Skip to content

everythingisdata1/sbdp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Spark Bulk Data Processing Project

📌 Overview

This project demonstrates a Spark-based bulk data processing pipeline designed to handle large-scale datasets efficiently using Apache Spark. It focuses on high performance, scalability, and fault tolerance, making it suitable for enterprise data engineering and analytics workloads.

The project showcases how to:

  • Read bulk data from multiple sources
  • Apply distributed transformations
  • Optimize performance using Spark best practices
  • Write processed data in optimized formats

🏗️ Architecture

Data Source (CSV / Parquet / Hive)
        ↓
Spark Read Layer
        ↓
Transformations & Business Logic
        ↓
Optimized Output (Parquet / Hive / Delta)

🧰 Tech Stack

  • Apache Spark (3.5.x / 4.x compatible)
  • PySpark
  • Python 3.10+
  • Hadoop (Windows compatible setup)
  • Parquet / CSV / Hive

📂 Project Structure

spark-bulk-data-processing/
│
├── src/
│   ├── main.py                 # Spark entry point
│   ├── reader.py               # Data ingestion logic
│   ├── transformer.py          # Business transformations
│   ├── writer.py               # Output writer logic
│   └── config.py               # Spark & app configurations
│
├── data/
│   ├── input/                  # Raw input data
│   └── output/                 # Processed data
│
├── logs/                        # Application logs
├── requirements.txt
└── README.md

⚙️ Features

  • Bulk data ingestion using Spark DataFrame API
  • Schema inference and validation
  • Distributed transformations
  • Partitioning and file optimization
  • Fault-tolerant execution
  • Windows & Linux compatible

▶️ How to Run the Project

1️⃣ Create Virtual Environment

python -m venv .venv
source .venv/bin/activate   # Linux/Mac
.venv\Scripts\activate      # Windows

2️⃣ Install Dependencies

pip install -r requirements.txt

3️⃣ Configure Environment (Windows)

os.environ["PYSPARK_PYTHON"] = "path_to_python.exe"
os.environ["PYSPARK_DRIVER_PYTHON"] = "path_to_python.exe"

4️⃣ Run Spark Job

python src/main.py

📊 Sample Transformation Logic

  • Data cleansing and filtering
  • Column standardization
  • Aggregations and joins
  • Partitioning by business keys

📈 Performance Optimizations Used

  • Columnar storage (Parquet)
  • Predicate pushdown
  • Partition pruning
  • Avoiding shuffles where possible
  • Lazy evaluation

🛠️ Output

  • Optimized Parquet files
  • Hive-compatible directory structure
  • Ready for analytics and reporting

🧪 Testing

  • Sample data validation
  • Schema verification
  • Row count reconciliation

🚀 Future Enhancements

  • Integration with Hive Metastore
  • Delta Lake support
  • Spark Structured Streaming
  • Deployment on Kubernetes
  • Airflow orchestration

👤 Author

Bharat Singh
Senior Java & AWS Cloud Development Lead
Expertise: Spark | Python | AWS | Data Engineering


📄 License

This project is licensed for learning and demonstration purposes.

About

Spark Bulk Data Processing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published