Skip to content

SciML/FiniteVolumeMethod1D.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FiniteVolumeMethod1D

Stable Dev Build Status Coverage DOI

This is a package for solving equations of the form

$$ \frac{\partial u}{\partial t} = \frac{\partial}{\partial x}\left(D(u, x, t)\frac{\partial u}{\partial x}\right) + R(u, x, t) $$

using the finite volume method over intervals $a \leq x \leq b$ and $t_0 \leq t \leq t_1$, with support for the following types of boundary conditions (shown at $x = a$, but you can mix boundary condition types, e.g. Neumann at $x=a$ and Dirichlet at $x=b$):

  • Neumann: $\dfrac{\partial u(a, t)}{\partial x} = a_0\left(u(a, t), t\right)$.
  • Dirichlet: $u(a, t) = a_0\left(u(a, t), t\right)$ (this is not an implicit equation for $u(a, t)$, rather $u(a, t)$ is mapped from $a_0\left(u(a, t), a, t\right)$.

For examples on how to use it, please see the docs. If you want a more complete two-dimensional version, please see my other package FiniteVolumeMethod.jl.

About

Implementation of the finite volume method in 1D.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 5

Languages