Skip to content

jacotay7/aobasis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AO Basis (aobasis)

A Python package for generating various modal basis sets for Adaptive Optics (AO) systems. This tool allows you to easily create, visualize, and save basis sets for any deformable mirror geometry.

Features

  • Karhunen-Loève (KL) Modes: Optimized for atmospheric turbulence (Von Kármán spectrum).
    • Optional GPU acceleration available for large systems (requires CuPy).
  • Zernike Polynomials: Standard optical aberration modes (Noll indexing).
  • Fourier Modes: Sinusoidal basis sets.
  • Zonal Basis: Single actuator pokes (Identity).
  • Hadamard Basis: Orthogonal binary patterns for calibration.
  • Flexible Geometry: Works with arbitrary actuator positions (defaulting to circular grids).
  • Piston Removal: Option to exclude piston/DC modes from generation.
  • Visualization: Built-in plotting tools for quick inspection.
  • Serialization: Save and load basis sets to/from .npz files.

Installation

Prerequisites

  • Python 3.8 or higher
  • (Optional) For GPU-accelerated KL generation: CUDA-compatible GPU and CuPy

Install from Source

Clone the repository and install using pip:

git clone https://github.com/jacotay7/aobasis.git
cd aobasis
pip install .

For development (editable install with test dependencies):

pip install -e ".[dev]"

GPU Acceleration (Optional)

To enable GPU acceleration for KL basis generation, you need to install CuPy and ensure you have a CUDA-compatible GPU.

Requirements

  • NVIDIA GPU with CUDA support
  • CUDA Toolkit (version 11.x or 12.x)

Installation via Conda (Recommended)

This method automatically handles CUDA dependencies:

# Create a new conda environment (optional but recommended)
conda create -n aobasis python=3.12
conda activate aobasis

# Install CuPy from conda-forge (auto-detects CUDA version)
conda install -c conda-forge cupy

# Install CUDA toolkit if not already present
conda install -c nvidia cuda-toolkit

Installation via Pip

If you prefer pip and already have CUDA installed on your system:

# For CUDA 12.x
pip install cupy-cuda12x

# For CUDA 11.x
pip install cupy-cuda11x

Verify Installation

Test that CuPy is working correctly:

import cupy as cp
print(f"CuPy version: {cp.__version__}")
print(f"CUDA available: {cp.cuda.is_available()}")

# Simple test
a = cp.array([1, 2, 3])
b = cp.array([4, 5, 6])
print(f"Sum: {cp.asnumpy(a + b)}")  # Should print [5, 7, 9]

If you encounter any issues, consult the CuPy installation guide.

Quick Start

Here is a simple example of generating and plotting KL modes for a 10-meter telescope:

from aobasis import KLBasisGenerator, make_circular_actuator_grid

# 1. Define the actuator geometry
positions = make_circular_actuator_grid(telescope_diameter=10.0, grid_size=20)

# 2. Initialize the generator (use_gpu=True for GPU acceleration if available)
kl_gen = KLBasisGenerator(positions, fried_parameter=0.16, outer_scale=30.0, use_gpu=False)

# 3. Generate modes (excluding piston)
modes = kl_gen.generate(n_modes=50, ignore_piston=True)

# 4. Plot the first 6 modes
kl_gen.plot(count=6, title_prefix="KL Mode")

# 5. Save to disk
kl_gen.save("my_kl_basis.npz")

Performance

Generation times for 100 modes benchmarked on the following system:

  • CPU: AMD Ryzen 9 9950X3D (16-core, 32-thread)
  • GPU: NVIDIA GeForce RTX 5090 (32 GB)
  • OS: Linux (Ubuntu)
Basis 16x16 Grid (~170 acts) 32x32 Grid (~740 acts) 64x64 Grid (~3100 acts)
KL (CPU) 0.010s 0.170s 3.008s
KL (GPU) 0.005s 0.019s 0.202s
Zernike 0.001s 0.002s 0.005s
Fourier <0.001s 0.001s 0.003s
Zonal <0.001s <0.001s 0.003s
Hadamard <0.001s 0.001s 0.031s

Note: KL basis generation is computationally intensive ($O(N^3)$) due to the dense covariance matrix diagonalization. GPU acceleration provides significant speedup (8-15x) for larger grids.

Tutorials

We provide Jupyter notebooks to help you get started.

  1. Getting Started: tutorials/getting_started.ipynb covers all supported basis types and features.

To run the tutorials:

# Install Jupyter if you haven't already
pip install jupyter

# Launch the notebook server
jupyter notebook tutorials/getting_started.ipynb

Development & Testing

This project uses pytest for testing. To run the test suite:

# Install dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository.
  2. Create your feature branch (git checkout -b feature/AmazingFeature).
  3. Commit your changes (git commit -m 'Add some AmazingFeature').
  4. Push to the branch (git push origin feature/AmazingFeature).
  5. Open a Pull Request.

Issues

If you encounter any bugs or have feature requests, please file an issue on the GitHub Issues page.

Contact

For questions or support, please contact:

User Name
Email: jtaylor@keck.hawaii.edu

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published