Skip to content

gitmujoshi/mlprovenance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MNIST Provenance Tracking

This project demonstrates provenance tracking for a machine learning model trained on the MNIST dataset. It includes comprehensive tracking of data, model, and training provenance, along with verification capabilities.

Features

  • Data provenance tracking
  • Model architecture and weights tracking
  • Training process monitoring
  • Comprehensive verification system
  • Detailed reporting with markdown output

Project Structure

mnist_provenance/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ provenance/
β”‚   β”‚   β”œβ”€β”€ tracker.py
β”‚   β”‚   β”œβ”€β”€ verifier.py
β”‚   β”‚   └── generate_final_report.py
β”‚   └── training/
β”‚       └── train.py
β”œβ”€β”€ scripts/
β”‚   └── run_training.sh
β”œβ”€β”€ artifacts/
β”‚   β”œβ”€β”€ models/
β”‚   └── provenance/
└── tests/
    └── test_provenance.py

Setup

  1. Create a virtual environment:
python -m venv venv
  1. Activate the virtual environment:
source venv/bin/activate  # On Unix/macOS
# or
.\venv\Scripts\activate  # On Windows
  1. Install dependencies:
pip install -r requirements.txt

Usage

Run the training script:

./scripts/run_training.sh

This will:

  1. Train a model on the MNIST dataset
  2. Track all provenance information
  3. Generate a detailed report in the artifacts directory

Requirements

  • Python 3.8+
  • TensorFlow 2.x
  • NumPy
  • pytest (for testing)

License

MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published