Skip to content

AdamManuel-dev/SyntaxLab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SyntaxLab: AI-Powered Code Generation Platform

🚧 Currently in Phase 1: Enhanced Foundation
Building the extensible CLI and AI-powered infrastructure for multi-language, multi-model code generation.

TODO: Add early psuedo-code review step with optional human-in-the-loop refinement


πŸ” Overview

SyntaxLab is a next-generation AI-powered platform for generating, reviewing, and improving software code through natural language prompts. It integrates multiple LLMs, deep semantic analysis, mutation testing, and pattern learning to drive software quality, scalability, and productivity across organizations.


πŸ“˜ Phase Summaries

βœ… Phase 1: Enhanced Foundation (Weeks 1–10)

Build a robust foundation to support future intelligent capabilities.

  • Plugin-driven CLI with multi-model, multi-language support
  • Advanced context analysis: git history, ASTs, semantic RAG
  • 90% generation success, 5+ launch languages


πŸ”„ Phase 2: Generation Excellence (Weeks 7–12)

Transform into an intelligent development assistant.

  • Dual AI test-first mode with mutation score validation
  • Pattern library and multi-file orchestration
  • AST-based semantic refactoring and migrations

πŸ›‘οΈ Phase 3: Review & Validation (Weeks 13–18)

Validate AI-generated code through industry-grade techniques.

  • Mutation testing (MuTAP) with 93.57% bug detection
  • Real-time vulnerability scanning and hallucination detection
  • Multi-layer validation pipeline

🧠 Phase 4: Feedback Loop & Intelligence (Weeks 19–24)

Enable self-learning and feedback-driven evolution.

  • Interactive improvement engine
  • Pattern extraction, prompt optimization
  • Centralized knowledge base with confidence metrics

🧬 Phase 5: Advanced Mutation System (Weeks 25–30)

Introduce intelligent, evolving mutation systems.

  • Meta-strategy combinators, compositional mutations
  • Self-referential evolution in sandboxed runners
  • Quality-diversity archive using MAP-Elites

🏒 Phase 6: Enterprise Features (Weeks 31–36)

Support large-scale teams, security, and operations.

  • Role-based dashboards, CI/CD gates, VSCode extension
  • Tiered deployment from single binary to Kubernetes
  • Pattern marketplace, audit logs, SSO/RBAC/MFA

πŸš€ Phase 7: Advanced Enhancements (Weeks 37–48)

Enterprise customization, orchestration, semantic optimization.

  • Multi-model router (Claude, GPT, Gemini, Groq)
  • Federated learning, predictive quality metrics
  • RAG-powered enterprise context and compliance automation

πŸ“Š SyntaxLab Workflow Diagrams

This document contains modular Mermaid diagrams for different layers of the SyntaxLab platform. These are designed for composability and clarity β€” useful for onboarding, slide decks, CI/CD docs, and compliance reports.

βΈ»

flowchart TD

  %% === INPUT & GENERATION ===
  subgraph "🧠 Prompt + Model Orchestration"
    A["πŸ“ Developer Prompt"] --> B["🧠 Model Router (Claude, GPT-4, OSS)"]
    B --> C["✍️ Code Generation per Model"]
    C --> D["πŸ“„ Aggregate Candidate Pool"]
  end

  %% === VALIDATION LAYER ===
  subgraph "πŸ” Validation Layer"
    D --> V1["πŸ” Static Analysis (AST, Typecheck, Lint)"]
    D --> V2["⚠️ Hallucination Detection"]
    D --> V3["πŸ” Compliance Enforcement"]

    %% Hallucination Breakdown
    V2 --> V2a["πŸ” Unknown Symbol Check"]
    V2 --> V2b["πŸ“š SDK/API Graph Lookup"]
    V2 --> V2c["🧠 Self-Critique (LLM Edit Pass)"]

    %% Compliance Breakdown
    V3 --> V3a["πŸ“œ Redact Logs (GDPR Art. 5)"]
    V3 --> V3b["πŸ—‘οΈ Anonymize on Deletion (GDPR Art. 17)"]
    V3 --> V3c["πŸ“’ Audit Trail (HIPAA Β§164.312)"]
    V3 --> V3d["πŸ” Encrypt PHI at Rest/In Transit"]
  end

  %% === MUTATION TESTING ===
  subgraph "πŸ§ͺ Mutation Testing"
    V1 --> M1["🧬 Inject Mutants"]
    M1 --> M2["πŸ§ͺ Execute Test Suite"]
    M2 --> M3{"Mutation Score β‰₯ Threshold?"}
    M3 -- No --> M4["πŸ› οΈ Refine Test Cases"] --> C
    M3 -- Yes --> S1["πŸ“Š Score Each Candidate U(x)"]
  end

  %% === SELECTION ===
  subgraph "πŸ“ˆ Scoring & Selection"
    S1 --> S2{"Is Pareto Optimal?"}
    S2 -- No --> R1["πŸ” Refine Prompt/Config"] --> A
    S2 -- Yes --> F1["βœ… Final Validated Output"]
  end

