 'rtd' + - sphinx-book-theme~=1.0 ; extra == 'rtd' + - jupyter-sphinx ; extra == 'rtd' + - ipykernel ; extra == 'rtd' + - coverage ; extra == 'testing' + - pytest ; extra == 'testing' + - pytest-cov ; extra == 'testing' + - pytest-regressions ; extra == 'testing' + - requests ; extra == 'testing' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.3-py311h3778330_0.conda + sha256: 66c072c37aefa046f3fd4ca69978429421ef9e8a8572e19de534272a6482e997 + md5: 0954f1a6a26df4a510b54f73b2a0345c depends: - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 constrains: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/markupsafe?source=hash-mapping - size: 23091 - timestamp: 1733219814479 -- conda: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-3.0.2-py310h8e2f543_1.conda - sha256: c3f9a8738211c82e831117f2c5161dc940295aa251ec0f7ed466bced6f861360 - md5: 946e287b30b11071874906e8b87b437c + size: 26016 + timestamp: 1759055312513 +- conda: https://conda.anaconda.org/conda-forge/osx-64/markupsafe-3.0.3-py311he13f9b5_0.conda + sha256: 28c82f7087027a72989cd030d1bb75da289da07ca2a17fe8db1d495fd6ee01f1 + md5: 37b12b2523c1ef48318330b33410567b depends: - __osx >=10.13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 constrains: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/markupsafe?source=hash-mapping - size: 22219 - timestamp: 1733219861095 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py310hc74094e_1.conda - sha256: d907e2b7264ae060c0b79ad4accd7b79a59d43ca75c3ba107e534cd0d58115b5 - md5: f6483697076f2711e6a54031a54314b6 + size: 25452 + timestamp: 1759055544260 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.3-py311ha9b3269_0.conda + sha256: c6b20ca60d739f78525dff778292f7011454befda2cc3e1a725ded897fbf9b33 + md5: df124303925c7ad5d7eb15179d38c4e3 depends: - __osx >=11.0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 constrains: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/markupsafe?source=hash-mapping - size: 22681 - timestamp: 1733219957702 -- conda: https://conda.anaconda.org/conda-forge/win-64/markupsafe-3.0.2-py310h38315fa_1.conda - sha256: deb8505b7ef76d363174d133e2ff814ae75b91ac4c3ae5550a7686897392f4d0 - md5: 79dfc050ae5a7dd4e63e392c984e2576 - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 26326 + timestamp: 1759055494628 +- conda: https://conda.anaconda.org/conda-forge/win-64/markupsafe-3.0.3-py311h3f79411_0.conda + sha256: 975a1dcbdc0ced5af5bab681ec50406cf46f04e99c2aecc2f6b684497287cd7e + md5: f04c6970b6cce548de53b43f6be06586 + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 - constrains: + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + constrains: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/markupsafe?source=hash-mapping - size: 25941 - timestamp: 1733220087179 -- pypi: https://files.pythonhosted.org/packages/1f/78/8bf07bd8fb67ea5665a6af188e70b57fcb2ab67057daa06b85a08e59160a/matplotlib-3.10.3-cp310-cp310-win_amd64.whl + size: 29243 + timestamp: 1759055454856 +- pypi: https://files.pythonhosted.org/packages/10/b7/4aa196155b4d846bd749cf82aa5a4c300cf55a8b5e0dfa5b722a63c0f8a0/matplotlib-3.10.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl name: matplotlib - version: 3.10.3 - sha256: fd5641a9bb9d55f4dd2afe897a53b537c834b9012684c8444cc105895c8c16fd + version: 3.10.7 + sha256: 2222c7ba2cbde7fe63032769f6eb7e83ab3227f47d997a8453377709b7fe3a5a requires_dist: - contourpy>=1.0.1 - cycler>=0.10 @@ -4334,17 +4947,17 @@ packages: - numpy>=1.23 - packaging>=20.0 - pillow>=8 - - pyparsing>=2.3.1 + - pyparsing>=3 - python-dateutil>=2.7 - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' - setuptools-scm>=7 ; extra == 'dev' - setuptools>=64 ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/41/81/cc70b5138c926604e8c9ed810ed4c79e8116ba72e02230852f5c12c87ba2/matplotlib-3.10.3-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/33/cd/b145f9797126f3f809d177ca378de57c45413c5099c5990de2658760594a/matplotlib-3.10.7-cp311-cp311-win_amd64.whl name: matplotlib - version: 3.10.3 - sha256: d3bec61cb8221f0ca6313889308326e7bb303d0d302c5cc9e523b2f2e6c73deb + version: 3.10.7 + sha256: 6516ce375109c60ceec579e699524e9d504cd7578506f01150f7a6bc174a775e requires_dist: - contourpy>=1.0.1 - cycler>=0.10 @@ -4353,17 +4966,17 @@ packages: - numpy>=1.23 - packaging>=20.0 - pillow>=8 - - pyparsing>=2.3.1 + - pyparsing>=3 - python-dateutil>=2.7 - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' - setuptools-scm>=7 ; extra == 'dev' - setuptools>=64 ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/85/c7/1866e972fed6d71ef136efbc980d4d1854ab7ef1ea8152bbd995ca231c81/matplotlib-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/e2/6a/d42588ad895279ff6708924645b5d2ed54a7fb2dc045c8a804e955aeace1/matplotlib-3.10.7-cp311-cp311-macosx_11_0_arm64.whl name: matplotlib - version: 3.10.3 - sha256: a49e39755580b08e30e3620efc659330eac5d6534ab7eae50fa5e31f53ee4e30 + version: 3.10.7 + sha256: d9749313deb729f08207718d29c86246beb2ea3fdba753595b55901dee5d2fd6 requires_dist: - contourpy>=1.0.1 - cycler>=0.10 @@ -4372,17 +4985,17 @@ packages: - numpy>=1.23 - packaging>=20.0 - pillow>=8 - - pyparsing>=2.3.1 + - pyparsing>=3 - python-dateutil>=2.7 - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' - setuptools-scm>=7 ; extra == 'dev' - setuptools>=64 ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/d0/ea/2bba25d289d389c7451f331ecd593944b3705f06ddf593fa7be75037d308/matplotlib-3.10.3-cp310-cp310-macosx_10_12_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/fc/bc/0fb489005669127ec13f51be0c6adc074d7cf191075dab1da9fe3b7a3cfc/matplotlib-3.10.7-cp311-cp311-macosx_10_12_x86_64.whl name: matplotlib - version: 3.10.3 - sha256: 213fadd6348d106ca7db99e113f1bea1e65e383c3ba76e8556ba4a3054b65ae7 + version: 3.10.7 + sha256: 53b492410a6cd66c7a471de6c924f6ede976e963c0f3097a3b7abfadddc67d0a requires_dist: - contourpy>=1.0.1 - cycler>=0.10 @@ -4391,7 +5004,7 @@ packages: - numpy>=1.23 - packaging>=20.0 - pillow>=8 - - pyparsing>=2.3.1 + - pyparsing>=3 - python-dateutil>=2.7 - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' @@ -4410,46 +5023,51 @@ packages: - pkg:pypi/matplotlib-inline?source=hash-mapping size: 14467 timestamp: 1733417051523 -- conda: https://conda.anaconda.org/conda-forge/linux-64/maven-3.9.10-ha770c72_0.conda - sha256: bb9a93dcf29752d5767223de027f431e2304faedd487e8a22c3336acee7d088f - md5: dccd9fd6003d27e14d6135f5de26d01b +- conda: https://conda.anaconda.org/conda-forge/linux-64/maven-3.9.11-ha770c72_0.conda + sha256: 69129d0f8a9941fd2df1558a6eef624b9109d8198a6b0ec15152bc4ede7e17f7 + md5: f0e42f3f305ba9165e3c60152bd6c2fe depends: - openjdk license: Apache-2.0 license_family: APACHE purls: [] - size: 8597416 - timestamp: 1749223944315 -- conda: https://conda.anaconda.org/conda-forge/osx-64/maven-3.9.10-h694c41f_0.conda - sha256: de4b9c0bcd74dc6128f90e05c9a38eaa15ae826d6a6300b332720ce9a0c363c8 - md5: 675b6f26557fb2a27f1176fcc27a57be + size: 8866827 + timestamp: 1754929400378 +- conda: https://conda.anaconda.org/conda-forge/osx-64/maven-3.9.11-h694c41f_0.conda + sha256: 3b16c4568de33807b9a7b4d6b5327297cf93cc2160f7093086e4e805e2e59073 + md5: 2480fadf0a2094141a1a4fd242e5d305 depends: - openjdk license: Apache-2.0 license_family: APACHE purls: [] - size: 8592824 - timestamp: 1749223906461 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/maven-3.9.10-hce30654_0.conda - sha256: 7ba2fae19cdf09edc753fb225ff6d24de27d55637a463aa472d23896ce257966 - md5: ff65d61af5958c988bbf1dadacaa265e + size: 8864375 + timestamp: 1754929441633 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/maven-3.9.11-hce30654_0.conda + sha256: b33f797539dbc54bc0a19e9c7c3e47edd42f500078119c9a9ea58941f931bb97 + md5: 47281b2cee84f7b40a23bde4925cad2c depends: - openjdk license: Apache-2.0 license_family: APACHE purls: [] - size: 8595833 - timestamp: 1749223903819 -- conda: https://conda.anaconda.org/conda-forge/win-64/maven-3.9.10-h57928b3_0.conda - sha256: 5faff4aa23da1d7782051873a39b6d588d73f9a1cdd8c80879997f84cc035c85 - md5: 26965d344f5d0cb57dfae7f1447eddc9 + size: 8865189 + timestamp: 1754929698250 +- conda: https://conda.anaconda.org/conda-forge/win-64/maven-3.9.11-h57928b3_0.conda + sha256: 72331a55b2cc29d7e3dc176ce72683e233773a062df64da608e2595c996c5f55 + md5: 0a2c8d5fbbe869cd726ebdda84c577ae depends: - openjdk license: Apache-2.0 license_family: APACHE purls: [] - size: 8592944 - timestamp: 1749224246155 + size: 8866494 + timestamp: 1754929699403 +- pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + name: mdurl + version: 0.1.2 + sha256: 84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 + requires_python: '>=3.7' - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.1.3-pyh29332c3_0.conda sha256: a67484d7dd11e815a81786580f18b6e4aa2392f292f29183631a6eccc8dc37b3 md5: 7ec6576e328bc128f4982cd646eeba85 @@ -4465,16 +5083,17 @@ packages: timestamp: 1742402716323 - pypi: ./ name: multiscale-spatial-image - version: 2.0.2 - sha256: cfd72235dbb5c1ed9b577cd43bc1c45015e5c215a736b6ca9facc7df3b70047a + version: 2.0.3 + sha256: 749d4f349c5922882275a7b7c6b2e164cf78372d6e28128be93fb5ef11410a23 requires_dist: - - dask - - numpy + - dask>=2025.11.0,<2026 + - ngff-zarr>=0.18.2,<0.19 + - numpy>=2.2.6,<3 - python-dateutil - - spatial-image>=1.2.2 - - xarray-dataclass>=3.0.0 - - xarray>=2025.1.2 - - zarr + - spatial-image>=1.2.3,<2 + - xarray-dataclass>=3.0.0,<4 + - xarray>=2025.6.1,<2026 + - zarr>=3.1.3,<4 - dask-image ; extra == 'dask-image' - pyimagej ; extra == 'imagej' - itk-filtering>=5.3.0 ; extra == 'itk' @@ -4488,12 +5107,12 @@ packages: - pytest ; extra == 'test' - pytest-mypy ; extra == 'test' - urllib3 ; extra == 'test' - requires_python: '>=3.10' + requires_python: '>=3.11' editable: true -- pypi: https://files.pythonhosted.org/packages/1c/c1/25b2f0d46fb7e0b5e2bee61ec3a47fe13eff9e3c2f2234f144858bbe6485/mypy-1.17.0-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/03/96/8ef9a6ff8cedadff4400e2254689ca1dc4b420b92c55255b44573de10c54/mypy-1.17.0-cp311-cp311-macosx_11_0_arm64.whl name: mypy version: 1.17.0 - sha256: ce4a17920ec144647d448fc43725b5873548b1aae6c603225626747ededf582d + sha256: d96b196e5c16f41b4f7736840e8455958e832871990c7ba26bf58175e357ed61 requires_dist: - typing-extensions>=4.6.0 - mypy-extensions>=1.0.0 @@ -4505,10 +5124,10 @@ packages: - pip ; extra == 'install-types' - orjson ; extra == 'faster-cache' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/4f/19/dae6c55e87ee426fb76980f7e78484450cad1c01c55a1dc4e91c930bea01/mypy-1.17.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/82/16/b775047054de4d8dbd668df9137707e54b07fe18c7923839cd1e524bf756/mypy-1.17.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl name: mypy version: 1.17.0 - sha256: 93468cf29aa9a132bceb103bd8475f78cacde2b1b9a94fd978d50d4bdf616c9a + sha256: 24cfcc1179c4447854e9e406d3af0f77736d631ec87d31c6281ecd5025df625d requires_dist: - typing-extensions>=4.6.0 - mypy-extensions>=1.0.0 @@ -4520,10 +5139,10 @@ packages: - pip ; extra == 'install-types' - orjson ; extra == 'faster-cache' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/6a/31/e762baa3b73905c856d45ab77b4af850e8159dffffd86a52879539a08c6b/mypy-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/94/75/3f5a29209f27e739ca57e6350bc6b783a38c7621bdf9cac3ab8a08665801/mypy-1.17.0-cp311-cp311-win_amd64.whl name: mypy version: 1.17.0 - sha256: f8e08de6138043108b3b18f09d3f817a4783912e48828ab397ecf183135d84d6 + sha256: eafaf8b9252734400f9b77df98b4eee3d2eecab16104680d51341c75702cad70 requires_dist: - typing-extensions>=4.6.0 - mypy-extensions>=1.0.0 @@ -4535,10 +5154,10 @@ packages: - pip ; extra == 'install-types' - orjson ; extra == 'faster-cache' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/ae/dc/414760708a4ea1b096bd214d26a24e30ac5e917ef293bc33cdb6fe22d2da/mypy-1.17.0-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/d4/24/82efb502b0b0f661c49aa21cfe3e1999ddf64bf5500fc03b5a1536a39d39/mypy-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl name: mypy version: 1.17.0 - sha256: c004135a300ab06a045c1c0d8e3f10215e71d7b4f5bb9a42ab80236364429937 + sha256: 9d4fe5c72fd262d9c2c91c1117d16aac555e05f5beb2bae6a755274c6eec42be requires_dist: - typing-extensions>=4.6.0 - mypy-extensions>=1.0.0 @@ -4665,6 +5284,69 @@ packages: - pkg:pypi/nest-asyncio?source=hash-mapping size: 11543 timestamp: 1733325673691 +- pypi: https://files.pythonhosted.org/packages/f6/da/f375dacb731228750478642afada12106fa751fd139e6d021fef4b782846/ngff_zarr-0.18.2-py3-none-any.whl + name: ngff-zarr + version: 0.18.2 + sha256: 833199a801ac779934ab53b0cf6c1a643d79e2686375196ce398636e69a599d5 + requires_dist: + - dask[array] + - importlib-resources + - itkwasm-downsample>=1.8.0 + - itkwasm>=1.0b183 + - numpy + - platformdirs + - psutil ; sys_platform != 'emscripten' + - rich + - rich-argparse + - typing-extensions + - zarr + - dask-image ; extra == 'all' + - dask[distributed] ; extra == 'all' + - deepdiff ; extra == 'all' + - furo>=2024.7.18,<2025 ; extra == 'all' + - imagecodecs ; extra == 'all' + - imageio ; extra == 'all' + - itk-filtering>=5.3.0 ; extra == 'all' + - itk-io>=5.3.0 ; extra == 'all' + - itkwasm-image-io ; extra == 'all' + - jsonschema ; extra == 'all' + - myst-parser>=3.0.1,<4 ; extra == 'all' + - nibabel ; extra == 'all' + - pooch ; extra == 'all' + - pytest>=6 ; extra == 'all' + - sphinx-autobuild>=2024.4.16,<2025 ; extra == 'all' + - sphinx-autodoc2>=0.5.0,<0.6 ; extra == 'all' + - sphinx-copybutton>=0.5.2,<0.6 ; extra == 'all' + - sphinx-design>=0.6.0,<0.7 ; extra == 'all' + - sphinx>=7.4.7,<8 ; extra == 'all' + - sphinxext-opengraph>=0.9.1,<0.10 ; extra == 'all' + - tensorstore ; extra == 'all' + - tifffile>=2024.7.24 ; extra == 'all' + - dask-image ; extra == 'cli' + - dask[distributed] ; extra == 'cli' + - imagecodecs ; extra == 'cli' + - imageio ; extra == 'cli' + - itk-filtering>=5.3.0 ; extra == 'cli' + - itk-io>=5.3.0 ; extra == 'cli' + - itkwasm-image-io ; extra == 'cli' + - nibabel ; extra == 'cli' + - tifffile>=2024.7.24 ; extra == 'cli' + - dask-image ; extra == 'dask-image' + - furo>=2024.7.18,<2025 ; extra == 'docs' + - myst-parser>=3.0.1,<4 ; extra == 'docs' + - sphinx-autobuild>=2024.4.16,<2025 ; extra == 'docs' + - sphinx-autodoc2>=0.5.0,<0.6 ; extra == 'docs' + - sphinx-copybutton>=0.5.2,<0.6 ; extra == 'docs' + - sphinx-design>=0.6.0,<0.7 ; extra == 'docs' + - sphinx>=7.4.7,<8 ; extra == 'docs' + - sphinxext-opengraph>=0.9.1,<0.10 ; extra == 'docs' + - itk-filtering>=5.3.0 ; extra == 'itk' + - tensorstore ; extra == 'tensorstore' + - deepdiff ; extra == 'test' + - pooch ; extra == 'test' + - pytest>=6 ; extra == 'test' + - jsonschema ; extra == 'validate' + requires_python: '>=3.9' - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_1.conda sha256: 3636eec0e60466a00069b47ce94b6d88b01419b6577d8e393da44bb5bc8d3468 md5: 7ba3f09fceae6a120d664217e58fe686 @@ -4689,105 +5371,109 @@ packages: - pkg:pypi/notebook-shim?source=hash-mapping size: 16817 timestamp: 1733408419340 -- pypi: https://files.pythonhosted.org/packages/14/c0/6d72cde772bcec196b7188731d41282993b2958440f77fdf0db216f722da/numcodecs-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/3b/6a/64c25a089e8537441fe67c09ecb7f3f7fb5d98cd04faf01f605d43aca41c/numcodecs-0.16.3-cp311-cp311-macosx_11_0_arm64.whl name: numcodecs - version: 0.13.1 - sha256: 96add4f783c5ce57cc7e650b6cac79dd101daf887c479a00a29bc1487ced180b + version: 0.16.3 + sha256: e2afe73d5ebaf9ca0cd5c83aad945da80d29a33d860a80d43a7248491d8813ff requires_dist: - - numpy>=1.7 + - numpy>=1.24 + - typing-extensions - sphinx ; extra == 'docs' - sphinx-issues ; extra == 'docs' - pydata-sphinx-theme ; extra == 'docs' - numpydoc ; extra == 'docs' - - mock ; extra == 'docs' - - msgpack ; extra == 'msgpack' - - pcodec>=0.2.0 ; extra == 'pcodec' - coverage ; extra == 'test' - pytest ; extra == 'test' - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' - importlib-metadata ; extra == 'test-extras' + - msgpack ; extra == 'msgpack' - zfpy>=1.0.0 ; extra == 'zfpy' - - numpy<2.0.0 ; extra == 'zfpy' - requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/16/e4/b9ec2f4dfc34ecf724bc1beb96a9f6fa9b91801645688ffadacd485089da/numcodecs-0.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/aa/51/03aece765108fe247717105b5131856546e5428f22a56a14ffdebd017424/numcodecs-0.16.3-cp311-cp311-win_amd64.whl name: numcodecs - version: 0.13.1 - sha256: 96e42f73c31b8c24259c5fac6adba0c3ebf95536e37749dc6c62ade2989dca28 + version: 0.16.3 + sha256: f7bb7f2c46eb7ec8a1c5f8d8fe1a72c222256dd6d6df5af9eaac7a6b905f3575 requires_dist: - - numpy>=1.7 + - numpy>=1.24 + - typing-extensions - sphinx ; extra == 'docs' - sphinx-issues ; extra == 'docs' - pydata-sphinx-theme ; extra == 'docs' - numpydoc ; extra == 'docs' - - mock ; extra == 'docs' - - msgpack ; extra == 'msgpack' - - pcodec>=0.2.0 ; extra == 'pcodec' - coverage ; extra == 'test' - pytest ; extra == 'test' - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' - importlib-metadata ; extra == 'test-extras' + - msgpack ; extra == 'msgpack' - zfpy>=1.0.0 ; extra == 'zfpy' - - numpy<2.0.0 ; extra == 'zfpy' - requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/94/1d/f81fc1fa9210bbea97258242393a1f9feab4f6d8fb201f81f76003005e4b/numcodecs-0.13.1-cp310-cp310-macosx_11_0_arm64.whl + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/b6/0f/49d1f74a216149240c4b9403218111f11670bd11af0919fda357bb056bf2/numcodecs-0.16.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: numcodecs - version: 0.13.1 - sha256: 237b7171609e868a20fd313748494444458ccd696062f67e198f7f8f52000c15 + version: 0.16.3 + sha256: 85a7f1cae9eb18b85709af46570bf9c60056e7155c4c8f610e8080c68124d0e5 requires_dist: - - numpy>=1.7 + - numpy>=1.24 + - typing-extensions - sphinx ; extra == 'docs' - sphinx-issues ; extra == 'docs' - pydata-sphinx-theme ; extra == 'docs' - numpydoc ; extra == 'docs' - - mock ; extra == 'docs' - - msgpack ; extra == 'msgpack' - - pcodec>=0.2.0 ; extra == 'pcodec' - coverage ; extra == 'test' - pytest ; extra == 'test' - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' - importlib-metadata ; extra == 'test-extras' + - msgpack ; extra == 'msgpack' - zfpy>=1.0.0 ; extra == 'zfpy' - - numpy<2.0.0 ; extra == 'zfpy' - requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/fe/90/299952e1477954ec4f92813fa03e743945e3ff711bb4f6c9aace431cb3da/numcodecs-0.13.1-cp310-cp310-win_amd64.whl + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/d4/cc/917a85972537498f2bbd7914047efc98babc8667587ceb9dcb228378978a/numcodecs-0.16.3-cp311-cp311-macosx_10_13_x86_64.whl name: numcodecs - version: 0.13.1 - sha256: eda7d7823c9282e65234731fd6bd3986b1f9e035755f7fed248d7d366bb291ab + version: 0.16.3 + sha256: 95c9f2a49bef10cf91ad614a761cba9bfe96656b60c12540e1080de5d909b4ca requires_dist: - - numpy>=1.7 + - numpy>=1.24 + - typing-extensions - sphinx ; extra == 'docs' - sphinx-issues ; extra == 'docs' - pydata-sphinx-theme ; extra == 'docs' - numpydoc ; extra == 'docs' - - mock ; extra == 'docs' - - msgpack ; extra == 'msgpack' - - pcodec>=0.2.0 ; extra == 'pcodec' - coverage ; extra == 'test' - pytest ; extra == 'test' - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' - importlib-metadata ; extra == 'test-extras' + - msgpack ; extra == 'msgpack' - zfpy>=1.0.0 ; extra == 'zfpy' - - numpy<2.0.0 ; extra == 'zfpy' - requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/22/c2/4b9221495b2a132cc9d2eb862e21d42a009f5a60e45fc44b00118c174bff/numpy-2.2.6-cp310-cp310-macosx_11_0_arm64.whl + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/31/0a/f354fb7176b81747d870f7991dc763e157a934c717b67b58456bc63da3df/numpy-2.2.6-cp311-cp311-win_amd64.whl name: numpy version: 2.2.6 - sha256: 8e41fd67c52b86603a91c1a505ebaef50b3314de0213461c7a6e99c9a3beff90 + sha256: e8213002e427c69c45a52bbd94163084025f533a55a59d6f9c5b820774ef3303 requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/9a/3e/ed6db5be21ce87955c0cbd3009f2803f59fa08df21b5df06862e2d8e2bdd/numpy-2.2.6-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/b3/2b/64e1affc7972decb74c9e29e5649fac940514910960ba25cd9af4488b66c/numpy-2.2.6-cp311-cp311-macosx_11_0_arm64.whl name: numpy version: 2.2.6 - sha256: b412caa66f72040e6d268491a59f2c43bf03eb6c96dd8f0307829feb7fa2b6fb + sha256: c820a93b0255bc360f53eca31a0e676fd1101f673dda8da93454a12e23fc5f7a requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/b3/dd/2238b898e51bd6d389b7389ffb20d7f4c10066d80351187ec8e303a5a475/numpy-2.2.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: numpy version: 2.2.6 - sha256: f0fd6321b839904e15c46e0d257fdd101dd7f530fe03fd6359c1ea63738703f3 + sha256: ba10f8411898fc418a521833e014a77d3ca01c15b0c6cdcce6a0d2897e6dbbdf requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/b4/63/3de6a34ad7ad6646ac7d2f55ebc6ad439dbbf9c4370017c50cf403fb19b5/numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/da/a8/4f83e2aa666a9fbf56d6118faaaf5f1974d456b1823fda0a176eff722839/numpy-2.2.6-cp311-cp311-macosx_10_9_x86_64.whl name: numpy version: 2.2.6 - sha256: fc7b73d02efb0e18c000e9ad8b83480dfcd5dfd11065997ed4c6747470ae8915 + sha256: f9f1adb22318e121c5c69a09142811a201ef17ab257a1e66ca3025065b7f53ae requires_python: '>=3.10' - pypi: https://files.pythonhosted.org/packages/0d/81/264aca3b548d77554039abd29ed75e4bc57c1d4e2f1ba6a76c1d547ff4d2/ome_types-0.5.3-py3-none-any.whl name: ome-types @@ -4837,79 +5523,105 @@ packages: - pytest-qt ; extra == 'test-qt' - qtpy ; extra == 'test-qt' requires_python: '>=3.8' -- conda: https://conda.anaconda.org/conda-forge/linux-64/openjdk-8.0.412-h2b85faf_2.conda - sha256: bff8961ae8e39519e84a9071c4fca44c379ae5ba49405f6eff40428c1a1221ac - md5: 77bcabeebd10e407cac1683cedefc6b1 +- conda: https://conda.anaconda.org/conda-forge/linux-64/openjdk-25.0.1-h5755bd7_0.conda + sha256: 19b2268bf2d1fc4b4f48a68b9bfac620370c1b7f539671279053b0d3bcc348f1 + md5: a40ce38da029d1d272bfd9bd7510f901 + depends: + - __glibc >=2.17,<3.0.a0 + - alsa-lib >=1.2.14,<1.3.0a0 + - fontconfig >=2.15.0,<3.0a0 + - fonts-conda-ecosystem + - giflib >=5.2.2,<5.3.0a0 + - harfbuzz >=12.1.0 + - lcms2 >=2.17,<3.0a0 + - libcups >=2.3.3,<2.4.0a0 + - libfreetype >=2.14.1 + - libfreetype6 >=2.14.1 + - libgcc >=14 + - libjpeg-turbo >=3.1.0,<4.0a0 + - libpng >=1.6.50,<1.7.0a0 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - xorg-libx11 >=1.8.12,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxi >=1.8.2,<2.0a0 + - xorg-libxrandr >=1.5.4,<2.0a0 + - xorg-libxrender >=0.9.12,<0.10.0a0 + - xorg-libxt >=1.3.1,<2.0a0 + - xorg-libxtst >=1.2.5,<2.0a0 license: GPL-2.0-or-later WITH Classpath-exception-2.0 license_family: GPL purls: [] - size: 92336414 - timestamp: 1741229061139 -- conda: https://conda.anaconda.org/conda-forge/osx-64/openjdk-8.0.412-h6e16a3a_2.conda - sha256: f83bdea642267263690cd6a75c008aba25a80617e628bb9c83b8543dfe1abc3e - md5: 7f7e83ea585f6e5ee219e77986ef5506 + size: 117033638 + timestamp: 1762057253080 +- conda: https://conda.anaconda.org/conda-forge/osx-64/openjdk-25.0.1-h2014cc5_0.conda + sha256: 66370d3804a3580be74cf04c5137f927368180aced228432b1334905aad68633 + md5: dc31b52f802094dc4bf4bc5c45b1b40d depends: - - __osx >=10.13 + - libzlib >=1.3.1,<2.0a0 license: GPL-2.0-or-later WITH Classpath-exception-2.0 license_family: GPL purls: [] - size: 39795679 - timestamp: 1741229250752 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjdk-8.0.412-h5505292_2.conda - sha256: f744fced7d00704dac041a9c59bd189694dc63aa1b61c88b305ef263a9aafdc8 - md5: 7f0b91ee8a91f96d9d95eac845a00b87 + size: 195316806 + timestamp: 1762054272032 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjdk-25.0.1-hde7fb7b_0.conda + sha256: 1ed6cc66741f3072443b672a7d9f7264a8addaa633f0febac0dd717ef92e490f + md5: 1ef116a339b4e49eb54659db80a7cebd depends: - - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 license: GPL-2.0-or-later WITH Classpath-exception-2.0 license_family: GPL purls: [] - size: 38123853 - timestamp: 1741229252610 -- conda: https://conda.anaconda.org/conda-forge/win-64/openjdk-8.0.412-h57928b3_2.conda - sha256: 1175a1400309644e851c49d352f751012121cb09bc638226806c05d9ad2cf0cf - md5: 670dd6e667b2621c2f82b3e0dbafb147 + size: 193198695 + timestamp: 1762054336869 +- conda: https://conda.anaconda.org/conda-forge/win-64/openjdk-25.0.1-hda6743d_0.conda + sha256: 2eba52d8bf181f32287f383bb67918c99e33da3afab0c634cf86078ffb3cc7e7 + md5: 1d0f849284a59851b7e9a1bb083dce37 + depends: + - symlink-exe-runtime >=1.0,<2.0a0 + - vc14_runtime license: GPL-2.0-or-later WITH Classpath-exception-2.0 license_family: GPL purls: [] - size: 86526561 - timestamp: 1741229131552 -- conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.5.1-h7b32b05_0.conda - sha256: 942347492164190559e995930adcdf84e2fea05307ec8012c02a505f5be87462 - md5: c87df2ab1448ba69169652ab9547082d + size: 194865283 + timestamp: 1762054342371 +- conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda + sha256: a47271202f4518a484956968335b2521409c8173e123ab381e775c358c67fe6d + md5: 9ee58d5c534af06558933af3c845a780 depends: - __glibc >=2.17,<3.0.a0 - ca-certificates - - libgcc >=13 + - libgcc >=14 license: Apache-2.0 license_family: Apache purls: [] - size: 3131002 - timestamp: 