multimodel is a Python package designed to compare multiple supervised and unsupervised machine learning models for both classification and regression tasks. It automates model training, evaluation, visualization, and selects the best-performing model based on standard metrics.
- ✅ Supports Supervised and Unsupervised learning
- 🧠 Works for Classification and Regression problems
- 📊 Automatically generates comparison plots and evaluation reports
- 🏆 Identifies and returns the best-performing model
- 💡 Simple API for fast integration
- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- K-Nearest Neighbors
- Support Vector Machine (SVM)
- Gradient Boosting Classifier
- XGBoost Classifier
- Linear Regression
- Lasso / Ridge Regression
- Decision Tree Regressor
- Random Forest Regressor
- Gradient Boosting Regressor
- XGBoost Regressor
- KMeans
- DBSCAN
- Agglomerative Clustering
pip install multimodel(Coming soon to PyPI)
from multimodel import MultiModelClassifier
mm = MultiModelClassifier(X, y)
mm.run_all()
mm.get_summary()
mm.plot_comparison()from multimodel import MultiModelRegressor
mm = MultiModelRegressor(X, y)
mm.run_all()
mm.get_summary()
mm.plot_comparison()from multimodel import MultiModelCluster
mm = MultiModelCluster(X)
mm.run_all()
mm.plot_comparison()- 🧾 Accuracy, Precision, Recall, F1-score (for classification)
- 📉 MSE, RMSE, R² score (for regression)
- 📊 Comparison plots, confusion matrices, and error analysis
- 🥇 Automatically highlights the best-performing model
scikit-learnxgboostmatplotlibseabornpandasnumpy
Install all dependencies:
pip install -r requirements.txt- Hyperparameter tuning integration
- SHAP/feature importance plots
- Export best model (
.pklor.joblib) - Web-based GUI (using Streamlit)
Contributions are welcome! Please check out the CONTRIBUTING.md for contribution guidelines.
Licensed under the MIT License – see LICENSE for details.
Uditya Narayan Tiwari 📍 VIT Bhopal University
🔗 GitHub 🔗 LinkedIn 🌐 Portfolio