MCC: Multi-Cluster Contrastive Semi-Supervised Segmentation Framework for Echocardiogram Videos [IEEE Access 25']
Official code implementation for the MCC paper accepted by the journal IEEE Access. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10883951
- MCE_dataset https://github.com/dewenzeng/MCE_dataset
Folder Structures for MCE Dataset
MCE_dataset
|-- images
| |-- A2C
| |-- A3C
| |-- A4C
| | |-- subject_000
| | | |-- train_000.png
| | | |-- train_001.png
| | | |-- ...
| | |-- subject_001
| | |-- ...
|-- labels
| |-- A2C
| |-- A3C
| |-- A4C
| | |-- subject_000
| | | |-- train_000.png
| | | |-- train_001.png
| | | |-- ...
| | |-- subject_001
| | |-- ...
- EchoNet-Dynamic Dataset https://echonet.github.io/dynamic/index.html#dataset
Folder Structures for EchoNet-Dynamic Dataset
EchoNet-Dynamic
|-- image
| |-- 0X10A28877E97DF540
| | |-- 0.png
| | |-- 1.png
| | |-- ...
| |-- 0X10B7505562B0A702
| |-- ...
|-- label
| |-- 0X10A28877E97DF540
| | |-- 0.png
| | |-- 1.png
| | |-- ...
| |-- 0X10B7505562B0A702
| |-- ...
- EchoNet-Dynamic Dataset Annotated by Our Professionals https://drive.google.com/drive/folders/1LkwArTEbBxfSKSv31fLwDXjHjvvyEG4-?usp=sharing
Folder Structures for EchoNet-Dynamic Dataset Annotated by Our Professionals
EchoNet-Dynamic_test
|-- Videos
| |-- 0X1A0A263B22CCD966.avi
| |-- 0X1A2A76BDB5B98BED.avi
| |-- ...
|-- FileList.csv
|-- VolumeTracings.csv
cd ./MCE/src_key_selection
python3 train.py --save_dir ../../results/ --src_dir ../../MCE_dataset --key "kmeans" --view "A2C" --img_size 256
cd ./MCE/src_xxx
python3 train.py --save_dir ../../results/ --model ${MODEL} --src_dir ../../MCE_dataset --key ${KEY} --view ${VIEW} --batch_size 1 --epochs 50 --img_size 256 --gid "0"
python3 test.py --save_dir ../../results/SS_10%/ --model ${MODEL} --src_dir ../../MCE_dataset --key ${KEY} --view ${VIEW} --batch_size 1 --epochs 50 --img_size 256 --gid "0" --load_model_name "0108-202905"
MODEL: 2DUnet, ConvLSTM, VisTR VIEW: A2C, A3C, A4C KEY: kmeans, top3
cd ./Echonet/src_xxx
python3 train.py --save_dir ../../results/ --model ${MODEL} --src_dir ../../EchoNet-Dynamic --batch_size 1 --epochs 50 --gid "0"
python3 test.py --save_dir ../../results/SS/ --model ${MODEL} --src_dir ../../EchoNet-Dynamic --batch_size 1 --epochs 50 --gid "0" --load_model_name "0208-021526"
python3 test_extra.py --save_dir ../../results/SS/ --model ${MODEL} --src_dir ../../EchoNet-Dynamic_test --batch_size 1 --epochs 50 --gid "0" --load_model_name "0215-115500"
MODEL: 2DUnet, ConvLSTM, VisTR
If you use the code or results in your research, please use the following BibTeX entry.
@article{chen2025mcc,
title={MCC: Multi-Cluster Contrastive Semi-Supervised Segmentation Framework for Echocardiogram Videos},
author={Chen, Yu-Jen and Lin, Shr-Shiun and Shi, Yiyu and Ho, Tsung-Yi and Xu, Xiaowei},
journal={IEEE Access},
year={2025},
publisher={IEEE}
}