  %% === DELIVERY ===
  subgraph "πŸ“¦ Output & Integration"
    F1 --> X1["πŸ’Ύ Cache for Retrieval"]
    F1 --> X2["πŸš€ Send to IDE / CI / GitHub"]
  end
Loading

🧭 Overview Graph (High-Level Flow)

flowchart TD
    A["πŸ“ Developer Prompt"] --> B["🧠 Model Orchestration"]
    B --> C["✍️ Code Generation"]
    C --> D["πŸ” Validation Layer"]
    D --> E["πŸ§ͺ Mutation Testing"]
    E --> F["πŸ“Š Scoring + Pareto Selection"]
    F --> G["βœ… Validated Solution"]
    G --> H["πŸ’Ύ Cache"]
    G --> I["πŸš€ Deliver to CI / IDE"]
    F --> J["πŸ” Prompt Refinement"] --> A
Loading

βΈ»

🧠 LLM Generation Layer

flowchart TD
    A["πŸ“ Developer Prompt"] --> B["🧠 Model Orchestration"]
    B --> C1["Claude"]
    B --> C2["GPT-4"]
    B --> C3["OSS Model"]
    C1 --> D["✍️ Generated Code"]
    C2 --> D
    C3 --> D
    D --> E["πŸ“„ Aggregate Candidate Pool"]
Loading

βΈ»

πŸ” Validation Layer (Static + Semantic Checks)

flowchart TD
    A["πŸ“„ Aggregate Candidate Pool"] --> B["πŸ” Static Validation"]
    A --> C["⚠️ Hallucination Detection"]
    A --> D["πŸ” Compliance Scan"]

    %% Hallucination Details
    C --> C1["πŸ” Unknown API Check"]
    C --> C2["🧠 LLM Self-Critique"]
    C --> C3["πŸ“š Symbol Graph Lookup"]
    C --> C4["πŸ” Confidence Score"]

    %% Compliance Rules
    D --> D1["πŸ“œ Redact Logs"]
    D --> D2["πŸ—‘οΈ Enforce Anonymization"]
    D --> D3["πŸ“’ Log PHI Access"]
    D --> D4["πŸ” Encrypt PHI"]
Loading

βΈ»

πŸ§ͺ Mutation Testing Layer

flowchart TD
    A["πŸ” Static Validation"] --> B["🧬 Inject Mutants"]
    B --> C["πŸ§ͺ Execute Tests"]
    C --> D{"Mutation Score β‰₯ Threshold?"}
    D -- No --> E["πŸ› οΈ Refine Tests"] --> B
    D -- Yes --> F["πŸ“Š Score U(x)"]
Loading

βΈ»

πŸ“Š Scoring + Decision Layer

flowchart TD
    A["πŸ“Š Score Candidates"] --> B{"Pareto Optimal?"}
    B -- Yes --> C["βœ… Final Validated"]
    B -- No --> D["πŸ” Refine Prompt / Config"] --> E["πŸ“ Developer Prompt"]
Loading

βΈ»

πŸ“¦ Output Layer

flowchart TD
    A["βœ… Final Validated"] --> B["πŸ’Ύ Store in Cache"]
    A --> C["πŸš€ Deliver to IDE / CI"]
Loading

g Let me know if you want an animated graph switcher, color themes, or PDF export.


πŸ“¦ Technologies

Category Stack
Programming TypeScript, Rust, Python
CLI Tooling Node.js, Commander.js, Ink, ESBuild
AI Models Claude, GPT-4, CodeLlama, DeepSeek-Coder, StarCoder
Code Analysis Tree-sitter, Git, LSP
Retrieval System RAG: Dense (Faiss) + Sparse (BM25) + Chunk scoring

πŸ“š Research References

🧠 AI Models & Prompting

  • PromptBreeder β€” Fernando et al. (2023): Prompt evolution for LLM performance
  • DSPy β€” Khattab et al. (2024): Declarative optimization of LLM pipelines
  • EvoPrompt β€” Guo et al. (2023): Evolutionary algorithms with LLMs
  • OpenAI LogProbs β€” logit-based confidence scoring
  • Claude Code Docs β€” model capabilities and architecture notes

πŸ§ͺ Mutation Testing & Validation

  • MuTAP β€” Meta AI (2024): Mutation testing on AI-generated code
  • Mutation Testing Research β€” Wang et al. (2024): Fault detection improvements from LLMs
  • LLM Guard β€” Prompt injection detection at 99.27% accuracy
  • Incremental Validation Systems β€” Microsoft, GitHub, XenonStack

πŸ“Š Context & Retrieval (RAG)

  • Google Research β€” Context sufficiency scoring in retrieval systems
  • AWS RAG Playbook β€” Dense/sparse hybrid architecture patterns
  • Semantic Chunking β€” OpenAI, Anthropic best practices for code embeddings

