Skip to content

gmocoin-backtest is a python library for backtest with gmocoin fx btc trade technical analysis on Python 3.7 and above.

License

Notifications You must be signed in to change notification settings

10mohi6/gmocoin-backtest-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gmocoin-backtest

PyPI License: MIT codecov Build Status PyPI - Python Version Downloads

gmocoin-backtest is a python library for backtest with gmocoin fx btc trade technical analysis on Python 3.7 and above.

backtest data from here

Installation

$ pip install gmocoin-backtest

Usage

basic run

from gmocoin_backtest import Backtest

class MyBacktest(Backtest):
    def strategy(self):
        fast_ma = self.sma(period=5)
        slow_ma = self.sma(period=25)
        # golden cross
        self.sell_exit = self.buy_entry = (fast_ma > slow_ma) & (
            fast_ma.shift() <= slow_ma.shift()
        )
        # dead cross
        self.buy_exit = self.sell_entry = (fast_ma < slow_ma) & (
            fast_ma.shift() >= slow_ma.shift()
        )

MyBacktest(from_date="2021-07-15", to_date="2021-08-15").run()

basic.png

advanced run

from gmocoin_backtest import Backtest
from pprint import pprint

class MyBacktest(Backtest):
    def strategy(self):
        rsi = self.rsi(period=10)
        ema = self.ema(period=20)
        atr = self.atr(period=20)
        lower = ema - atr
        upper = ema + atr
        self.buy_entry = (rsi < 30) & (self.df.C < lower)
        self.sell_entry = (rsi > 70) & (self.df.C > upper)
        self.sell_exit = ema > self.df.C
        self.buy_exit = ema < self.df.C

bt = MyBacktest(
    symbol="BTC", # (default=BTC_JPY)
    sqlite_file_name="backtest.sqlite3", # (default=backtest.sqlite3)
    from_date="2021-07-15", # (default="")
    to_date="2021-08-15", # (default="")
    size=0.1, # (default=0.001)
    interval="1H", # 5-60S(second), 1-60T(minute), 1-24H(hour) (default=1T)
    data_dir="data", # data directory (default=data)
)
pprint(bt.run(), sort_dicts=False)
{'total profit': -76320.2,
 'total trades': 25,
 'win rate': 56.0,
 'profit factor': 0.549,
 'maximum drawdown': 105907.1,
 'recovery factor': -0.721,
 'riskreward ratio': 0.431,
 'sharpe ratio': -0.226,
 'average return': -0.075,
 'stop loss': 0,
 'take profit': 0}

advanced.png

Supported indicators

  • Simple Moving Average 'sma'
  • Exponential Moving Average 'ema'
  • Moving Average Convergence Divergence 'macd'
  • Relative Strenght Index 'rsi'
  • Bollinger Bands 'bbands'
  • Stochastic Oscillator 'stoch'
  • Average True Range 'atr'

Strategy examples

MACD

class MyBacktest(Backtest):
    def strategy(self):
        macd, signal = self.macd(fast_period=12, slow_period=26, signal_period=9)
        self.sell_exit = self.buy_entry = (macd > signal) & (
            macd.shift() <= signal.shift()
        )
        self.buy_exit = self.sell_entry = (macd < signal) & (
            macd.shift() >= signal.shift()
        )

Bollinger Bands

class MyBacktest(Backtest):
    def strategy(self):
        upper, mid, lower = self.bbands(period=20, band=2)
        self.sell_exit = self.buy_entry = (upper > self.df.C) & (
            upper.shift() <= self.df.C.shift()
        )
        self.buy_exit = self.sell_entry = (lower < self.df.C) & (
            lower.shift() >= self.df.C.shift()
        )

Stochastic

class MyBacktest(Backtest):
    def strategy(self):
        k, d = self.stoch(k_period=5, d_period=3)
        self.sell_exit = self.buy_entry = (
            (k > 20) & (d > 20) & (k.shift() <= 20) & (d.shift() <= 20)
        )
        self.buy_exit = self.sell_entry = (
            (k < 80) & (d < 80) & (k.shift() >= 80) & (d.shift() >= 80)
        )

Moving average divergence rate

class MyBacktest(Backtest):
    def strategy(self):
        sma = self.sma(period=20)
        ratio = (self.df.C - sma) / sma * 100
        self.sell_exit = self.buy_entry = ratio > -5 & (ratio.shift() <= -5)
        self.buy_exit = self.sell_entry = ratio < 5 & (ratio.shift() >= 5)

Momentum

class MyBacktest(Backtest):
    def strategy(self):
        mom = self.df.C - self.df.C.shift(10)
        self.sell_exit = self.buy_entry = mom > 0 & (mom.shift() <= 0)
        self.buy_exit = self.sell_entry = mom < 0 & (mom.shift() >= 0)

Donchian Channels

class MyBacktest(Backtest):
    def strategy(self):
        high = self.df.H.rolling(20).max()
        low = self.df.L.rolling(20).min()
        self.sell_exit = self.buy_entry = (high > self.df.C) & (
            high.shift() <= self.df.C
        )
        self.buy_exit = self.sell_entry = (low < self.df.C) & (
            low.shift() >= self.df.C
        )

Relative Vigor Index

class MyBacktest(Backtest):
    def rvi(
        self, *, period: int = 10, price: str = "C"
    ) -> Tuple[pd.DataFrame, pd.DataFrame]:
        co = self.df.C - self.df.O
        n = (co + 2 * co.shift(1) + 2 * co.shift(2) + co.shift(3)) / 6
        hl = self.df.H - self.df.L
        d = (hl + 2 * hl.shift(1) + 2 * hl.shift(2) + hl.shift(3)) / 6
        rvi = n.rolling(period).mean() / d.rolling(period).mean()
        signal = (rvi + 2 * rvi.shift(1) + 2 * rvi.shift(2) + rvi.shift(3)) / 6
        return rvi, signal

    def strategy(self):
        rvi, signal = self.rvi(period=5)
        self.sell_exit = self.buy_entry = (rvi > signal) & (
            rvi.shift() <= signal.shift()
        )
        self.buy_exit = self.sell_entry = (rvi < signal) & (
            rvi.shift() >= signal.shift()
        )

About

gmocoin-backtest is a python library for backtest with gmocoin fx btc trade technical analysis on Python 3.7 and above.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages