Skip to content

Ultra-minimal AI chat UI: 30s deploy, no sign-up; OpenAI-compatible; RAG + vision + web parsing; plugins/adapters.

License

Notifications You must be signed in to change notification settings

massif-01/ChatRaw

Repository files navigation

ChatRaw Template

Lightweight AI Chat Interface with Plugin System | 轻量 AI 聊天界面与插件系统

Fast, Lightweight, Extensible | 快速、轻量、可扩展

Lighthouse Performance License Python JavaScript Docker Docker Pulls Memory Startup OpenAI Compatible

English | 中文


English

Interface Preview

Main Chat Interface

Main Interface

Model Configuration

Model Configuration

Plugin Market

Plugin Market


Why ChatRaw?

Many developers, AI hardware vendors, and users just need a simple, lightweight application that can quickly demonstrate their model capabilities. That's why we created ChatRaw - a minimal, ready-to-use chat interface that deploys in seconds. No complex configuration, no heavy dependencies—just a clean, fast AI chat experience.


Part 1: Core Features

Fast, Lightweight, Convenient

Core Highlights

  • Ultra Lightweight - ~60MB memory footprint, optimized binary embedding storage
  • Instant Startup - Ready in seconds with connection pooling for fast API calls
  • Custom Branding - Freely customize name, logo, and theme
  • Universal API Support - Works with any OpenAI-compatible API (Ollama, vLLM, LocalAI, LM Studio, etc.)
  • Document Parsing - Native PDF, DOCX, TXT, MD parsing as chat context
  • Vision AI Ready - Multimodal image understanding with auto-compression
  • Thinking Mode - Support for reasoning models (DeepSeek-R1, Qwen, o1, etc.)
  • Responsive Design - Optimized for desktop, tablet, and mobile with touch-friendly UI
  • One-Click Copy - Copy AI responses instantly (text only, no metadata)
  • Bilingual UI - English & Chinese with one-click switch
  • Zero Registration - Settings auto-saved locally
  • One-Click Deploy - Docker deployment in 30 seconds

Key Features

Multi-Model Configuration

  • Supports unlimited chat, embedding, and reranking models
  • Automatic API key rotation to bypass rate limits
  • Built-in endpoint validation and testing

Thinking Mode

  • Deep reasoning for supported models
  • Collapsible thought process display

Custom Branding

  • Customize interface: name, Logo, subtitle, avatar, and theme colors

Document & Image Support

  • Upload documents (PDF, DOCX, TXT, MD) as chat context. AI can read and reference document content
  • Attach images for multimodal understanding. Automatically compressed to WebP format (~2MB)

Part 2: Extension Plugins

Flexible, Free, Community-Driven

ChatRaw features a complete plugin system to extend functionality:

Official Plugins

  • Lightweight RAG Demo — Knowledge base retrieval
  • Bocha Search — Web / AI search
  • Tavily Search — Web search with AI answers
  • Excel Parser — Parse .xlsx/.xls for chat
  • CSV Parser — Parse CSV/TSV for chat
  • Enhanced Web Parsing — Parse web pages (browser / Firecrawl / Jina)
  • Multi-Model Manager — Manage and switch models
  • Markdown Renderer Plus — Math (KaTeX), Mermaid, code copy, offline
  • Toolbar Extension Demo — Demo plugin showcasing UI Extension API

Toolbar Extension

Plugins can add custom buttons to the input toolbar with active/loading states, overflow menu for many buttons, and fullscreen modal for complex interactions.

Plugin Development

  • Complete development documentation
  • Rich hook system (including new UI Extension API)
  • Custom settings UI
  • One-click packaging and distribution

Plugin Development Guide: Plugins/README.md


Performance

Note: Performance tests conducted using Google Lighthouse on localhost deployment

Desktop Mobile
Desktop Performance Mobile Performance
Lighthouse Report Lighthouse Report

Desktop: Performance 100 | Accessibility 100 | Best Practices 100 | SEO 100

Mobile: Performance 96 | Accessibility 93 | Best Practices 100 | SEO 100


Quick Start

Option 1: Docker (Recommended)

Prerequisites: Docker installed.

