Welcome to the cutting-edge Financial Analysis System – where data science meets investment intelligence! This advanced Python-based platform leverages state-of-the-art machine learning and financial modeling techniques to provide deep insights into stock market dynamics.
- Advanced Data Ingestion: Real-time stock data retrieval
- Predictive Modeling: AI-powered price forecasting
- Market Insights: Natural language market trend analysis
- Interactive Visualizations: Intuitive data representations
- Machine Learning: Auto ARIMA forecasting
- Natural Language Processing: Groq-powered market insights
- Data Visualization: Matplotlib-driven graphical analysis
- Backend: FastAPI
- Data Processing: Pandas, NumPy
- Machine Learning: pmdarima, scikit-learn
- Natural Language: LangChain, Groq
- Visualization: Matplotlib
- Python 3.9+
- pip package manager
# Clone the repository
git clone https://github.com/austinLorenzMccoy/financial-analysis-system.git
# Navigate to project directory
cd financial-analysis-system
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
# Install dependencies
pip install -r requirements.txt# Start FastAPI server
uvicorn main:app --reload
# Run example analysis
python examples/analyze_stock.pyfinancial_analysis_project/
│
├── src/
│ ├── __init__.py
│ ├── main.py # FastAPI application
│ ├── core/
│ │ ├── __init__.py
│ │ ├── financial_analysis.py # Core analysis system
│ │ ├── data_ingestion.py # Data fetching logic
│ │ ├── preprocessing.py # Data preprocessing
│ │ ├── prediction.py # Predictive modeling
│ │ └── insights.py # Market insights generation
│ │
│ ├── models/
│ │ ├── __init__.py
│ │ └── financial_analysis_state.py # Typed state model
│ │
│ └── utils/
│ ├── __init__.py
│ ├── visualization.py # Plotting utilities
│ └── logger.py # Logging configuration
│
├── tests/
│ ├── __init__.py
│ ├── test_data_ingestion.py
│ ├── test_preprocessing.py
│ └── test_prediction.py
│
├── requirements.txt
├── README.md
└── .env # Environment variables
import requests
payload = {
"ticker": "AAPL",
"start_date": "2023-01-01",
"end_date": "2024-01-01"
}
response = requests.post("http://localhost:8000/analyze", json=payload)
print(response.json())# Run unit tests
pytest tests/
# Generate coverage report
pytest --cov=src tests/The system generates:
- Price trend visualizations
- Confidence interval charts
- Detailed market insights
- Predictive price forecasts
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
- Multi-stock portfolio analysis
- Advanced sentiment analysis
- Real-time trading signal generation
- Web dashboard integration
- Machine learning model improvements
- FastAPI for web framework
- Pandas for data manipulation
- Matplotlib for visualization
Disclaimer: This tool is for educational purposes. Always consult financial professionals before making investment decisions.
Austin Lorenz McCoy - GitHub Profile
Project Link: https://github.com/austinLorenzMccoy/financial-analysis-system
The system is designed as a multi-stage workflow with the following key components:
- Fetches stock data using
yfinance - Preprocesses raw data
- Calculates additional features like returns and rolling statistics
- Uses Auto ARIMA for time series forecasting
- Predicts stock prices for the next week
- Generates confidence intervals for predictions
- Leverages Language Model (LLaMA 3) to generate comprehensive market insights
- Provides context-aware analysis based on historical and predicted data
- Creates two key visualizations:
- Price Trend and Forecast
- Prediction Confidence Interval
- Saves visualizations as PNG files
- Generates a critical review of the analysis
- Highlights strengths, potential blind spots, and confidence levels
- Modular design using LangGraph
- Flexible and extensible architecture
- Error handling at each stage
- Automated insights generation
- Python 3.8+
- Libraries:
- langgraph
- yfinance
- pmdarima
- matplotlib
- seaborn
- langchain
- groq
pip install langgraph yfinance pmdarima matplotlib seaborn langchain-groq python-dotenvsystem = FinancialAnalysisSystem()
analysis_result = system.run_analysis(
ticker='AAPL',
start_date='2023-01-01',
end_date='2024-03-25'
)- Multiple ticker support
- Advanced anomaly detection
- Integration with more data sources
- Enhanced machine learning models
- Predictions are based on historical data
- Market unpredictability can affect accuracy
- Requires continuous model retraining
Contributions are welcome! Please submit pull requests or open issues.