Skip to content

Adaptive search & research skill for OpenClaw — methodology reference with source grading, cross-verification, and auto-calibrating depth.

Notifications You must be signed in to change notification settings

Kt-L/quick-search

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

Quick Search — Adaptive Search Skill for OpenClaw

中文 | English


中文

一个 OpenClaw Agent 技能,让你的 AI 助手变成一个有方法论的研究员。不是简单地丢搜索结果,而是根据问题自动调整搜索深度——从快速事实核查到多源深度调研——最终输出一份信源分级的结构化报告。

这是什么

这是一个搜索方法论技能,不是开箱即用的搜索引擎。它教你的 OpenClaw agent 怎么搜才搜得好

  • 自适应深度 — 简单问题快速收敛,复杂问题自动多轮挖掘
  • 信源分级 — 每个来源标注 🟢🟡🔴(官方 → 媒体 → 社区)
  • 交叉验证 — 关键结论至少两个独立来源互相印证
  • 静默执行 — 用户只看到一条最终报告,中间过程不刷屏

文件结构

search/
├── SKILL.md                          # 核心技能定义("大脑")
├── scripts/
│   └── cn-social.py                  # 中文社媒搜索(302.AI)
└── references/
    ├── source-priority.md            # 信源可靠性分级体系
    └── community-gates.md            # 社区来源使用规范

依赖

⚠️ 这个技能不能直接用。 它依赖未包含在内的外部工具。本仓库作为参考实现分享——展示搜索技能的结构设计和有效的方法论。

依赖 作用 是否包含?
OpenClaw Agent 运行时 ❌(需单独安装)
web_fetch 网页全文提取 ✅(OpenClaw 内置)
Exa search skill 主要网页搜索引擎
bird CLI X/Twitter 社区搜索
302.AI API key 中文社媒(知乎、B站、小红书、微信公众号、TikTok) 部分(脚本包含,需自备 API key)

工作原理

技能遵循四阶段流水线:

  1. 意图分析(静默) — 将查询分类(事实核查/信息收集/动态追踪/舆情探查),规划信源策略
  2. 探查 — 1-2 次轻量搜索建立认知框架。如果答案已经明确,直接跳到报告
  3. 证据收集循环 — 迭代:识别最大信息缺口 → 针对性搜索 → 更新证据图谱 → 重复。当核心问题有可靠来源支撑,或连续两轮无新信息时停止
  4. 信源评级与报告 — 所有来源标注可靠性等级,输出结构化报告

如何适配自己的环境

  1. 替换搜索后端 — 把 SKILL.md 中的 Exa 引用换成你的搜索工具(Tavily、SearXNG、Perplexity、Google Custom Search 等)
  2. 替换或移除社区搜索 — 把 bird 引用换成你有的社区搜索工具,或直接删掉
  3. 保留方法论 — 信源分级体系、交叉验证规则和自适应深度逻辑与具体工具无关

English

An OpenClaw agent skill that turns your AI assistant into a methodical researcher. Instead of dumping raw search results, it automatically calibrates search depth based on the question — from a quick fact-check to a multi-source investigation — and delivers a single, source-graded report.

What This Is

This is a search methodology skill, not a turnkey search engine. It teaches your OpenClaw agent how to search well:

  • Adaptive depth — simple questions get quick answers; complex ones trigger multi-round evidence gathering
  • Source grading — every source is rated 🟢🟡🔴 (official → media → community)
  • Cross-verification — key claims require at least two independent sources
  • Silent execution — the user sees one final report, not a stream of intermediate searches

Structure

search/
├── SKILL.md                          # Core skill definition (the "brain")
├── scripts/
│   └── cn-social.py                  # Chinese social media search (302.AI)
└── references/
    ├── source-priority.md            # Source reliability ranking system
    └── community-gates.md            # Rules for using community sources

Dependencies

⚠️ This skill will NOT work out of the box. It relies on external tools that are not included. This repo is shared as a reference implementation — to show how a search skill can be structured and what methodology works well.

Dependency Role Included?
OpenClaw Agent runtime ❌ (install separately)
web_fetch Full-text page extraction ✅ (built into OpenClaw)
Exa search skill Primary web search engine
bird CLI X/Twitter community search
302.AI API key Chinese social media (Zhihu, Bilibili, Xiaohongshu, WeChat, TikTok) Partial (script included, API key required)

How It Works

The skill follows a 4-stage pipeline:

  1. Intent Analysis (silent) — classifies the query (fact-check / info gathering / trend tracking / sentiment probe) and plans the source strategy
  2. Recon — 1–2 lightweight searches to establish the knowledge landscape. If the answer is already clear, skip to the report
  3. Evidence Collection Loop — iterative: identify the biggest information gap → targeted search → update evidence map → repeat. Stops when core questions are answered with reliable sources, or when two consecutive rounds yield no new information
  4. Source Grading & Report — all sources tagged with reliability levels, structured report output

Adapting for Your Own Setup

  1. Replace the search backend — swap Exa references in SKILL.md with your preferred search tool (Tavily, SearXNG, Perplexity, Google Custom Search, etc.)
  2. Replace or remove the social search — swap bird references with whatever community search you have, or remove those sections
  3. Keep the methodology — the source grading system, cross-verification rules, and adaptive depth logic are tool-agnostic

License

MIT

About

Adaptive search & research skill for OpenClaw — methodology reference with source grading, cross-verification, and auto-calibrating depth.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages