Skip to content

ThunderBurster/MDAM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems

Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang. Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems, Proceedings of the AAAI Conference on Artificial Intelligence, pp.12042-12049, 2021. [pdf]

To train the model (e.g. TSP with 20 nodes)

python run.py --graph_size 20 --baseline rollout --run_name 'tsp20' --problem="tsp" --batch_size=512 --epoch_size=1280000 --kl_loss=0.01 --n_EG=2 --n_paths=5 --val_size=10000

To generate the test dataset for TSP20

mkdir data
python generate_data.py --filename=data/tsp_20 --problem="tsp" --graph_sizes=20 --dataset_size=100000

To evaluate the test dataset with pretrained model for TSP20

CUDA_VISIBLE_DEVICES="0" python -u search.py data/tsp_20.pkl --model=pretrained/tsp_20/epoch-99.pt --beam_size=1 --eval_batch_size=1024

To Download all the pretrained models, generate the test datasets, evaluate with greedy strategy, 30-width and 50-width beam searching

bash eval.sh download
bash eval.sh generate_data
bash eval.sh tsp
bash eval.sh cvrp
bash eval.sh sdvrp
bash eval.sh op
bash eval.sh pctsp
bash eval.sh spctsp

Dependencies

  • Python==3.6
  • NumPy
  • PyTorch>=1.4.0
  • tqdm
  • tensorboard_logger

MDAM is developed based on https://github.com/wouterkool/attention-learn-to-route (Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention, Learn to Solve Routing Problems! In Proceedings of International Conference on Learning Representations (ICLR).)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.5%
  • C++ 5.5%
  • Shell 4.0%