1751390382076 -- conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.5.1-hc426f3f_0.conda - sha256: d5dc7da2ef7502a14f88443675c4894db336592ac7b9ae0517e1339ebb94f38a - md5: f1ac2dbc36ce2017bd8f471960b1261d + size: 3165399 + timestamp: 1762839186699 +- conda: https://conda.anaconda.org/conda-forge/osx-64/openssl-3.6.0-h230baf5_0.conda + sha256: 36fe9fb316be22fcfb46d5fa3e2e85eec5ef84f908b7745f68f768917235b2d5 + md5: 3f50cdf9a97d0280655758b735781096 depends: - __osx >=10.13 - ca-certificates license: Apache-2.0 license_family: Apache purls: [] - size: 2744123 - timestamp: 1751391059798 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.5.1-h81ee809_0.conda - sha256: f94fde0f096fa79794c8aa0a2665630bbf9026cc6438e8253f6555fc7281e5a8 - md5: a8ac77e7c7e58d43fa34d60bd4361062 + size: 2778996 + timestamp: 1762840724922 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda + sha256: ebe93dafcc09e099782fe3907485d4e1671296bc14f8c383cb6f3dfebb773988 + md5: b34dc4172653c13dcf453862f251af2b depends: - __osx >=11.0 - ca-certificates license: Apache-2.0 license_family: Apache purls: [] - size: 3071649 - timestamp: 1751390309393 -- conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda - sha256: 2b2eb73b0661ff1aed55576a3d38614852b5d857c2fa9205ac115820c523306c - md5: d124fc2fd7070177b5e2450627f8fc1a + size: 3108371 + timestamp: 1762839712322 +- conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.6.0-h725018a_0.conda + sha256: 6d72d6f766293d4f2aa60c28c244c8efed6946c430814175f959ffe8cab899b3 + md5: 84f8fb4afd1157f59098f618cd2437e4 depends: - ca-certificates - ucrt >=10.0.20348.0 @@ -4918,8 +5630,8 @@ packages: license: Apache-2.0 license_family: Apache purls: [] - size: 9327033 - timestamp: 1751392489008 + size: 9440812 + timestamp: 1762841722179 - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_1.conda sha256: 1840bd90d25d4930d60f57b4f38d4e0ae3f5b8db2819638709c36098c6ba770c md5: e51f1e4089cad105b6cac64bd8166587 @@ -4944,10 +5656,10 @@ packages: - pkg:pypi/packaging?source=hash-mapping size: 62477 timestamp: 1745345660407 -- pypi: https://files.pythonhosted.org/packages/2c/95/79ab37aa4c25d1e7df953dde407bb9c3e4ae47d154bc0dd1692f3a6dcf8c/pandas-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/07/5f/63760ff107bcf5146eee41b38b3985f9055e710a72fdd637b791dea3495c/pandas-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: pandas version: 2.3.1 - sha256: cd05b72ec02ebfb993569b4931b2e16fbb4d6ad6ce80224a3ee838387d83a191 + sha256: 3462c3735fe19f2638f2c3a40bd94ec2dc5ba13abbb032dd2fa1f540a075509d requires_dist: - numpy>=1.22.4 ; python_full_version < '3.11' - numpy>=1.23.2 ; python_full_version == '3.11.*' @@ -5035,10 +5747,10 @@ packages: - xlsxwriter>=3.0.5 ; extra == 'all' - zstandard>=0.19.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/3f/d6/d7f5777162aa9b48ec3910bca5a58c9b5927cfd9cfde3aa64322f5ba4b9f/pandas-2.3.1-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/76/1c/ccf70029e927e473a4476c00e0d5b32e623bff27f0402d0a92b7fc29bb9f/pandas-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl name: pandas version: 2.3.1 - sha256: 2eb789ae0274672acbd3c575b0598d213345660120a257b47b5dafdc618aec83 + sha256: 2b0540963d83431f5ce8870ea02a7430adca100cec8a050f0811f8e31035541b requires_dist: - numpy>=1.22.4 ; python_full_version < '3.11' - numpy>=1.23.2 ; python_full_version == '3.11.*' @@ -5126,10 +5838,10 @@ packages: - xlsxwriter>=3.0.5 ; extra == 'all' - zstandard>=0.19.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/80/bf/7938dddc5f01e18e573dcfb0f1b8c9357d9b5fa6ffdee6e605b92efbdff2/pandas-2.3.1-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/c8/7b/bdcb1ed8fccb63d04bdb7635161d0ec26596d92c9d7a6cce964e7876b6c1/pandas-2.3.1-cp311-cp311-win_amd64.whl name: pandas version: 2.3.1 - sha256: 3583d348546201aff730c8c47e49bc159833f971c2899d6097bce68b9112a4f1 + sha256: b3cd4273d3cb3707b6fffd217204c52ed92859533e31dc03b7c5008aa933aaab requires_dist: - numpy>=1.22.4 ; python_full_version < '3.11' - numpy>=1.23.2 ; python_full_version == '3.11.*' @@ -5217,10 +5929,10 @@ packages: - xlsxwriter>=3.0.5 ; extra == 'all' - zstandard>=0.19.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/c4/ca/aa97b47287221fa37a49634532e520300088e290b20d690b21ce3e448143/pandas-2.3.1-cp310-cp310-macosx_10_9_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/ec/d3/3c37cb724d76a841f14b8f5fe57e5e3645207cc67370e4f84717e8bb7657/pandas-2.3.1-cp311-cp311-macosx_11_0_arm64.whl name: pandas version: 2.3.1 - sha256: 22c2e866f7209ebc3a8f08d75766566aae02bcc91d196935a1d9e59c7b990ac9 + sha256: fe7317f578c6a153912bd2292f02e40c1d8f253e93c599e82620c7f69755c74f requires_dist: - numpy>=1.22.4 ; python_full_version < '3.11' - numpy>=1.23.2 ; python_full_version == '3.11.*' @@ -5347,6 +6059,19 @@ packages: version: 0.12.1 sha256: a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08 requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.46-h1321c63_0.conda + sha256: 5c7380c8fd3ad5fc0f8039069a45586aa452cf165264bc5a437ad80397b32934 + md5: 7fa07cb0fb1b625a089ccc01218ee5b1 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 1209177 + timestamp: 1756742976157 - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda sha256: 202af1de83b585d36445dc1fda94266697341994d1a3328fabde4989e1b3d07a md5: d0d408b1f18883a944376da5cf8101ea @@ -5369,10 +6094,10 @@ packages: - pkg:pypi/pickleshare?source=hash-mapping size: 11748 timestamp: 1733327448200 -- pypi: https://files.pythonhosted.org/packages/4c/5d/45a3553a253ac8763f3561371432a90bdbe6000fbdcf1397ffe502aa206c/pillow-11.3.0-cp310-cp310-macosx_10_10_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/cb/39/ee475903197ce709322a17a866892efb560f57900d9af2e55f86db51b0a5/pillow-11.3.0-cp311-cp311-macosx_11_0_arm64.whl name: pillow version: 11.3.0 - sha256: 1b9c17fd4ace828b3003dfd1e30bff24863e0eb59b535e8f80194d9cc7ecf860 + sha256: 9c412fddd1b77a75aa904615ebaa6001f169b26fd467b4be93aded278266b288 requires_dist: - furo ; extra == 'docs' - olefile ; extra == 'docs' @@ -5399,10 +6124,10 @@ packages: - typing-extensions ; python_full_version < '3.10' and extra == 'typing' - defusedxml ; extra == 'xmp' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/7c/c8/67c12ab069ef586a25a4a79ced553586748fad100c77c0ce59bb4983ac98/pillow-11.3.0-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/db/26/77f8ed17ca4ffd60e1dcd220a6ec6d71210ba398cfa33a13a1cd614c5613/pillow-11.3.0-cp311-cp311-macosx_10_10_x86_64.whl name: pillow version: 11.3.0 - sha256: 65dc69160114cdd0ca0f35cb434633c75e8e7fad4cf855177a05bf38678f73ad + sha256: 1cd110edf822773368b396281a2293aeb91c90a2db00d78ea43e7e861631b722 requires_dist: - furo ; extra == 'docs' - olefile ; extra == 'docs' @@ -5429,10 +6154,10 @@ packages: - typing-extensions ; python_full_version < '3.10' and extra == 'typing' - defusedxml ; extra == 'xmp' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/f1/cc/29c0f5d64ab8eae20f3232da8f8571660aa0ab4b8f1331da5c2f5f9a938e/pillow-11.3.0-cp311-cp311-win_amd64.whl name: pillow version: 11.3.0 - sha256: 19d2ff547c75b8e3ff46f4d9ef969a06c30ab2d4263a9e287733aa8b2429ce8f + sha256: 1a992e86b0dd7aeb1f053cd506508c0999d710a8f07b4c791c63843fc6a807ac requires_dist: - furo ; extra == 'docs' - olefile ; extra == 'docs' @@ -5459,10 +6184,10 @@ packages: - typing-extensions ; python_full_version < '3.10' and extra == 'typing' - defusedxml ; extra == 'xmp' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/f0/16/1a6bf01fb622fb9cf5c91683823f073f053005c849b1f52ed613afcf8dae/pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/f2/2f/d7675ecae6c43e9f12aa8d58b6012683b20b6edfbdac7abcb4e6af7a3784/pillow-11.3.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl name: pillow version: 11.3.0 - sha256: 4445fa62e15936a028672fd48c4c11a66d641d2c05726c7ec1f8ba6a572036ae + sha256: 106064daa23a745510dabce1d84f29137a37224831d88eb4ce94bb187b1d7e5f requires_dist: - furo ; extra == 'docs' - olefile ; extra == 'docs' @@ -5500,6 +6225,19 @@ packages: - slicerator>=0.9.8 - tifffile requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.46.4-h54a6638_1.conda + sha256: 43d37bc9ca3b257c5dd7bf76a8426addbdec381f6786ff441dc90b1a49143b6a + md5: c01af13bdc553d1a8fbfff6e8db075f0 + depends: + - libgcc >=14 + - libstdcxx >=14 + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + license: MIT + license_family: MIT + purls: [] + size: 450960 + timestamp: 1754665235234 - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.8-pyhe01879c_0.conda sha256: 0f48999a28019c329cd3f6fd2f01f09fc32cc832f7d6bbe38087ddac858feaa3 md5: 424844562f5d337077b445ec6b1398a7 @@ -5523,9 +6261,9 @@ packages: - pytest-benchmark ; extra == 'testing' - coverage ; extra == 'testing' requires_python: '>=3.9' -- conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_1.conda - sha256: bedda6b36e8e42b0255179446699a0cf08051e6d9d358dd0dd0e787254a3620e - md5: b3e783e8e8ed7577cf0b6dee37d1fbac +- conda: https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_3.conda + sha256: 032405adb899ba7c7cc24d3b4cd4e7f40cf24ac4f253a8e385a4f44ccb5e0fc6 + md5: d2bbbd293097e664ffb01fc4cdaf5729 depends: - packaging >=20.0 - platformdirs >=2.5.0 @@ -5535,24 +6273,24 @@ packages: license_family: BSD purls: - pkg:pypi/pooch?source=hash-mapping - size: 54116 - timestamp: 1733421432357 -- conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.2.0-pyha770c72_0.conda - sha256: d0bd8cce5f31ae940934feedec107480c00f67e881bf7db9d50c6fc0216a2ee0 - md5: 17e487cc8b5507cd3abc09398cf27949 + size: 55588 + timestamp: 1754941801129 +- conda: https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.4.0-pyha770c72_0.conda + sha256: 5eee94ab06bb74ad164862d15c18e932493c5b959928e7889b91dee73f550152 + md5: c130573bb7a166e93d5bd01c94ae38e1 depends: - cfgv >=2.0.0 - identify >=1.0.0 - nodeenv >=0.11.1 - - python >=3.9 + - python >=3.10 - pyyaml >=5.1 - virtualenv >=20.10.0 license: MIT license_family: MIT purls: - pkg:pypi/pre-commit?source=hash-mapping - size: 195854 - timestamp: 1742475656293 + size: 200293 + timestamp: 1762692428418 - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl name: progressbar2 version: 4.5.0 @@ -5595,62 +6333,76 @@ packages: - pkg:pypi/prompt-toolkit?source=hash-mapping size: 271841 timestamp: 1744724188108 -- conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.0.0-py310ha75aee5_0.conda - sha256: 31e46270c73cac2b24a7f3462ca03eb39f21cbfdb713b0d41eb61c00867eabe9 - md5: da7d592394ff9084a23f62a1186451a2 +- conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-7.1.3-py311haee01d2_0.conda + sha256: 6a0b791e00368b6b635c65d5fb31d385129da790d21923387c6b546230ffdf14 + md5: 2092b7977bc8e05eb17a1048724593a4 depends: + - python - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/psutil?source=hash-mapping - size: 354476 - timestamp: 1740663252954 -- conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.0.0-py310hbb8c376_0.conda - sha256: 614c230961fab2ed8f7087fa81ae0cb5c6a6b3b9aea6d7d021dfad38c0aa349c - md5: c1d3e75575208aa864c8f0ae1ed6842e + size: 513789 + timestamp: 1762092898190 +- conda: https://conda.anaconda.org/conda-forge/osx-64/psutil-7.1.3-py311h62e9434_0.conda + sha256: 2b16aa4a8d1df8810129d3edbe74d760c826dc998ee65a4b0db3957fc7d97374 + md5: 76219ffe585f6877d15dbbd28c5a93c4 depends: + - python - __osx >=10.13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/psutil?source=hash-mapping - size: 360590 - timestamp: 1740663319060 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.0.0-py310h078409c_0.conda - sha256: c4aa4d0e144691383a88214ef02cc67909fccd5885601bafc9eaaf8bbe1c2877 - md5: 0079de80b6bf6e1c5c9ea067dce6bb05 + size: 524561 + timestamp: 1762092999229 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-7.1.3-py311h5bb9006_0.conda + sha256: ea916cf3e0ac41d9eb6d644b8317b2cf4878d974339e56ab081cc2544315d4d1 + md5: cf10a93bacbb33e52075e536051efe97 depends: + - python - __osx >=11.0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python 3.11.