This Repo is a personal collection of small learning projects, reference notes, and example code used while learning and practicing the langiages and tools needed to become a Machine Learning Enginner. The materials are organized loosely by topic and are intended as lightweight, runnable examples and notes you can read and adapt.
.
├── build.sh
├── Docker
│ ├── docker_init.sh
│ ├── Gemini_Code.txt
│ ├── script_1.sh
│ ├── script_2.txt
│ └── things to Note.txt
├── DSA_and_OOP
│ ├── DSA_Learning
│ │ ├── Gemini_Code.py
│ │ ├── script_1.py
│ │ └── script_2.py
│ ├── OOP_Learning
│ │ ├── class_holder.py
│ │ ├── Gemini_Code.py
│ │ ├── script_1.py
│ │ └── script_2.py
│ ├── prompt format.txt
│ └── things_to_note.txt
├── FastAPI
│ ├── Gemini_Code.py
│ ├── main.py
│ ├── script_2.py
│ ├── the_client.py
│ └── things to Note.txt
├── learning_git_and_numpy
│ ├── numpy-learning-project
│ │ ├── 01_first_array.py
│ │ ├── 02_array_creation.py
│ │ ├── 03_sequential_arrays.py
│ │ ├── 04_random_arrays.py
│ │ ├── 06_array_attributes.py
│ │ ├── 07_array_indexing.py
│ │ ├── 08_advanced_slicing.py
│ │ ├── 09_image_processor.py
│ │ ├── 10_boolean_masks.py
│ │ ├── 11_integer_array_indexing.py
│ │ ├── 12_vectorization.py
│ │ ├── 13_vectorized_math.py
│ │ ├── 14_standard_ufuncs.py
│ │ ├── 15_broadcasting.py
│ │ ├── 16_review_script.py
│ │ ├── 17_broadcasting_rules.py
│ │ ├── 18_broadcasting_ml.py
│ │ ├── 19_newaxis.py
│ │ ├── 20_linalg_fix.py
│ │ ├── 21_reshape.py
│ │ ├── 22_join_split.py
│ │ ├── 23_transpose.py
│ │ ├── 24_data_pipeline.py
│ │ ├── 25_dims.py
│ │ ├── 26_aggregations.py
│ │ ├── 27_statistics.py
│ │ ├── 28_assignment_analysis.py
│ │ ├── Gemini_Code.py
│ │ ├── huge_data.csv
│ │ ├── large_dset.npy
│ │ ├── script_1.py
│ │ ├── script_2.py
│ │ └── things to note.txt
│ ├── pandas_lib.rar
│ └── Text Files
│ ├── assignment.txt
│ └── how to write commit message.txt
├── Linux
│ ├── Gemini_Code.txt
│ ├── script_1.sh
│ ├── script_2.txt
│ └── things to Note.txt
├── Logging
│ ├── Gemini_Code.py
│ ├── script_1.py
│ ├── script_2.py
│ └── things to Note.txt
├── logs
│ ├── numpy_status_report.log
│ └── oop_status_report.log
├── Matplotlib_and_Seaborn
│ ├── Gemini_Code.py
│ ├── script_1.py
│ ├── script_2.py
│ ├── test_file.ipynb
│ └── things to Note.txt
├── Projects
│ └── SQL, Pandas, NumPy, and Git
│ └── Project_1__The First Commit
│ ├── query.sql
│ ├── README.md
│ ├── script.py
│ └── sqlite_database.db
├── README.md
├── requirements.txt
├── Saved_Datasets_and_Models
│ ├── Models
│ │ ├── KNN
│ │ │ ├── diamond_model.pkl
│ │ │ └── diamond_scaler.pkl
│ │ └── Numpy
│ │ └── model_checkpoint.npz
│ └── Processed_Datasets
│ ├── customer_survey_dataset.parquet
│ ├── reg_sales_dset_parquet.parquet
│ ├── reg_sales_dset_pickle.pkl
│ └── subscription_logs_dataset.parquet
├── Scikit-Learn
│ ├── Gemini_Code.py
│ ├── script_1.py
│ ├── script_2.py
│ └── things to Note.txt
├── SQL_and_pandas
│ ├── database_generator
│ │ ├── build_database.py
│ │ ├── file_a.py
│ │ └── run_database_build.py
│ ├── Pandas_Code
│ │ ├── Gemini_Code.py
│ │ ├── postres_connect.py
│ │ ├── script_1.py
│ │ ├── script_2.py
│ │ └── things to Note.txt
│ └── SQL_Code_and_DataBase
│ ├── Gemini_code.sql
│ ├── learn_sql.ipynb
│ ├── script_2.sql
│ └── things to Note.txt
├── test_things.py
└── z_code.ipynb
General things to Note.txt— Short notes and reminders about ML python development in general.README.md— (this file) overview of the repo and guidance.learning_git_and_numpy/— Primary learning projects and example scripts for NumPy and related topics.numpy-learning-project/— Series of short example scripts (01..17 and extras) that demonstrate NumPy array creation, indexing, broadcasting, ufuncs, and small image-processing examples. Each file is a self-contained script intended for exploration and learning.- Example files:
01_first_array.py,02_array_creation.py,07_array_indexing.py,09_image_processor.py,12_vectorization.py, etc.
