A benchmark for Landsat to Sentinel imageries via deep learning based super-resolution methods.
Image pairs of this dataset queried inside Google Earth Engine using the following criteria's: Cloudless images, the year 2023 images, acquisition time less than 1 hour between image pairs, and common area of pairs must be at least 100 km x 100 km. 30 pairs manually selected from these pairs using Land2Sent GEE application. Sentinel images are tiled 480 x 480 pixels and Landsat images are tiled 160 x 160 pixels for super resolution model training. Total of 15066 tiles produced. The dataset splitted %70 training, %20 validation, and %10 testing.
Please click here to download the dataset.
Metric values on normalized 4-band images:
| Method | PSNR↑ | SSIM↑ | AG↑ | NIQE↓ | PI↓ |
|---|---|---|---|---|---|
| CAFRN | 35.212 | 0.964 | 0.00545 | 20.327 | 13.764 |
| DCM | 35.468 | 0.967 | 0.00533 | 20.283 | 13.882 |
| FENet | 35.061 | 0.963 | 0.00531 | 20.214 | 13.829 |
| HAUNet | 35.932 | 0.965 | 0.00567 | 20.317 | 13.736 |
| HSENet | 35.588 | 0.963 | 0.00571 | 20.338 | 13.670 |
| MHAN | 35.801 | 0.970 | 0.00582 | 20.295 | 13.627 |
| Omnisr | 35.530 | 0.965 | 0.00559 | 20.366 | 13.696 |
| RCAN | 36.171 | 0.965 | 0.00614 | 20.305 | 13.487 |
| SAN | 35.653 | 0.966 | 0.00558 | 20.260 | 13.655 |
| RDN | 36.636 | 0.972 | 0.00594 | 20.364 | 13.555 |
Metric values on original 16-bit images
| Method | PSNR↑ | SSIM↑ | AG↑ | NIQE↓ | PI↓ |
|---|---|---|---|---|---|
| CAFRN | 50.262 | 0.986 | 0.00082 | 20.605 | 14.155 |
| DCM | 50.388 | 0.987 | 0.00086 | 20.615 | 14.221 |
| FENet | 49.977 | 0.987 | 0.00082 | 20.529 | 14.112 |
| HAUNet | 50.879 | 0.989 | 0.00085 | 20.496 | 14.029 |
| HSENet | 51.748 | 0.991 | 0.00081 | 20.702 | 14.171 |
| MHAN | 51.362 | 0.991 | 0.00085 | 20.765 | 14.195 |
| Omnisr | 50.470 | 0.984 | 0.00083 | 20.551 | 14.171 |
| RCAN | 51.684 | 0.991 | 0.00085 | 20.765 | 14.180 |
| SAN | 50.977 | 0.989 | 0.00084 | 20.705 | 14.183 |
| RDN | 51.877 | 0.991 | 0.00086 | 20.880 | 14.213 |
Correlation of coefficient (R²) values of NDVI
| Data | Image | HR-LR | CAFRN | DCM | FENet | HAUNet | HSENet | MHAN | Omnisr | RCAN | RDM | SAN |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Normalized | 1 | 0.385 | 0.700 | 0.695 | 0.695 | 0.711 | 0.703 | 0.686 | 0.709 | 0.718 | 0.725 | 0.689 |
| Normalized | 2 | 0.902 | 0.958 | 0.958 | 0.952 | 0.963 | 0.962 | 0.965 | 0.960 | 0.968 | 0.969 | 0.962 |
| Normalized | 3 | 0.799 | 0.908 | 0.913 | 0.907 | 0.927 | 0.906 | 0.910 | 0.921 | 0.932 | 0.928 | 0.915 |
| Normalized | 4 | 0.824 | 0.945 | 0.941 | 0.941 | 0.950 | 0.948 | 0.950 | 0.949 | 0.957 | 0.958 | 0.946 |