* *_cpython + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/psutil?source=hash-mapping - size: 363458 - timestamp: 1740663509903 -- conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.0.0-py310ha8f682b_0.conda - sha256: 61c016c40848168bc565ceb8f3a78ad2d9288ffbe4236bcec312ef554f1caef2 - md5: ec78bb694e0ea34958e8f479e723499e - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 526877 + timestamp: 1762093036674 +- conda: https://conda.anaconda.org/conda-forge/win-64/psutil-7.1.3-py311hf893f09_0.conda + sha256: 62611ce54d62682f9e37100bb3af4da1a9da49d631fd505521e20647a6e2e171 + md5: 697ef79a96ce3fb39ca62aa58a8915c7 + depends: + - python + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/psutil?source=hash-mapping - size: 369926 - timestamp: 1740663706146 + size: 532233 + timestamp: 1762092931133 +- conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda + sha256: 9c88f8c64590e9567c6c80823f0328e58d3b1efb0e1c539c0315ceca764e0973 + md5: b3c17d95b5a10c6e64a21fa17573e70e + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + purls: [] + size: 8252 + timestamp: 1726802366959 - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda sha256: a7713dfe30faf17508ec359e0bc7e0983f5d94682492469bd462cdaae9c64d83 md5: 7d9daffbb8d8e0af0f769dbbcd173a54 @@ -5672,10 +6424,10 @@ packages: - pkg:pypi/pure-eval?source=hash-mapping size: 16668 timestamp: 1733569518868 -- pypi: https://files.pythonhosted.org/packages/17/d9/110de31880016e2afc52d8580b397dbe47615defbf09ca8cf55f56c62165/pyarrow-21.0.0-cp310-cp310-macosx_12_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/6e/0b/77ea0600009842b30ceebc3337639a7380cd946061b620ac1a2f3cb541e2/pyarrow-21.0.0-cp311-cp311-win_amd64.whl name: pyarrow version: 21.0.0 - sha256: e563271e2c5ff4d4a4cbeb2c83d5cf0d4938b891518e676025f7268c6fe5fe26 + sha256: 555ca6935b2cbca2c0e932bedd853e9bc523098c39636de9ad4693b5b1df86d6 requires_dist: - pytest ; extra == 'test' - hypothesis ; extra == 'test' @@ -5683,10 +6435,10 @@ packages: - pytz ; extra == 'test' - pandas ; extra == 'test' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/44/28/b6672962639e85dc0ac36f71ab3a8f5f38e01b51343d7aa372a6b56fa3f3/pyarrow-21.0.0-cp310-cp310-manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/74/dc/035d54638fc5d2971cbf1e987ccd45f1091c83bcf747281cf6cc25e72c88/pyarrow-21.0.0-cp311-cp311-manylinux_2_28_x86_64.whl name: pyarrow version: 21.0.0 - sha256: 26bfd95f6bff443ceae63c65dc7e048670b7e98bc892210acba7e4995d3d4b51 + sha256: 40ebfcb54a4f11bcde86bc586cbd0272bac0d516cfa539c799c2453768477569 requires_dist: - pytest ; extra == 'test' - hypothesis ; extra == 'test' @@ -5694,10 +6446,10 @@ packages: - pytz ; extra == 'test' - pandas ; extra == 'test' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/7b/f5/c372ef60593d713e8bfbb7e0c743501605f0ad00719146dc075faf11172b/pyarrow-21.0.0-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/94/dc/80564a3071a57c20b7c32575e4a0120e8a330ef487c319b122942d665960/pyarrow-21.0.0-cp311-cp311-macosx_12_0_arm64.whl name: pyarrow version: 21.0.0 - sha256: 9d9f8bcb4c3be7738add259738abdeddc363de1b80e3310e04067aa1ca596634 + sha256: c077f48aab61738c237802836fc3844f85409a46015635198761b0d6a688f87b requires_dist: - pytest ; extra == 'test' - hypothesis ; extra == 'test' @@ -5705,10 +6457,10 @@ packages: - pytz ; extra == 'test' - pandas ; extra == 'test' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/df/5f/c1c1997613abf24fceb087e79432d24c19bc6f7259cab57c2c8e5e545fab/pyarrow-21.0.0-cp310-cp310-macosx_12_0_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/ea/cc/3b51cb2db26fe535d14f74cab4c79b191ed9a8cd4cbba45e2379b5ca2746/pyarrow-21.0.0-cp311-cp311-macosx_12_0_x86_64.whl name: pyarrow version: 21.0.0 - sha256: fee33b0ca46f4c85443d6c450357101e47d53e6c3f008d658c27a2d020d44c79 + sha256: 689f448066781856237eca8d1975b98cace19b8dd2ab6145bf49475478bcaa10 requires_dist: - pytest ; extra == 'test' - hypothesis ; extra == 'test' @@ -5759,31 +6511,31 @@ packages: - pytest-cov ; extra == 'test' - pytest>=6.0 ; extra == 'test' requires_python: '>=3.7' -- pypi: https://files.pythonhosted.org/packages/31/0d/c8f7593e6bc7066289bbc366f2235701dcbebcd1ff0ef8e64f6f239fb47d/pydantic_core-2.33.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/24/2f/3cfa7244ae292dd850989f328722d2aef313f74ffc471184dc509e1e4e5a/pydantic_core-2.33.2-cp311-cp311-macosx_11_0_arm64.whl name: pydantic-core version: 2.33.2 - sha256: 6bdfe4b3789761f3bcb4b1ddf33355a71079858958e3a552f16d5af19768fef2 + sha256: e799c050df38a639db758c617ec771fd8fb7a5f8eaaa4b27b101f266b216a246 requires_dist: - typing-extensions>=4.6.0,!=4.7.0 requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/3f/8d/71db63483d518cbbf290261a1fc2839d17ff89fce7089e08cad07ccfce67/pydantic_core-2.33.2-cp311-cp311-macosx_10_12_x86_64.whl name: pydantic-core version: 2.33.2 - sha256: b0379a2b24882fef529ec3b4987cb5d003b9cda32256024e6fe1586ac45fc640 + sha256: 4c5b0a576fb381edd6d27f0a85915c6daf2f8138dc5c267a57c08a62900758c7 requires_dist: - typing-extensions>=4.6.0,!=4.7.0 requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/a3/44/3f0b95fafdaca04a483c4e685fe437c6891001bf3ce8b2fded82b9ea3aa1/pydantic_core-2.33.2-cp310-cp310-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/47/bc/cd720e078576bdb8255d5032c5d63ee5c0bf4b7173dd955185a1d658c456/pydantic_core-2.33.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: pydantic-core version: 2.33.2 - sha256: 0e5b2671f05ba48b94cb90ce55d8bdcaaedb8ba00cc5359f6810fc918713983d + sha256: 881b21b5549499972441da4758d662aeea93f1923f953e9cbaff14b8b9565aef requires_dist: - typing-extensions>=4.6.0,!=4.7.0 requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/e5/92/b31726561b5dae176c2d2c2dc43a9c5bfba5d32f96f8b4c0a600dd492447/pydantic_core-2.33.2-cp310-cp310-macosx_10_12_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/fe/1b/25b7cccd4519c0b23c2dd636ad39d381abf113085ce4f7bec2b0dc755eb1/pydantic_core-2.33.2-cp311-cp311-win_amd64.whl name: pydantic-core version: 2.33.2 - sha256: 2b3d326aaef0c0399d9afffeb6367d5e26ddc24d351dbc9c636840ac355dc5d8 + sha256: 1e063337ef9e9820c77acc768546325ebe04ee38b08703244c1309cccc4f1bab requires_dist: - typing-extensions>=4.6.0,!=4.7.0 requires_python: '>=3.9' @@ -5817,68 +6569,66 @@ packages: - pooch ; extra == 'notebooks' - scikit-image ; extra == 'notebooks' requires_python: '>=3.9' -- conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-11.1-py310h89b807b_0.conda - sha256: 88af0d48364d6db060f5c71f77ccc8e4e81bce23c1a99c2ebe622b5a89c31b47 - md5: 4ecf2b32b866552a48bdd1977560ea5b +- conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-core-12.0-py311h0e44a47_2.conda + sha256: f3b72f528cc995816b861f2748b7b07c7482e4b5aebceb4dee5704b95ec3dc85 + md5: a731b5846ea715e96255eb0202b59e1d depends: - __osx >=10.13 - - libffi >=3.4.6,<3.5.0a0 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libffi >=3.5.2,<3.6.0a0 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - setuptools license: MIT license_family: MIT purls: - pkg:pypi/pyobjc-core?source=hash-mapping - size: 437119 - timestamp: 1750208075204 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-core-11.1-py310h3532944_0.conda - sha256: fc141a7916b9384a8f47377556dc3ca8dc226861f09c5091c2d75a93a8ed1053 - md5: 2a096a01894c3c06fc1eae475355a748 + size: 488163 + timestamp: 1762460784370 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-core-12.0-py311hce6e4fa_2.conda + sha256: d0cc488759fcd2d682af159e9b697ea0da82c3bbefd0f5b0e45a6aae78af298a + md5: 18175d83c89972402b71fcfaaff73079 depends: - __osx >=11.0 - - libffi >=3.4.6,<3.5.0a0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - libffi >=3.5.2,<3.6.0a0 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 - setuptools license: MIT license_family: MIT purls: - pkg:pypi/pyobjc-core?source=hash-mapping - size: 428146 - timestamp: 1750208002425 -- conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-11.1-py310hae5a141_0.conda - sha256: 782be39def56924ce91550e5c6f0e3999b8e2e615420923c50a7f6d0db09e955 - md5: ea2f8c853d4294cd112627c03a52e3e5 + size: 480143 + timestamp: 1762461289516 +- conda: https://conda.anaconda.org/conda-forge/osx-64/pyobjc-framework-cocoa-12.0-py311hbebd54f_2.conda + sha256: 50d546724df3d717226a90f0b1dbc2298d14489dbeed1260dcaf7528b228b778 + md5: fa56408d7b9d88688e09fcd8e487c7e8 depends: - __osx >=10.13 - - libffi >=3.4.6,<3.5.0a0 - - pyobjc-core 11.1.* - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libffi >=3.5.2,<3.6.0a0 + - pyobjc-core 12.0.* + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT - license_family: MIT purls: - pkg:pypi/pyobjc-framework-cocoa?source=hash-mapping - size: 339382 - timestamp: 1750225354351 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-framework-cocoa-11.1-py310h4e4eb3c_0.conda - sha256: fee857f9560a790edd9e0404aadbaaa1e37d92959a49527c1e16e15961fb1565 - md5: 799376cd7965c83679c592216af9be6b + size: 378480 + timestamp: 1762486447269 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-framework-cocoa-12.0-py311h9049b8e_2.conda + sha256: bc1f527674117d4eb146bb0ab4e178dcfbb38cb279b89ffa8d9b05089849805f + md5: f5a3e4d649e8b23e0f3dc7e67842f175 depends: - __osx >=11.0 - - libffi >=3.4.6,<3.5.0a0 - - pyobjc-core 11.1.* - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - libffi >=3.5.2,<3.6.0a0 + - pyobjc-core 12.0.* + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: MIT - license_family: MIT purls: - pkg:pypi/pyobjc-framework-cocoa?source=hash-mapping - size: 340584 - timestamp: 1750225413269 + size: 378907 + timestamp: 1762486106493 - pypi: https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl name: pyparsing version: 3.2.3 @@ -5912,15 +6662,15 @@ packages: - pkg:pypi/pysocks?source=hash-mapping size: 21085 timestamp: 1733217331982 -- pypi: https://files.pythonhosted.org/packages/29/16/c8a903f4c4dffe7a12843191437d7cd8e32751d5de349d45d3fe69544e87/pytest-8.4.1-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl name: pytest - version: 8.4.1 - sha256: 539c70ba6fcead8e78eebbf1115e8b589e7565830d7d006a8723f19ac8a0afb7 + version: 9.0.1 + sha256: 67be0030d194df2dfa7b556f2e56fb3c3315bd5c8822c6951162b92b32ce7dad requires_dist: - colorama>=0.4 ; sys_platform == 'win32' - exceptiongroup>=1 ; python_full_version < '3.11' - - iniconfig>=1 - - packaging>=20 + - iniconfig>=1.0.1 + - packaging>=22 - pluggy>=1.5,<2 - pygments>=2.7.2 - tomli>=1 ; python_full_version < '3.11' @@ -5931,7 +6681,7 @@ packages: - requests ; extra == 'dev' - setuptools ; extra == 'dev' - xmlschema ; extra == 'dev' - requires_python: '>=3.9' + requires_python: '>=3.10' - pypi: https://files.pythonhosted.org/packages/bf/93/25ed3c02e15c4ef1b04cbda7c708ffc5da755986aaacfb48db1f9e84a996/pytest_mypy-1.0.1-py3-none-any.whl name: pytest-mypy version: 1.0.1 @@ -5941,99 +6691,103 @@ packages: - mypy>=1.0 - pytest>=7.0 requires_python: '>=3.8' -- conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.18-hd6af730_0_cpython.conda - sha256: 4111e5504fa4f4fb431d3a73fa606daccaf23a5a1da0f17a30db70ffad9336a7 - md5: 4ea0c77cdcb0b81813a0436b162d7316 +- conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.14-hd63d673_2_cpython.conda + build_number: 2 + sha256: 5b872f7747891e50e990a96d2b235236a5c66cc9f8c9dcb7149aee674ea8145a + md5: c4202a55b4486314fbb8c11bc43a29a0 depends: - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.7.0,<3.0a0 - - libffi >=3.4,<4.0a0 - - libgcc >=13 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 - liblzma >=5.8.1,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.50.0,<4.0a0 - - libuuid >=2.38.1,<3.0a0 + - libsqlite >=3.50.4,<4.0a0 + - libuuid >=2.41.2,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.5.0,<4.0a0 + - openssl >=3.5.4,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata constrains: - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: Python-2.0 purls: [] - size: 25042108 - timestamp: 1749049293621 -- conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.10.18-h93e8a92_0_cpython.conda - sha256: 6a8d4122fa7406d31919eee6cf8e0185f4fb13596af8fdb7c7ac46d397b02de8 - md5: 00299cefe3c38a8e200db754c4f025c4 + size: 30874708 + timestamp: 1761174520369 +- conda: https://conda.anaconda.org/conda-forge/osx-64/python-3.11.14-h74c2667_2_cpython.conda + build_number: 2 + sha256: 0a17479efb8df514c3777c015ffe430d38a3a59c01dc46358e87d7ff459c9aeb + md5: 37ac5f13a245f08746e0d658b245d670 depends: - __osx >=10.13 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.7.0,<3.0a0 - - libffi >=3.4,<4.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 - liblzma >=5.8.1,<6.0a0 - - libsqlite >=3.50.0,<4.0a0 + - libsqlite >=3.50.4,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.5.0,<4.0a0 + - openssl >=3.5.4,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata constrains: - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: Python-2.0 purls: [] - size: 12921103 - timestamp: 1749048830353 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.10.18-h6cefb37_0_cpython.conda - sha256: a9b9a74a98348019b28be674cc64c23d28297f3d0d9ebe079e81521b5ab5d853 - md5: 2732121b53b3651565a84137c795605d + size: 15697126 + timestamp: 1761174493171 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.14-h18782d2_2_cpython.conda + build_number: 2 + sha256: 64a2bc6be8582fae75f1f2da7bdc49afd81c2793f65bb843fc37f53c99734063 + md5: da948e6cd735249ab4cfbb3fdede785e depends: - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.7.0,<3.0a0 - - libffi >=3.4,<4.