Skip to content
/ ABCnet Public

Adversarial Bias Correction Network for Infant Brain MR Images

Notifications You must be signed in to change notification settings

cljun27/ABCnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ABCnet

Adversarial Bias Correction Network for Infant Brain MR Images.

Architecture

ABCnet.

How to use it

Prerequisites

  • Linux
  • NVIDIA GPU with at least 8Gb memory
  • CUDA CuDNN

Python Dependencies

  • python (3.6)
  • pytorch (0.4.1+)
  • torchvision (0.2.1+)
  • tensorboardx (1.6+)

Data preparation

Resample and convert the input files into npy format with size of 256x256x256.

Train

Modify the train.py file to match the training data in your own path. Then, run:

python train.py --dataroot /training_data_folder --name project_name --model pix2pix3d --direction AtoB --dataset_mode unaligned --input_nc 1 --output_nc 1 --gpu_ids 0

Test

python test.py --dataroot /data_folder --name project_name --model pix2pix3d --direction AtoB --dataset_mode unaligned --input_nc 1 --output_nc 1 --gpu_ids 0

Citations

If you use this code for your research, please cite as:

Chen, Liangjun, et al. "ABCnet: Adversarial bias correction network for infant brain MR images." Medical Image Analysis 72 (2021): 102133.

About

Adversarial Bias Correction Network for Infant Brain MR Images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages