Bu repository çeşitli AI modellerinin implementasyonlarını içerir. Makalelere buradan ulaşabilirsiniz:
-
LeNet - GradientBased Learning Applied to Document Recognition
[http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf]
-
AlexNet - ImageNet Classification with Deep Convolutional Neural Networks
-
VGGNet - Very Deep Convolutional Networks For Large-Scale Image Recognition
-
MobileNet - MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
-
InceptionNet - Going Deeper with Convolutions
-
NST - A Neural Algorithm of Artistic Style
-
ResNet - Deep Residual Learning for Image Recognition
-
EfficientNet - EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
GAN - Generative Adversarial Networks
-
DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
SRGAN - Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
-
ESRGAN - ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
-
Transformer - Attention is All You Need
-
GPT2
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[https://arxiv.org/pdf/1810.04805]
- Llama 2: Open Foundation and Fine-Tuned Chat Models
[https://arxiv.org/pdf/2307.09288]
- The Llama 3 Herd of Models
[https://arxiv.org/pdf/2407.21783]
- Qwen3 Technical Report
[https://arxiv.org/pdf/2505.09388]
- Gemma 3 Technical Report
[https://arxiv.org/pdf/2503.19786]
- DeepSeek-V3 Technical Report
[https://arxiv.org/pdf/2412.19437]
- Sigmoid Loss for Language Image Pre-Training
[https://arxiv.org/pdf/2303.15343]
Görüntü İşleme kısmı için tavsiye edilen okuma sırası:
LeNet -> AlexNet -> VGGNet -> MobileNet -> InceptionNet -> ResNet -> EfficientNet -> GAN ->DCGAN -> SRGAN -> ESRGAN
Büyük Dil Modelleri için tavsiye edilen okuma sırası:
Transformers -> GPT2 -> BERT -> LLaMA2 -> LLaMA3 -> Qwen3 -> Gemma3 -> Deepseek
Çoklu Modeller için tavsiye edilen okuma sırası:
SigLIP
NOT: Büyük Dil Modelleri klasöründeki bazı dosyaları Preview kısmında Invalid gösterebilir. Dosyaları indirdiğinizde notebookları görüntüleyebilirsiniz.