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 - liblzma >=5.8.1,<6.0a0 - - libsqlite >=3.50.0,<4.0a0 + - libsqlite >=3.50.4,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.5.0,<4.0a0 + - openssl >=3.5.4,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata constrains: - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: Python-2.0 purls: [] - size: 12385306 - timestamp: 1749048585934 -- conda: https://conda.anaconda.org/conda-forge/win-64/python-3.10.18-h8c5b53a_0_cpython.conda - sha256: 548f9e542e72925d595c66191ffd17056f7c0029b7181e2d99dbef47e4f3f646 - md5: f1775dab55c8a073ebd024bfb2f689c1 + size: 14788204 + timestamp: 1761174033541 +- conda: https://conda.anaconda.org/conda-forge/win-64/python-3.11.14-h0159041_2_cpython.conda + build_number: 2 + sha256: d5f455472597aefcdde1bc39bca313fcb40bf084f3ad987da0441f2a2ec242e4 + md5: 02a9ba5950d8b78e6c9862d6ba7a5045 depends: - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.7.0,<3.0a0 - - libffi >=3.4,<4.0a0 + - libexpat >=2.7.1,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 - liblzma >=5.8.1,<6.0a0 - - libsqlite >=3.50.0,<4.0a0 + - libsqlite >=3.50.4,<4.0a0 - libzlib >=1.3.1,<2.0a0 - - openssl >=3.5.0,<4.0a0 + - openssl >=3.5.4,<4.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 constrains: - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: Python-2.0 purls: [] - size: 15832933 - timestamp: 1749048670944 + size: 18514691 + timestamp: 1761172844103 - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda sha256: d6a17ece93bbd5139e02d2bd7dbfa80bee1a4261dced63f65f679121686bf664 md5: 5b8d21249ff20967101ffa321cab24e8 @@ -6092,17 +6846,17 @@ packages: - mypy-ipython ; extra == 'tests' - blessings ; extra == 'tests' requires_python: '>=3.9.0' -- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.10-8_cp310.conda +- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.11-8_cp311.conda build_number: 8 - sha256: 7ad76fa396e4bde336872350124c0819032a9e8a0a40590744ff9527b54351c1 - md5: 05e00f3b21e88bb3d658ac700b2ce58c + sha256: fddf123692aa4b1fc48f0471e346400d9852d96eeed77dbfdd746fa50a8ff894 + md5: 8fcb6b0e2161850556231336dae58358 constrains: - - python 3.10.* *_cpython + - python 3.11.* *_cpython license: BSD-3-Clause license_family: BSD purls: [] - size: 6999 - timestamp: 1752805924192 + size: 7003 + timestamp: 1752805919375 - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda sha256: 8d2a8bf110cc1fc3df6904091dead158ba3e614d8402a83e51ed3a8aa93cdeb0 md5: bc8e3267d44011051f2eb14d22fb0960 @@ -6114,9 +6868,9 @@ packages: - pkg:pypi/pytz?source=hash-mapping size: 189015 timestamp: 1742920947249 -- conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py310h282bd7d_0.conda - sha256: c53c9d4981f97f41b88c2969d8aeb14d7e2685081a0138bab6915f8a3284d602 - md5: 2aa8173e07509e44d39e5bc72c9a6237 +- conda: https://conda.anaconda.org/conda-forge/win-64/pywin32-311-py311hefeebc8_1.conda + sha256: e3ef7e0cc53111ab81b8a9dd3eabc1374d7420d4c9fce3c8631e73310203ad55 + md5: c1cfe9f5d8e278cc4d2d4c7b0126634d depends: - python - vc >=14.3,<15 @@ -6125,19 +6879,19 @@ packages: - vc >=14.3,<15 - vc14_runtime >=14.44.35208 - ucrt >=10.0.20348.0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: PSF-2.0 license_family: PSF purls: - pkg:pypi/pywin32?source=hash-mapping - size: 6292907 - timestamp: 1752564081905 -- conda: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.15-py310h9e98ed7_0.conda - sha256: ca5952309c4faa76c617488da87ac8b77dbeb86b4dae7b767211b2ededf98575 - md5: f49c829097b0b3074801911047e4fd70 - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 6729388 + timestamp: 1756487145061 +- conda: https://conda.anaconda.org/conda-forge/win-64/pywinpty-2.0.15-py311hda3d55a_1.conda + sha256: b1f6b3a907e36f7af486faf3892f47fab42993c13c934cc19855bbae227f2b18 + md5: e5dd9afed138ff193d4593f1b15a388b + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - vc >=14.2,<15 - vc14_runtime >=14.29.30139 @@ -6146,135 +6900,134 @@ packages: license_family: MIT purls: - pkg:pypi/pywinpty?source=hash-mapping - size: 206592 - timestamp: 1738661787718 -- conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310h89163eb_2.conda - sha256: 5fba7f5babcac872c72f6509c25331bcfac4f8f5031f0102530a41b41336fce6 - md5: fd343408e64cf1e273ab7c710da374db + size: 215911 + timestamp: 1759557817579 +- conda: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.3-py311h3778330_0.conda + sha256: 7dc5c27c0c23474a879ef5898ed80095d26de7f89f4720855603c324cca19355 + md5: 707c3d23f2476d3bfde8345b4e7d7853 depends: - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - yaml >=0.2.5,<0.3.0a0 license: MIT license_family: MIT purls: - pkg:pypi/pyyaml?source=hash-mapping - size: 182769 - timestamp: 1737454971552 -- conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.2-py310h8e2f543_2.conda - sha256: ee888a231818e98603439abcad0084ea7600399c4633d3d9415d42a5e7e3aee1 - md5: a421bbf2cdd0d7ec3357a01d2d48709e + size: 211606 + timestamp: 1758892088237 +- conda: https://conda.anaconda.org/conda-forge/osx-64/pyyaml-6.0.3-py311he13f9b5_0.conda + sha256: be448cd6d759cd21d40bc9a3850672187a8d37fcd3abdc3f637abc0ca1ed2f44 + md5: 2d9ba0ec796516a17d3c87efdb881aff depends: - __osx >=10.13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - yaml >=0.2.5,<0.3.0a0 license: MIT license_family: MIT purls: - pkg:pypi/pyyaml?source=hash-mapping - size: 168613 - timestamp: 1737454886846 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.2-py310hc74094e_2.conda - sha256: 0c46719507e1664b1085f2142b8250250c6aae01ec367d18068688efeba445ec - md5: b8be3d77488c580d2fd81c9bb3cacdf1 + size: 196463 + timestamp: 1758892069824 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyyaml-6.0.3-py311ha9b3269_0.conda + sha256: 747c1b94222481a727aeeb912407f862a93a1bb4e704be3a8236768182ac0290 + md5: 109a9c326951cc9ab5df6a06cf5b930a depends: - __osx >=11.0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 - yaml >=0.2.5,<0.3.0a0 license: MIT license_family: MIT purls: - pkg:pypi/pyyaml?source=hash-mapping - size: 166853 - timestamp: 1737454973579 -- conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.2-py310h38315fa_2.conda - sha256: 49dd492bdf2c479118ca9d61a59ce259594853d367a1a0548926f41a6e734724 - md5: 9986c3731bb820db0830dd0825c26cf9 - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 195537 + timestamp: 1758892104856 +- conda: https://conda.anaconda.org/conda-forge/win-64/pyyaml-6.0.3-py311h3f79411_0.conda + sha256: 22dcc6c6779e5bd970a7f5208b871c02bf4985cf4d827d479c4a492ced8ce577 + md5: 4e9b677d70d641f233b29d5eab706e20 + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 - yaml >=0.2.5,<0.3.0a0 license: MIT license_family: MIT purls: - pkg:pypi/pyyaml?source=hash-mapping - size: 157941 - timestamp: 1737455030235 -- conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.0.0-py310h71f11fc_0.conda - sha256: dfcd2fc9c015b220da06a96886c7d7185794cb6383a75dbb90704d8a974ec2a8 - md5: de862cdd8a959ac9a751fd8a5f7dc82d + size: 188290 + timestamp: 1758892467876 +- conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-27.1.0-py311h2315fbb_0.conda + sha256: 719104f31c414166a20281c973b6e29d1a2ab35e7930327368949895b8bc5629 + md5: 6c87a0f4566469af3585b11d89163fd7 depends: + - python - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - libsodium >=1.0.20,<1.0.21.0a0 - - libstdcxx >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libstdcxx >=14 + - libgcc >=14 - zeromq >=4.3.5,<4.4.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/pyzmq?source=hash-mapping - size: 337637 - timestamp: 1749898667502 -- conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.0.0-py310he599bfe_0.conda - sha256: 1deab06b044f5d9f18af1e992bf6739cca1d48f1f959d247f912a0fa43ee35f2 - md5: d6b109994d82ec6debf2ea88ebd17948 + size: 386618 + timestamp: 1757387012835 +- conda: https://conda.anaconda.org/conda-forge/osx-64/pyzmq-27.1.0-py311h0ab6910_0.conda + sha256: a0200b5e781c22a5d7b64fd0edf5e9ab881772f7a15a6bc2359db8d0ac437bb3 + md5: 840bdfbb93e35d650205af10883ff8a0 depends: + - python + - libcxx >=19 - __osx >=10.13 - - libcxx >=18 - - libsodium >=1.0.20,<1.0.21.0a0 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 - zeromq >=4.3.5,<4.4.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/pyzmq?source=hash-mapping - size: 315363 - timestamp: 1749898692758 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.0.0-py310h6d25ecc_0.conda - sha256: b5d598124b3607db59d23825fda82028ef855705d6ce61be39193d256f4ff7ac - md5: 34c860f7b69689442ca306bc4066d533 + size: 362304 + timestamp: 1757387126324 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-27.1.0-py311h13abfa4_0.conda + sha256: 5a213744d267241e23f849c7671dc97eb98d7789fb559bf5d423ae1884294c7e + md5: 0d16883d4ab2d3fcb38460d018d6762f depends: + - python - __osx >=11.0 - - libcxx >=18 - - libsodium >=1.0.20,<1.0.21.0a0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - libcxx >=19 + - python 3.11.* *_cpython - zeromq >=4.3.5,<4.4.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/pyzmq?source=hash-mapping - size: 310794 - timestamp: 1749898783632 -- conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.0.0-py310h656833d_0.conda - sha256: d3ead56c27a0aba2432343cde83aa4bc7948cf525ace92f676043c25a87b224b - md5: 3a89550776350a08c0763ee60a0f07dd + size: 359600 + timestamp: 1757387159663 +- conda: https://conda.anaconda.org/conda-forge/win-64/pyzmq-27.1.0-py311hb77b9c8_0.conda + sha256: 1f146a62329093139fbe7fc109b595f19ca2b44beb921d0e1c6e61d2cb5ebef1 + md5: 96460f14570e237d27b475ef8238fdf3 depends: - - libsodium >=1.0.20,<1.0.21.0a0 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 - zeromq >=4.3.5,<4.3.6.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause license_family: BSD purls: - pkg:pypi/pyzmq?source=hash-mapping - size: 320154 - timestamp: 1749898868544 + size: 363690 + timestamp: 1757387035331 - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8c095d6_2.conda sha256: 2d6d0c026902561ed77cd646b5021aef2d4db22e57a5b0178dfc669231e06d2c md5: 283b96675859b20a825f8fa30f311446 @@ -6374,56 +7127,69 @@ packages: - pkg:pypi/rfc3987-syntax?source=hash-mapping size: 22913 timestamp: 1752876729969 -- conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.26.0-py310hbcd0ec0_0.conda - sha256: ae8cf73bae0b831a39fecd20caf7e706c95cc208dee0a5dc9b06735c54f48636 - md5: e59b1ae4bfd0e42664fa3336bff5b4f0 +- pypi: https://files.pythonhosted.org/packages/25/7a/b0178788f8dc6cafce37a212c99565fa1fe7872c70c6c9c1e1a372d9d88f/rich-14.2.0-py3-none-any.whl + name: rich + version: 14.2.0 + sha256: 76bc51fe2e57d2b1be1f96c524b890b816e334ab4c1e45888799bfaab0021edd + requires_dist: + - ipywidgets>=7.5.1,<9 ; extra == 'jupyter' + - markdown-it-py>=2.2.0 + - pygments>=2.13.0,<3.0.0 + requires_python: '>=3.8.0' +- pypi: https://files.pythonhosted.org/packages/04/80/97b6f357ac458d9ad9872cc3183ca09ef7439ac89e030ea43053ba1294b6/rich_argparse-1.7.2-py3-none-any.whl + name: rich-argparse + version: 1.7.2 + sha256: 0559b1f47a19bbeb82bf15f95a057f99bcbbc98385532f57937f9fc57acc501a + requires_dist: + - rich>=11.0.0 + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.28.0-py311h902ca64_2.conda + sha256: 8b670fea4f85f6a677742d8dcd51864b4d24dc8963285f2bba005a3ee07a2d14 + md5: 58792895b13e0f13610ed6dbd2c3ab06 depends: - python - - libgcc >=13 + - libgcc >=14 - __glibc >=2.17,<3.0.a0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 constrains: - __glibc >=2.17 license: MIT - license_family: MIT purls: - pkg:pypi/rpds-py?source=hash-mapping - size: 386174 - timestamp: 1751467491402 -- conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.26.0-py310h4c9a074_0.conda - sha256: 15bc230db2868aa6eea3eb092c55e7600fbec7ba24b61942c81f90c4d43d9c88 - md5: d680bb079db85bf6a2e8c73e0a5ff077 + size: 379580 + timestamp: 1762984750620 +- conda: https://conda.anaconda.org/conda-forge/osx-64/rpds-py-0.28.0-py311hd2a4513_2.conda + sha256: 3cc75a181cdb72287d20547985169cb94ded2a3c5c17b1231cfbcddd872b3a51 + md5: 9f55e7e8848c5646e12b995c05f71a69 depends: - python - __osx >=10.13 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 constrains: - __osx >=10.13 license: MIT - license_family: MIT purls: - pkg:pypi/rpds-py?source=hash-mapping - size: 377568 - timestamp: 1751467168435 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.26.0-py310hb4f9fe2_0.conda - sha256: 0ce34e36ceb22ba5000075cc0fb91514eaf32fe00dd2ffcaf85bf27767a01bdf - md5: 6f54eb8c39035868f7c0dbff88d44ac8 + size: 364448 + timestamp: 1762984649713 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.28.0-py311h71babbd_2.conda + sha256: 2518b5ca71ff9a0f517ae94ddc3dc27dd352c389383ddb0709237680cbd17ee9 + md5: b8081c4f1f46ee6ffcaaa2ec2eed5232 depends: - python - - python 3.10.