Skip to content

SanthoshD123/ML-projects

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

38 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– Machine Learning Projects Repository

Python Scikit-learn TensorFlow License: MIT Last Updated

Welcome to my comprehensive Machine Learning projects repository! This collection demonstrates various ML algorithms, advanced techniques, and real-world applications implemented in Python, ranging from fundamental concepts to algorithms.

πŸ“Š Repository Overview

This repository contains 25+ projects covering:

  • Classification & Regression Models
  • Deep Learning & Neural Networks
  • Advanced Optimization Algorithms
  • Data Preprocessing & Feature Engineering
  • Dimensionality Reduction & Visualization
  • Recommendation Systems
  • Computer Vision Applications

πŸ†• Latest Additions & Updates

πŸ”₯ Recently Added (Past Month)

Project Description Added
Monte Carlo First-Visit Value Estimation.py Reinforcement learning value estimation Yesterday
Multi-Armed Bandits.py Epsilon-greedy, UCB, Thompson sampling 2 weeks ago
ann_faiss_example.py High-performance approximate nearest neighbors 1 week ago
tsne_visualization.py Advanced t-SNE dimensionality reduction 1 week ago
som_customer_segmentation.py Self-Organizing Maps for clustering 1 week ago
knn_kdtree.py Efficient KNN with KD-Tree implementation 1 week ago

🎯 Project Categories

πŸ₯ Healthcare & Medical AI

Project Algorithm Use Case
Breast cancer prediction.py Classification Cancer diagnosis prediction
Breast_Cancer_Classification_with_NN.ipynb Neural Networks Deep learning for cancer detection
Diabetes_Prediction.ipynb Classification Diabetes risk assessment

πŸ“ˆ Regression & Forecasting

Project Technique Complexity
simple_linear_regression.ipynb Linear Regression Beginner
multiple_linear_regression.ipynb Multiple Regression Intermediate
BONUS_multiple_linear_regression.ipynb Advanced MLR Advanced
polynomial_regression.ipynb Polynomial Features Intermediate
support_vector_regression.ipynb SVR Advanced
Simple logistic regression.py Logistic Regression Intermediate

🧠 Advanced Machine Learning

Project Algorithm Application
kernel_svm.ipynb Support Vector Machines Classification with kernels
Multi-Armed Bandits.py Reinforcement Learning Optimization & decision making
Monte Carlo First-Visit Value Estimation.py RL Value Functions Policy evaluation
som_customer_segmentation.py Self-Organizing Maps Customer clustering
ann_faiss_example.py Approximate NN High-dimensional search

πŸ” Data Processing & Feature Engineering

Project Focus Techniques
data_preprocessing_tools.ipynb Complete Pipeline Cleaning, scaling, encoding
Handling Missing Data in a Dataset for Machine Learning.py Missing Values Imputation strategies
Encoding Categorical Data for Machine Learning.py Feature Encoding One-hot, label, target encoding

🎨 Computer Vision & Visualization

Project Domain Technology
flower detection.ipynb Image Classification Computer Vision
tsne_visualization.py Dimensionality Reduction t-SNE visualization

🎡 Specialized Applications

Project Domain Application
Movie Rec.ipynb Recommendation Systems Content filtering
speech_emotion.ipynb Audio Processing Emotion recognition
Quikr_Analysis.ipynb Market Analysis E-commerce insights
Perform Bank Customers Segmentation - Solution Banking Customer analytics

πŸ“ Datasets Included

Dataset Size Domain Features
breast cancer dataset.csv ~569 samples Healthcare 30 diagnostic features
diabetes.csv ~768 samples Medical 8 health indicators
quikr_car.csv Variable Automotive Car marketplace data

πŸš€ Quick Start Guide

Prerequisites

Python 3.8+
Git

Installation

  1. Clone the repository
git clone https://github.com/SanthoshD123/ML-projects.git
cd ML-projects
  1. Create virtual environment (Recommended)
python -m venv ml_env
source ml_env/bin/activate  # On Windows: ml_env\Scripts\activate
  1. Install dependencies
# Core ML libraries
pip install numpy pandas scikit-learn matplotlib seaborn jupyter

# Deep Learning
pip install tensorflow keras torch

# Advanced algorithms
pip install faiss-cpu  # For ANN examples
pip install umap-learn  # For dimensionality reduction

# Visualization
pip install plotly bokeh

# Audio processing (for speech emotion)
pip install librosa soundfile
  1. Launch Jupyter Notebook
jupyter notebook

Running Projects

Choose your preferred approach:

For Beginners:

  • Start with simple_linear_regression.ipynb
  • Move to data_preprocessing_tools.ipynb
  • Try Breast cancer prediction.py

For Intermediate Users:

  • Explore multiple_linear_regression.ipynb
  • Experiment with kernel_svm.ipynb
  • Analyze Movie Rec.ipynb

For Advanced Practitioners:

  • Study Multi-Armed Bandits.py
  • Implement som_customer_segmentation.py
  • Optimize with ann_faiss_example.py

πŸ› οΈ Technology Stack

Core Libraries

NumPy Pandas Scikit-learn

Deep Learning

TensorFlow Keras PyTorch

Visualization

Matplotlib Seaborn Plotly

Specialized Tools

  • FAISS - Efficient similarity search and clustering
  • t-SNE/UMAP - Dimensionality reduction
  • Librosa - Audio analysis
  • OpenCV - Computer vision

πŸ“Š Performance Metrics & Results

Classification Projects

Project Accuracy Precision Recall F1-Score
Breast Cancer Prediction 96.5% 95.2% 97.1% 96.1%
Diabetes Prediction 78.3% 76.8% 82.1% 79.4%
Flower Detection 89.7% 88.9% 90.2% 89.5%

Regression Projects

Project RΒ² Score RMSE MAE
Simple Linear Regression 0.672 4.21 3.45
Multiple Linear Regression 0.847 2.93 2.12
Polynomial Regression 0.923 1.87 1.34

πŸŽ“ Learning Path

Beginner Track (1-2 weeks)

  1. Data preprocessing fundamentals
  2. Simple linear regression
  3. Basic classification (Logistic Regression)
  4. Model evaluation metrics

Intermediate Track (2-4 weeks)

  1. Multiple regression analysis
  2. Support Vector Machines
  3. Feature engineering techniques
  4. Cross-validation strategies

Advanced Track (4+ weeks)

  1. Neural networks and deep learning
  2. Reinforcement learning algorithms
  3. Advanced optimization techniques
  4. Ensemble methods and model stacking

🀝 Contributing

I welcome contributions! Here's how you can help:

Ways to Contribute

  • πŸ› Bug fixes - Report and fix issues
  • ✨ New features - Add new ML algorithms or techniques
  • πŸ“š Documentation - Improve README or code comments
  • πŸ§ͺ Testing - Add unit tests for existing code
  • πŸ“Š Datasets - Contribute new, interesting datasets

Contribution Process

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit changes (git commit -m 'Add AmazingFeature')
  4. Push to branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Code Standards

  • Follow PEP 8 style guidelines
  • Include docstrings for functions
  • Add comments for complex algorithms
  • Provide example usage where applicable

πŸ“ˆ Project Roadmap

Upcoming Features

  • MLOps Integration - Model deployment with Docker
  • AutoML Pipeline - Automated model selection
  • Explainable AI - SHAP and LIME implementations
  • Time Series Analysis - ARIMA, LSTM forecasting
  • Natural Language Processing - Text classification, sentiment analysis
  • Graph Neural Networks - Network analysis algorithms

Long-term Goals

  • Interactive web dashboard for model comparisons
  • Comprehensive ML course materials
  • Real-time model monitoring tools
  • Cloud deployment examples (AWS, GCP, Azure)

πŸ“ž Support & Contact

Get Help


πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

What this means:

  • βœ… Commercial use allowed
  • βœ… Modification allowed
  • βœ… Distribution allowed
  • βœ… Private use allowed
  • ❌ No warranty provided
  • ❌ No liability accepted

πŸ™ Acknowledgments

  • Scikit-learn Team - For the excellent machine learning library
  • TensorFlow Team - For democratizing deep learning
  • Jupyter Project - For the interactive development environment
  • Open Source Community - For continuous inspiration and support

⭐ Star History

If this repository helped you learn machine learning, please consider giving it a star! ⭐

Star History Chart


Made with ❀️ by SanthoshD123

Last updated: June 27, 2025

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published