Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions cses/Download Speed.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
// The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method for computing a maximal flow in a flow network.

#include<bits/stdc++.h>
#define int long long
using namespace std;

int c[501][501];
int flowPassed[501][501];
vector <int> g[501];
int parList[501];

bool bfs(int sNode, int eNode)
{
memset(parList,-1,sizeof(parList));
queue <int> q;
q.push(sNode);
parList[sNode]=-1;
while(!q.empty())
{
int currNode=q.front();
q.pop();
for(int i=0; i<g[currNode].size(); i++)
{
int to=g[currNode][i];
if(parList[to]==-1 && c[currNode][to]>flowPassed[currNode][to])
{
parList[to]=currNode;
if(to==eNode)
{
return true;
}
q.push(to);
}
}
}
return false;
}

int edmondsKarp(int sNode, int eNode)
{
int maxFlow=0;
while(bfs(sNode, eNode))
{
int flow=LONG_LONG_MAX;
int currNode=eNode;
while(currNode!=sNode)
{
int prevNode=parList[currNode];
flow=min(flow, c[prevNode][currNode]-flowPassed[prevNode][currNode]);
currNode=prevNode;
}
maxFlow+=flow;
currNode=eNode;
while(currNode!=sNode)
{
int prevNode=parList[currNode];
flowPassed[prevNode][currNode]+=flow;
flowPassed[currNode][prevNode]-=flow;
currNode=prevNode;
}
}
return maxFlow;
}

signed main()
{
int n,m;
cin>>n>>m;
int source=1, sink=n;
for(int i=0; i<m; i++)
{
int u,v,cap;
cin>>u>>v>>cap;
c[u][v]+=cap;
g[u].push_back(v);
g[v].push_back(u);
}
int maxFlow=edmondsKarp(source,sink);
cout<<maxFlow<<endl;
}