* *_cpython + - python 3.11.* *_cpython - __osx >=11.0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 constrains: - __osx >=11.0 license: MIT - license_family: MIT purls: - pkg:pypi/rpds-py?source=hash-mapping - size: 363857 - timestamp: 1751467182181 -- conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.26.0-py310h034784e_0.conda - sha256: 81f6a3c5eb93343ef3d885efb01189e0c9fd6256a4c2f81cfcc48b254a170456 - md5: 76116295f7a1cdf33369fd1dacca4d0b + size: 354433 + timestamp: 1762984590513 +- conda: https://conda.anaconda.org/conda-forge/win-64/rpds-py-0.28.0-py311hf51aa87_2.conda + sha256: d2d87bf5adef7a099ac1e9e52f21dc4c2d7c7c9f7f28909644c5fed434406b74 + md5: 7241ade2b7f6e9d23f364a055338b98d depends: - python - vc >=14.3,<15 @@ -6432,17 +7198,16 @@ packages: - vc >=14.3,<15 - vc14_runtime >=14.44.35208 - ucrt >=10.0.20348.0 - - python_abi 3.10.* *_cp310 + - python_abi 3.11.* *_cp311 license: MIT - license_family: MIT purls: - pkg:pypi/rpds-py?source=hash-mapping - size: 248892 - timestamp: 1751467081480 -- pypi: https://files.pythonhosted.org/packages/78/2f/4966032c5f8cc7e6a60f1b2e0ad686293b9474b65246b0c642e3ef3badd0/scipy-1.15.3-cp310-cp310-macosx_10_13_x86_64.whl + size: 237687 + timestamp: 1762984503722 +- pypi: https://files.pythonhosted.org/packages/4a/4a/66ba30abe5ad1a3ad15bfb0b59d22174012e8056ff448cb1644deccbfed2/scipy-1.15.3-cp311-cp311-macosx_12_0_arm64.whl name: scipy version: 1.15.3 - sha256: a345928c86d535060c9c2b25e71e87c39ab2f22fc96e9636bd74d1dbf9de448c + sha256: 34716e281f181a02341ddeaad584205bd2fd3c242063bd3423d61ac259ca7eba requires_dist: - numpy>=1.23.5,<2.5 - pytest ; extra == 'test' @@ -6482,10 +7247,10 @@ packages: - doit>=0.36.0 ; extra == 'dev' - pydevtool ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/8e/6d/41991e503e51fc1134502694c5fa7a1671501a17ffa12716a4a9151af3df/scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/96/ab/5cc9f80f28f6a7dff646c5756e559823614a42b1939d86dd0ed550470210/scipy-1.15.3-cp311-cp311-macosx_10_13_x86_64.whl name: scipy version: 1.15.3 - sha256: 9e2abc762b0811e09a0d3258abee2d98e0c703eee49464ce0069590846f31d40 + sha256: 993439ce220d25e3696d1b23b233dd010169b62f6456488567e830654ee37a6b requires_dist: - numpy>=1.23.5,<2.5 - pytest ; extra == 'test' @@ -6525,10 +7290,10 @@ packages: - doit>=0.36.0 ; extra == 'dev' - pydevtool ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/a0/6e/0c3bf90fae0e910c274db43304ebe25a6b391327f3f10b5dcc638c090795/scipy-1.15.3-cp310-cp310-macosx_12_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/ab/a7/0ddaf514ce8a8714f6ed243a2b391b41dbb65251affe21ee3077ec45ea9a/scipy-1.15.3-cp311-cp311-win_amd64.whl name: scipy version: 1.15.3 - sha256: ad3432cb0f9ed87477a8d97f03b763fd1d57709f1bbde3c9369b1dff5503b253 + sha256: ae48a786a28412d744c62fd7816a4118ef97e5be0bee968ce8f0a2fba7acf3bb requires_dist: - numpy>=1.23.5,<2.5 - pytest ; extra == 'test' @@ -6568,10 +7333,10 @@ packages: - doit>=0.36.0 ; extra == 'dev' - pydevtool ; extra == 'dev' requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/d1/84/55bc4881973d3f79b479a5a2e2df61c8c9a04fcb986a213ac9c02cfb659b/scipy-1.15.3-cp310-cp310-win_amd64.whl +- pypi: https://files.pythonhosted.org/packages/bd/37/89f19c8c05505d0601ed5650156e50eb881ae3918786c8fd7262b4ee66d3/scipy-1.15.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl name: scipy version: 1.15.3 - sha256: 9d61e97b186a57350f6d6fd72640f9e99d5a4a2b8fbf4b9ee9a841eab327dc13 + sha256: 39cb9c62e471b1bb3750066ecc3a3f3052b37751c7c3dfd0fd7e48900ed52982 requires_dist: - numpy>=1.23.5,<2.5 - pytest ; extra == 'test' @@ -6716,10 +7481,10 @@ packages: - pkg:pypi/soupsieve?source=hash-mapping size: 37773 timestamp: 1746563720271 -- pypi: https://files.pythonhosted.org/packages/97/d7/9e425a0733289b073cf6a0a75225b5e02d78de51fbece0b82a9e91eaf880/spatial_image-1.2.2-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl name: spatial-image - version: 1.2.2 - sha256: 1bcf783e24e53db40d027108c4b66e6adc822fb896470b9ecd3deccd446ed62f + version: 1.2.3 + sha256: b5280386a4d540c32c14cb4fdf74bd0242c99c168a7dac36204b29f8c27ce19a requires_dist: - numpy - xarray-dataclass>=3.0.0 @@ -6739,6 +7504,18 @@ packages: - pkg:pypi/stack-data?source=hash-mapping size: 26988 timestamp: 1733569565672 +- conda: https://conda.anaconda.org/conda-forge/win-64/symlink-exe-runtime-1.0-hcfcfb64_0.tar.bz2 + sha256: 4a7096df38cf8c7e5ee965ea957c0fadf8b5e1140f5b2da625075cc6d7a22bf7 + md5: 2b03b51163e311e87a6d4a4e9776b24b + depends: + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vs2015_runtime >=14.29.30139 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 11597 + timestamp: 1666792984220 - conda: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda sha256: b300557c0382478cf661ddb520263508e4b3b5871b471410450ef2846e8c352c md5: efba281bbdae5f6b0a1d53c6d4a97c93 @@ -6889,62 +7666,62 @@ packages: version: 1.0.0 sha256: 292c8f1c4e7516bf9086f8850935c799a874039c8bcf959d47b600e4c44a6236 requires_python: '>=3.8' -- conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.1-py310ha75aee5_0.conda - sha256: c24cc5952f1f1a84a848427382eecb04fc959987e19423e2c84e3281d0beec32 - md5: 6f3da1072c0c4d2a1beb1e84615f7c9c +- conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.5.2-py311h49ec1c0_2.conda + sha256: 1913516458f92df2a0b415426dce27cc14922415787f4b672a707b233631b1e0 + md5: 8d7a63fc9653ed0bdc253a51d9a5c371 depends: - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache purls: - pkg:pypi/tornado?source=hash-mapping - size: 659208 - timestamp: 1748003428618 -- conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.1-py310hbb8c376_0.conda - sha256: 51574c408bcf2672f5d61dd51647daf2ef03c63933f35fe80f852e5ea443f097 - md5: f0c1034aeab84ad568763b340ba8c3a6 + size: 869926 + timestamp: 1762506861961 +- conda: https://conda.anaconda.org/conda-forge/osx-64/tornado-6.5.2-py311hf197a57_2.conda + sha256: 88e4ca9e96d042313c62e8037574262622171c99a0ff3afd9747fbeb84963186 + md5: 04c6997f161e260378aa174f3faeb0dc depends: - __osx >=10.13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache purls: - pkg:pypi/tornado?source=hash-mapping - size: 660141 - timestamp: 1748003539276 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.1-py310h078409c_0.conda - sha256: 031a2896b5128520d622f6bf6b6b21e15c31804b7ab9b9b35621a16a277ec72e - md5: 76c91dbca02b127ba39a7a74833ef7c1 + size: 868911 + timestamp: 1762507100328 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.5.2-py311h9408147_2.conda + sha256: 70d4187bb8ec0016b9928e76eeaea0b2a021f741ea40a6ea2ee4b9c142ddaf24 + md5: e3af56f478d9919acac254ff82ad150c depends: - __osx >=11.0 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache purls: - pkg:pypi/tornado?source=hash-mapping - size: 663041 - timestamp: 1748003595497 -- conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.1-py310ha8f682b_0.conda - sha256: 2a922fc165be81c2121cbd0ba5db6dfcbb69ebdc4e48b0f6fac40fde954602e0 - md5: 4c8f599990e386f3a0aba3f3bd8608da - depends: - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + size: 869348 + timestamp: 1762507255364 +- conda: https://conda.anaconda.org/conda-forge/win-64/tornado-6.5.2-py311h3485c13_2.conda + sha256: 3e8b659fae3429474e61193b8810961c1ddc815b8cd6331cdc8e4dcd4dd172a3 + md5: 56b468f7a48593bc555c35e4a610d1f2 + depends: + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: Apache-2.0 license_family: Apache purls: - pkg:pypi/tornado?source=hash-mapping - size: 664938 - timestamp: 1748003818917 + size: 872087 + timestamp: 1762506971266 - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl name: tqdm version: 4.67.1 @@ -7043,69 +7820,69 @@ packages: purls: [] size: 559710 timestamp: 1728377334097 -- conda: https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py310h3788b33_5.conda - sha256: d491c87088b7c430e9b77acc03307a4ad58bc6cdd686353710c3178977712df6 - md5: e05b0475166b68c9dc4d7937e0315654 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311hdf67eae_6.conda + sha256: a6201979b8619bb9122609eb2189287c33e4a75ad240e4880898941764022782 + md5: 57e703b0057f992687fb9ad154dc48e4 depends: - __glibc >=2.17,<3.0.a0 - cffi - - libgcc >=13 - - libstdcxx >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libgcc >=14 + - libstdcxx >=14 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/ukkonen?source=hash-mapping - size: 13756 - timestamp: 1725784148759 -- conda: https://conda.anaconda.org/conda-forge/osx-64/ukkonen-1.0.1-py310hfa8da69_5.conda - sha256: 326ad0a36c09aa74fed9277ab8b12002512a91252d426b0baad34fe11cc59568 - md5: b33e406764d2ffc9d23a0133f3b5fead + size: 14597 + timestamp: 1761594653571 +- conda: https://conda.anaconda.org/conda-forge/osx-64/ukkonen-1.0.1-py311hd4d69bb_6.conda + sha256: db2a1043a6d2916bc88719eaf5f970523b429e3aaa04e734fb86554726f196e9 + md5: b44817c2fd57f7d6b3b2be9af922a8f7 depends: - __osx >=10.13 - cffi - - libcxx >=17 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - libcxx >=19 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/ukkonen?source=hash-mapping - size: 12925 - timestamp: 1725784218557 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/ukkonen-1.0.1-py310h7306fd8_5.conda - sha256: 1c74c4927f2c4ce93a74b4e72081fed818b8cbb291646316e19b92d683384624 - md5: 75162a8dc3ec9e30d8eb5c676a41b366 + size: 13991 + timestamp: 1761595177556 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/ukkonen-1.0.1-py311h57a9ea7_6.conda + sha256: b11dee8446a369aaa149b1650dec45105949c9043cc8a5802b292305d48b8718 + md5: 2534d14fa2ebc5a6657bc835bc695557 depends: - __osx >=11.0 - cffi - - libcxx >=17 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - libcxx >=19 + - python >=3.11,<3.12.0a0 + - python >=3.11,<3.12.0a0 *_cpython + - python_abi 3.11.* *_cp311 license: MIT license_family: MIT purls: - pkg:pypi/ukkonen?source=hash-mapping - size: 13565 - timestamp: 1725784246850 -- conda: https://conda.anaconda.org/conda-forge/win-64/ukkonen-1.0.1-py310hc19bc0b_5.conda - sha256: a82f9cfa34238f8ebbe7c0b77c3aed29c7314282ae842688587f3f22ee319c55 - md5: 89dcdea384ecd45100e43d627da94a58 + size: 14449 + timestamp: 1761595344417 +- conda: https://conda.anaconda.org/conda-forge/win-64/ukkonen-1.0.1-py311h3fd045d_6.conda + sha256: 0d1e5387856d81510504b966337b188061010e25c290975c51355e839037de65 + md5: 6305e35221cc08c9a3d1eeb57961ccb4 depends: - cffi - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - python >=3.11,<3.12.0a0 + - python_abi 3.11.