Skip to content

derekreiman/MiMeNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MiMeNet: Exploring Microbiome-Metabolome Relationships using Neural Networks

MiMeNet predicts the metabolomic profile from microbiome data and learns undelrying relationships between the two.

Prerequisites

  • MiMeNet is tested to work on Python 3.7+
  • MiMeNet requires the following Python libraries:
    • Tensorflow 1.14
    • Numpy 1.17.2
    • Pandas 0.25.1
    • Scipy 1.3.1
    • Scikit-learn 0.21.3
    • Matplotlib 3.0.3
    • Seaborn 0.9.0

A Conda Python environment is provided in pseudocell_tracer.yml

Usage

usage: MiMeNet_train.py [-h] -micro MICRO -metab METAB
                        [-external_micro EXTERNAL_MICRO]
                        [-external_metab EXTERNAL_METAB]
                        [-annotation ANNOTATION] [-labels LABELS] -output
                        OUTPUT [-net_params NET_PARAMS]
                        [-background BACKGROUND]
                        [-num_background NUM_BACKGROUND]
                        [-micro_norm MICRO_NORM] [-metab_norm METAB_NORM]
                        [-threshold THRESHOLD] [-num_run_cv NUM_RUN_CV]
                        [-num_cv NUM_CV] [-num_run NUM_RUN]
  -h, --help                        Show this help message and exit
  -micro MICRO                      Comma delimited file representing matrix of samples by microbial features
  -metab METAB                      Comma delimited file representing matrix of samples by metabolomic features
  -external_micro EXTERNAL_MICRO    Comma delimited file representing matrix of samples by microbial features
  -external_metab EXTERNAL_METAB    Comma delimited file representing matrix of samples by metabolomic features
  -annotation ANNOTATION            Comma delimited file annotating subset of metabolite features
  -labels LABELS                    Comma delimited file for sample labels to associate clusters with
  -output OUTPUT                    Output directory
  -net_params NET_PARAMS            JSON file of network hyperparameters
  -background BACKGROUND            Directory with previously generated background
  -num_background NUM_BACKGROUND    Number of background CV Iterations
  -micro_norm MICRO_NORM            Microbiome normalization (RA, CLR, or None)
  -metab_norm METAB_NORM            Metabolome normalization (RA, CLR, or None)
  -threshold THRESHOLD              Define significant correlation threshold
  -num_run_cv NUM_RUN_CV            Number of iterations for cross-validation
  -num_cv NUM_CV                    Number of cross-validated folds
  -num_run NUM_RUN                  Number of iterations for training full model

Example for provided dataset

python MiMeNet_train.py -micro data/IBD/microbiome_PRISM.csv -metab data/IBD/metabolome_PRISM.csv \
                        -external_micro data/IBD/microbiome_external.csv -external_metab data/IBD/metabolome_external.csv \
                        -micro_norm None -metab_norm CLR -net_params results/IBD/network_parameters.txt \
                        -annotation data/IBD/metabolome_annotation.csv -labels data/IBD/diagnosis_PRISM.csv \
                        -num_run_cv 10 -output IBD

The provided command will run MiMeNet on the IBD dataset and store results in the directory results/output_dir.

Version

1.0.0 (2020/07/28)

Publication

TBA

Contact

License

Software provided to academic users under MIT License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.0%
  • Python 2.0%