The source code of MPS-Bot (Message Passing over Simplexes for Bot Detection) in WWW2026.
conda create --name mpsbot python=3.7
conda activate mpsbot wget https://download.pytorch.org/whl/cu102/torch-1.9.1%2Bcu102-cp37-cp37m-linux_x86_64.whl
pip install torch-1.9.1+cu102-cp37-cp37m-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.9.0%2Bcu102/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
pip install torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
wget https://data.pyg.org/whl/torch-1.9.0%2Bcu102/torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl
pip install torch_sparse-0.6.12-cp37-cp37m-linux_x86_64.whl
pip install torch-geometric==2.0.2This project supports two datasets: MGTAB and TwiBot22. Prepare the datasets as follows:
- Download the preprocessed
.ptfiles from the official MGTAB repository. - Place all files into: Dataset/MGTAB/
- Generate dataset files using the code from TwiBot-22/src/BotRGCN.
- After generation, ensure the following files are available: train_idx.pt, test_idx.pt, val_idx.pt, label.pt, edge_index.pt, edge_type.pt, num_properties_tensor.pt, cat_properties_tensor.pt, tweets_tensor.pt, des_tensor.pt
- Place all files into: Dataset/TwiBot22/
Use the following commands to train the model on each dataset:
python train.py --dataset mgtab --epochs 200 --lr 1e-3 --dropout 0.1 python train.py --dataset twibot22 --epochs 200 --lr 1e-3 --dropout 0.5