This repository contains machine learning projects developed for the Artificial Intelligence course (583839).
A comprehensive machine learning project covering classification, clustering, regression, and deep learning.
Proje1_MakineOgrenmesi/
│
├── 1_Siniflandirma/
│ └── Proje1_Bolum1_Siniflandirma.ipynb
│
├── 2_Kumeleme_Regresyon/
│ └── Proje1_Bolum2_Kumeleme_Regresyon.ipynb
│
├── 3_DerinOgrenme/
│ ├── Proje1_Bolum3_DerinOgrenme.ipynb
│ └── proje_veri_seti/
│ ├── bardak/
│ ├── kalem/
│ └── klavye/
│
└── Proje1_Raporu/
- Exploratory Data Analysis (EDA)
- Multiple classification algorithms (Random Forest, SVM, Naive Bayes, K-NN)
- Model comparison and evaluation
- Performance metrics and visualization
-
Clustering Analysis:
- K-Means, Agglomerative Clustering, DBSCAN
- Elbow Method for optimal cluster selection
- Silhouette Score and Adjusted Rand Index evaluation
-
Regression Analysis:
- Linear Regression, Ridge, Lasso
- Random Forest Regressor, SVR
- MSE, RMSE, MAE, R² metrics
- Image classification with Convolutional Neural Networks (CNN)
- Transfer Learning with VGG16
- Data Augmentation techniques
- Model training, evaluation, and deployment
pip install pandas numpy matplotlib seaborn scikit-learn tensorflow keras pillow opencv-python- Clone the repository
- Install required packages
- Open Jupyter Notebook files
- Follow the instructions in each notebook
Developed as part of the Artificial Intelligence course - 583839
This project is for educational purposes.