- Example files:
things to note.txt— Misc notes related to the examples in this folder and git markdown formatting procedure.
Text Files/— A small set of text documents (how to write commit message.txt,assignment.txt).SQL_and_pandas/— Examples and small utilities showing simple database generation and pandas workflows.database_generator/— Scripts to programmatically build example SQL files and demonstrate building a small test database.build_database.py,run_database_build.py, and helper modules. The database where the tables are generated in is located at sQL_CoDe/my_database.db.
pandas_codE/— Short pandas scripts and notes demonstrating data manipulation patterns (Gemini_Code.py,script_1.py,script_2.py).sQL_CoDe/— SQL snippets and an example notebook (learn_sql.ipynb) containing basic SQL learning material.
This folder acts as a personal learning library. Use it to:
- Read the example scripts to learn idiomatic NumPy/pandas patterns.
- Run the small scripts directly (they are written as simple Python scripts — open them in an editor and run with your local Python interpreter).
- Use
database_generatorto produce sample SQL if you want to practice loading data into a local database.
Typical quick-start steps (assumes you have Python 3.8+ installed):
- Open a console in this folder (for example: the
numpy-learning-projectfolder). - Create/activate a virtual environment if you like.
- Run an example script with
python 01_first_array.pyor open an example in VS Code.
Notes:
- These examples intentionally avoid heavy, pinned dependencies. If you need pandas or NumPy, install them in your environment:
pip install numpy pandas jupyter
or use the requirements.txt file:
pip install -r requirements.txt
- Some files (the notebook
learn_sql.ipynb) require Jupyter to view/run.
- Most directories contain one or more of the following files:
script_1.{file extension},script_2.{file extension}, orGemini_Code.{file extension}. These files serve distinct purposes within the learning workflow:Gemini_Code: Stores the code provided for instructional purposes.script_1: Used for practicing the concepts currently being taught.script_2: Serves as a comprehensive repository for all demonstrated code, optimized for future reference.
learning_git_and_numpy/numpy-learning-project/01_first_array.py— Intro to creating NumPy arrays..../09_image_processor.py— Simple image-processing code demonstrating array shapes and indexing.SQL_and_pandas/database_generator/build_database.py— Generates SQL table creation and sample-data insert files (useful to seed a test database).SQL_and_pandas/pandas_codE/Gemini_Code.py— Short pandas examples and notes.
- Filenames are prefixed with numbers in the
numpy-learning-projectfolder to indicate a suggested reading order. They are small, self-contained learning scripts. - The
SQL_and_pandasarea is split into code that generates SQL (database_generator) and example pandas scripts (pandas_codE).
- Add a
requirements.txtorenvironment.ymllisting the minimal packages used (NumPy, pandas, jupyter). - Convert a couple of example scripts into small unit tests or notebooks to demonstrate reproducibility.
- Standardize naming and capitalization (
pandas_codEvspandas_code) for consistency. - Add short README files inside large subfolders (
numpy-learning-project,database_generator) with direct run instructions and expected outputs.
This folder appears to be personal learning material. If you want to publish or share it, add a LICENSE file (MIT/Apache/BSD as appropriate) and ensure any third-party code snippets include attributions.
- Phone Number: +234 9133982877
- Whatsapp: Link to my Whatsapp
- Email: jesfusionprox@gmail.com
This README was last edited on 2026-01-15