Skip to content

tiny-smart/TasselNetV4

Repository files navigation

TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting

Official implementation of TasselNetV4

ISPRS Journal of Photogrammetry and Remote Sensing (IF=12.2).

Xiaonan Hu, Xuebing Li, Jinyu Xu, Abdulkadir Duran Adan, Xuhui Zhu, Yanan Li, Wei Guo, Shouyang Liu, Wenzhong Liu, Hao Lu*

Highlights

  • Plant agnostic counting: a new plant-orientated task customizing Class-agnostic counting into the plant domain and highlighting zero-shot generalization across taxomomic plant species;
  • PAC-105 and PAC-Somalia: two challenging PAC datasets for training and evaluating daily and out-of-distribution plant species;
  • TasselNetV4: an extended version of the TasselNet plant counting models.

motivation

Comparison with the state-of-the-art CAC approaches on the PAC-105 dataset. Best performance is in boldface.

Method Venue & Year Shot MAE↓ RMSE↓ WCA↑ $R^2$ checkpoints
FamNet CVPR'21 3 31.70 62.58 0.49 0.56 Baiduyun
BMNet+ CVPR'22 3 27.03 60.18 0.56 0.61 Baiduyun
SPDCNet BMVC'22 3 25.21 49.98 0.58 0.92 Baiduyun
SAFECount WACV'23 3 25.59 52.09 0.58 0.91 Baiduyun
CountTR BMVC'22 3 25.25 49.31 0.63 0.92 Baiduyun
T-Rex2 ECCV'24 3 26.04 49.31 0.58 0.92
CACViT AAAI'24 3 19.51 29.59 0.68 0.89 Baiduyun
TasselNetV4 (Ours) ISPRS'25 3 16.04 28.03 0.74 0.92
FamNet CVPR'21 1 35.91±0.966 71.78±1.188 0.42±0.014 0.45±0.024
BMNet CVPR'22 1 28.78±0.324 62.12±0.437 0.15±0.001 0.59±0.008
CountTR BMVC'22 1 28.46±0.226 49.84±0.646 0.70±0.037 0.73±0.006
CACViT AAAI'24 1 21.80±0.429 38.40±1.526 0.64±0.005 0.84±0.013
TasselNetV4 (Ours) ISPRS'25 1 18.04±0.339 32.04±1.213 0.71±0.005 0.90±0.009

Comparison with the state-of-the-art CAC approaches on the PAC-Somalia dataset. Best performance is in boldface.

Method Venue & Year Shot MAE↓ RMSE↓ WCA↑ $R^2$
CountTR BMVC'22 3 12.71 23.87 0.38 0.57
CACViT AAAI'24 3 14.00 17.00 0.55 0.78
TasselNetV4 (Ours) This Paper 3 8.88 13.11 0.72 0.87
CountTR BMVC'22 1 12.79±0.076 24.20±0.292 0.37±0.005 0.55±0.012
CACViT AAAI'24 1 14.74±0.138 18.23±0.446 0.53±0.005 0.75±0.012
TasselNetV4 (Ours) ISPRS'25 1 10.98±0.065 16.73±0.150 0.65±0.000 0.80±0.005

Visualization

visualization

Installation

To setup all the required dependencies for training and evaluation, please follow the instructions below:

conda env create -f environment.yaml
conda activate TN4

Prepare Dataset

PAC-105&PAC-Somalia

Download training dataset PAC-105 from Baiduyun (2.8G) | Google Drive (2.8G) and test dataset PAC-Somalia from: Baiduyun (208M) | Google Drive (208M). The dataset structure should look like this:

/dataset
├──── aska
    ├──── aska_fruit
        ├──── images
            ├──── image1.png
            └──── ...
        └──── labels
            └──── aska.csv
├──── boocbooc
├──── ......
├──── yicib
└──── dataset.csv

Inference

First modify Dataset.data_path and Resume.resume_path in cfg_test/local_32_64_128_loose.yml;

Download our model from Baiduyun (1.05G) | Google Drive (1.05G);

Run the following command to reproduce our results of TasselNetV4 on the PAC-105 / PAC-Somalia:

python test_checkpoint.py

  • Results will be saved in the path ./visual.

Training

First modify path in cfg_train/local_32_64_128_loose.yml;

Run the following command to train your model

python train_val.py

License

This repository is released under the Apache 2.0 license as found in the LICENSE.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages