This repository provides Python code to generate binary and bipolar measurement matrices that directly satisfy the Robust Null Space Property (RNSP) for compressed sensing applications, using BCH (Bose–Chaudhuri–Hocquenghem) codes.
- Construct binary matrix ( A \in {0,1}^{m \times n} )
- Based on BCH code structure and minimum distance
- Designed for compressed sensing and sparse recovery
| File Name | Description |
|---|---|
bipolar.py |
Main generator function for binary/bipolar matrices |
custom.py |
Custom BCH code setup |
custom2.py |
Alternate custom matrix construction |
cyclo.py |
Cyclotomic polynomial-related routines |
dmin.py |
Minimum distance computation |
nsymgen.py |
BCH parameter generator (non-symmetric version) |
nsymmetric.py |
Symmetric variant of BCH parameter setup |
You’ll need Python 3 and the following libraries:
pip install numpy galois
####################################################################################################
---
## 👨💻 Author
**Dr. Shashank Ranjan**
Project Officer, IIT Hyderabad
- GitHub: [PowerUnlock](https://github.com/PowerUnlock)
- ORCID: [0009-0002-9665-7682](https://orcid.org/0009-0002-9665-7682)
- LinkedIn: [Your LinkedIn Profile](https://www.linkedin.com/in/shashank-ranjan-bb3195102/)