Project Title: Comparing Classical and Quantum-Inspired Kernels for Molecular Classification
Team: The Cats Cradle
Track: QML
Date: October 18, 2025 - October 26, 2025
Website: https://www.qaif.org/contests/qpoland-global-quantum-hackathon
This repository presents a comparative study of classical graph kernels and a quantum-inspired Trotterized quantum walk (QW) embedding for molecular and protein graph classification. The project leverages datasets such as AIDS, PROTEINS, NCI1, PTC-MR, and MUTAG, utilizing the QURI Parts framework to simulate quantum-inspired features. A key innovation is the ego-graph decomposition technique, which reduces qubit requirements while preserving functional-group topology, enhancing classification accuracy.
- Source Code: Repository src folder
- Report (GitHub Pages): https://jajapuramshivasai.github.io/QML-Molecular-Classification/
- Report (PDF in repo): QML-Molecular-Classification_report.pdf
- Video: https://drive.google.com/file/d/1p1539dZOyex4KxVeZW4sIBkU02wZt9MJ/view?usp=sharing
- Clone the repository and install dependencies:
git clone https://github.com/jajapuramshivasai/QML-Molecular-Classification.git cd QML-Molecular-Classification pip install -r requirements.txt - Run experiments:
- Jupyter Notebook:
jupyter notebook - Main Notebook:
notebooks/sub_main.ipynb - Demo:
notebooks/quantum_embeddings_demo.ipynb
- Jupyter Notebook:
- notebooks/: Experiment scripts (e.g.,
sub_main.ipynb) - src/: Code for kernels, embeddings, and utilities
- pages/index.html: Project report for GitHub Pages
- experiment_results.json: Results and logs (if available)
- TU benchmarks (AIDS, PROTEINS, NCI1, PTC-MR, MUTAG) via PyTorch Geometric TUDataset
- Preprocessing scripts in
notebooks/andsrc/
- Ego-QW: QURI-inspired ego-graph quantum walk embeddings
- CTQW: Continuous-time quantum walk spectral features
- Classical Baselines: Weisfeiler-Lehman subtree kernel, Shortest-Path kernel
- Classifier: SVM with RBF kernel, nested cross-validation for hyperparameters
- Nested 5-fold cross-validation
- Metrics: Mean ± std of Accuracy and F1-score
- Features standardized, class weights balanced
- Reproducible with fixed seeds (Python, NumPy, PyTorch)
- We run our main notebook on Colab 12.7gb, CPU
- Simulator: QURI Parts to run our Quantum routines. We did not use real Quantum hardware.
- Jajapuram Shiva Sai (@frosty)
- Amon Koike (@thedaemon_AK)
- Ramesh Makwana (@Ramesh Makwana)
- Dr. Sushant Tapase (@Dr-Sushant)
- Edit in Google Colab: Open
notebooks/sub_main.ipynb, modify, and save/export to the repo. - Workflow:
- Open in Colab via the notebook link.
- Edit and run end-to-end.
- Commit updated
.ipynbwith a change description.
- Edit
pages/index.html. - Preview locally:
python3 -m http.server 8000 --directory Docs open http://localhost:8000/index.html
- Push changes to the default branch for updates.
Raise issues or PRs here, or contact team members via Discord handles.
- X. Ai et al., “Towards Quantum Graph Neural Networks: An Ego‑Graph Learning Approach,” arXiv:2201.05158v3 (2024). HTML
- D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, “Quantum Walks on Graphs,” STOC’01; arXiv:quant‑ph/0012090. PDF
- C. Kluber, “Trotterization in Quantum Theory,” arXiv:2310.13296. PDF
- N. Shervashidze et al., “Weisfeiler‑Lehman Graph Kernels,” JMLR 12, 2539–2561 (2011). PDF
- K. M. Borgwardt, H.‑P. Kriegel, “Shortest‑path kernels on graphs,” ICDM 2005. PDF
- PyTorch Geometric TUDataset. docs
- PyTorch Geometric utils (to_networkx, conversions). utils
- QURI Parts simulator and states. simulator, states
- Continuous‑time quantum walk overview. overview
- scikit‑learn SVC and RBF kernel. SVC, rbf_kernel