A Python-based tool for processing, synchronizing, and visualizing IoT sensor data from:
- InfluxDB Excel Export (
InfluxDB_2024.xlsx) - SIM Card Excel Export (
Simcard_2024.xlsx)
This tool identifies missing 6-minute intervals in sensor readings, inserts synthetic entries, and patches missing sensor values using SIM card data. Optionally, it can generate visual plots of the cleaned dataset.
- Convert Excel files to CSV
- Print CSV headers and data counts
- Detect missing 6-minute intervals
- Insert synthetic rows for missing time periods
- Patch missing sensor readings from SIM card
- Output cleaned data to
update.csv - Generate separate plots for each sensor parameter (
p,rh,temp,temp_soil) - ISO 8601 UTC timestamp format (
2024-02-10T21:05:26.648216Z) - Optional dark-themed visual graphs
It will display 4 subplots:
- Pressure (
p) - Humidity (
rh) - Air Temperature (
temp) - Soil Temperature (
temp_soil)
With X-axis showing ISO-format time like:
- Install required Python packages using pip:
pip install pandas matplotlib openpyxlExcel β CSV: Converts InfluxDB_2024.xlsx and Simcard_2024.xlsx to CSV.
Header & Count: Prints header info and row counts.
Gap Detection: Finds and fills gaps in 6-minute intervals.
Patching: Fills missing sensor values (0 or 0.0) using SIM card data.
Output: Final dataset is written to update.csv.
Visualization: Optional graphing with black background and time-formatted X-axis.
In real-world IoT deployments, this script is especially useful for detecting and handling data loss or transmission gaps in time series data.
