Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
15 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
170 changes: 49 additions & 121 deletions .claude/compacted_state.md
Original file line number Diff line number Diff line change
@@ -1,134 +1,62 @@
# Compacted Context State - 2025-12-23T19:30:21Z
# Compacted State: FitFunctions Phase 6 Execution

## Compaction Metadata
- **Timestamp**: 2025-12-23T19:30:21Z
- **Branch**: feature/dependency-consolidation
- **Plan**: tests-audit
- **Pre-Compaction Context**: ~6,856 tokens (1,404 lines)
- **Target Compression**: light (20% reduction)
- **Target Tokens**: ~5,484 tokens
- **Strategy**: light compression with prose focus
## Branch: plan/fitfunctions-audit-execution @ e0ca3659

## Content Analysis
- **Files Analyzed**: 6
- **Content Breakdown**:
- Code: 311 lines
- Prose: 347 lines
- Tables: 15 lines
- Lists: 314 lines
- Headers: 168 lines
- **Token Estimates**:
- Line-based: 4,212
- Character-based: 12,289
- Word-based: 7,694
- Content-weighted: 3,229
- **Final estimate**: 6,856 tokens
## Current Status
| Stage | Status | Notes |
|-------|--------|-------|
| 1. Merge | ✅ DONE | Bug fix committed e0ca3659 |
| 2. Environment | 🔧 BLOCKED | Editable install wrong dir |
| 3-7 | ⏳ Pending | After env fix |

## Git State
### Current Branch: feature/dependency-consolidation
### Last Commit: ab14e428 - feat(core): enhance Core.__repr__() to include species information (blalterman, 12 days ago)

### Recent Commits:
```
ab14e428 (HEAD -> feature/dependency-consolidation, master) feat(core): enhance Core.__repr__() to include species information
db3d43e1 docs(feature_integration): complete agent removal documentation updates
dbf3824d refactor(agents): remove PhysicsValidator and NumericalStabilityGuard agents
043b8932 refactor(agents): remove PhysicsValidator from active infrastructure (Phase 2.1)
d27f2912 feat(phase0-memory): add agent-coordination.md and testing-templates.md
```

### Working Directory Status:
```
M docs/requirements.txt
M pyproject.toml
M requirements.txt
?? .claude/logs/
?? baseline-coverage.json
?? requirements-dev.lock
?? tests/fitfunctions/test_metaclass_compatibility.py
## Critical Blocker
**Problem**: Tests run against wrong installation
```

### Uncommitted Changes Summary:
```
docs/requirements.txt | 175 +++++++++++++++++++++++++++++++++++++++++++++++---
pyproject.toml | 54 +++++++++-------
requirements.txt | 85 ++++++++++++++++++------
3 files changed, 261 insertions(+), 53 deletions(-)
pip show solarwindpy | grep Editable
# Returns: SolarWindPy-2 (WRONG)
# Should be: SolarWindPy (current directory)
```

## Critical Context Summary

### Active Tasks (Priority Focus)
- No active tasks identified

### Recent Key Decisions
- No recent decisions captured

### Blockers & Issues
⚠️ - **Process Issues**: None - agent coordination worked smoothly throughout
⚠️ - [x] **Document risk assessment matrix** (Est: 25 min) - Create risk ratings for identified issues (Critical, High, Medium, Low)
⚠️ ### Blockers & Issues

### Immediate Next Steps
➡️ - Notes: Show per-module coverage changes and remaining gaps
➡️ - [x] **Generate recommendations summary** (Est: 20 min) - Provide actionable next steps for ongoing test suite maintenance
➡️ - [x] Recommendations summary providing actionable next steps

## Session Context Summary

### Active Plan: tests-audit
## Plan Metadata
- **Plan Name**: Physics-Focused Test Suite Audit
- **Created**: 2025-08-21
- **Branch**: plan/tests-audit
- **Implementation Branch**: feature/tests-hardening
- **PlanManager**: UnifiedPlanCoordinator
- **PlanImplementer**: UnifiedPlanCoordinator with specialized agents
- **Structure**: Multi-Phase
- **Total Phases**: 6
- **Dependencies**: None
- **Affects**: tests/*, plans/tests-audit/artifacts/, documentation files
- **Estimated Duration**: 12-18 hours
- **Status**: Completed


