This project demonstrates a Spark-based bulk data processing pipeline designed to handle large-scale datasets efficiently using Apache Spark. It focuses on high performance, scalability, and fault tolerance, making it suitable for enterprise data engineering and analytics workloads.
The project showcases how to:
- Read bulk data from multiple sources
- Apply distributed transformations
- Optimize performance using Spark best practices
- Write processed data in optimized formats
Data Source (CSV / Parquet / Hive)
↓
Spark Read Layer
↓
Transformations & Business Logic
↓
Optimized Output (Parquet / Hive / Delta)
- Apache Spark (3.5.x / 4.x compatible)
- PySpark
- Python 3.10+
- Hadoop (Windows compatible setup)
- Parquet / CSV / Hive
spark-bulk-data-processing/
│
├── src/
│ ├── main.py # Spark entry point
│ ├── reader.py # Data ingestion logic
│ ├── transformer.py # Business transformations
│ ├── writer.py # Output writer logic
│ └── config.py # Spark & app configurations
│
├── data/
│ ├── input/ # Raw input data
│ └── output/ # Processed data
│
├── logs/ # Application logs
├── requirements.txt
└── README.md
- Bulk data ingestion using Spark DataFrame API
- Schema inference and validation
- Distributed transformations
- Partitioning and file optimization
- Fault-tolerant execution
- Windows & Linux compatible
python -m venv .venv
source .venv/bin/activate # Linux/Mac
.venv\Scripts\activate # Windowspip install -r requirements.txtos.environ["PYSPARK_PYTHON"] = "path_to_python.exe"
os.environ["PYSPARK_DRIVER_PYTHON"] = "path_to_python.exe"python src/main.py- Data cleansing and filtering
- Column standardization
- Aggregations and joins
- Partitioning by business keys
- Columnar storage (Parquet)
- Predicate pushdown
- Partition pruning
- Avoiding shuffles where possible
- Lazy evaluation
- Optimized Parquet files
- Hive-compatible directory structure
- Ready for analytics and reporting
- Sample data validation
- Schema verification
- Row count reconciliation
- Integration with Hive Metastore
- Delta Lake support
- Spark Structured Streaming
- Deployment on Kubernetes
- Airflow orchestration
Bharat Singh
Senior Java & AWS Cloud Development Lead
Expertise: Spark | Python | AWS | Data Engineering
This project is licensed for learning and demonstration purposes.