Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion collie/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from .config import CollieConfig
from .models import LlamaForCausalLM, MossForCausalLM, CollieModelForCausalLM, \
ChatGLMForCausalLM, InternLMForCausalLM, ChatGLM2ForCausalLM, Moss003MoonForCausalLM, \
InternLM2ForCausalLM
InternLM2ForCausalLM, Qwen2ForCausalLM
from .callbacks import Callback, HasMonitorCallback, CheckpointCallback, \
LoadBestModelCallback
from .module import PipelineGenerationMixin, ColumnParallelLinear, \
Expand Down Expand Up @@ -52,6 +52,7 @@
'ChatGLM2ForCausalLM',
'Moss003MoonForCausalLM',
'InternLM2ForCausalLM',
'Qwen2ForCausalLM',

# modules
'PipelineGenerationMixin',
Expand Down
1 change: 1 addition & 0 deletions collie/controller/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,6 +386,7 @@ def train(self, dataloader: Optional[Iterable] = None):
"mode": "train",
}
)

tqbar_batch.set_postfix(Loss=round(loss, 4))
self.on_train_batch_end(loss)
if (
Expand Down
1 change: 1 addition & 0 deletions collie/driver/io/file.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import torch
from safetensors.torch import load_file
import shutil
from safetensors.torch import save_file, load_file

class FileIODriver(IODriver):
@staticmethod
Expand Down
1 change: 1 addition & 0 deletions collie/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,4 @@
from .chatglm2 import ChatGLM2ForCausalLM
from .moss_moon import Moss003MoonForCausalLM
from .internlm2 import InternLM2ForCausalLM
from .qwen2 import Qwen2ForCausalLM
1 change: 1 addition & 0 deletions collie/models/qwen2/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .model import Qwen2ForCausalLM
144 changes: 144 additions & 0 deletions collie/models/qwen2/configuration_qwen2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Qwen2 model configuration"""

from transformers.configuration_utils import PretrainedConfig
from collie.log.logger import logger



QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
}


class Qwen2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.

```python
>>> from transformers import Qwen2Model, Qwen2Config

>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()

>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
_attn_implementation="flash_attention_2",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
self._attn_implementation = _attn_implementation
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout

super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
Loading