Docker images are published to Docker Hub and GitHub Container Registry. To get the latest image (not a cached old one), always run docker pull with the tag you want before creating the container. Use :latest for the current release, or a version tag (e.g. v2.1.2) from Releases for a fixed version.

Supported platforms: linux/amd64 (Intel/AMD), linux/arm64 (Apple Silicon, Raspberry Pi 4/5).


Method A: docker run (no project files)

Run these commands in a terminal. Data is stored in a Docker volume chatraw-data.

# 1. Pull the latest image (run this again whenever you want to update)
docker pull massif01/chatraw:latest

# 2. Start the container (creates volume chatraw-data if needed)
docker run -d -p 51111:51111 -v chatraw-data:/app/data --name chatraw massif01/chatraw:latest
  • Access: http://localhost:51111
  • To access LAN services (e.g. local LLM at 192.168.x.x), use host network instead:
    docker run -d --network host -v chatraw-data:/app/data -e PORT=51111 --name chatraw massif01/chatraw:latest

Method B: docker-compose (host network, good for LAN)

Clone the project and run from the repo root. The included docker-compose.yml uses host network so the app can reach LAN services (e.g. 192.168.x.x) without extra config.

# 1. Clone the repository
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw

# 2. Pull the latest image and start the service
docker compose pull
docker compose up -d

Option 2: From Source

Requirements: Python 3.12+

# Clone repository
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend

# Install dependencies
pip install -r requirements.txt

# Run
python main.py

Access: http://localhost:51111


Docker image sources

Source Pull command
Docker Hub docker pull massif01/chatraw:latest
GitHub Container Registry docker pull ghcr.io/massif-01/chatraw:latest

Use the same tag for a specific version, e.g. massif01/chatraw:v2.1.2 (see Releases).


Update Guide

Docker (docker run)

# Stop and remove the current container
docker stop chatraw && docker rm chatraw

# Pull the latest image (important: otherwise the old image is reused)
docker pull massif01/chatraw:latest

# Start again (same volume keeps your data)
docker run -d -p 51111:51111 -v chatraw-data:/app/data --name chatraw massif01/chatraw:latest

Docker Compose

cd ChatRaw
git pull origin main
docker compose pull
docker compose up -d

From Source

cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.py

Important changes in v2.0.0 (if upgrading from v1.x)

  • RAG is now a plugin: install Lightweight RAG Demo from Plugin Market if you need it.
  • Default theme is light (changeable in Settings).
  • Chat history and settings are preserved.

Configuration

Initial Setup

  1. Open http://localhost:51111
  2. Click the Settings button in the bottom-left corner
  3. Go to Model Settings
  4. Add your API configuration:
    • API Base URL (e.g., https://api.openai.com/v1)
    • Model ID (e.g., gpt-4)
    • API Key
  5. Click Verify to test the connection
  6. Click Save

Custom Branding

In SettingsInterface, you can customize:

  • Application name and logo
  • User and AI avatars
  • Theme mode (light/dark)

Install Plugins

  1. Click the Plugins button in the bottom-left corner
  2. Browse the Plugin Market tab
  3. Click Install on any plugin
  4. After installation, enable the plugin in the Installed tab

Use Cases

  • Developers: Quickly test and demo your AI models
  • AI Hardware Vendors: Showcase device capabilities with a ready-to-use interface
  • Researchers: Experiment with RAG, embeddings, and reranking
  • Students: Learn AI applications hands-on
  • Enterprises: Internal AI tools and knowledge bases

Contributing

Contributions are welcome! Please submit issues or pull requests.

Development Guidelines

  1. Fork this repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Apache License 2.0

© 2026 ChatRaw by massif-01, RMinte® AI Technology Co., Ltd.


Links







中文

界面展示

主聊天界面

主界面

模型配置

模型配置

插件市场

插件市场


为什么选择 ChatRaw?

