- PyTorch >= 1.10
- CUDA >= 10.0
- CuDNN >= 7.6.5
- python >= 3.6
- Download repository. We call this directory as
ROOT:
$ git clone https://github.com/CZY-Code/PHNet.git
- Install dependencies:
$ conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=10.2 -c pytorch
$ pip install -r requirements.txt
- Install NMS ops
$ cd ./libs/ops
$ python setup.py build develop
- Install evaluation tools:
$ sudo ln -s /usr/local/include/opencv4/opencv2 /usr/local/include/opencv2$
$ cd evaluation/culane
$ mkdir build && cd build
$ cmake ..
$ make
$ mv culane_evaluator ../
Pytorch can be installed on here. Other versions might be available as well.
- Download OpenLane-V and VIL-100 dataset.
- Unzip and move dataset into ROOT/dataset
├── OpenLane
│ ├── images
│ ├── OpenLane-V
| | ├── label
| | ├── list
├── VIL-100
│ ├── JPEGImages
│ ├── Annotations
| └── ...
- Modify the settings in option files in
./options/option*.py - For OpenLane-V dataset:
$ torchrun --nproc_per_node=4 trainOL.py
$ python testOLV3.py
- For VIL-100 dataset:
$ torchrun --nproc_per_node=4 trainVIL.py
$ python testVIL.py
Weight for OpenLane-V: [here](通过网盘分享的文件:50.pth.tar 链接: https://pan.baidu.com/s/15RTib-EKtDbYn7VFi13MHA?pwd=b4ac 提取码: b4ac).
Weight for VIL-100: [here](通过网盘分享的文件:50.pth.tar 链接: https://pan.baidu.com/s/1LBEEQMBKZb8sBeSZYOUTdg?pwd=jkba 提取码: jkba).
$ cd ./evaluation
$ python evaluate_iou.py #(VIL-100)
$ python evaluate_iou4OL.py #(OpenLane-V)