πŸ“ˆ Feedback, Learning & Optimization

  • Active Learning for LLMs β€” NVIDIA/Anyscale batching performance gains
  • Continuous Batching β€” 23x throughput gains with intelligent scheduling
  • Knowledge Federation β€” Flower (federated learning), DP frameworks
  • Quality-Diversity Algorithms β€” MAP-Elites, QDax (Lim et al., 2022)

🏒 Enterprise Engineering & CI/CD

  • Model Context Protocol (MCP) β€” Anthropic (2024): 25% LLM accuracy lift
  • GitHub Copilot ROI β€” Cost-benefit benchmarks
  • Terraform Best Practices β€” Scalable infrastructure as code
  • SOC2 / ISO27001 Controls β€” Enterprise compliance frameworks

πŸ“ Semantic Analysis & Business Mapping

  • CodeQL β€” Semantic security and behavior detection
  • Semgrep β€” Linting and refactoring at semantic level
  • Business Logic Extraction β€” Domain concept mapping from code

πŸ§ͺ Experimental Status

SyntaxLab is actively under development and pre-release. APIs, models, and CLI interfaces may change until v1.0. Use in isolated environments.


πŸ› οΈ Getting Started

Coming soon:

  • CLI SDK
  • Usage guide
  • Contribution guidelines

πŸ“« Contact

For early access, partnerships, or team onboarding:
πŸ“§ team@syntaxlab.ai

πŸ“š Research References

SyntaxLab’s architecture is grounded in academic and industry research across prompting, mutation testing, retrieval, compliance, and enterprise infrastructure.

Sources:
Anthropic
OpenAI
Meta
GitHub
Google
AWS
NVIDIA
OWASP


🧠 AI Models & Prompting

  • Prompt evolution techniques improve code quality via strategy mutation and fallback chains123.
  • Confidence scoring adapted from OpenAI logprobs and Claude’s response ranking45.

πŸ§ͺ Mutation Testing & Validation

  • MuTAP mutation testing detects 90%+ faults in LLM code67.
  • Prompt injection detection using ONNX achieves 99.27% accuracy8.
  • Incremental validation pipelines inspired by GitHub and DevSecOps best practices910.

πŸ“Š Context & Retrieval (RAG)

  • Context sufficiency modeling for scalable hybrid RAG1112.
  • Semantic chunking and dense/sparse fusion via NVIDIA benchmarks13.

πŸ“ˆ Feedback, Learning & Optimization

  • Active learning batching improves throughput 23x over naive prompts1415.
  • Genetic prompt optimization evolves DSLs and templates1316.
  • Federated learning with differential privacy enables cross-team sharing1718.

🏒 Enterprise Engineering & CI/CD

  • Model Context Protocol (MCP) boosts accuracy by 25% and throughput by 30%19.
  • CI/CD enhancements powered by dynamic quality gates and test prioritization2021.
  • Security and compliance enforced with role-based controls and audit trails2223.

πŸ“ Semantic Analysis & Business Mapping

  • CodeQL and Semgrep for deep pattern matching and security analysis2425.
  • Business logic extraction for domain-aligned recommendations26.

πŸ”– Footnote References


🧾 License

MIT License unless otherwise contracted for enterprise deployment.

Footnotes

  1. PromptBreeder: Self-Referential Prompt Evolution (2023) ↩ ↩2

  2. EvoPrompt: EA + LLM Optimization (2023) ↩

  3. DSPy: Declarative Prompt Programming (2024) ↩ ↩2

  4. OpenAI LogProbs API ↩

  5. Claude Confidence Scores – Anthropic ↩

  6. MuTAP by CodeIntegrity AI ↩

  7. Meta Mutation Testing Deployment ↩

  8. LLM Guard: Prompt Injection Detection ↩

  9. GitHub Multi-Repository Variant Analysis ↩

  10. XenonStack DevSecOps Patterns ↩

  11. Google Research: Context Sufficiency in RAG ↩

  12. AWS: What is Retrieval-Augmented Generation ↩

  13. NVIDIA Hybrid RAG Optimization ↩

  14. Anyscale: LLM Serving Optimization ↩

  15. LinearB Productivity Benchmarks ↩

  16. Prompt Optimization Techniques – Wolfe ↩

  17. Flower: Federated Learning Framework ↩

  18. Harvard Differential Privacy Project ↩

  19. Anthropic Model Context Protocol (MCP) ↩

  20. Spacelift: CI/CD Best Practices ↩

  21. Codefresh: Enterprise CI/CD ↩

  22. OWASP Top 10 for LLM Applications (2025) ↩

  23. AICPA: SOC2 Security Controls ↩

  24. CodeQL for Code Analysis – GitHub ↩

  25. Semgrep: Semantic Pattern Security Engine ↩

  26. ACL 2023: Business Logic Concept Mapping ↩

About

Just an idea for now

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published