Build Agentic AI solutions on AWS, using latest OSS Agentic Frameworks.
-
Updated
Dec 12, 2025 - Jupyter Notebook
Build Agentic AI solutions on AWS, using latest OSS Agentic Frameworks.
⚡Ship RAG Solutions Quickly and effortlessly
Курс "Разработка AI/LLM-приложений на Python: от идеи до релиза" предоставляет слушателям возможность пройти через полный цикл создания LLM-приложений, от идеи до релиза. В рамках курса вы познакомитесь с передовыми технологиями и инструментами, такими как Mistral AI API, LangChain, Arize Phoenix, FastAPI, PostgreSQL и Docker и т.д
A production framework for DSPy implementing the Teacher-Student pattern. Distill the reasoning of expensive models (Teacher) into optimized prompts for cheap, fast models (Student) to reduce inference costs by up to 50x.
a small space adventure showcasing the capabilities of retrieval augmented generation (RAG)
Modern Wisdom AI RAG Pipeline
🤖 Intelligent, secure, and multilingual chatbot backend for Lorenzo Maiuri's website. Built with FastAPI, Gemini LLM, LlamaIndex, and MongoDB. Features session memory, tool-calling, and robust security
An emergency call triage system that classifies and routes 911 calls using real-time speech recognition and natural language processing.
Contextual RAG Chatbot with LlamaIndex, Ollama & PGVector
An enterprise-grade contextual RAG chatbot with ZenML pipelines, CrewAI agents, Ollama models, and OpenWebUI — designed for intelligent, local, and explainable document querying.
AI agent using OpenAI Agents SDK with MCP tools to read, create, and update Google Calendar events.
Advanced medical RAG system with hierarchical retrieval and parent–child document mapping for accurate clinical QA.
Add a description, image, and links to the arize-phoenix topic page so that developers can more easily learn about it.
To associate your repository with the arize-phoenix topic, visit your repo's landing page and select "manage topics."