Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions Convolutional Neural Network/CNNtf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@

import tensorflow as tf
import matplotlib.pyplot as plt
#plt.imshow(x_train[0])
plt.imshow(x_train[0],cmap=plt.cm.binary)
plt.show()
print(x_test[0])

mnist = tf.keras.datasets.mnist # 28x28 images of handwritten digits from 0-9
(x_train,y_train),(x_test,y_test) = mnist.load_data() # distibution labels of input data

x_train = tf.keras.utils.normalize(x_train,axis=1) # normalization of training data
x_test = tf.keras.utils.normalize(x_test,axis=1) # normalization of testing data

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10,activation=tf.nn.softmax))


model.compile (optimizer='adam',
loss="sparse_categorical_crossentropy",
metrics =['accuracy']
)

model.fit(x_train,y_train,epochs=3)

val_loss, val_accuracy = model.evaluate(x_test,y_test)
print(val_loss,val_accuracy)