| Normalized | 5 | 0.744 | 0.859 | 0.863 | 0.860 | 0.865 | 0.866 | 0.870 | 0.866 | 0.844 | 0.881 | 0.869 |
| 16-bit | 1 | 0.385 | 0.684 | 0.672 | 0.679 | 0.696 | 0.695 | 0.680 | 0.696 | 0.692 | 0.696 | 0.687 |
| 16-bit | 2 | 0.902 | 0.953 | 0.955 | 0.952 | 0.953 | 0.956 | 0.956 | 0.948 | 0.963 | 0.963 | 0.957 |
| 16-bit | 3 | 0.799 | 0.907 | 0.902 | 0.897 | 0.912 | 0.908 | 0.909 | 0.906 | 0.914 | 0.923 | 0.916 |
| 16-bit | 4 | 0.824 | 0.934 | 0.935 | 0.936 | 0.937 | 0.944 | 0.948 | 0.936 | 0.946 | 0.951 | 0.942 |
| 16-bit | 5 | 0.744 | 0.852 | 0.854 | 0.851 | 0.843 | 0.861 | 0.858 | 0.856 | 0.871 | 0.865 | 0.846 |
RMSE values of NDVI
| Data | Image | HR-LR | CAFRN | DCM | FENet | HAUNet | HSENet | MHAN | Omnisr | RCAN | RDM | SAN |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Normalized | 1 | 0.083 | 0.028 | 0.028 | 0.028 | 0.027 | 0.028 | 0.029 | 0.028 | 0.027 | 0.027 | 0.031 |
| Normalized | 2 | 0.350 | 0.067 | 0.066 | 0.072 | 0.063 | 0.064 | 0.062 | 0.065 | 0.058 | 0.058 | 0.069 |
| Normalized | 3 | 0.321 | 0.119 | 0.118 | 0.124 | 0.106 | 0.121 | 0.128 | 0.114 | 0.094 | 0.103 | 0.121 |
| Normalized | 4 | 0.381 | 0.046 | 0.046 | 0.046 | 0.041 | 0.042 | 0.041 | 0.042 | 0.038 | 0.038 | 0.043 |
| Normalized | 5 | 0.181 | 0.063 | 0.062 | 0.064 | 0.059 | 0.060 | 0.060 | 0.061 | 0.068 | 0.056 | 0.062 |
| 16-bit | 1 | 0.083 | 0.031 | 0.032 | 0.029 | 0.032 | 0.028 | 0.029 | 0.029 | 0.031 | 0.029 | 0.030 |
| 16-bit | 2 | 0.350 | 0.072 | 0.070 | 0.071 | 0.072 | 0.070 | 0.075 | 0.074 | 0.071 | 0.071 | 0.068 |
| 16-bit | 3 | 0.321 | 0.119 | 0.127 | 0.145 | 0.129 | 0.131 | 0.121 | 0.125 | 0.130 | 0.114 | 0.111 |
| 16-bit | 4 | 0.381 | 0.054 | 0.061 | 0.052 | 0.066 | 0.043 | 0.046 | 0.048 | 0.043 | 0.044 | 0.061 |
| 16-bit | 5 | 0.181 | 0.062 | 0.069 | 0.064 | 0.067 | 0.062 | 0.062 | 0.061 | 0.066 | 0.059 | 0.065 |
Please click here to download the model weights.
Please kindly cite our paper if the dataset and models used in the study are useful for your research.
Wang, P., Aksoy, S., & Sertel, E. (2026). A Benchmark Dataset for Landsat-to-Sentinel Image Generation Using Deep Learning-Driven Super-Resolution Techniques. Advances in Space Research. https://doi.org/10.1016/j.asr.2026.01.049
@article{WANG2026,
title = {A Benchmark Dataset for Landsat-to-Sentinel Image Generation Using Deep Learning-Driven Super-Resolution Techniques},
journal = {Advances in Space Research},
year = {2026},
issn = {0273-1177},
doi = {https://doi.org/10.1016/j.asr.2026.01.049},
url = {https://www.sciencedirect.com/science/article/pii/S0273117726000748},
author = {Peijuan Wang and Samet Aksoy and Elif Sertel},
keywords = {Landsat 8/9, Sentinel-2A/B, Deep learning, Super-resolution},
}
