Skip to content

Luminark is an enterprise-grade, real-time deepfake detection system for video communications. It uses multimodal analysis (spatial, temporal, frequency, physiological) and explainable AI to deliver >95% accuracy and sub-2-second detection speed. Built with cloud-native microservices for high availability and scalability.

License

Notifications You must be signed in to change notification settings

IsVohi/Luminark-DeepFake_Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ›‘οΈ Luminark

AI-Powered Deepfake Video Detection

Python PyTorch FastAPI React License

Detect manipulated videos with 94%+ accuracy using an ensemble of 6 neural network models

Live Demo β€’ Features β€’ Architecture β€’ Installation β€’ API Reference


✨ Features

Feature Description
🎯 Multi-Model Ensemble 6 specialized AI models voting on authenticity
πŸŽ₯ Real-Time Analysis Process videos up to 500MB with live progress
πŸ”¬ Explainable AI Grad-CAM visualizations and per-model contributions
πŸŒ“ Modern UI Glassmorphism design with light/dark themes
πŸ”’ Privacy-First Videos deleted immediately after analysis
⚑ Fast Inference GPU-accelerated or optimized CPU processing

🧠 Model Architecture

Luminark uses an ensemble fusion approach with 6 specialized detection models:

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚   Input Video   β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚                   β”‚                   β”‚
         β–Ό                   β–Ό                   β–Ό
   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
   β”‚ VideoMAE β”‚      β”‚ EfficientNet β”‚     β”‚  WavLM    β”‚
   β”‚ (Video)  β”‚      β”‚  (Spatial)   β”‚     β”‚  (Audio)  β”‚
   β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
        β”‚                   β”‚                   β”‚
   β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”
   β”‚ CNN-LSTM β”‚      β”‚ FFT/DCT      β”‚     β”‚  Lip-Sync β”‚
   β”‚(Temporal)β”‚      β”‚ (Frequency)  β”‚     β”‚ Detector  β”‚
   β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜
        β”‚                   β”‚                   β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                            β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
                    β”‚ Fusion Layer  β”‚
                    β”‚(Weighted Vote)β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
                            β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
                    β”‚    Verdict    β”‚
                    β”‚  REAL / FAKE  β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Model Type Detection Focus
VideoMAE Transformer Spatio-temporal patterns
EfficientNet CNN Frame-level artifacts
CNN-LSTM Hybrid Motion inconsistencies
FFT/DCT Frequency Compression artifacts
WavLM Audio Voice synthesis traces
Lip-Sync Multimodal Audio-visual mismatch

πŸ–₯️ Demo

Luminark Demo

Screenshots

Light Theme Dark Theme
Light Dark

πŸš€ Quick Start

Prerequisites

  • Python 3.10+
  • Node.js 18+
  • Docker (recommended)

Installation

# Clone repository
git clone https://github.com/IsVohi/Luminark-DeepFake_Detection.git
cd Luminark-DeepFake_Detection

# Option 1: Docker (Recommended)
docker compose up

# Option 2: Manual Setup
# Backend
pip install -r requirements/base.txt
pip install torch torchvision torchaudio
uvicorn backend.app:app --reload

# Frontend
cd frontend && npm install && npm run dev

Access


πŸ“‘ API Reference

Endpoints

Method Endpoint Description
GET /health Health check
POST /infer Analyze video (quick)
POST /explain Analyze with XAI details

Example Request

curl -X POST http://localhost:8000/infer \
  -H "X-API-Key: your_api_key" \
  -F "video=@test_video.mp4"

Response

{
  "verdict": "FAKE",
  "confidence": 0.94,
  "scores": {
    "spatial": 0.89,
    "temporal": 0.92,
    "frequency": 0.87,
    "audio": 0.96
  },
  "explanation": "High temporal inconsistency detected..."
}

πŸ“ Project Structure

luminark/
β”œβ”€β”€ backend/          # FastAPI server
β”‚   β”œβ”€β”€ app.py        # Main application
β”‚   └── sdk/          # Client SDK
β”œβ”€β”€ core/             # ML pipeline
β”‚   β”œβ”€β”€ models/       # Neural network definitions
β”‚   β”œβ”€β”€ xai/          # Explainability (Grad-CAM)
β”‚   └── infer.py      # Inference orchestration
β”œβ”€β”€ frontend/         # React + Vite
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ pages/    # Landing, Analyze, Docs
β”‚   β”‚   └── components/
β”‚   └── public/
β”œβ”€β”€ models/           # Trained weights (download separately)
β”œβ”€β”€ infra/            # Docker, K8s, AWS configs
└── requirements/     # Python dependencies

πŸ”§ Configuration

Environment Variables

Variable Description Default
MODEL_DEVICE cpu or cuda cpu
LUMINARK_API_KEYS Comma-separated API keys -
LOG_LEVEL Logging verbosity INFO

πŸ“Š Performance

Tested on DFDC and Celeb-DF v2 datasets:

Metric Score
Accuracy 94.2%
AUC-ROC 0.967
F1 Score 0.938
Inference Time ~3s/video

πŸ› οΈ Tech Stack

Backend: Python, FastAPI, PyTorch, OpenCV, FFmpeg

Frontend: React 18, Vite, Framer Motion, Lucide Icons

ML Models: VideoMAE, EfficientNet, WavLM, CNN-LSTM

DevOps: Docker, Kubernetes, AWS Lambda


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file.


πŸ‘€ Author

Vikas Sharma

GitHub Email


Built with ❀️ for a safer digital world

About

Luminark is an enterprise-grade, real-time deepfake detection system for video communications. It uses multimodal analysis (spatial, temporal, frequency, physiological) and explainable AI to deliver >95% accuracy and sub-2-second detection speed. Built with cloud-native microservices for high availability and scalability.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published