* *_cp311 - ucrt >=10.0.20348.0 - - vc >=14.2,<15 - - vc14_runtime >=14.29.30139 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 license: MIT license_family: MIT purls: - pkg:pypi/ukkonen?source=hash-mapping - size: 17065 - timestamp: 1725784497818 + size: 18229 + timestamp: 1761594869187 - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda sha256: e0eb6c8daf892b3056f08416a96d68b0a358b7c46b99c8a50481b22631a4dfc0 md5: e7cb0f5745e4c5035a460248334af7eb @@ -7193,6 +7970,54 @@ packages: purls: [] size: 18249 timestamp: 1753739241918 +- pypi: https://files.pythonhosted.org/packages/54/83/83d598af08eb297f1a644e678ce2d6c335f015c9f3c8c2532e289801293b/wasmtime-38.0.0-py3-none-macosx_11_0_arm64.whl + name: wasmtime + version: 38.0.0 + sha256: 479529425f68cd69f8f4c369abf50d6f44a0e2395f5ce2b9a506c8a695aef65b + requires_dist: + - importlib-resources>=5.10 + - coverage ; extra == 'testing' + - pycparser ; extra == 'testing' + - pytest-mypy ; extra == 'testing' + - pytest ; extra == 'testing' + - componentize-py ; (sys_platform != 'win32' and extra == 'testing') or (platform_machine == 'AMD64' and extra == 'testing') + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/54/de/7b8898c9e7f73a2f4c20b621279143cfc27836dba0db676e9a923cd0a461/wasmtime-38.0.0-py3-none-manylinux1_x86_64.whl + name: wasmtime + version: 38.0.0 + sha256: f6c87bfe9de9a35de5b28fbdac192e2526486e3d0a3be48e107789cf117925fd + requires_dist: + - importlib-resources>=5.10 + - coverage ; extra == 'testing' + - pycparser ; extra == 'testing' + - pytest-mypy ; extra == 'testing' + - pytest ; extra == 'testing' + - componentize-py ; (sys_platform != 'win32' and extra == 'testing') or (platform_machine == 'AMD64' and extra == 'testing') + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/66/99/6da689c6534b16b2e6959321533f0000228854e5f4211eb00bfa7b6bcebc/wasmtime-38.0.0-py3-none-win_amd64.whl + name: wasmtime + version: 38.0.0 + sha256: c0f7ac800575e592e74ce7d111e04ad7b3dbbff421bfac00c94432300ee39bfe + requires_dist: + - importlib-resources>=5.10 + - coverage ; extra == 'testing' + - pycparser ; extra == 'testing' + - pytest-mypy ; extra == 'testing' + - pytest ; extra == 'testing' + - componentize-py ; (sys_platform != 'win32' and extra == 'testing') or (platform_machine == 'AMD64' and extra == 'testing') + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/9e/be/c470e5be91cccf7fbc4db4ce42eafb8f0f34b45aeb92c5bfbf963d100e0b/wasmtime-38.0.0-py3-none-macosx_10_13_x86_64.whl + name: wasmtime + version: 38.0.0 + sha256: 1c46037114350f25b23eb928085b29dc8acfe4de7ba6a59584b51bfc8533e14c + requires_dist: + - importlib-resources>=5.10 + - coverage ; extra == 'testing' + - pycparser ; extra == 'testing' + - pytest-mypy ; extra == 'testing' + - pytest ; extra == 'testing' + - componentize-py ; (sys_platform != 'win32' and extra == 'testing') or (platform_machine == 'AMD64' and extra == 'testing') + requires_python: '>=3.9' - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda sha256: f21e63e8f7346f9074fd00ca3b079bd3d2fa4d71f1f89d5b6934bf31446dc2a5 md5: b68980f2495d096e71c7fd9d7ccf63e6 @@ -7315,6 +8140,156 @@ packages: - pytest>=8.2 ; extra == 'dev' - sphinx>=7.1 ; extra == 'dev' requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.2-hb9d3cd8_0.conda + sha256: c12396aabb21244c212e488bbdc4abcdef0b7404b15761d9329f5a4a39113c4b + md5: fb901ff28063514abb6046c9ec2c4a45 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + purls: [] + size: 58628 + timestamp: 1734227592886 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.6-he73a12e_0.conda + sha256: 277841c43a39f738927145930ff963c5ce4c4dacf66637a3d95d802a64173250 + md5: 1c74ff8c35dcadf952a16f752ca5aa49 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libuuid >=2.38.1,<3.0a0 + - xorg-libice >=1.1.2,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 27590 + timestamp: 1741896361728 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.12-h4f16b4b_0.conda + sha256: 51909270b1a6c5474ed3978628b341b4d4472cd22610e5f22b506855a5e20f67 + md5: db038ce880f100acc74dba10302b5630 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libxcb >=1.17.0,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 835896 + timestamp: 1741901112627 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.12-hb03c661_1.conda + sha256: 6bc6ab7a90a5d8ac94c7e300cc10beb0500eeba4b99822768ca2f2ef356f731b + md5: b2895afaf55bf96a8c8282a2e47a5de0 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 15321 + timestamp: 1762976464266 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb03c661_1.conda + sha256: 25d255fb2eef929d21ff660a0c687d38a6d2ccfbcbf0cc6aa738b12af6e9d142 + md5: 1dafce8548e38671bea82e3f5c6ce22f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 20591 + timestamp: 1762976546182 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda + sha256: da5dc921c017c05f38a38bd75245017463104457b63a1ce633ed41f214159c14 + md5: febbab7d15033c913d53c7a2c102309d + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 50060 + timestamp: 1727752228921 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.2-hb03c661_0.conda + sha256: 83c4c99d60b8784a611351220452a0a85b080668188dce5dfa394b723d7b64f4 + md5: ba231da7fccf9ea1e768caf5c7099b84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - xorg-libx11 >=1.8.12,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 20071 + timestamp: 1759282564045 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda + sha256: 1a724b47d98d7880f26da40e45f01728e7638e6ec69f35a3e11f92acd05f9e7a + md5: 17dcc85db3c7886650b8908b183d6876 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxfixes >=6.0.1,<7.0a0 + license: MIT + license_family: MIT + purls: [] + size: 47179 + timestamp: 1727799254088 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrandr-1.5.4-hb9d3cd8_0.conda + sha256: ac0f037e0791a620a69980914a77cb6bb40308e26db11698029d6708f5aa8e0d + md5: 2de7f99d6581a4a7adbff607b5c278ca + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxrender >=0.9.11,<0.10.0a0 + license: MIT + license_family: MIT + purls: [] + size: 29599 + timestamp: 1727794874300 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.12-hb9d3cd8_0.conda + sha256: 044c7b3153c224c6cedd4484dd91b389d2d7fd9c776ad0f4a34f099b3389f4a1 + md5: 96d57aba173e878a2089d5638016dc5e + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 33005 + timestamp: 1734229037766 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.1-hb9d3cd8_0.conda + sha256: a8afba4a55b7b530eb5c8ad89737d60d60bc151a03fbef7a2182461256953f0e + md5: 279b0de5f6ba95457190a1c459a64e31 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libice >=1.1.1,<2.0a0 + - xorg-libsm >=1.2.4,<2.0a0 + - xorg-libx11 >=1.8.10,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 379686 + timestamp: 1731860547604 +- conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxtst-1.2.5-hb9d3cd8_3.conda + sha256: 752fdaac5d58ed863bbf685bb6f98092fe1a488ea8ebb7ed7b606ccfce08637a + md5: 7bbe9a0cc0df0ac5f5a8ad6d6a11af2f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxi >=1.7.10,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 32808 + timestamp: 1727964811275 - pypi: https://files.pythonhosted.org/packages/e9/ac/27a6fcf61c64549a17b9eaa087ae7876417b5ed9efb6efdec8b52289cae4/xsdata-24.3.1-py3-none-any.whl name: xsdata version: 24.3.1 @@ -7384,27 +8359,57 @@ packages: purls: [] size: 63944 timestamp: 1753484092156 -- pypi: https://files.pythonhosted.org/packages/ed/c9/142095e654c2b97133ff71df60979422717b29738b08bc8a1709a5d5e0d0/zarr-2.18.3-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/1a/71/9de7229515a53d1cc5705ca9c411530f711a2242f962214d9dbfe2741aa4/zarr-3.1.3-py3-none-any.whl name: zarr - version: 2.18.3 - sha256: b1f7dfd2496f436745cdd4c7bcf8d3b4bc1dceef5fdd0d589c87130d842496dd + version: 3.1.3 + sha256: 45f67f87f65f14fa453f99dd8110a5936b7ac69f3a21981d33e90407c80c302a requires_dist: - - asciitree - - numpy>=1.24 - - numcodecs>=0.10.0 - - fasteners ; sys_platform != 'emscripten' - - sphinx ; extra == 'docs' - - sphinx-automodapi ; extra == 'docs' + - donfig>=0.8 + - numcodecs[crc32c]>=0.14 + - numpy>=1.26 + - packaging>=22.0 + - typing-extensions>=4.9 + - typer ; extra == 'cli' + - astroid<4 ; extra == 'docs' + - numcodecs[msgpack] ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - pytest ; extra == 'docs' + - rich ; extra == 'docs' + - s3fs>=2023.10.0 ; extra == 'docs' + - sphinx-autoapi==3.4.0 ; extra == 'docs' + - sphinx-autobuild>=2021.3.14 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' - sphinx-design ; extra == 'docs' - sphinx-issues ; extra == 'docs' - - sphinx-copybutton ; extra == 'docs' - - pydata-sphinx-theme ; extra == 'docs' - - numpydoc ; extra == 'docs' - - numcodecs[msgpack] ; extra == 'docs' - - notebook ; extra == 'jupyter' - - ipytree>=0.2.2 ; extra == 'jupyter' - - ipywidgets>=8.0.0 ; extra == 'jupyter' - requires_python: '>=3.10' + - sphinx-reredirects ; extra == 'docs' + - sphinx==8.1.3 ; extra == 'docs' + - towncrier ; extra == 'docs' + - cupy-cuda12x ; extra == 'gpu' + - rich ; extra == 'optional' + - universal-pathlib ; extra == 'optional' + - fsspec>=2023.10.0 ; extra == 'remote' + - obstore>=0.5.1 ; extra == 'remote' + - botocore ; extra == 'remote-tests' + - fsspec>=2023.10.0 ; extra == 'remote-tests' + - moto[s3,server] ; extra == 'remote-tests' + - obstore>=0.5.1 ; extra == 'remote-tests' + - requests ; extra == 'remote-tests' + - s3fs>=2023.10.0 ; extra == 'remote-tests' + - coverage>=7.10 ; extra == 'test' + - hypothesis ; extra == 'test' + - mypy ; extra == 'test' + - numpydoc ; extra == 'test' + - packaging ; extra == 'test' + - pytest-accept ; extra == 'test' + - pytest-asyncio ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<8.4 ; extra == 'test' + - rich ; extra == 'test' + - tomlkit ; extra == 'test' + - uv ; extra == 'test' + requires_python: '>=3.11' - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda sha256: a4dc72c96848f764bb5a5176aa93dd1e9b9e52804137b99daeebba277b31ea10 md5: 3947a35e916fcc6b9825449affbf4214 @@ -7470,63 +8475,118 @@ packages: - pkg:pypi/zipp?source=hash-mapping size: 22963 timestamp: 1749421737203 -- conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha75aee5_2.conda - sha256: f9b76c2f8a0f96e656843553272e547170182f5b8aba1a6bcba28f7611d87c23 - md5: f9254b5b0193982416b91edcb4b2676f +- conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.25.0-py311haee01d2_1.conda + sha256: d534a6518c2d8eccfa6579d75f665261484f0f2f7377b50402446a9433d46234 + md5: ca45bfd4871af957aaa5035593d5efd2 depends: - - __glibc >=2.17,<3.0.a0 + - python - cffi >=1.11 - - libgcc >=13 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - zstd >=1.5.7,<1.5.8.0a0 + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - zstd >=1.5.7,<1.6.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause - license_family: BSD purls: - pkg:pypi/zstandard?source=hash-mapping - size: 722119 - timestamp: 1745869786772 -- conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.23.0-py310hbb8c376_2.conda - sha256: fad4ae15d30c13d0d51748139064fc0bb59359719881e7a370ca8652c4917828 - md5: 5b75d4015ead2df6bf15bc372edfa139 + size: 466893 + timestamp: 1762512695614 +- conda: https://conda.anaconda.org/conda-forge/osx-64/zstandard-0.25.0-py311h62e9434_1.conda + sha256: 8b4e61e45260fdcdedd36192a225de724a0491548fd84a69679e872f467e55fd + md5: 9e05cc70a6656c2718783f011128991f depends: - - __osx >=10.13 + - python - cffi >=1.11 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - zstd >=1.5.7,<1.5.8.0a0 + - __osx >=10.13 + - zstd >=1.5.7,<1.6.0a0 + - python_abi 3.11.* *_cp311 license: BSD-3-Clause - license_family: BSD purls: - pkg:pypi/zstandard?source=hash-mapping - size: 681744 - timestamp: 1745869885563 -- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py310h078409c_2.conda - sha256: 6fdb3e71c6af5fe9c2469befb724a80d8c874078df1fa9738d84cf857d84d4b1 - md5: a617ab3d9042eef702d8d163c50e9b5e + size: 462796 + timestamp: 1762512690757 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.25.0-py311h5bb9006_1.conda + sha256: 2ee455765fe831cca8fe127c56ae99938e353797135fe33140b28abb4fbe1049 + md5: 651594b8f9b9cccc5948287a18903c34 depends: - - __osx >=11.0 + - python - cffi >=1.11 - - python >=3.10,<3.11.0a0 - - python >=3.10,<3.11.0a0 *_cpython - - python_abi 3.10.* *_cp310 + - zstd >=1.5.7,<1.5.8.0a0 + - python 3.11.* *_cpython + - __osx >=11.0 + - python_abi 3.11.* *_cp311 + - zstd >=1.5.7,<1.6.0a0 license: BSD-3-Clause - license_family: BSD purls: - pkg:pypi/zstandard?source=hash-mapping - size: 522323 - timestamp: 1745870245475 -- conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py310ha8f682b_2.conda - sha256: 76bf75ef83e952ef4974e0e6656a7a90b4c4c1c22cea984cb9fc29aca05e5999 - md5: fdc36a989175bb166109e400c106defa + size: 390026 + timestamp: 1762512731928 +- conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.25.0-py311hf893f09_1.conda + sha256: 10f089bedef1a28c663ef575fb9cec66b2058e342c4cf4a753083ab07591008f + md5: b2d90bca78b57c17205ce3ca1c427813 depends: + - python - cffi >=1.11 - - python >=3.10,<3.11.0a0 - - python_abi 3.10.* *_cp310 + - zstd >=1.5.7,<1.5.8.0a0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.44.35208 + - ucrt >=10.0.20348.0 + - python_abi 3.11.