很多开发者、AI 硬件厂商,甚至是用户只需要一个简洁轻量,能够快速展示自己模型使用的应用,于是我们提供了极简、开箱即用的聊天界面,秒级部署。无需复杂配置,无重型依赖——只需一个干净、快速的 AI 聊天体验。


第一部分:核心功能

快速、轻量、便捷

核心亮点

  • 极致轻量 - 内存占用约 60MB,优化的二进制向量存储
  • 极速启动 - 秒级启动,连接池加速 API 调用
  • 自定义品牌 - 自由定制名称、Logo 和主题
  • 通用 API 支持 - 兼容任意 OpenAI 兼容 API(Ollama、vLLM、LocalAI、LM Studio 等)
  • 文档解析 - 原生支持 PDF、DOCX、TXT、MD 解析作为聊天上下文
  • 视觉 AI 就绪 - 多模态图片理解,自动压缩
  • 思考模式 - 支持推理模型(DeepSeek-R1、Qwen、o1 等)
  • 响应式设计 - 完美适配桌面、平板和移动设备,触控友好
  • 一键复制 - 一键复制 AI 回复内容(纯文本,不含元数据)
  • 双语界面 - 中英文一键切换
  • 零注册 - 设置本地自动保存
  • 一键部署 - Docker 30 秒部署

主要功能

多模型配置

  • 支持无限数量的聊天、嵌入和重排模型
  • 自动 API Key 轮换以绕过速率限制
  • 内置端点验证和测试

思考模式

  • 为支持的模型启用深度推理
  • 可折叠的思考过程显示

自定义品牌

  • 自定义界面:名称、Logo、副标题、头像和主题颜色

文档与图片支持

  • 上传文档(PDF、DOCX、TXT、MD)作为聊天上下文。AI 可以阅读和引用文档内容
  • 附加图片进行多模态理解。自动压缩为 WebP 格式(约 2MB)

第二部分:扩展插件

灵活、自由、社区驱动

ChatRaw 拥有完整的插件系统以扩展功能:

官方插件

  • 轻量 RAG 演示 — 知识库检索
  • 博查搜索 — Web / AI 搜索
  • Tavily 搜索 — Web 搜索 + AI 答案
  • Excel 解析器 — 解析 .xlsx/.xls 供对话使用
  • CSV 解析器 — 解析 CSV/TSV 供对话使用
  • 增强网页解析 — 解析网页(浏览器 / Firecrawl / Jina)
  • 多模型管理 — 管理并切换模型
  • Markdown 渲染增强 — 数学公式、Mermaid、代码复制,离线可用
  • 工具栏扩展演示 — 展示 UI 扩展 API 的演示插件

工具栏扩展

插件可以在输入框工具栏添加自定义按钮,支持激活态/加载态、按钮溢出折叠菜单,以及全屏模态框实现复杂交互。

插件开发

  • 完整的开发文档
  • 丰富的 Hook 系统(包含全新 UI 扩展 API)
  • 自定义设置界面
  • 一键打包分发

插件开发指南: Plugins/README.md


性能测试

说明: 使用 Google Lighthouse 对本地部署进行性能测试

桌面端 移动端
桌面端性能 移动端性能
Lighthouse 测试报告 Lighthouse 测试报告

桌面端: 性能 100 | 无障碍 100 | 最佳做法 100 | SEO 100

移动端: 性能 96 | 无障碍 93 | 最佳做法 100 | SEO 100


快速开始

方式一:Docker(推荐)

前置条件:已安装 Docker

镜像发布在 Docker HubGitHub Container Registry。若想用最新镜像(避免用到本地缓存的旧镜像),在创建容器前请先执行一次 docker pull。使用 :latest 表示当前最新版本;如需固定版本,可使用 Releases 中的版本号标签(如 v2.1.2)。

支持平台:linux/amd64(Intel/AMD)、linux/arm64(Apple Silicon、树莓派 4/5)。


方式 A:docker run(无需项目文件)

在终端依次执行。数据保存在 Docker 卷 chatraw-data 中。

# 1. 拉取最新镜像(每次要更新时重新执行此命令)
docker pull massif01/chatraw:latest

# 2. 启动容器(若卷 chatraw-data 不存在会自动创建)
docker run -d -p 51111:51111 -v chatraw-data:/app/data --name chatraw massif01/chatraw:latest
  • 访问http://localhost:51111
  • 如需访问局域网服务(例如本机 LLM 在 192.168.x.x),可改用 host 网络:
    docker run -d --network host -v chatraw-data:/app/data -e PORT=51111 --name chatraw massif01/chatraw:latest

方式 B:docker-compose(host 网络,适合访问局域网)

克隆项目后在仓库根目录执行。项目内的 docker-compose.yml 使用 host 网络,可直接访问局域网服务(如 192.168.x.x),无需额外配置。

# 1. 克隆仓库
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw

# 2. 拉取最新镜像并启动服务
docker compose pull
docker compose up -d

方式二:源码部署

环境要求:Python 3.12+

# 克隆仓库
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend

# 安装依赖
pip install -r requirements.txt

# 运行
python main.py

访问http://localhost:51111


Docker 镜像来源

来源 拉取命令
Docker Hub docker pull massif01/chatraw:latest
GitHub Container Registry docker pull ghcr.io/massif-01/chatraw:latest

需要固定版本时使用相同标签格式,例如 massif01/chatraw:v2.1.2,版本号见 Releases


更新指南

Docker(docker run)

# 停止并删除当前容器
docker stop chatraw && docker rm chatraw

# 拉取最新镜像(重要:否则会继续用旧镜像)
docker pull massif01/chatraw:latest

# 再次启动(使用同一卷,数据保留)
docker run -d -p 51111:51111 -v chatraw-data:/app/data --name chatraw massif01/chatraw:latest

Docker Compose

cd ChatRaw
git pull origin main
docker compose pull
docker compose up -d

源码部署

cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.py

v2.0.0 重要变更(从 v1.x 升级时)

  • RAG 已改为插件:需要 RAG 时请在插件市场中安装 轻量 RAG 演示
  • 默认主题为亮色(可在设置中修改)。
  • 对话历史与设置会保留。

配置说明

初始设置

  1. 打开 http://localhost:51111
  2. 点击左下角的设置按钮
  3. 进入模型设置
  4. 添加你的 API 配置:
    • API Base URL(例如:https://api.openai.com/v1
    • Model ID(例如:gpt-4
    • API Key
  5. 点击验证测试连接
  6. 点击保存

自定义品牌

设置界面中,你可以自定义:

  • 应用名称和 Logo
  • 用户和 AI 头像
  • 主题模式(亮色/暗色)

安装插件

  1. 点击左下角的插件按钮
  2. 浏览插件市场标签页
  3. 点击任意插件的安装按钮
  4. 安装后,在已安装标签页中启用插件

使用场景

  • 开发者:快速测试和演示你的 AI 模型
  • AI 硬件厂商:用即插即用的界面展示设备能力
  • 研究人员:实验 RAG、嵌入和重排技术
  • 学生:动手学习 AI 应用
  • 企业:内部 AI 工具和知识库

贡献

欢迎贡献!请提交 issue 或 pull request。

开发指南

  1. Fork 本仓库
  2. 创建你的特性分支 (git checkout -b feature/AmazingFeature)
  3. 提交你的更改 (git commit -m 'Add some AmazingFeature')
  4. 推送到分支 (git push origin feature/AmazingFeature)
  5. 打开一个 Pull Request

开源协议

Apache License 2.0

© 2026 ChatRaw by massif-01, RMinte® AI Technology Co., Ltd.


相关链接

About

Ultra-minimal AI chat UI: 30s deploy, no sign-up; OpenAI-compatible; RAG + vision + web parsing; plugins/adapters.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •