Skip to content

tesims/ArcheoVLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

ArchaeoVLM: Archaeological Vision Language Model

Multi-pipeline system for archaeological remote sensing analysis with cost-effective cloud processing.

🎯 Overview

ArchaeoVLM provides specialized pipelines for archaeological analysis:

  • LiDAR Processing: RunPod GPU + Google Cloud Storage (70% cost savings)
  • Data Ingestion: Multi-source archaeological data integration
  • Model Training: Custom archaeological feature detection
  • Results Analysis: Visualization and reporting tools

📁 Project Structure

🔄 LiDAR Visualization System

  • lidar_visualization/ - Complete LiDAR processing and analysis system
    • pipelines/lidar_processing/ - LiDAR semantic segmentation with PTv3
      • runpod_gcs_archaeovlm.py - Main processing engine
      • setup_runpod_gcs.sh - One-click environment setup
      • example_usage.py - Usage examples and scenarios
    • pipelines/data_ingestion/ - Multi-source data integration
    • pipelines/model_training/ - Custom model training workflows
    • pipelines/results_analysis/ - Visualization and analysis tools
    • shared/ - Shared components across pipelines
      • models/ - Point Transformer V3 and other models
      • utils/ - Common utilities and helpers
      • configs/ - Shared configuration templates

📚 Documentation & Resources

  • docs/ - Complete project documentation
    • index.html - Main project visualization interface
    • lidar_visualization/ - LiDAR system documentation
      • RUNPOD_GCS_GUIDE.md - Quick start guide (30 min setup)
      • GCP_RUNPOD_DEPLOYMENT_GUIDE.md - Comprehensive deployment guide
  • data/ - Local data directory

🚀 Quick Start (LiDAR Processing Pipeline)

# 1. Setup Google Cloud Storage
gcloud projects create archaeovlm-project
gsutil mb gs://archaeovlm-lidar-data
gsutil mb gs://archaeovlm-results

# 2. Launch RunPod RTX 3090 instance ($0.34/hr)

# 3. Setup environment
cd lidar_visualization/pipelines/lidar_processing/
wget https://raw.githubusercontent.com/your-repo/lidar_visualization/pipelines/lidar_processing/setup_runpod_gcs.sh
chmod +x setup_runpod_gcs.sh
./setup_runpod_gcs.sh

# 4. Upload GCP credentials
scp gcp-key.json root@[runpod-ip]:/workspace/gcp-credentials.json

# 5. Start processing
python3 runpod_gcs_archaeovlm.py gs://archaeovlm-lidar-data/

💰 Cost Examples

Scenario Files Budget Use Case
Pilot Study 10 files $2-3 Quick validation
Site Survey 25 files $5-8 Single site analysis
Regional Study 50 files $10-15 Multi-site comparison
Research Project 100 files $20-30 Publication dataset

🔧 Configuration (LiDAR Pipeline)

Edit lidar_visualization/pipelines/lidar_processing/archaeovlm_runpod_gcs_config.json:

{
  "processing": {
    "max_files": 25,
    "preferred_regions": ["TAP", "FN2", "ANT"],
    "file_selection": "size_based",
    "date_range": ["2010", "2020"]
  },
  "storage": {
    "project_id": "your-gcp-project",
    "bucket": "your-results-bucket",
    "input_bucket": "your-lidar-data"
  }
}

✨ Features

  • Smart file selection by archaeological region and date
  • Automatic cost estimation before processing
  • Cloud backup of all results
  • Auto-shutdown to prevent idle costs
  • Real-time monitoring with cost tracking
  • Compression to reduce storage costs by 70%

📊 Output

  • Classified point clouds with archaeological labels
  • Processing reports with statistics
  • Cost tracking and quality metrics
  • Ready for QGIS analysis and publication

🛠️ Pipeline Support

LiDAR Processing Pipeline

cd lidar_visualization/pipelines/lidar_processing/

# Test setup
python3 test_runpod_gcs_setup.py

# Monitor processing
python3 monitor_runpod_gcs.py

# Check logs
tail -f /workspace/logs/archaeovlm.log

📚 Documentation

LiDAR Processing

  • Quick Start: docs/lidar_visualization/RUNPOD_GCS_GUIDE.md (30 min setup)
  • Complete Guide: docs/lidar_visualization/GCP_RUNPOD_DEPLOYMENT_GUIDE.md (detailed)
  • Examples: lidar_visualization/pipelines/lidar_processing/example_usage.py (different scenarios)
  • Web Interface: docs/index.html (main project dashboard)

Other Pipelines

  • Data Ingestion: Coming soon
  • Model Training: Coming soon
  • Results Analysis: Coming soon

Current Focus: LiDAR Processing Pipeline
Platform: RunPod GPU + Google Cloud Storage
Cost: $0.34/hr + $0.02/GB storage
Perfect for: Budget-conscious archaeological research

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published