Supporting content for the Living Bacterial Reservoir Computers for Information Processing and Sensing paper
This repository contains code to support the Living Bacterial Reservoir Computers for Information Processing and Sensing publication. See the citation section for details.
├── Data < placeholder for data files >
│ └── ..
├── Library < supporting code for notebook >
│ └── ..
├── Model < trained models >
│ └── ..
├── Result
│ └── ..
├── amn.ipynb
├── dataset_species.ipynb
├── ecoli_reservoir.ipynb
├── features_to_media.ipynb
├── plots.ipynb
├── README.md
└── requirements.yml
The following steps will set up a bacterial_rc conda environment.
-
Install Conda
The conda package manager is required. If you do not have it installed, you can download it from here. Follow the instructions on the page to install Conda. For example, on Windows, you would download the installer and run it. On macOS and Linux, you might use a command like:
bash ~/Downloads/Miniconda3-latest-Linux-x86_64.shFollow the prompts on the installer to complete the installation.
-
Install dependencies
1.1. Windows & Linux
conda env create -f requirements.yml conda activate bacterial_rc
1.2. macOS (Intel processors)
conda env create -f requirements.yml conda activate bacterial_rc pip install tensorflow-macos tensorflow-metal
1.3. macOS (Apple Silicon Mx processors)
conda env create --platform osx-64 -f requirements.yml conda activate bacterial_rc conda env config vars set CONDA_SUBDIR=osx-64 conda deactivate conda activate bacterial_rc pip install tensorflow-macos tensorflow-metal -
Download data
Trained models and most important datasets are available as a Zenodo archive: https://doi.org/10.5281/zenodo.14961167. Extract the files and place them in the
Data,Model,Resultdirectory.
If you use this software, please cite it as below.
Living Bacterial Reservoir Computers for Information Processing and Sensing. Paul Ahavi; Thi-Ngoc-An Hoang; Philippe Meyer; Sylvie Berthier; Federica Fiorini; Florence Castelli; Olivier Epaulard; Audrey Le Gouellec; Jean-Loup Faulon. Preprint: https://doi.org/10.1101/2024.09.12.612674.