* *_cp311 + - zstd >=1.5.7,<1.6.0a0 + license: BSD-3-Clause + purls: + - pkg:pypi/zstandard?source=hash-mapping + size: 375869 + timestamp: 1762512737575 +- conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb8e6e7a_2.conda + sha256: a4166e3d8ff4e35932510aaff7aa90772f84b4d07e9f6f83c614cba7ceefe0eb + md5: 6432cb5d4ac0046c3ac0a8a0f95842f9 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 567578 + timestamp: 1742433379869 +- conda: https://conda.anaconda.org/conda-forge/osx-64/zstd-1.5.7-h8210216_2.conda + sha256: c171c43d0c47eed45085112cb00c8c7d4f0caa5a32d47f2daca727e45fb98dca + md5: cd60a4a5a8d6a476b30d8aa4bb49251a + depends: + - __osx >=10.13 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 485754 + timestamp: 1742433356230 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-h6491c7d_2.conda + sha256: 0d02046f57f7a1a3feae3e9d1aa2113788311f3cf37a3244c71e61a93177ba67 + md5: e6f69c7bcccdefa417f056fa593b40f0 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 399979 + timestamp: 1742433432699 +- conda: https://conda.anaconda.org/conda-forge/win-64/zstd-1.5.7-hbeecb71_2.conda + sha256: bc64864377d809b904e877a98d0584f43836c9f2ef27d3d2a1421fa6eae7ca04 + md5: 21f56217d6125fb30c3c3f10c786d751 + depends: + - libzlib >=1.3.1,<2.0a0 - ucrt >=10.0.20348.0 - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: BSD-3-Clause license_family: BSD - purls: - - pkg:pypi/zstandard?source=hash-mapping - size: 435740 - timestamp: 1745870314659 + purls: [] + size: 354697 + timestamp: 1742433568506 diff --git a/pyproject.toml b/pyproject.toml index 4390493..ed74982 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -14,7 +14,6 @@ classifiers = [ 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3', - 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3.12', 'Programming Language :: Python :: 3.13', @@ -30,16 +29,17 @@ keywords = [ ] dynamic = ["version"] -requires-python = ">=3.10" +requires-python = ">=3.11" dependencies = [ - "numpy", - "dask", + "numpy>=2.2.6,<3", + "dask>=2025.11.0,<2026", "python-dateutil", - "spatial_image >=1.2.2", - "xarray >=2025.1.2", - "xarray-dataclass >=3.0.0", - "zarr", -] + "spatial-image>=1.2.3,<2", + "xarray>=2025.6.1,<2026", + "xarray-dataclass>=3.0.0,<4", + "zarr>=3.1.3,<4", + "ngff-zarr>=0.18.2,<0.19" + ] [project.urls] Home = "https://github.com/spatial-image/multiscale-spatial-image" @@ -78,7 +78,7 @@ line-length = 88 [tool.hatch.version] path = "multiscale_spatial_image/__about__.py" -[tool.pixi.project] +[tool.pixi.workspace] channels = ["conda-forge"] platforms = ["win-64", "linux-64", "osx-64", "osx-arm64"] @@ -98,14 +98,14 @@ lint = { features = ["lint"], no-default-feature = true, solve-group = "default" test = { cmd = "pytest", description = "Run the test suite" } [tool.pixi.feature.test.dependencies] -python = "3.10.*" +python = "3.11.*" [tool.pixi.feature.notebooks.dependencies] -openjdk = "8.*" -maven = ">=3.9.8,<3.10" -jupyterlab = ">=4.2.4,<4.3" -python = "3.10.*" -jpype1 = ">=1.4.0,<1.5.0" +openjdk = ">=25.0.1,<26" +maven = ">=3.9.11,<4" +jupyterlab = ">=4.4.10,<5" +python = "3.11.*" +jpype1 = ">=1.6.0,<2" [tool.pixi.feature.notebooks.tasks] init-imagej = { cmd = "python -c \"import imagej; ij = imagej.init('2.15.0'); print(ij.getVersion())\"", description = "Initialize the python imagej installation" } @@ -113,14 +113,14 @@ test-notebooks = { cmd = "pytest --nbmake --nbmake-timeout=3000 examples/Convert dev-notebooks = { cmd = "jupyter lab examples", description = "Start Jupyter Lab" } [tool.pixi.feature.data.dependencies] -python = ">=3.10.0,<4" +python = ">=3.11.0,<4" pooch = ">=1.8.2,<2" [tool.pixi.feature.data.tasks] hash-data = { cmd = "tar cvf ../data.tar * && gzip -9 -f ../data.tar && echo 'New SHA256:' && python3 -c 'import pooch; print(pooch.file_hash(\"../data.tar.gz\"))'", cwd = "test/data", description = "Update the testing data tarball and get its sha256 hash" } [tool.pixi.feature.lint.dependencies] -pre-commit = "*" +pre-commit = ">=4.4.0,<5" [tool.pixi.feature.lint.tasks] pre-commit-install = { cmd = "pre-commit install", description = "Install pre-commit hooks" } diff --git a/test/_data.py b/test/_data.py index 9247c4c..ec9b210 100644 --- a/test/_data.py +++ b/test/_data.py @@ -4,8 +4,9 @@ import pooch import xarray as xr -test_data_ipfs_cid = "bafybeiaskr5fxg6rbcwlxl6ibzqhubdleacenrpbnymc6oblwoi7ceqzta" -test_data_sha256 = "507dd779cba007c46ea68a5fe8865cabd5d8a7e00816470faae9195d1f1c3cd1" +test_data_ipfs_cid = "bafybeibohlta4lanpvogwgbfqr5ietyycvakxzzay4to2wu6xyaobzikoq" +test_data_sha256 = "9218639e3a775c4a484d73d15db27017cf737db3cd8116527f7a8036558bfdcd" +gateway = "violet-chemical-catfish-899.mypinata.cloud" test_dir = Path(__file__).resolve().parent @@ -13,8 +14,8 @@ test_data_dir = test_dir / extract_dir test_data = pooch.create( path=test_dir, - # base_url=f"https://{test_data_ipfs_cid}.ipfs.w3s.link/ipfs/{test_data_ipfs_cid}/", - base_url="https://github.com/spatial-image/multiscale-spatial-image/releases/download/v2.0.0/", + base_url=f"https://{gateway}/ipfs/{test_data_ipfs_cid}/", + # base_url="https://github.com/spatial-image/multiscale-spatial-image/releases/download/v2.0.0/", registry={ "data.tar.gz": f"sha256:{test_data_sha256}", }, diff --git a/test/conftest.py b/test/conftest.py index 85497e6..6294073 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -6,8 +6,12 @@ @pytest.fixture() def multiscale_data(): + import ngff_zarr as nz data = np.zeros((3, 200, 200)) dims = ("c", "y", "x") scale_factors = [2, 2] image = to_spatial_image(array_like=data, dims=dims) - return to_multiscale(image, scale_factors=scale_factors) + return to_multiscale( + image, + scale_factors=scale_factors, + method=nz.Methods.ITKWASM_GAUSSIAN) diff --git a/test/test_ngff_validation.py b/test/test_ngff_validation.py index 6d9733a..a37a194 100644 --- a/test/test_ngff_validation.py +++ b/test/test_ngff_validation.py @@ -12,6 +12,7 @@ from spatial_image import to_spatial_image import numpy as np import zarr +import ngff_zarr as nz http = urllib3.PoolManager() @@ -160,7 +161,7 @@ def test_z_y_x_valid_ngff(): def test_z_y_x_c_valid_ngff(): array = np.random.random((32, 32, 16, 3)) image = to_spatial_image(array) - multiscale = to_multiscale(image, [2, 4]) + multiscale = to_multiscale(image, [2, 4], method=nz.Methods.DASK_IMAGE_GAUSSIAN) check_valid_ngff(multiscale) @@ -168,6 +169,6 @@ def test_z_y_x_c_valid_ngff(): def test_t_z_y_x_c_valid_ngff(): array = np.random.random((2, 32, 32, 16, 3)) image = to_spatial_image(array) - multiscale = to_multiscale(image, [2, 4]) + multiscale = to_multiscale(image, [2, 4], method=nz.Methods.DASK_IMAGE_GAUSSIAN) check_valid_ngff(multiscale) diff --git a/test/test_to_multiscale_dask_image.py b/test/test_to_multiscale_dask_image.py index 1b9148c..8cc73b2 100644 --- a/test/test_to_multiscale_dask_image.py +++ b/test/test_to_multiscale_dask_image.py @@ -26,7 +26,7 @@ def test_gaussian_isotropic_scale_factors(input_images): # noqa: F811 def test_gaussian_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.DASK_IMAGE_GAUSSIAN) baseline_name = "x2y4_x1y2/DASK_IMAGE_GAUSSIAN" verify_against_baseline(dataset_name, baseline_name, multiscale) @@ -34,9 +34,9 @@ def test_gaussian_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "small_head" image = input_images[dataset_name] scale_factors = [ - {"x": 3, "y": 2, "z": 4}, - {"x": 2, "y": 2, "z": 2}, {"x": 1, "y": 2, "z": 1}, + {"x": 2, "y": 2, "z": 2}, + {"x": 3, "y": 2, "z": 4}, ] multiscale = to_multiscale(image, scale_factors, method=Methods.DASK_IMAGE_GAUSSIAN) baseline_name = "x3y2z4_x2y2z2_x1y2z1/DASK_IMAGE_GAUSSIAN" @@ -60,7 +60,7 @@ def test_label_nearest_isotropic_scale_factors(input_images): # noqa: F811 def test_label_nearest_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "2th_cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.DASK_IMAGE_NEAREST) baseline_name = "x2y4_x1y2/DASK_IMAGE_NEAREST" verify_against_baseline(dataset_name, baseline_name, multiscale) @@ -83,7 +83,7 @@ def test_label_mode_isotropic_scale_factors(input_images): # noqa: F811 def test_label_mode_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "2th_cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.DASK_IMAGE_MODE) baseline_name = "x2y4_x1y2/DASK_IMAGE_MODE" verify_against_baseline(dataset_name, baseline_name, multiscale) diff --git a/test/test_to_multiscale_itk.py b/test/test_to_multiscale_itk.py index 12dc1dd..e43cb52 100644 --- a/test/test_to_multiscale_itk.py +++ b/test/test_to_multiscale_itk.py @@ -60,49 +60,47 @@ def test_label_gaussian_isotropic_scale_factors(input_images): # noqa: F811 def test_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.ITK_BIN_SHRINK) - baseline_name = ("x2y4_x1y2/ITK_BIN_SHRINK",) + baseline_name = "x1y2_x2y4/ITK_BIN_SHRINK" verify_against_baseline(dataset_name, baseline_name, multiscale) dataset_name = "small_head" image = input_images[dataset_name] scale_factors = [ - {"x": 3, "y": 2, "z": 4}, - {"x": 2, "y": 2, "z": 2}, {"x": 1, "y": 2, "z": 1}, + {"x": 2, "y": 2, "z": 2}, + {"x": 2, "y": 2, "z": 2}, ] multiscale = to_multiscale(image, scale_factors, method=Methods.ITK_BIN_SHRINK) - baseline_name = "x3y2z4_x2y2z2_x1y2z1/ITK_BIN_SHRINK" + baseline_name = "x1y2z1_x2y2z2_x3y2z4/ITK_BIN_SHRINK" verify_against_baseline(dataset_name, baseline_name, multiscale) def test_gaussian_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.ITK_GAUSSIAN) - baseline_name = "x2y4_x1y2/ITK_GAUSSIAN" + baseline_name = "x1y2_x2y4/ITK_GAUSSIAN" verify_against_baseline(dataset_name, baseline_name, multiscale) dataset_name = "small_head" image = input_images[dataset_name] scale_factors = [ - {"x": 3, "y": 2, "z": 4}, - {"x": 2, "y": 2, "z": 2}, {"x": 1, "y": 2, "z": 1}, ] multiscale = to_multiscale(image, scale_factors, method=Methods.ITK_GAUSSIAN) - baseline_name = "x3y2z4_x2y2z2_x1y2z1/ITK_GAUSSIAN" + baseline_name = "x1y2z1_x2y2z2_x3y2z4/ITK_GAUSSIAN" verify_against_baseline(dataset_name, baseline_name, multiscale) def test_label_gaussian_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "2th_cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.ITK_LABEL_GAUSSIAN) - baseline_name = "x2y4_x1y2/ITK_LABEL_GAUSSIAN" + baseline_name = "x1y2_x2y4/ITK_LABEL_GAUSSIAN" verify_against_baseline(dataset_name, baseline_name, multiscale) @@ -113,9 +111,9 @@ def test_from_itk(input_images): # noqa: F811 # Test 2D with ITK default metadata dataset_name = "cthead1" image = itk.image_from_xarray(input_images[dataset_name]) - scale_factors = [4, 2] + scale_factors = [2, 4] multiscale = itk_image_to_multiscale(image, scale_factors) - baseline_name = "4_2/from_itk" + baseline_name = "2_4/from_itk" verify_against_baseline(dataset_name, baseline_name, multiscale) # Test 2D with nonunit metadata @@ -128,7 +126,7 @@ def test_from_itk(input_images): # noqa: F811 name = "cthead1_nonunit_metadata" axis_units = {dim: "millimeters" for dim in ("x", "y", "z")} - scale_factors = [4, 2] + scale_factors = [2, 4] multiscale = itk_image_to_multiscale( image, scale_factors=scale_factors, @@ -136,7 +134,7 @@ def test_from_itk(input_images): # noqa: F811 axis_units=axis_units, name=name, ) - baseline_name = "4_2/from_itk_nonunit_metadata" + baseline_name = "2_4/from_itk_nonunit_metadata" verify_against_baseline(dataset_name, baseline_name, multiscale) # Expect error for 2D image with anatomical axes @@ -153,9 +151,9 @@ def test_from_itk(input_images): # noqa: F811 # Test 3D with ITK default metadata dataset_name = "small_head" image = itk.image_from_xarray(input_images[dataset_name]) - scale_factors = [4, 2] + scale_factors = [2, 4] multiscale = itk_image_to_multiscale(image, scale_factors) - baseline_name = "4_2/from_itk" + baseline_name = "2_4/from_itk" verify_against_baseline(dataset_name, baseline_name, multiscale) # Test 3D with additional metadata @@ -168,7 +166,7 @@ def test_from_itk(input_images): # noqa: F811 name = "small_head_anatomical" axis_units = {dim: "millimeters" for dim in input_images[dataset_name].dims} - scale_factors = [4, 2] + scale_factors = [2, 4] multiscale = itk_image_to_multiscale( image, scale_factors=scale_factors, @@ -176,5 +174,5 @@ def test_from_itk(input_images): # noqa: F811 axis_units=axis_units, name=name, ) - baseline_name = "4_2/from_itk_anatomical" + baseline_name = "2_4/from_itk_anatomical" verify_against_baseline(dataset_name, baseline_name, multiscale) diff --git a/test/test_to_multiscale_xarray.py b/test/test_to_multiscale_xarray.py index da286f7..aa9364f 100644 --- a/test/test_to_multiscale_xarray.py +++ b/test/test_to_multiscale_xarray.py @@ -26,9 +26,9 @@ def test_isotropic_scale_factors(input_images): # noqa: F811 def test_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "cthead1" image = input_images[dataset_name] - scale_factors = [{"x": 2, "y": 4}, {"x": 1, "y": 2}] + scale_factors = [{"x": 1, "y": 2}, {"x": 2, "y": 4}] multiscale = to_multiscale(image, scale_factors, method=Methods.XARRAY_COARSEN) - baseline_name = "x2y4_x1y2/XARRAY_COARSEN" + baseline_name = "x1y2_x2y4/XARRAY_COARSEN" verify_against_baseline(dataset_name, baseline_name, multiscale) # Test default method: Methods.XARRAY_COARSEN multiscale = to_multiscale(image, scale_factors) @@ -37,10 +37,10 @@ def test_anisotropic_scale_factors(input_images): # noqa: F811 dataset_name = "small_head" image = input_images[dataset_name] scale_factors = [ - {"x": 3, "y": 2, "z": 4}, - {"x": 2, "y": 2, "z": 2}, {"x": 1, "y": 2, "z": 1}, + {"x": 2, "y": 2, "z": 2}, + {"x": 3, "y": 2, "z": 4}, ] multiscale = to_multiscale(image, scale_factors, method=Methods.XARRAY_COARSEN) - baseline_name = "x3y2z4_x2y2z2_x1y2z1/XARRAY_COARSEN" + baseline_name = "x1y2z1_x2y2z2_x3y2z4/XARRAY_COARSEN" verify_against_baseline(dataset_name, baseline_name, multiscale)