Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
__pycache__/
.ipynb_checkpoints/
.idea/

assignment_2/
248 changes: 248 additions & 0 deletions hw3/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
import numpy as np
import cv2
import os
from flask import Flask, request, redirect, url_for, send_from_directory
import dlib

# python version 3.6.8

RESULT_IMG_NAME = 'result.png'
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = ['png', 'jpg', 'jpeg']

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER


# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def apply_affine_transform(src, src_tri, dst_tri, size):
# Given a pair of triangles, find the affine transform.
warp_mat = cv2.getAffineTransform(np.float32(src_tri), np.float32(dst_tri))

# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine(src, warp_mat, (size[0], size[1]), None, flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_REFLECT_101)

return dst


# Check if a point is inside a rectangle
def rect_contains(rect, point):
if not rect[0] < point[0] < rect[0] + rect[2] or\
not rect[1] < point[1] < rect[1] + rect[3]:
return False
else:
return True


# calculate delanauy triangle
def calculate_delaunay_triangles(rect, points):
# create subdiv
subdiv = cv2.Subdiv2D(rect)

# Insert points into subdiv
for p in points:
subdiv.insert(p)

triangle_list = subdiv.getTriangleList()

delaunay_tri = []

pt = []

for t in triangle_list:
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])

pt += [pt1, pt2, pt3]

if rect_contains(rect, pt1) and rect_contains(rect, pt2) and rect_contains(rect, pt3):
ind = []
# Get face-points (from 68 face detector) by coordinates
for j in range(0, 3):
for k in range(0, len(points)):
if abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0:
ind.append(k)
# Three points form a triangle. Triangle array corresponds to the file tri.txt in FaceMorph
if len(ind) == 3:
delaunay_tri.append((ind[0], ind[1], ind[2]))

pt = []

return delaunay_tri


# Warps and alpha blends triangular regions from img1 and img2 to img
def warp_triangle(img1, img2, t1, t2):
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))

# Offset points by left top corner of the respective rectangles
t1_rect = []
t2_rect = []
t2_rect_int = []

for i in range(0, 3):
t1_rect.append(((t1[i][0] - r1[0]), (t1[i][1] - r1[1])))
t2_rect.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
t2_rect_int.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))

# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(t2_rect_int), (1.0, 1.0, 1.0), 16, 0);

# Apply warpImage to small rectangular patches
img1_rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
# img2_rect = np.zeros((r2[3], r2[2]), dtype = img1_rect.dtype)

size = (r2[2], r2[3])

img2_rect = apply_affine_transform(img1_rect, t1_rect, t2_rect, size)

img2_rect = img2_rect * mask

# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] * (
(1.0, 1.0, 1.0) - mask)

img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] + img2_rect


def get_points(img):
points = []

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('model.dat')

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# only one face
face = detector(gray_img)[0]
landmarks = predictor(gray_img, face)

# predictor yields 68 points
for point in range(0, 68):
x = landmarks.part(point).x
y = landmarks.part(point).y
points.append((x, y))

return points


def swap_faces(source1, source2):
# Read images
img1 = cv2.imread(os.path.join(UPLOAD_FOLDER, source1))
img2 = cv2.imread(os.path.join(UPLOAD_FOLDER, source2))
img1_warped = np.copy(img2)

# Read array of corresponding points
points1 = get_points(img1)
points2 = get_points(img2)

# Find convex hull
hull1 = []
hull2 = []

hull_index = cv2.convexHull(np.array(points2), returnPoints=False)

for i in range(0, len(hull_index)):
hull1.append(points1[int(hull_index[i])])
hull2.append(points2[int(hull_index[i])])

# Find delanauy traingulation for convex hull points
size_img2 = img2.shape
rect = (0, 0, size_img2[1], size_img2[0])

dt = calculate_delaunay_triangles(rect, hull2)

if len(dt) == 0:
quit()

# Apply affine transformation to Delaunay triangles
for i in range(0, len(dt)):
t1 = []
t2 = []

# get points for img1, img2 corresponding to the triangles
for j in range(0, 3):
t1.append(hull1[dt[i][j]])
t2.append(hull2[dt[i][j]])

warp_triangle(img1, img1_warped, t1, t2)

# Calculate Mask
hull8U = []
for i in range(0, len(hull2)):
hull8U.append((hull2[i][0], hull2[i][1]))

mask = np.zeros(img2.shape, dtype=img2.dtype)

cv2.fillConvexPoly(mask, np.int32(hull8U), (255, 255, 255))

r = cv2.boundingRect(np.float32([hull2]))

center = (r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))

# Clone seamlessly.
output = cv2.seamlessClone(np.uint8(img1_warped), img2, mask, center, cv2.NORMAL_CLONE)
cv2.imwrite(os.path.join(app.config['UPLOAD_FOLDER'], RESULT_IMG_NAME), output)


# Нагло сдул у Анжелы всё, что ниже
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS


@app.route('/', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
img1 = request.files['img1']
img2 = request.files['img2']
if img1 and allowed_file(img1.filename) and img2 and allowed_file(img2.filename):
img1.save(os.path.join(app.config['UPLOAD_FOLDER'], img1.filename))
img2.save(os.path.join(app.config['UPLOAD_FOLDER'], img2.filename))
swap_faces(img1.filename, img2.filename)
return redirect(url_for('uploaded_file', filename=RESULT_IMG_NAME))

return '''
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
<title>Upload new images</title>
</head>
<body>
<div class="container mt-5">
<form id="form" action="" method=post enctype=multipart/form-data>
<p><input type=file name=img1></p>
<p><input type=file name=img2></p>
<button type="submit" class="btn btn-primary">Upload</button>
</form>
</div>
</body>
</html>
'''


@app.route('/uploads/<filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)


if __name__ == '__main__':

if not os.path.exists('model.dat'):
os.system('download_model.sh')

if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)

app.run()
3 changes: 3 additions & 0 deletions hw3/download_model.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 -O model.dat.bz2
7z x model.dat.bz2
rm model.dat.bz2