### Plan Progress Summary
- Plan directory: plans/tests-audit
- Last modified: 2025-09-03 16:47

## Session Resumption Instructions

### 🚀 Quick Start Commands
**Solution**:
```bash
# Restore session environment
git checkout feature/dependency-consolidation
cd plans/tests-audit && ls -la
git status
pwd # Verify working directory
conda info --envs # Check active environment
pip uninstall -y solarwindpy
pip install -e ".[dev,performance]"
pytest tests/fitfunctions/test_phase4_performance.py -v
```

### 🎯 Priority Actions for Next Session
1. Review plan status: cat plans/tests-audit/0-Overview.md
2. Resolve: - **Process Issues**: None - agent coordination worked smoothly throughout
3. Resolve: - [x] **Document risk assessment matrix** (Est: 25 min) - Create risk ratings for identified issues (Critical, High, Medium, Low)
4. Review uncommitted changes and decide on commit strategy
## Bug Fix (COMMITTED e0ca3659)
File: `solarwindpy/fitfunctions/trend_fits.py`
- Line 221-223: Filter n_jobs/verbose/backend from kwargs
- Line 241, 285: Use `**fit_kwargs` instead of `**kwargs`

## Phase 6 Coverage Targets
| Module | Current | Target | Priority |
|--------|---------|--------|----------|
| gaussians.py | 73% | 96% | CRITICAL |
| exponentials.py | 82% | 96% | CRITICAL |
| core.py | 90% | 95% | HIGH |
| trend_fits.py | 80% | 91% | MEDIUM |
| plots.py | 90% | 95% | MEDIUM |
| moyal.py | 86% | 95% | LOW |

## Parallel Agent Strategy
After Stage 2, launch 6 TestEngineer agents in parallel:
```python
Task(TestEngineer, "gaussians tests", run_in_background=True)
Task(TestEngineer, "exponentials tests", run_in_background=True)
# ... (all 6 modules simultaneously)
```
Time: 4-5 hrs sequential → 1.5 hrs parallel

### 🔄 Session Continuity Checklist
- [ ] **Environment**: Verify correct conda environment and working directory
- [ ] **Branch**: Confirm on correct git branch (feature/dependency-consolidation)
- [ ] **Context**: Review critical context summary above
- [ ] **Plan**: Check plan status in plans/tests-audit
- [ ] **Changes**: Review uncommitted changes
## Key Files
- Plan: `/Users/balterma/.claude/plans/gentle-hugging-sundae.md`
- Handoff: `plans/fitfunctions-audit/phase6-session-handoff.md`

### 📊 Efficiency Metrics
- **Context Reduction**: 20.0% (6,856 → 5,484 tokens)
- **Estimated Session Extension**: 12 additional minutes of productive work
- **Compaction Strategy**: light compression focused on prose optimization
## Next Actions
1. Fix environment (Stage 2)
2. Verify tests pass
3. Run coverage analysis (Stage 3)
4. Launch parallel agents (Stage 4)

---
*Automated intelligent compaction - 2025-12-23T19:30:21Z*

## Compaction File
Filename: `compaction-2025-12-23-193021-20pct.md` - Unique timestamp-based compaction file
No git tags created - using file-based state preservation
*Updated: 2025-12-31 - FitFunctions Phase 6 Execution*
179 changes: 179 additions & 0 deletions benchmarks/fitfunctions_performance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
#!/usr/bin/env python
"""Benchmark Phase 4 performance optimizations."""

import time
import numpy as np
import pandas as pd
import sys
import os

# Add the parent directory to sys.path to import solarwindpy
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))

from solarwindpy.fitfunctions import Gaussian
from solarwindpy.fitfunctions.trend_fits import TrendFit


def benchmark_trendfit(n_fits=50):
"""Compare sequential vs parallel TrendFit performance."""
print(f"\nBenchmarking with {n_fits} fits...")

# Create synthetic data that's realistic for fitting
np.random.seed(42)
x = np.linspace(0, 10, 100)
data = pd.DataFrame({
f'col_{i}': 5 * np.exp(-(x-5)**2/2) + np.random.normal(0, 0.1, 100)
for i in range(n_fits)
}, index=x)

# Sequential execution
print(" Running sequential...")
tf_seq = TrendFit(data, Gaussian, ffunc1d=Gaussian)
tf_seq.make_ffunc1ds()

start = time.perf_counter()
tf_seq.make_1dfits(n_jobs=1)
seq_time = time.perf_counter() - start

# Parallel execution
print(" Running parallel...")
tf_par = TrendFit(data, Gaussian, ffunc1d=Gaussian)
tf_par.make_ffunc1ds()

start = time.perf_counter()
tf_par.make_1dfits(n_jobs=-1)
par_time = time.perf_counter() - start

speedup = seq_time / par_time
print(f" Sequential: {seq_time:.2f}s")
print(f" Parallel: {par_time:.2f}s")
print(f" Speedup: {speedup:.1f}x")

# Verify results match
print(" Verifying results match...")
successful_fits = 0
for key in tf_seq.ffuncs.index:
if key in tf_par.ffuncs.index: # Both succeeded
seq_popt = tf_seq.ffuncs[key].popt
par_popt = tf_par.ffuncs[key].popt
for param in seq_popt:
np.testing.assert_allclose(
seq_popt[param], par_popt[param],
rtol=1e-10, atol=1e-10
)
successful_fits += 1

print(f" ✓ {successful_fits} fits verified identical")

return speedup, successful_fits


def benchmark_single_fitfunction():
"""Benchmark single FitFunction to understand baseline performance."""
print("\nBenchmarking single FitFunction...")

np.random.seed(42)
x = np.linspace(0, 10, 100)
y = 5 * np.exp(-(x-5)**2/2) + np.random.normal(0, 0.1, 100)

# Time creation and fitting
start = time.perf_counter()
ff = Gaussian(x, y)
creation_time = time.perf_counter() - start

start = time.perf_counter()
ff.make_fit()
fit_time = time.perf_counter() - start

total_time = creation_time + fit_time

print(f" Creation time: {creation_time*1000:.1f}ms")
print(f" Fitting time: {fit_time*1000:.1f}ms")
print(f" Total time: {total_time*1000:.1f}ms")

return total_time


def check_joblib_availability():
"""Check if joblib is available for parallel processing."""
try:
import joblib
print(f"✓ joblib {joblib.__version__} available")

# Check number of cores
import os
n_cores = os.cpu_count()
print(f"✓ {n_cores} CPU cores detected")
return True
except ImportError:
print("✗ joblib not available - only sequential benchmarks will run")
return False


if __name__ == "__main__":
print("FitFunctions Phase 4 Performance Benchmark")
print("=" * 50)

# Check system capabilities
has_joblib = check_joblib_availability()

# Single fit baseline
single_time = benchmark_single_fitfunction()

# TrendFit scaling benchmarks
speedups = []
fit_counts = []

test_sizes = [10, 25, 50, 100]
if has_joblib:
# Only run larger tests if joblib is available
test_sizes.extend([200])

for n in test_sizes:
expected_seq_time = single_time * n
print(f"\nExpected sequential time for {n} fits: {expected_seq_time:.1f}s")

try:
speedup, n_successful = benchmark_trendfit(n)
speedups.append(speedup)
fit_counts.append(n_successful)
except Exception as e:
print(f" ✗ Benchmark failed: {e}")
speedups.append(1.0)
fit_counts.append(0)

# Summary report
print("\n" + "=" * 50)
print("BENCHMARK SUMMARY")
print("=" * 50)

print(f"Single fit baseline: {single_time*1000:.1f}ms")

if speedups:
print("\nTrendFit Scaling Results:")
print("Fits | Successful | Speedup")
print("-" * 30)
for i, n in enumerate(test_sizes):
if i < len(speedups):
print(f"{n:4d} | {fit_counts[i]:10d} | {speedups[i]:7.1f}x")

if has_joblib:
avg_speedup = np.mean(speedups)
best_speedup = max(speedups)
print(f"\nAverage speedup: {avg_speedup:.1f}x")
print(f"Best speedup: {best_speedup:.1f}x")

# Efficiency analysis
if avg_speedup > 1.5:
print("✓ Parallelization provides significant benefit")
else:
print("⚠ Parallelization benefit limited (overhead or few cores)")
else:
print("\nInstall joblib for parallel processing:")
print(" pip install joblib")
print(" or")
print(" pip install solarwindpy[performance]")

print("\nTo use parallel fitting in your code:")
print(" tf.make_1dfits(n_jobs=-1) # Use all cores")
print(" tf.make_1dfits(n_jobs=4) # Use 4 cores")
Loading
Loading